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Abstract

Multi-class classification becomes challenging at test time when the number of
classes is very large and testing against every possible class can become compu-
tationally infeasible. This problem can be alleviated by imposing (or learning)
a structure over the set of classes. We propose an algorithm for learning a tree-
structure of classifiers which, by optimizing the overall tree loss, provides superior
accuracy to existing tree labeling methods. We also propose a method that learns
to embed labels in a low dimensional space that is faster than non-embedding ap-
proaches and has superior accuracy to existing embedding approaches. Finally
we combine the two ideas resulting in the label embedding tree that outperforms
alternative methods including One-vs-Rest while being orders of magnitude faster.

1 Introduction

Datasets available for prediction tasks are growing over time, resulting in increasing scale in all their
measurable dimensions: separate from the issue of the growing number of examples m and features
d, they are also growing in the number of classes k. Current multi-class applications such as web
advertising [6], textual document categorization [11] or image annotation [12] have tens or hundreds
of thousands of classes, and these datasets are still growing. This evolution is challenging traditional
approaches [1] whose test time grows at least linearly with k.

At training time, a practical constraint is that learning should be feasible, i.e. it should not take
more than a few days, and must work with the memory and disk space requirements of the available
hardware. Most algorithms’ training time, at best, linearly increases with m, d and k; algorithms
that are quadratic or worse with respect to m or d are usually discarded by practitioners working on
real large scale tasks. At testing time, depending on the application, very specific time constraints
are necessary, usually measured in milliseconds, for example when a real-time response is required
or a large number of records need to be processed. Moreover, memory usage restrictions may also
apply. Classical approaches such as One-vs-Rest are at leastO(kd) in both speed (of testing a single
example) and memory. This is prohibitive for large scale problems [6, 12, 27].

In this work, we focus on algorithms that have a classification speed sublinear at testing time in k as
well as having limited dependence on d with best-case complexity O(de(log k + d)) with de � d
and de � k. In experiments we observe no loss in accuracy compared to methods that are O(kd),
further, memory consumption is reduced from O(kd) to O(kde). Our approach rests on two main
ideas: firstly, an algorithm for learning a label tree: each node makes a prediction of the subset of
labels to be considered by its children, thus decreasing the number of labels k at a logarithmic rate
until a prediction is reached. We provide a novel algorithm that both learns the sets of labels at each
node, and the predictors at the nodes to optimize the overall tree loss, and show that this approach is
superior to existing tree-based approaches [7, 6] which typically lose accuracy compared to O(kd)
approaches. Balanced label trees have O(d log k) complexity as the predictor at each node is still

1



Algorithm 1 Label Tree Prediction Algorithm
Input: test example x, parameters T .
Let s = 0. - Start at the root node
repeat

Let s = argmax{c:(s,c)∈E}fc(x). - Traverse to the most confident child.
until |`s| = 1 - Until this uniquely defines a single label.
Return `s.

linear in d. Our second main idea is to learn an embedding of the labels into a space of dimension
de that again still optimizes the overall tree loss. Hence, we are required at test time to: (1) map
the test example in the label embedding space with cost O(dde) and then (2) predict using the label
tree resulting in our overall cost O(de(log k+d)). We also show that our label embedding approach
outperforms other recently proposed label embedding approaches such as compressed sensing [18].

The rest of the paper is organized as follows. Label trees are discussed and label tree learning
algorithms are proposed in Section 2. Label embeddings are presented in Section 3. Related prior
work is presented in Section 4. An experimental study on three large tasks is given in Section 5
showing the good performance of our proposed techniques. Finally, Section 6 concludes.

