
Label-free biomarker detection from whole blood

Eric Stern1, Aleksandar Vacic2, Nitin K. Rajan2, Jason M. Criscione1, Jason Park1, Bojan R. 
Ilic3, David J. Mooney4, Mark A. Reed2,5, and Tarek M. Fahmy1,6

Mark A. Reed: mark.reed@yale.edu; Tarek M. Fahmy: tarek.fahmy@yale.edu
1 Yale University, School of Engineering and Applied Science, Department of, Biomedical, New 
Haven, CT 06511

2 Yale University, School of Engineering and Applied Science, Department of, Electrical, New 
Haven, CT 06511

3Cornell Nanofabrication Facility, Cornell University, Ithaca, NY 14853

4Harvard University, School of Engineering and Applied Science, Department of Bioengineering, 
Cambridge, MA 02138

5 Yale University, School of Engineering and Applied Science, Department of, Applied Physics, 
New Haven, CT 06511

6 Yale University, School of Engineering and Applied Science, Department of, Chemical 
Engineering, New Haven, CT 06511

Abstract

Label-free nanosensors can detect disease markers to provide point-of-care diagnosis that is low-

cost, rapid, specific and sensitive.1-13 However, detecting these biomarkers in physiological fluid 

samples is difficult because of problems like biofouling and nonspecific binding, and the resulting 

need to use purified buffers greatly reduces the clinical relevance of these sensors. Here, we 

overcome this limitation by using distinct components within the sensor to perform purification 

and detection. A microfluidic purification chip captures multiple biomarkers simultaneously from 

blood samples and releases them, after washing, into purified buffer for sensing by a silicon 

nanoribbon detector. This two-stage approach isolates the detector from the complex environment 

of whole blood, and reduces its minimum required sensitivity by effectively pre-concentrating the 

biomarkers. We show specific and quantitative detection of two model cancer antigens from a 10 

uL sample of whole blood in less than 20 minutes. This study marks the first use of label-free 
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nanosensors with physiologic solutions, positioning this technology for rapid translation to clinical 

settings.

Biomarkers have emerged as potentially important diagnostic tools for cancer and many 

other diseases. Continuing discoveries of such biomarkers and their aggregation into 

molecular signatures suggests that multiple biomarkers will be necessary to precisely define 

disease states. Thus, parallel detection of biomarker arrays is essential for translation from 

benchtop discovery to clinical validation. Such a technique would enable rapid, point-of-

care (POC) applications requiring immediate diagnosis from a physiological sample. 

Critically, such a system must also be capable of detecting very low levels of aberrant genes 

and proteins, as many biomarkers are present at minute concentrations during early disease 

phases3-6. Given these requirements, the use of conventional diagnostic assays5,6,14 has 

been limiting. An approach that is based on rapid, label-free sensing technologies would be 

ideally suited for clinical applications6-13.

Since their introduction in 2001 (Ref. 7), label-free nanosensors have demonstrated great 

potential to serve as POC detectors capable of ultrasensitive, real-time, multiplexed 

detection of multiple biomolecular species6,8-13. Despite their appeal, electronic 

nanosensors continue to be a challenge to implement because fundamental limitations render 

them incapable of sensing molecules in complex, physiologic solutions6,8-13. Biofouling 

and nonspecific binding readily degrade the minute active surface areas of such devices (< 

0.1 μm2)15 and label-free sensing requires purified, precisely controlled buffers in order to 

enable measurements to be performed. In the case of nanowire field-effect transistor (FET) 

sensing, low salt (<∼1 mM) buffers are required to prevent screening of the charge-based 

electronic signal12,16.

To overcome these limitations we have developed a novel in-line microfabricated device 

that operates upstream of the nanosensors to purify biomarkers of interest. This microfluidic 

purification chip (MPC) captures cancer biomarkers from physiologic solutions and, after 

washing, releases the antigens17 into a pure buffer suitable for sensing. The chip design 

increases nanosensor specificity to that of conventional sandwich assay techniques because 

it requires two antibodies to bind biomarkers in order for a positive signal to be produced18.

