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ABSTRACT 

We have developed a video-rate stimulated Raman scattering (SRS) microscope with frame-by-

frame wavenumber tunability. The system uses a 76-MHz picosecond Ti:sapphire laser and a 

subharmonically synchronized, 38-MHz Yb fiber laser. The Yb fiber laser pulses are spectrally 

sliced by a fast wavelength-tunable filter, which consists of a galvanometer scanner, a 4-f optical 

system and a reflective grating. The spectral resolution of the filter is ~ 3 cm
-1

. The wavenumber was 

scanned from 2800 to 3100 cm
-1

 with an arbitrary waveform synchronized to the frame trigger. For 

imaging, we introduced a 8-kHz resonant scanner and a galvanometer scanner. We were able to 

acquire SRS images of 500 x 480 pixels at a frame rate of 30.8 frames/s. Then these images were 

processed by principal component analysis followed by a modified algorithm of independent 

component analysis. This algorithm allows blind separation of constituents with overlapping Raman 

bands from SRS spectral images. The independent component (IC) spectra give spectroscopic 

information, and IC images can be used to produce pseudo-color images. We demonstrate various 

label-free imaging modalities such as 2D spectral imaging of the rat liver, two-color 3D imaging of a 

vessel in the rat liver, and spectral imaging of several sections of intestinal villi in the mouse. 

Various structures in the tissues such as lipid droplets, cytoplasm, fibrous texture, nucleus, and 

water-rich region were successfully visualized. 

Keywords: stimulated Raman scattering (SRS) microscopy, spectral imaging, independent component analysis 

 

1. INTRODUCTION 

Recent development of stimulated Raman scattering (SRS) microscopy [1-3] offers unprecedented 

capability for label-free imaging such as high-speed imaging at up to the video rate [4] and chemical 

contrast based on vibrational spectroscopy without spectral distortion [1-3]. Fast imaging is 

especially important in biomedical imaging because it allows us to successively observe samples in 

different fields of view, and the images become less sensitive to artifacts due to the sample 

movement or degradation. In SRS microscopy, two-color laser pulses at the pump frequency ωp and 

the Stokes frequency ωs are used, and either the pump or Stokes beam is intensity-modulated 

beforehand. After these pulses are focused on the sample, the modulation transfer to the other beam 

due to SRS is measured by the lock-in detection technique. Several reports [1-13] have demonstrated 
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the advantages of SRS in terms of sensitivity and chemical specificity over existing Raman 

microscopy techniques. 

However, chemical specificity is still limited in the original implementation of SRS microscopy [1-

3] because an SRS image reflects a single vibrational mode at ωp – ωs. This makes it difficult to 

specifically detect molecules with overlapping Raman bands. For further improving the specificity, 

tailored excitation SRS microscopy was demonstrated [14]. This technique uses narrowband Stokes 

pulses and spectrally tailored pump pulses to detect specific molecules. However, this technique 

requires a priori knowledge of the sample molecules. Similar limitations arise in multiplex detection 

techniques [15-16] although it allows us to detect several kinds of molecules simultaneously. 

Femtosecond SRS microscopy [17] can acquire Raman spectra with a spectrometer, but requires 

intense excitation pulses, which are not compatible with biological imaging. Another approach for 

pushing the chemical specificity is SRS spectral imaging [18-22], where SRS images at various 

vibrational frequencies are successively acquired. This may allow us to analyze vibrational spectrum 

so as to specifically detect molecules. However, in the previous reports on SRS spectral imaging, the 

acquisition time was several minutes or longer, limited by the tuning mechanisms or the microscope 

itself. Furthermore, it seems troublesome to analyze SRS spectral images, which contain tens of 

thousands of vibrational spectra. Here we introduce our recent development of a high-speed SRS 

spectral imaging system and a spectral analysis method for label-free imaging of tissues [23].  