2 Label Trees

A label tree is a tree T = (N,E, F, L) with n+1 indexed nodesN = {0, . . . n}, a set of edges E =
{(p1, c1), (p|E|, c|E|)} which are ordered pairs of parent and child node indices, label predictors
F = {f1, . . . , fn} and label sets L = {`0, . . . , `n} associated to each node. The root node is
labeled with index 0. The edges E are such that all other nodes have one parent, but they can have
an arbitrary number of children (but still in all cases |E| = n). The label sets indicate the set of
labels to which a point should belong if it arrives at the given node, and progress from generic to
specific along the tree, i.e. the root label set contains all classes |`0| = k and each child label set is
a subset of its parent label set with `p =

⋃
(p,c)∈E `c. We differentiate between disjoint label trees

where there are only k leaf nodes, one per class, and hence any two nodes i and j at the same depth
cannot share any labels, `i ∩ `j = ∅, and joint label trees that can have more than k leaf nodes.

Classifying an example with the label tree is achieved by applying Algorithm 1. Prediction begins
at the root node (s = 0) and for each edge leading to a child (s, c) ∈ E one computes the score
of the label predictor fc(x) which predicts whether the example x belongs to the set of labels `c.
One takes the most confident prediction, traverses to that child node, and then repeats the process.
Classification is complete when one arrives at a node that identifies only a single label, which is the
predicted class.

Instances of label trees have been used in the literature before with various methods for choosing
the parameters (N,E, F, L). Due to the difficulty of learning, many methods make approximations
such as a random choice of E and optimization of F that does not take into account the overall loss
of the entire system leading to suboptimal performance (see [7] for a discussion). Our goal is to
provide an algorithm to learn these parameters to optimize the overall empirical loss (called the tree
loss) as accurately as possible for a given tree size (speed).

We can define the tree loss we wish to minimize as:

R(ftree) =

∫
I(ftree(x) 6= y)dP (x, y) =

∫
max

i∈B(x)={b1(x),...bD(x)(x)}
I(y /∈ `i)dP (x, y) (1)

where I is the indicator function and

bj(x) = argmax{c : (bj−1(x),c)∈E}fc(x)

is the index of the winning (“best”) node at depth j, b0(x) = 0, and D(x) is the depth in the tree
of the final prediction for x, i.e. the number of loops plus one of the repeat block when running
Algorithm 1. The tree loss measures an intermediate loss of 1 for each prediction at each depth j of
the label tree where the true label is not in the label set `bj(x). The final loss for a single example
is the max over these losses, because if any one of these classifiers makes a mistake then regardless
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of the other predictions the wrong class will still be predicted. Hence, any algorithm wishing to
optimize the overall tree loss should train all the nodes jointly with respect to this maximum.

We will now describe how we propose to learn the parameters T of our label tree. In the next
subsection we show how to minimize the tree loss for a given fixed tree (N,E and L are fixed, F is
to be learned). In the following subsection, we will describe our algorithm for learning N,E and L.

2.1 Learning with a Fixed Label Tree

Let us suppose we are given a fixed label tree N,E,L chosen in advance. Our goal is simply to
minimize the tree loss (1) over the variables F , given training data {(xi, yi)}i=1,...,m. We follow the
standard approach of minimizing the empirical loss over the data, while regularizing our solution.
We consider two possible algorithms for solving this problem.

Relaxation 1: Independent convex problems The simplest (and poorest) procedure is to consider
the following relaxation to this problem:

Remp(ftree) =
1

m

m∑
i=1

max
j∈B(x)

I(yi /∈ `j) ≤
1

m

m∑
i=1

n∑
j=1

I(sgn(fj(xi)) 6= Cj(yi))

where Cj(y) = 1 if y ∈ `j and -1 otherwise. The number of errors counted by the approximation
cannot be less than the empirical tree loss Remp as when, for a particular example, the loss is zero
for the approximation it is also zero for Remp. However, the approximation can be much larger
because of the sum.

One then further approximates this by replacing the indicator function with the hinge loss and choos-
ing linear (or kernel) models of the form fi(x) = w>

i φ(x). We are then left with the following
convex problem: minimize

n∑
j=1

(
γ||wj ||2 +

1

m

m∑
i=1

ξij

)
s.t. ∀i, j,

{
Cj(yi)fj(xi) ≥ 1− ξij
ξij ≥ 0

where we also added a classical 2-norm regularizer controlled by the hyperparameter γ. In fact, this
can be split into n independent convex problems because the hyperplanes wi, i = 1, . . . , n, do not
interact in the objective function. We consider this simple relaxation as a baseline approach.

