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Abstract

Understanding cells as integrated systems is a challenge central to modern biology. The different 

microscopy approaches used to probe biological organization each present limitations, ultimately 

restricting insight into unified cellular processes. Fluorescence microscopy can resolve subcellular 

structure in living cells, but is expensive, slow, and toxic. Here, we present a label-free method for 

predicting 3D fluorescence directly from transmitted light images and demonstrate its use to 

generate multi-structure, integrated images.

Imaging methods currently used to capture details of cellular organization all present 

restrictions with respect to expense, spatio-temporal resolution, and sample perturbation. 

Fluorescence microscopy permits imaging of structures of interest by specific labeling, but 

requires advanced instrumentation and time-consuming sample preparation. Significant 

phototoxicity and photobleaching perturb samples, creating a tradeoff between data quality 

and timescales available for live cell imaging1,2. Furthermore, the number of simultaneous 

fluorescent tags is restricted by both spectrum saturation and cell health, limiting the number 

of parallel labels for joint imaging. In contrast, transmitted light microscopy (TL), e.g., 

bright-field, phase, DIC, is relatively low-cost, and is label-free (greatly reduced 

phototoxicity3 and simplified sample preparation). Although valuable information about 

cellular organization is apparent in TL images, these lack the clear contrast of fluorescence 

labeling, a limitation also present in other widely-used microscopy modalities. Electron 

micrographs also contain a rich set of biological detail about subcellular structure, but often 

require tedious expert interpretation. A method combining the clarity of fluorescence 

microscopy with the relative simplicity and modest cost of other imaging techniques would 

present a groundbreaking tool for biological insight into the integrated organization of 

subcellular structures.
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Convolutional neural networks (CNNs) capture non-linear relationships over large areas of 

images, resulting in vastly improved performance for image recognition tasks as compared 

to classical machine learning methods. Here, we present a CNN-based tool, employing a U-

Net architecture4 (Supplementary Fig. 1, Methods) to model relationships between distinct 

but correlated imaging modalities, and show the efficacy of this tool for predicting 

corresponding fluorescence images directly from both 3D TL live cell images and 2D 

electron micrographs, alone.

The label-free prediction tool learns each relationship between 3D TL and fluorescence live 

cell images for several major subcellular structures (Fig. 1a, b, c, e.g. cell membrane, DNA, 

etc.). A resultant model can then predict a 3D fluorescence image from a new TL input. A 

single TL input can be applied to multiple subcellular structure models, enabling multi-

channel, integrated fluorescence imaging (Fig. 1d, e). The method can similarly be used to 

predict 2D immunofluorescence (IF) images directly from electron micrographs (EM) to 

highlight distinct subcellular structures and to register conjugate multi-channel fluorescence 

data with EM5 (Fig. 2).

In our experiments, we used only spatially registered pairs of images from a relatively small 

set to train each structure model (30 pairs per structure for 3D TL-to-fluorescence, and 40 

for 2D EM-to-fluorescence; Methods). Biological detail observed in predictions varies 

among subcellular structures modeled; however, in the case of the 3D TL-to-fluorescence 

models, predictions appear structurally similar to ground truth fluorescence. Nuclear 

structures are well-resolved, for example: images produced by the DNA model (Fig. 1b) 

depict well-formed and separated nuclear regions, as well as finer detail, including 

chromatin condensation just before and during mitosis, and the nuclear envelope model 

predictions (Supplementary Fig. 2) provide high-resolution localization and 3D morphology. 

The nucleoli model also resolves the precise location and morphology of individual nucleoli 

(Supplementary Fig. 2).

TL-to-fluorescence models’ performance was quantified by Pearson correlation coefficient 

on 20 predicted and corresponding ground truth fluorescence image pairs (Fig. 1c) from 

independent test sets for each model (Methods). A theoretical upper bound for model 

performance based upon an estimate of signal-to-noise ratio (SNR) of fluorescence images 

used for training was determined (Methods). Model performance for each structure is well-

bounded by this limit (Fig. 1c).

We trained a model predicting DNA with an extended procedure (“DNA+”; Methods) to 

evaluate whether predictions improve with additional training images and iterations. 