2. SRS SPECTRAL MICROSCOPY AND INDEPENDENT COMPONENT ANALYSIS 

Figure 1a shows the schematic of the system. We synchronized two-color laser sources [24-25] 

equipped with a galvanometer-controlled wavelength scanner [21] with a tunability of ~300 cm
-1

 and 

a spectral resolution of ~3 cm
-1

 (Fig. 1b). By incorporating a resonant galvanometer scanner and a 

high-speed lock-in amplifier, we were able to acquire SRS images with 500 × 480 pixels at a frame 

rate of 30.8 frames/s while the wavelength scanner was controlled in a frame-by-frame manner.  

 

Fig. 1. High-speed SRS spectral microscopy [23]. a. Schematic of our experimental setup. 

Modulation transfer from Yb fiber laser (Stokes) pulses to Ti:sapphire laser (pump) pulses was 

detected. Images with 500 × 480 pixels are taken at 30.8 frames/s, while Stokes wavelength can be 

tuned by a galvanometer mirror in the wavelength scanner in a frame-by-frame manner. PM-YDFA: 

polarization maintaining Yb-doped fiber amplifier. GS: galvanometer scanner. RS: resonant 

galvanometer scanner. P: polarizer. OB: objective lens. PZT: piezoelectric transducer. b. Output 

spectra and spectral width of Stokes pulses with a wavelength tunability of >300 cm
-1

. 
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Figure 2 shows the results of spectral imaging of polymer beads. We observed ~5-µm poly(methyl 

methacrylate) (PMMA) beads and 6-µm polystyrene (PS) beads in water. We acquired 91 spectral 

images at wavenumbers ranging from 2800 to 3100 cm
-1

 within 3 s. We can see that Fig. 2a-c have 

different contrast depending on the wavenumber. Figure 2d shows the spectra taken at different 

locations indicated by the arrows in Fig. 2b and 2c. Obviously, these spectra have different shape, 

and indicate the high signal-to-noise ratio of our imaging system.  

 

 

Fig. 2. Spectral imaging of poly(methyl methacrylate) (PMMA) and polystyrene (PS) beads. a-c: 

SRS images taken at 2913, 2946, and 3053 cm
-1

, respectively. d: SRS spectra taken at the locations 

of arrows in b and c. Scale bar: 20 µm. 

 

The spectral data were analyzed by principal component analysis (PCA) followed by a modified 

version of independent component analysis (ICA) [26]. PCA allows one to extract characteristic 

features with a smaller number of dimensions. Then ICA is used for the blind separation of 

independent sources. Ordinary ICA assumes that the data given are linear combination of 

independent signal sources. Blind separation is possible through the iterative calculations, which 

look for the spectral bases whose linear projections maximize the difference of 4
th

-order moment 

(kurtosis) of probability density from that of Gaussian distribution because independent sources have 

maximum non-Gaussianity. Although ICA has been applied to the analysis of Raman spectral 

imaging [27], we found that modification is needed because the ordinary ICA assumes that the 

average values of sources and those of signals are zero, and the results of ICA tend to give bipolar 

values. In contrast, Raman spectra and Raman images always have positive values. To cope with this, 

we modified the ICA algorithm so that it maximizes the 3
rd

 order moment (skewness) of probability 

density. As a result, the modified ICA enables blind separation of positive sources and tends to give 

images with positive values [23]. 

Figure 3 demonstrates the source separation through the SRS spectral imaging and the modified ICA 

[23]. Figures 3a shows the spectral bases obtained by ICA. Through a simple inverse matrix 
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calculation, we can calculate independent component (IC) spectra shown in Fig. 3b, which are in 

good agreement with those of PMMA and PS shown in Fig. 2d. From the IC spectra, we can 

speculate that the 1
st
 and 2

nd
 independent component (IC) images in Figs 3c and 3d correspond to 

PMMA and PS, respectively. In this way, ICA allows blind source separation for SRS spectral 

images, and IC spectra can be used for the assignment of IC images. 