Relaxation 2: Tree Loss Optimization (Joint convex problem) We propose a tighter minimization
of the tree loss with the following:

1

m

m∑
i=1

ξαi

s.t. fr(xi) ≥ fs(xi) + 1− ξi, ∀r, s : yi ∈ `r ∧ yi /∈ `s ∧ (∃p : (p, r) ∈ E ∧ (p, s) ∈ E) (2)
ξi ≥ 0, i = 1, . . . ,m. (3)

When α is close to zero, the shared slack variables simply count a single error if any of the pre-
dictions at any depth of the tree are incorrect, so this is very close to the true optimization of the
tree loss. This is measured by checking, out of all the nodes that share the same parent, if the one
containing the true label in its label set is highest ranked. In practice we set α = 1 and arrive at a
convex optimization problem. Nevertheless, unlike relaxation (1) the max is not approximated with
a sum. Again, using the hinge loss and a 2-norm regularizer, we arrive at our final optimization
problem:

γ

n∑
j=1

||wj ||2 +
1

m

m∑
i=1

ξi (4)

subject to constraints (2) and (3).

2.2 Learning Label Tree Structures

The previous section shows how to optimize the label predictors F while the nodes N , edges E and
label sets L which specify the structure of the tree are fixed in advance. However, we want to be
able to learn specific tree structures dependent on our prediction problem such that we minimize the
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Algorithm 2 Learning the Label Tree Structure
Train k One-vs-Rest classifiers f̄1, . . . , f̄k independently (no tree structure is used).
Compute the confusion matrix C̄ij = |{(x, yi) ∈ V : argmaxrf̄r(x) = j}| on validation set V .
For each internal node l of the tree, from root to leaf, partition its label set `l between its chil-
dren’s label sets Ll = {`c : c ∈ Nl}, where Nl = {c ∈ N : (l, c) ∈ E} and ∪c∈Nl

`c = `l, by
maximizing:

Rl(Ll) =
∑
c∈Nl

∑
yp,yq∈`c

Apq, where A =
1

2
(C̄ + C̄>) is the symmetrized confusion matrix,

subject to constraints preventing trivial solutions, e.g. putting all labels in one set (see [4]).
This optimization problem (including the appropriate constraints) is a graph cut problem and it
can be solved with standard spectral clustering, i.e. we use A as the affinity matrix for step 1 of
the algorithm given in [22], and then apply all of its other steps (2-6).
Learn the parameters f of the tree by minimizing (4) subject to constraints (2) and (3).

overall tree loss. This section describes an algorithm for learning the parameters N , E and L, i.e.
optimizing equation (1) with respect to these parameters.

The key to the generalization ability of a particular choice of tree structure is the learnability of the
label sets `. If some classes are often confused but are in different label sets the functions f may not
be easily learnable, and the overall tree loss will hence be poor. For example for an image labeling
task, a decision in the tree between two label sets, one containing tiger and jaguar labels versus one
containing frog and toad labels is presumably more learnable than (tiger, frog) vs. (jaguar, toad).

In the following, we consider a learning strategy for disjoint label trees (the methods in the previous
section were for both joint and disjoint trees). We begin by noticing that Remp can be rewritten as:

Remp(ftree) =
1

m

m∑
i=1

max
j

I(yi ∈ `j)
∑
ȳ /∈`j

C(xi, ȳ)


where C(xi, ȳ) = I(ftree(xi) = ȳ) is the confusion of labeling example xi (with true label yi) with
label ȳ instead. That is, the tree loss for a given example is 1 if there is a node j in the tree containing
yi, but we predict a different node at the same depth leading to a prediction not in the label set of j.