Figure 1 schematically illustrates the operation of the MPC chip. The avidin-functionalized 

chip19 (Fig. 1a) is treated with antibodies to any number of specific biomarkers conjugated 

to biotinylated, photocleavable crosslinkers containing a specific 19-mer DNA sequence 

(Fig. 2a)20. The MPC geometry was chosen to optimize biomarker binding (Supplementary 

Fig. S1)14 and chips were fabricated from 4-inch silicon wafers in a one-step 

photolithographic process (Supplementary Fig. S2). Completed chips (Fig. 2b) were loaded 

into a custom-machined flow chamber (inset, Fig. 2b and Supplementary Fig. S3), which 

enabled fluid handling and maintained a constant 5 μL volume in the system.

An example operation is illustrated in Fig. 1b-d. First, a blood sample flows through the chip 

(Fig. 1b) and the chip-bound antibodies bind specific soluble biomarkers, essentially 

purifying these molecules from whole blood. After this capture step, wash and sensing 

buffers are perfused through the device. Next, flow is halted and the sensing buffer-filled 
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MPC chip is irradiated with UV light (Fig. 1c), resulting in cleavage of the photolabile 

group20-23 and release of the bound biomarker-antibody-DNA complexes. The UV 

photocleavage process was shown not to affect the immunoactivity of the biomarkers 

(Supplementary Fig. S4). The DNA component was critical for preliminary assay validation 

experiments (Fig. 2c). As shown in Fig. 1d, after a second valve switching step transfers 

MPC contents to the nanosensor chip, the complexes bind the secondary antibodies on the 

nanowire surfaces. The purification/sensing operation thus requires two specific antibody 

binding events for detection, a significant improvement in selectivity over previous label-

free nanosensing schemes6-13.

To demonstrate the effectiveness of the capture-release approach, we utilized a readily 

available fluorescently labeled antigen-antibody pair, fluorescently labeled chicken 

ovalbumin (OVA-FITC), and its antibody anti-OVA IgG. OVA-FITC was added to 

heparinized murine blood and flowed through an anti-OVA functionalized chip. After 

washing and flushing with sensing buffer, fluorescence imaging demonstrated specific 

OVA-FITC binding to chip-bound antibodies (Fig. 2d). A control chip, to which anti-

prostate specific antigen (PSA) was bound, showed a negligible fluorescent signal (inset, 

Fig. 2d). After UV irradiation and subsequent flushing of the sensing reservoir with fresh 

buffer, the fluorescence signal from the anti-OVA chip was greatly diminished (inset, Fig. 

2d).

To demonstrate the generality of MPC technique we used two model cancer antigens, PSA 

and carbohydrate antigen 15.3 (CA15.3), standard clinical markers for prostate24-25 and 

breast cancer26-27, respectively. Successful capture and release of PSA and CA15.3 was 

verified with a modified enzyme-linked immunoassay (ELISA) technique (Fig. 2c)18, in 

which the first detection step consisted of the hybridization of a complementary, biotinylated 

19-mer to the crosslinker DNA sequence. Six increasing concentrations of PSA and CA15.3 

were added to heparinized rat blood and samples were flowed through MPCs functionalized 

with both anti-PSA and anti-CA15.3. The introduced concentrations spanned clinically 

relevant ranges24-27. The data in Fig. 2e-f demonstrate a monotonic relationship between 

the concentration of biomarker introduced in whole blood and that released into pure sensing 

buffer. The absolute yields of these experiments are in agreement with modeling studies 

(Supplementary Fig. S1c). Biomarker capture by MPCs can be significantly increased by 

adjusting either the operation conditions such as the flow rate into the device (modeled in 

Supplementary Fig. S1d) or the device dimensions.

A critical feature of this integrated approach is that the MPC-purified biomarker complex 

concentrations are well above those required for label-free, electronic detection. Although 

previous studies using nanowire sensors have demonstrated PSA detection as low as 0.9 

pg/mL (Refs. 6,10), this exquisite sensitivity is not a critical factor for MPC-nanosensor 

operation. We thus chose to use “nanoribbons,” devices with nanoscale thicknesses and 

microscale lateral dimensions28, which are less sensitive but have significant fabrication 

and cost advantages. These devices, fabricated using conventional lithographic techniques, 

have been demonstrated to detect streptavidin in the 0.0318–53 ng/mL range28, a sensitivity 

range ideally suited for MPC-purified cancer antigen detection. We fabricated 25 nm-thin 

devices according to a similar process (Supplementary Fig. S5)28, but incorporated Ohmic 
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contacts to devices. Device images are given in Fig. 3a. Electrical characterization verified 

that this approach produced high-quality devices, with on/off ratios of >106 (Fig. 3b) and 

small hystereses between forward and reverse IDS(VG) sweeps (Fig. 3c). Surface 

functionalization did not compromise device electrical characteristics (Supplementary Fig. 