Outcome improved as measured by an increase in Pearson correlation, and images 

qualitatively showed better clarity of sub-nuclear structure and precision of predictions 

around mitotic cells (Fig. 1c, Supplementary Fig. 2, Methods). Most critically, these details 

can be observed together in a 3D integrated multi-channel prediction derived from a single 

TL image (Fig. 1e and Supplementary Video). Examples for all fourteen labeled structure 

models’ predictions on each model’s test set can be found in Supplementary Fig. 2.
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Transforming one imaging modality into another also can be useful in less direct ways: 2D 

IF images predicted from EM (Fig. 2) can be used to facilitate automatic registration of 

conjugate multi-channel fluorescence data with EM. Array tomography data5 of ultrathin 

brain sections uses EM and ten channels of IF images (including the structure myelin basic 

protein, MBP-IF) from the same sample, but from two different microscopes. Thus EM and 

IF images are not natively spatially aligned. While EM and corresponding images from other 

modalities can be registered by hand, resulting in multi-channel conjugate EM images5,6,7, 

manual registration is tedious and time-consuming. We trained a 2D version of the label-free 

tool on manually registered pairs of EM and MBP-IF images and then used model 

predictions to register an EM image (15 μm × 15 μm) to a much larger target MBP-IF image 

(204.8 μm × 204.8 μm) (Fig. 2a). Test EM images were first input to the model to predict 

corresponding MBP-IF images (Fig. 2a) and conventional intensity-based matching 

techniques (Methods) were then used to register each MBP-IF prediction (and EM image) to 

the target MBP-IF image (Fig. 2b; successful convergence on 86 of 90 image pairs). The 

average distance between automated and ground truth registration was measured to be 1.16 

± 0.79 px, (MBP-IF pixel data units). To the authors’ knowledge, this is the first successful 

attempt to automate this registration process via a learning based technique, suggesting the 

label-free tool’s utility can be extended to diverse imaging modalities and a variety of 

downstream image processing challenges.

We next determined that individual structure models, trained solely on static images, can be 

used to predict fluorescence time-lapse by applying several subcellular structure TL-to-

fluorescence models to a single TL 3D time-series (covering 95 minutes at 5-minute 

intervals; Fig. 1e, Supplementary Video 1). In addition to simultaneous structure 

visualization, characteristic dynamics of mitotic events, including reorganization of the 

nuclear envelope and cell membrane, are evident in the predicted multi-channel time-series 

(Fig. 1e). Time-series acquired with a similar 5-minute acquisition interval but with three-

channel spinning disk fluorescence reveal both obvious bleaching artifacts and changes in 

cellular morphology and health after 10–15 minutes (data not shown). The phototoxicity 

occurring in extended, multi-label live cell time-series fluorescence imaging on the hiPSCs 

used here evidences challenges in obtaining integrated structural information from 

fluorescence time lapse imaging. While many strategies exist to minimize this photodamage 

(i.e. oxygen scavenging, reduced laser power and exposure, advanced microscopy 

techniques2, machine learning driven denoising8), all present compromises with respect to 

ease, image quality, and fidelity. This method avoids trade-offs and directly produces time-

series predictions for which no fluorescence imaging ground truth exists, greatly increasing 

the timescales over which some cellular processes can be visualized and measured.

Our method has inherent limitations. Models must learn a relationship between distinct but 

correlated imaging modes; predictive performance is contingent upon this association 

existing. In the case of desmosomes or actomyosin bundles, for example, model 

performance for the presented training protocol was poor, presumably due to a weaker 

association between TL and fluorescence images of these structures (Fig. 1c, Supplementary 

Fig. 2). Quality and quantity of training data also influences accuracy of model predictions, 

although this relationship is highly nonlinear in tested cases (for DNA model performance, 

we see diminishing returns between 30 and 60 images; Supplementary Fig. 3). Performance 
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between models varies with 2D and 3D information: using a 2D DNA model to predict z-

slices selected from 3D images shows artifacts between predicted z-slices and decreased 

correlation between ground truth and predictions (Supplementary Fig. 4; Methods), 

suggesting that 3D interference patterns are valuable for predicting subcellular organization.