Intuitively, the confusion of predicting node i instead of j comes about because of the class confusion
between the labels y ∈ `i and the labels ȳ ∈ `j . Hence, to provide the smallest tree loss we
want to group together labels into the same label set that are likely to be confused at test time.
Unfortunately we do not know the confusion matrix of a particular tree without training it first, but
as a proxy we can use the class confusion matrix of a surrogate classifier with the supposition that
the matrices will be highly correlated. This motivates the proposed Algorithm 2. The main idea is
to recursively partition the labels into label sets between which there is little confusion (measuring
confusion using One-vs-Rest as a surrogate classifier) solving at each step a graph cut problem
where standard spectral clustering is applied [21, 22]. The objective function of spectral clustering
penalizes unbalanced partitions, hence encouraging balanced trees. (To obtain logarithmic speed-
ups the tree has to be balanced; one could also enforce this constraint directly in the k-means step.)

The results in Section 5 show that our learnt trees outperform random structures and in fact match
the accuracy of not using a tree at all, while being orders of magnitude faster.

3 Label Embeddings

An orthogonal angle of attack of the solution of large multi-class problems is to employ shared
representations for the labelings, which we term label embeddings. Introducing the function φ(y) =
(0, . . . , 0, 1, 0, . . . , 0) which is a k-dimensional vector with a 1 in the yth position and 0 otherwise,
we would like to find a linear embedding E(y) = V φ(y) where V is a de × k matrix assuming that
labels y ∈ {1, . . . , k}. Without a tree structure, multi-class classification is then achieved with:

fembed(x) = argmaxi=1,...,k S (Wx, V φ(i)) (5)
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where W is a de × d matrix of parameters and S(·, ·) is a measure of similarity, e.g. an inner
product or negative Euclidean distance. This method, unlike label trees, is unfortunately still linear
with respect to k. However, it does have better behavior with respect to the feature dimension d,
with O(de(d + k)) testing time, compared to methods such as One-vs-Rest which is O(kd). If the
embedding dimension de is much smaller than d this gives a significant saving.

There are several ways we could train such models. For example, the method of compressed sensing
[18] has a similar form to (5), but the matrix V is not learnt but chosen randomly, and only W
is learnt. In the next section we will show how we can train such models so that the matrix V
captures the semantic similarity between classes, which can improve generalization performance
over random choices of V in an analogous way to the improvement of label trees over random
trees. Subsequently, we will show how to combine label embeddings with label trees to gain the
advantages of both approaches.

3.1 Learning Label Embeddings (Without a Tree)

We consider two possibilities for learning V and W .

Sequence of Convex Problems Firstly, we consider learning the label embedding by solving a se-
quence of convex problems using the following method. First, train independent (convex) classifiers
fi(x) for each class 1, . . . , k and compute the k×k confusion matrix C̄ over the data (xi, yi), i.e. the
same as the first two steps of Algorithm 2. Then, find the label embedding vectors Vi that minimize:

k∑
i,j=1

Aij ||Vi − Vj ||2, where A =
1

2
(C̄ + C̄>) is the symmetrized confusion matrix,

subject to the constraint V >DV = I where Dii =
∑
j Aij (to prevent trivial solutions) which is the

same problem solved by Laplacian Eigenmaps [4]. We then obtain an embedding matrix V where
similar classes i and j should have small distance between their vectors Vi and Vj . All that remains is
to learn the parameters W of our model. To do this, we can then train a convex multi-class classifier
utilizing the label embedding V : minimize

γ||W ||FRO +
1

m

m∑
i=1

ξi

where ||.||FRO is the Frobenius norm, subject to constraints:

||Wxi − V φ(i)||2 ≤ ||Wxi − V φ(j)||2 − 1 + ξi, ∀j 6= i (6)

ξi ≥ 0, i = 1, . . . ,m.