 

 

Fig. 3. Source separation by ICA. a. Spectral bases obtained by ICA. b. IC spectra. c-d. 1
st
 and 2

nd
 IC 

images, reflecting the distributions of PMMA and PS, respectively. Scale bar: 20 µm. 

3. TISSUE IMAGING 

Figure 4 shows the imaging results of the rat liver observed with the developed system. The tissue 

was cryo-sectioned into a nominal thickness of 100 µm, and preserved between cover glasses with 

phosphate buffered saline (pH7.4). In order to have good signal-to-noise ratio, we repeated 10 times 

the acquisition of 91 spectral images at wavenumbers from 2800 to 3100 cm
-1

. Nevertheless, the 

total acquisition time is less than 30 s. Figures 4a-c show the 1
st
, 2

nd
, and 3

rd
 IC images, respectively. 

These images correspond to the distributions of (a) lipids and cytoplasm, (b) water-rich regions, and 

(c) fibrous texture and nuclei, respectively. Their corresponding spectra shown in Fig. 4d indicate 

that the spectral difference is quite small. Al1 the IC spectra have CH3 stretching mode at 2930 cm
-1

, 

CH2 stretching vibration in 2850 cm
-1

, and the tails of OH stretching vibrations centered on ~3400 

cm
-1

. However, their ratios of vibrational modes are different: The 1
st
 IC has prominent CH2 

stretching mode, the 2
nd

 IC is dominated by the OH stretching mode, and the 3
rd

 IC has strong CH3 

stretching mode. By combining these images and inverting the contrast [23], we could obtain a 

multicolor image shown in Fig. 4e. Various structures in the liver tissue such as lipid droplets (A), 

cytoplasm (B), fibrous texture (C), nucleus (D), and water-rich region (E) can be seen with different 

pseudo-colors, and their morphological shapes and locations are clearly visualized, which would be 

useful for pathological diagnosis. It is interesting to compare the IC spectra with the original SRS 
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spectra shown in Fig. 4f. Obviously, IC spectra have much higher signal-to-noise ratio because ICA 

can extract spectral features from enormous number of pixels in a statistical manner. 

 

 

Fig. 4. Spectral imaging of a rat liver tissue [23]. 91 images at wavenumbers from 2800 to 3100 cm
-1

 

were taken and averaged over 10 times. The total acquisition time was <30 s. The spectral images 

were analyzed by using 5 ICs. a. 1
st
 IC image reflecting the distribution of lipid-rich region. b. 2

nd
 IC 

image reflecting the distribution of water-rich regions. c. 3
rd

 IC image reflecting the distribution of 

protein-rich region. d. IC spectra. e. Multicolor image produced by combining images a-c and 

inverting the contrast. A-E are explained in the text. f. SRS spectra in locations indicated by arrows 

in e. Scale bar: 20 µm. 

We can further shorten the acquisition time when we observe only lipid droplets and fibrous 

structures, which produce strong SRS signals. Figure 5 demonstrates 3D observation of a vessel in 

the rat liver [23]. Taking advantage of the fast wavelength scanning capability, SRS images at 2850 

and 2950 cm
-1

 were successively acquired while the z position of the sample was scanned over 80 

µm with a step of 1 µm. As a result, two-color SRS images with 500 × 480 × 81 pixels were taken 

only in <6 s (Figs. 5ab). The two-color images were analyzed by ICA. The 1
st
 and 2

nd
 IC images 

reflect the distributions of lipid droplets and fibrous texture, respectively (Figs. 5cd). This is 

consistent with the IC spectra shown in Fig. 5e, where the 1
st
 IC has both CH2 and CH3 stretching 

vibrations in 2850 and 2950 cm
-1

, respectively, and the 2
nd

 IC has only CH3 stretching vibrations in 

a) 1st IC b) 2nd IC c) 3rd IC

e
d

f
A

B
C

D

E

2800 2900 3000 3100

Wavenumber [cm
-1

]

S
R

S
 s

p
e

c
tr

u
m

 [
a

.u
.]