Additionally, we cannot assess a priori how models will perform in contexts for which there 

are very few or no examples in training or testing data. Models pre-trained using one cell 

type (i.e. hiPSC) do not perform as well with inputs of drastically different cellular 

morphologies (Supplementary Fig. 5). We compared predictions from the DNA+ model 

(trained on hiPSC images) to those from a model trained on images of DNA-labeled 

HEK-293 kidney-phenotype cells9 (applied to both hiPSC and HEK-293 test images). While 

gross image features are comparable, prediction performance of morphological detail 

improves markedly when the model is trained on and applied to data of the same cell type. A 

similar reduction in predictive performance is evident when pre-trained models are used to 

predict a fluorescent DNA label in different cell types, like cardiomyocytes or HT-1080 

fibroblast-phenotype cells10 (Supplementary Fig. 5, Methods).

Furthermore, predictions from inputs acquired with imaging parameters identical to those 

used to compose models’ training sets will provide the most accurate results versus ground 

truth data. For example we observed decreased model accuracy when predicting 

fluorescence images from input TL stacks acquired with a shorter inter-slice interval (~0.13 

s) than that in training data (~2.2 s) (not shown). Ultimately, when evaluating the utility of 

predicted images, context of use must be considered. For instance, DNA or nuclear 

membrane predictions may have sufficient accuracy for application to downstream nuclear 

segmentation algorithms, but microtubule predictions would not be effective for assaying 

rates of microtubule polymerization (Fig. 1e, Supplementary Fig. 2). Finally, there may not 

be a direct quantitative link between the predicted intensity of a tagged structure and protein 

levels.

The presented methodology has wide potential use in many biological imaging fields. 

Primarily, it may reduce or even eliminate routine capture of some images in existing 

imaging and analysis pipelines, permitting similar throughput in a more efficient, cost-

effective manner. Notably, training data requires no manual annotation, little to no pre-

processing, and relatively small numbers of paired examples, drastically reducing the barrier 

to entry associated with some machine learning approaches. This approach may have 

particular value in image-based screens where cellular phenotypes can be detected via 

expressed fluorescent labels11, pathology workflows requiring specialized labels that 

identify specific tissues12, and long time-series observation of single cells1, tissues, or 

organism-level populations where more expensive instrumentation is not available2. Recent 

related work convincingly demonstrates that 2D whole-cell antibody stains can be predicted 

from TL13, supporting the conclusion that similar techniques can be applied to a wide 

variety of biological studies, as demonstrated here by automatic registration of conjugate 

multi-channel fluorescence data with EM. The method is additionally promising when 

generating a complete set of simultaneous ground-truth labels is infeasible, e.g. live cell 

time-series imaging. Finally, our tool permits the generation of integrated images by which 

multi-dimensional interactions among cellular components can be investigated. This implies 
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exciting potential for probing coordination of subcellular organization as cells grow, divide, 

and differentiate, and signifies a new opportunity for understanding structural phenotypes in 

the context of disease modeling and regenerative medicine. More broadly, the presented 

work suggests an opportunity for a key new direction in biological imaging research: the 

exploitation of imaging modalities’ indirect but learnable relationships to visualize 

biological features of interest with ease, low cost, and high fidelity.

Online Methods

3D Live Cell Microscopy

The 3D light microscopy data used to train and test the presented models consists of z-stacks 

of colonies of human embryonic kidney cells (HEK-293)9, human fibrosarcoma cells 

(HT-1080)10, genome-edited human induced pluripotent stem cell (hiPSC) lines10 

expressing a protein endogenously tagged with either mEGFP or mTagRFP that localizes to 

a particular subcellular structure14, and hiPSC-derived cardiomyocytes differentiated from 

the former. The EGFP-tagged proteins and their corresponding structures are: alpha-tubulin 

(microtubules), beta-actin (actin filaments), desmoplakin (desmosomes), lamin B1 (nuclear 

envelope), fibrillarin (nucleoli), myosin IIB (actomyosin bundles), sec61B (endoplasmic 

reticulum), STGAL1 (Golgi apparatus), Tom20 (mitochondria) and ZO1 (tight junctions). 

The cell membrane was labelled by expressing RFP tagged with a CAAX motif.