S7) and solution gating (VG, SOLN) demonstrated that VG = -5 V was an optimal operating 

point for sensing studies (Fig. 3d).

As shown in Fig. 2 and detailed in the Supplementary Information, devices are 

functionalized either with anti-PSA or anti-CA15.3. Antibodies were immobilized to the 

sensor using NHS/EDC chemistry. To verify that the signal from binding proteins would not 

be screened by the buffer solution, direct measurements of the amount of the signal that 

would be unscreened were done by varying buffer salt concentration16. This study indicated 

that approximately 50% of the signal was not screened by the buffer solution (see 

Supplementary Information).

Next, we applied these devices to sensing the biomarkers from the MPC-purified whole 

blood samples. The normalized responses of these same devices to MPC-purified, antigen-

spiked blood samples containing both 2.5 ng/mL PSA and 30 U/mL CA15.3 (as well as 

negative controls) are shown in Fig. 4a and 4b, respectively. After the injection transient 

noise subsides11, device current levels were increased by antigen binding due to the 

negative charge conferred to the antigens by the basic sensing buffer. Similar signals were 

obtained with a PSA/CA15.3 spiked sensing buffer positive control, and no device response 

was observed with an unspiked, MPC-purified blood negative control. To reduce potential 

transient electrical signals upon injection, buffer salt concentrations of the functionalized 

devices and the MPC-purifies samples are kept the same. The positive signal is observed to 

increase linearly in time, following well-known ligand-receptor kinetics,29 in which initial 

rates at low relative analyte concentrations are directly proportional to the species 

concentration30. In fact, the asymptotic saturation value of the device response is weakly 

dependent on the concentration for reversible reactions with a low dissociation constant29 

which is the case for the antigen-antibody interactions. Thus, we focus on the initial kinetic 

reaction rates instead of endpoint detection30.

Using these rates, a quantification of analyte concentrations (against a known) can be made, 

as shown in Fig. 4c and 4d. Whole blood samples spiked with 2 ng/mL PSA and 15 U/mL 

CA15.3 were MPC purified and sensed with anti-PSA and anti-CA15.3 functionalized 

devices. Using the slope of the normalized device temporal response, we find slope ratios of 

both the PSA and CA15.3 responses agree quite well with the initial spiked whole biomarker 

concentrations. For PSA, the slope ratio is 1.38, compared with a concentration ratio of 1.25; 

for CA15.3, the slope ratio is 1.94, versus a concentration ratio of 2.0. It should be noted that 

this quantification occurs in the presence of another species, demonstrating selectivity as 

well (See Supplementary Information for further repeatability data).

The integration of a microfluidic purification step with label-free nanosensor detection 

represents a paradigm shift in label-free electronic sensing of biomolecules. The technique 

described here enables biomarker detection from whole blood or any other physiologic fluid 

without the challenges associated with tailoring sensor operation for the medium of interest 
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or engineering nanosensors that can withstand complex fluid media. Additionally, the need 

for ultrasensitivity in electronic detection may not be essential with such an integrated 

platform because of its ability to pre-concentrate molecules of choice prior to sensing. The 

attractiveness of the method lies in its simplicity, speed, and ability to simultaneously 

capture multiple biomarkers, enabling multiplexed, highly sensitive downstream detection 

with label-free sensors. The proof of principle demonstration of the non-integrated 

individual components here should be easily to integrate into a compact, self-contained 

system. Furthermore, the low cost of MPC purification renders this system capable of stand-

alone use or use in tandem with more expensive sensing methodologies, such as rare 

circulating tumor cell detectors14 for more complex diagnoses. The portability and 

versatility of this method represents the crucial next step for label-free sensors and should 

position these and similar nascent sensing technologies for rapid molecular signature 

determinations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of MPC operation
a, Primary antibodies to multiple biomarkers, here prostate specific antigen (PSA) and 

carbohydrate antigen-15.3 (CA15.3), are bound with a photocleavable crosslinker to the 