Note that the constraint (6) is linear as we can multiply out and subtract ||Wxi||2 from both sides.
At test time we employ equation (5) with S(z, z′) = −||z − z′||.
Non-Convex Joint Optimization The second method is to learn W and V jointly, which requires
non-convex optimization. In that case we wish to directly minimize:

γ||W ||FRO +
1

m

m∑
i=1

ξi

subject to (Wxi)
>V φ(i) ≥ (Wxi)

>V φ(j) + 1− ξi, ∀j 6= i

and ||Vi|| ≤ 1 , ξi ≥ 0, i = 1, . . . ,m. We optimize this using stochastic gradient descent (with
randomly initialized weights) [8]. At test time we employ equation (5) with S(z, z′) = z>z′.

3.2 Learning Label Embedding Trees

In this work, we also propose to combine the use of embeddings and label trees to obtain the ad-
vantages of both approaches, which we call the label embedding tree. At test time, the resulting
label embedding tree prediction is given in Algorithm 3. The label embedding tree has potentially
O(de(d+ log(k))) testing speed, depending on the structure of the tree (e.g. being balanced).
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Algorithm 3 Label Embedding Tree Prediction Algorithm
Input: test example x, parameters T .
Compute z = Wx. - Cache prediction on example
Let s = 0. - Start at the root node
repeat - Traverse to the most

Let s = argmax{c:(s,c)∈E}fc(x) = argmax{c:(s,c)∈E}z
>E(c). confident child.

until |`s| = 1 - Until this uniquely defines a single label.
Return `s.

To learn a label embedding tree we propose the following minimization problem:

γ||W ||FRO +
1

m

m∑
i=1

ξi

subject to constraints:

(Wxi)
>V φ(r) ≥ (Wxi)

>V φ(s)+1−ξi, ∀r, s : yi ∈ `r∧yi /∈ `s∧(∃p : (p, r) ∈ E ∧ (p, s) ∈ E)

||Vi|| ≤ 1, ξi ≥ 0, i = 1, . . . ,m.

This is essentially a combination of the optimization problems defined in the previous two Sections.
Learning the tree structure for these models can still be achieved using Algorithm 2.

4 Related Work

Multi-class classification is a well studied problem. Most of the prior approaches build upon binary
classification and have a classification cost which grows at least linearly with the number of classes
k. Common multi-class strategies include one-versus-rest, one-versus-one, label ranking and Deci-
sion Directed Acyclic Graph (DDAG). One-versus-rest [26] trains k binary classifiers discriminating
each class against the rest and predicts the class whose classifier is the most confident, which yields
a linear testing cost O(k). One-versus-one [17] trains a binary classifier for each pair of classes
and predicts the class getting the most pairwise preferences, which yields a quadratic testing cost
O(k · (k − 1)/2). Label ranking [10] learns to assign a score to each class so that the correct class
should get the highest score, which yields a linear testing costO(k). DDAG [24] considers the same
k · (k− 1)/2 classifiers as one-versus-one but achieves a linear testing cost O(k). All these methods
are reported to perform similarly in terms of accuracy [26, 24].

Only a few prior techniques achieve sub-linear testing cost. One way is to simply remove labels the
classifier performs poorly on [11]. Error correcting code approaches [13] on the other hand represent
each class with a binary code and learn a binary classifier to predict each bit. This means that
the testing cost could potentially be O(log k). However, in practice, these approaches need larger
redundant codes to reach competitive performance levels [20]. Decision trees, such as C4.5 [25], can
also yield a tree whose depth (and hence test cost) is logarithmic in k. However, testing complexity
also grows linearly with the number of training examples making these methods impractical for
large datasets [23].

Filter tree [7] and Conditional Probability Tree (CPT) [6] are logarithmic approaches that have been
introduced recently with motivations similar to ours, i.e. addressing large scale problems with a
thousand classes or more. Filter tree considers a random binary tree in which each leaf is associated
with a class and each node is associated with a binary classifier. A test example traverses the tree
from the root. At each node, the node classifier decides whether the example is directed to the right
or to the left subtree, each of which are associated to half of the labels of the parent node. Finally,
the label of the reached leaf is predicted. Conditional Probability Tree (CPT) relies on a similar
paradigm but builds the tree during training. (Note, however that CPT is not aimed at classification
but at multi-class probability estimation, nevertheless in our experiments we do make a comparison
to it for classification.) CPT considers an online setup in which the set of classes is discovered
during training. Hence, CPT builds the tree greedily: when a new class is encountered, it is added
by splitting an existing leaf. In our case, we consider that the set of classes are available prior
to training and propose to tessellate the class label sets such that the node classifiers are likely to
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achieve high generalization performance. This contribution is shown to have a significant advantage
in practice, see Section 5.