Imaging—All cell types were imaged for up to 2.5 h on a Zeiss spinning disk microscope 

with ZEN Blue 2.3 software and with a 1.25-NA, 100x objective (Zeiss C-Apochromat 

100x/1.25 W Corr), with up to four, 16-bit data channels per image: transmitted light (either 

bright-field or DIC), cell membrane labeled with CellMask, DNA labeled with Hoechst, and 

EGFP-tagged cellular structure. Respectively, acquisition settings for each channel were: 

white LED, 50 ms exposure; 638 nm laser at 2.4 mW, 200 ms exposure; 405 nm at 0.28 mW, 

250 ms exposure; 488 nm laser at 2.3 mW, 200 ms exposure. The exception was CAAX-

RFP-based cell membrane images, which were acquired with a 1.2-NA, 63x objective (Zeiss 

C-Apochromat 63x/1.2 W Corr), a 561 nm laser at 2.4 mW, and a 200 ms exposure. 100x-

objective z-slice images were captured at a YX-resolution of 624 px × 924 px with a pixel 

scale of 0.108 μm/px, and 63x-objective z-slice images were captured at a YX-resolution of 

1248 px × 1848 px with a pixel scale of 0.086 μm/px. All z-stacks were composed of 50 to 

75 z slices with an inter-z-slice interval of 0.29 μm. Images of cardiomyocytes contained 1 

to 5 cells per image whereas images of other cell types contained 10 to 30 cells per image. 

Time-series data were acquired using the same imaging protocol as for acquisition of 

training data but on unlabeled, wild-type hiPSCs at 5 minute intervals for 95 minutes, with 

all laser powers set to zero to reproduce the inter-z-slice timing of the training images.

Tissue Culture—hiPSCs, HEK-293 cells, or HT-1080 cells were seeded onto Matrigel-

coated 96-well plates at densities specified below. The cells were stained on the days they 

were to be imaged, first by incubation in their imaging media with 1x NucBlue (Hoechst 

33342, ThermoFisher) for 20 min. hiPSCs were then incubated in imaging media with 1x 

NucBlue and 3x CellMask (ThermoFisher) for 10 min, whereas HEK-293 and HT-1080 
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cells were then incubated in imaging media with 1x NucBlue and 0.5x CellMask for 5 min. 

The cells were washed with fresh imaging media before imaging.

For hiPSCs, the culture media was mTeSR1 (Stem Cell Technologies) with 1% Pen-Strep. 

The imaging media was phenol-red-free mTeSR1 with 1% Pen-Strep. Cells were seeded at a 

density of ~2500 cells per well and were imaged 4 days after initial plating. For HEK-293 

cells, the culture media was DMEM with GlutaMAX (ThermoFisher), 4.5 g/L D-Glucose, 

10% FBS, and 1% antibiotic-antimycotic. The imaging media was phenol-red-free DMEM/

F-12 with 10% FBS and 1% antibiotic-antimycotic. Cells were seeded at a density of 13 to 

40 thousand cells per well and were imaged 1 to 2 days after initial plating. For HT-1080 

cells, the culture media was DMEM with GlutaMAX, 15% FBS, and 1% Pen-Strep. The 

imaging media was phenol-red-free DMEM/F-12 with 10% FBS and 1% Pen-Strep. Cells 

were seeded at a density of 2.5 to 40 thousand cells per well and were imaged 4 days after 

initial plating.

CAAX-tagged hiPSCs were differentiated to cardiomyocyte phenotype by seeding onto 

Matrigel-coated six-well tissue culture plates at a density ranging from 0.15 to 0.25 × 106 

cells per well in mTeSR1 supplemented with 1% Pen-Strep, 10 µM ROCK inhibitor (Stem 

Cell Technologies) (day –3). Cells were grown for 3 d with daily mTeSR1 changes. On day 

0, we initiated differentiation by treating cultures with 7.5 µM CHIR99021 (Cayman 

Chemical) in Roswell Park Memorial Institute (RPMI) media (Invitrogen) containing 

insulin-free B27 supplement (Invitrogen). After 2 d, cultures were treated with 7.5 µM IWP2 

(R&D Systems) in RPMI media with insulin-free B27 supplement. On day 4, cultures were 

treated with RPMI with insulin-free B27 supplement. From day 6 onward, media was 

replaced with RPMI media supplemented with B27 containing insulin (Invitrogen) every 2–

3 d. Cardiomyocytes were re-plated at day 12 onto glass-bottom plates coated with PEI/

laminin and were imaged on day 43 after initiation of differentiation. The imaging media 

was phenol-red-free RPMI with B27. Prior to imaging, cells were stained by incubation in 

imaging media with Nuclear Violet (AAT Bioquest) at a 1/7,500 dilution and ×1 CellMask 

for 1 min and then washed with fresh imaging media.