MPC. The chip is placed in a plastic housing and a valve (pink) directs fluid flow exiting the 

chip to either a waste receptacle or the nanosensor chip. b, Whole blood is injected into the 

chip with the valve set to the waste compartment (black arrow shows the direction of fluid 

flow) and, if present in the sample, biomarkers bind their cognate antibodies. c, Washing 

steps follow blood flow and the chip volume (5 μL) is filled with sensing buffer prior to UV 

irradiation (orange arrows). During UV exposure, the photolabile crosslinker cleaves, 

releasing the antibody-antigen complexes into solution. d, The valve is set to the nanosensor 

reservoir (black arrow shows the direction of fluid flow) and the 5 μL volume is transferred, 

enabling label-free sensing to be performed to determine the presence of specific 

biomarkers.
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Figure 2. MPC operation
a, Molecular structure of the photocleavable crosslinker. Primary antibody conjugation was 

performed with the amino group (right) and binding to chip-bound avidin occurred through 

the biotin group (left). b, Scanning electron micrograph of a representative w = 4 mm × l = 7 

mm × h = 100 μm MPC capture-release chip. The inset is an optical image of MPC 

operation during washing. c, Schematic representation of PSA and CA15.3 detection using a 

modified ELISA technique. d, Fluorescence optical micrograph of an anti-OVA 

functionalized MPC following OVA-FITC-spiked whole blood flow and washing. The inset 

plots the pixel intensity (gray value, determined by ImageJ) versus position for the red 

cutline (green dataplot) and similar cutlines from images of post-UV irradiation and transfer 
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(blue) and of an anti-PSA functionalized MPC following OVA-FITC-spiked blood flow and 

washing. The same exposure times were used for all images. e, Scatter plot showing the 

concentration of PSA and f, CA15.3 released from the MPC versus the concentration of 

PSA and CA15.3 introduced in whole blood, respectively. Each datapoint represents the 

average of three separate MPC runs and error bars represent one standard deviation.
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Figure 3. Nanosensor electrical characteristics
a, Optical image of devices outfitted with sensing reservoirs. The inset shows an optical 

micrograph of a completed device. Only the central region of the device (black arrow) is 

exposed to the solution. Metal leads contact the device source and drain and fan out to larger 

contacts (not shown). The 25 nm thick silicon device appears yellow. b, IDS(VDS) plot for 

VG varied from 0 to -20V (black arrow shows direction of increasing negative VG) for a 

representative device illustrating p-type accumulation mode behavior. c, IDS(VG) plot (VDS 

= 1V) for the device used in b. The inset highlights IDS (nA) around the operating point (VG 

= -5V). d, Plot demonstrating the effect of varying solution gate voltage (VG, SOLN) on 

device current (IDS; black solid) and device-to-solution leakage current (ILEAK; blue dashed) 

for VDS = 1V.
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Figure 4. Label-free sensing
All sensing measurements were performed at VDS = 1V and VG = -5V and all sample 

introductions occurred at time = 0. Normalizations were performed by dividing device 

currents by the pre-addition (time < 0) current level average. a, Response of an anti-PSA 

functionalized sensor to a MPC-purified blood sample initially containing 2.5 ng/mL PSA 

(and also 30 U/mL CA15.3), or a control sample containing neither. b, Response of an anti-

CA15.3 functionalized sensor to a MPC-purified blood sample blood sample initially 

containing 30 U/mL CA15.3 (and also 2.5 ng/mL PSA), or a control sample containing 

neither. c, Normalized response of two anti-PSA and d, two anti-CA15.3 functionalized 

devices to MPC-purified blood containing both PSA and CA 15.3, with concentrations 

labeled. A least squares fit is represented by a solid black line, over the selected region (line 

endpoints). The ratio of the the normalized slopes calibrates the ratio of concentrations.

Stern et al. Page 11

Nat Nanotechnol. Author manuscript; available in PMC 2010 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