After publication of this work, we learned that the use of clustering confusion matrices for hierar-
chical classification was already proposed in [16]. In that work, they used a binary tree over 256
classes on an image classification problem and obtained between 5 and 20 fold speed increases with
a 10% performance drop. In our work, we seem to obtain better improvements than this (though
on different datasets), which we believe might be due to the following differences: (i) we try to
optimize the overall tree loss using a joint optimization problem, (ii) we have many more classes in
our tasks; and (iii) we do not use binary trees in our clustering which might make more mistakes.
Further, the use of label embedding trees (i.e. embeddings) is a differentiator between our works.

Finally, we should mention that a related active area of research involves partitioning the feature
space rather than the label space, e.g. using hierarchical experts [19], hashing [28] and kd-trees [5].

Label embedding is another key aspect of our work when it comes to efficiently handling thousands
of classes. Recently, [27] proposed to exploit class taxonomies via embeddings by learning to project
input vectors and classes into a common space such that the classes close in the taxonomy should
have similar representations while, at the same time, examples should be projected close to their
class representation. In our case, we do not rely on a pre-existing taxonomy: we also would like
to assign similar representations to similar classes but solely relying on the training data. In that
respect, our work is closer to work in information retrieval [3], which proposes to embed documents
– not classes – for the task of document ranking. Compressed sensing based approaches [18] do
propose to embed class labels, but rely on a random projection for embedding the vector representing
class memberships, with the added advantages of handling problems for which multiple classes are
active for a given example. However, relying on a random projection does not allow for the class
embedding to capture the relation between classes. In our experiments, this aspect is shown to be a
drawback, see Section 5. Finally, the authors of [2] do propose an embedding approach over class
labels, but it is not clear to us if their approach is scalable to our setting.

5 Experimental Study

We consider three datasets: one publicly available image annotation dataset and two proprietary
datasets based on images and textual descriptions of products.

ImageNet Dataset ImageNet [12] is a new image dataset organized according to WordNet [14]
where quality-controlled human-verified images are tagged with labels. We consider the task of
annotating images from a set of about 16 thousand labels. We split the data into 2.5M images for
training, 0.8M for validation and 0.8M for testing, removing duplicates between training, validation
and test sets by throwing away test examples which had too close a nearest neighbor training or
validation example in feature space. Images in this database were represented by a large but sparse
vector of color and texture features, known as visual terms, described in [15].

Product Datasets We had access to a large proprietary database of about 0.5M product descriptions.
Each product is associated with a textual description, an image, and a label. There are≈18 thousand
unique labels. We consider two tasks: predicting the label given the textual description, and predict-
ing the label given the image. For the text task we extracted the most frequent set of 10 thousand
words (discounting stop words) to yield a textual dictionary, and represented each document by a
vector of counts of these words in the document, normalized using tf-idf. For the image task, images
were represented by a dense vector of 1024 real values of texture and color features.

Table 1 summarizes the various datasets. Next, we describe the approaches that we compared.