 Lipid (A)
 Cytoplasm (B)
 Filament (C)
 Nucleus(D)
 Water (E)

x1/4

2800 2900 3000 3100

Wavenumber [cm
-1

]

 1st
 2nd
 3rd

IC
 s

p
e

c
tr

u
m

 [
a

.u
.]

Proc. of SPIE Vol. 8588  858806-5

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 23 Mar 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

 

 

2950 cm
-1

. The entire images can be used to reconstruct a 3D image, with which we can see 3D 

structure of fibrous texture combined to the vessel (Fig. 5f). Such structural information would be 

useful for the research and diagnosis of cirrhosis of the liver and vascular lesion. 

 

 

Fig. 5. 3D, two-color imaging of a vessel in the rat liver [23]. Images at wavenumbers of 2850 and 

2950 cm
-1

 were successively taken while the z-position was scanned over 80 µm with a step of 1 µm. 

z = 0 corresponds to the deepest plane from the focusing lens. The total acquisition time was 5.3 s. a-

d. Sectioned images at a position of z = 48 µm. a. SRS image at 2850 cm
-1

. b. SRS image at 2950 

cm
-1

. c. 1
st
 IC image reflecting the distribution of lipid droplets. d. 2

nd
 IC image reflecting the 

distribution of fibrous texture. e. IC spectra. f. Reconstructed 3D image. Scale bar: 20 µm. 
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Fig. 6. Sectioned spectral imaging of intestinal villi in the mouse [23]. 91 images at wavenumbers 

from 2800 to 3100 cm
-1

 were taken by changing the z position by 5.6 µm. The total acquisition time 

was 24 s. The spectral images were analyzed by using 4 ICs. The 1
st
 IC (cytoplasm) and the 4

th
 IC 

(nuclei) images were colored by cyan and yellow, respectively, and then combined and the contrast 

was inverted. a-h. Sectioned multicolor images. f. Spectra of the 1
st
 and 4

th
 IC’s. Scale bar: 20 µm. 

 

It is also possible to conduct 3D sectioning in SRS spectral imaging. Figure 6 shows the 8 sections 

of multicolor images of intestinal villi in the mouse at different z positions separated by 5.6 µm. For 

each section, 91 spectral images at wavenumbers from 2800 to 3100 cm
-1

 were taken. The total 

acquisition time was 24 sec. Figure 6i indicates that the 1
st
 IC has large amount of CH2 stretching 

vibrations at 2850 cm
-1

, and the 4
th

 IC is a mixture of CH3 stretching mode at 2930 cm
-1

 and the tails 

of OH stretching modes. Multicolor images shown in Figs. 6a-h are produced by combining the 1
st
 

(cytoplasm, cyan) and 4
th

 (nuclei, yellow) IC images and inverting the contrast. We can clearly see 

the morphology of the tissue such as cell nuclei and cytoplasm. Note that, based on the conventional 

staining procedure, several thin slices are prepared, stained, and separately observed with a 

microscope. In contrast, our technique enables quick, label-free observation of unstained sample 

with sectioning capability. This would be powerful for medical diagnosis of tissues. 

4. CONCLUSION 

To summarize, we have demonstrated the label-free imaging of tissue based on the high-speed SRS 

spectral microscopy and the modified ICA. The developed system allows quick image acquisition at 
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>30 frames/s by changing the wavenumber in a frame-by-frame manner. The modified ICA enables 

blind separation of constituents from SRS spectral images. The IC spectra give spectroscopic 

information, and the IC images can be used to produce multicolor images. The label-free, quick 

observation would be especially useful in the medical imaging of organs, and the implementation of 

the presented technique in SRS endoscopy [28, 29] would be straightforward and be advantageous 

for the application to in vivo imaging.  
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