Flat versus Tree Learning Approaches In Table 2 we compare label tree predictor training meth-
ods from Section 2.1: the baseline relaxation 1 (“Independent Optimization”) versus our proposed
relaxation 2 (“Tree Loss Optimization”), both of which learn the classifiers for fixed trees; and we
compare our “Learnt Label Tree” structure learning algorithm from Section 2.2 to random struc-
tures. In all cases we considered disjoint trees of depth 2 with 200 internal nodes. The results show
that learnt structure performs better than random structure and tree loss optimization is superior
to independent optimization. We also compare to three other baselines: One-vs-Rest large margin
classifiers trained using the passive aggressive algorithm [9], the Filter Tree [7] and the Conditional
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Probability Tree (CPT) [6]. To use CPT for multiclass classification we made predictions by travers-
ing the tree from root to leaf, taking the best single path. We note that this might not be the best
way of using CPT as there is no reason in general to expect the greedy-max path to be the highest
probability path.

For all algorithms, hyperparameters are chosen using the validation set. The combination of Learnt
Label Tree structure and Tree Loss Optimization for the label predictors is the only method that is
comparable to or better than One-vs-Rest while being around 60× faster to compute at test time.

For ImageNet one could wonder how well using WordNet (a graph of human annotated label sim-
ilarities) to build a tree would perform instead. We constructed a matrix C for Algorithm 2 where
Cij = 1 if there is an edge in the WordNet graph, and 0 otherwise, and used that to learn a label
tree as before, obtaining 0.99% accuracy using “Independent Optimization”. This is better than a
random tree but not as good as using the confusion matrix, implying that the best tree to use is the
one adapted to the supervised task of interest.

Embedding and Embedding Tree Approaches In Table 3 we compare several label embedding
methods: (i) the convex and non-convex methods from Section 5; (ii) compressed sensing; and
(iii) the label embedding tree from Section 3.2. In all cases we fixed the embedding dimension
de = 100. The results show that the random embeddings given by compressed sensing are inferior
to learnt embeddings and Non-Convex Embedding is superior to Sequential Convex Embedding,
presumably as the overall loss which is dependent on both W and V is jointly optimized. The latter
gives results as good or superior to One-vs-Rest with modest computational gain (3× or 10× speed-
up). Note, we do not detail results on the product descriptions task because no speed-up is gained
there from embedding as the sparsity is already so high, however the methods still gave good test
accuracy (e.g. Non-Convex Embedding yields 38.2%, which should be compared to the methods in
Table 2). Finally, combining embedding and label tree learning using the “Label Embedding Tree”
of Section 3.2 yields our best method on ImageNet and Product Images with a speed-up of 85× or
142× respectively with accuracy as good or better than any other method tested. Moreover, memory
usage of this method (and other embedding methods) is significantly less than One-vs-Rest.

6 Conclusion

We have introduced an approach for fast multi-class classification by learning label embedding trees
by (approximately) optimizing the overall tree loss. Our approach obtained orders of magnitude
speedup compared to One-vs-Rest while yielding as good or better accuracy, and outperformed
other tree-based or embedding approaches. Our method makes real-time inference feasible for very
large multi-class tasks such as web advertising, document categorization and image annotation.

Acknowledgements

We thank Ameesh Makadia for very useful discussions.

References
[1] E. Allwein, R. Schapire, and Y. Singer. Reducing multiclass to binary: a unifying approach for margin

classifiers. Journal of Machine Learning Research (JMLR), 1:113–141, 2001.

[2] Y. Amit, M. Fink, N. Srebro, and S. Ullman. Uncovering shared structures in multiclass classification. In
Proceedings of the 24th international conference on Machine learning, page 24. ACM, 2007.

[3] B. Bai, J. Weston, D. Grangier, R. Collobert, C. Cortes, and M. Mohri. Half transductive ranking. In
Artificial Intelligence and Statistics (AISTATS), 2010.

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering.
Advances in neural information processing systems, 1:585–592, 2002.

[5] J.L. Bentley. Multidimensional binary search trees used for associative searching. Communications of the
ACM, 18(9):517, 1975.

[6] A. Beygelzimer, J. Langford, Y. Lifshits, G. Sorkin, and A. Strehl. Conditional probability tree estimation
analysis and algorithm. In Conference in Uncertainty in Artificial Intelligence (UAI), 2009.

8



Table 1: Summary Statistics of the Three Datasets Used in the Experiments.
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