Data for training and evaluation—Supplementary Table 1 outlines the data used to train 

and evaluate the models based on 3D live cell z-stacks, including train-test data splits. All 

multi-channel z-stacks were obtained from a database of images produced by the Allen 

Institute for Cell Science’s microscopy pipeline (see http://www.allencell.org). For each of 

the 11 hiPSC cell lines, we randomly selected z-stacks from the database and paired the 

transmitted light channel with the EGFP/RFP channel to train and evaluate models (Fig. 1c) 

to predict the localization of the tagged subcellular structure. The transmitted light channel 

modality was bright-field for all but the DIC-to-nuclear envelope model. For the DNA model 

data, we randomly selected 50 z-stacks from the combined pool all bright-field-based z-

stacks and paired the transmitted light channel with the Hoechst channel. The training set for 

the DNA+ model was further expanded to 540 z-stacks with additional images from the 

Allen Institute for Cell Science’s database. Note that while a CellMask channel was 

available for all z-stacks, we did not use this channel because the CAAX-membrane cell line 

provided higher quality images for training cell membrane models. A single z-stack time 

series of wild-type hiPSCs was used only for evaluation (Fig. 1e).
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For experiments testing the effects of number of training images on model performance 

(Supplementary Fig. 3), we supplemented each model’s training set with additional z-stacks 

from the database. Z-stacks of HEK-293 cells were used to train and evaluate DNA models 

whereas all z-stacks of cardiomyocytes and of HT-1080 cells were used only for evaluation 

(Supplementary Fig. 5). The 2D DNA model (Supplementary Fig. 4) used the same data as 

the DNA+ model.

All z-stacks were converted to floating-point and were resized via cubic interpolation such 

that each voxel corresponded to 0.29 μm × 0.29 μm × 0.29 μm, and resulting images were 

244 px × 366 px for 100x-objective images or 304 px × 496 px for 63x-objective images in 

Y and X respectively and between 50 and 75 pixels in Z. Pixel intensities of all input and 

target images were z-scored on a per-image basis to normalize any systematic differences in 

illumination intensity.

Electron and Immunofluorescence Microscopy

Imaging

For conjugate array tomography data5, images of 50 ultra-thin sections were taken with a 

wide-field fluorescence microscope using 3 rounds of staining and imaging to obtain 10-

channel immunofluorescence (IF) data (including myelin basic protein, MBP) at 100 nm per 

pixel. 5 small regions were then imaged with a field emission scanning electron microscope 

to obtain high resolution electron micrographs at 3 nm per pixel. Image processing steps 

independently stitched the IF sections and one of the EM regions to create 2D montages in 

each modality. Each EM montage was then manually registered to the corresponding MBP 

channel montage with TrakEM215.

Data Used for Training and Evaluation

40 pairs of registered EM and MBP montages were resampled to 10 nm per pixel. For each 

montage pair, a central region of size 3280 px × 3214 px was cut out and used for the 

resultant final training set. This corresponded to the central region of the montage which 

contained no unimaged regions across the sections used. Pixel intensities of the images were 

z-scored. For the registration task, a total of 1500 EM images (without montaging) were 

used as an input to directly register to the corresponding larger MBP image in which it lies. 

For this, each EM image was first downsampled to 10 nm per pixel without any 

transformations to generate a 1500 px × 1500 px image.

Model Architecture Description and Training

We employed a convolutional neural network (CNN) based on the U-Net architecture4 

(Supplementary Fig. 1) due to its demonstrated performance in image segmentation and 

tracking tasks. In general, CNNs are uniquely powerful for image-related tasks 

(classification, segmentation, image-to-image regression) due to the fact that they are image-

translation invariant, learn complex non-linear relationships across multiple spatial areas, 

circumvent the need to engineer data-specific feature extraction pipelines, and are 

straightforward to implement and train. CNNs have been shown to outperform other state-

of-the-art models in basic image recognition16 and have been used in biomedical imaging 
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for a wide range of tasks including image classification, object segmentation17, and 

estimation of image transformations18. Our U-Net variant consists of layers that perform one 

of three convolution types, followed by a batch normalization and ReLU operation. The 

convolutions are either 3 pixel convolutions with a stride of 1-pixel on zero-padded input 

(such the input and output of that layer are the same spatial area), 2-pixel convolutions with 

a stride of 2 pixels (to halve the spatial area of the output), or 2-pixel transposed 

convolutions with a stride of 2 (to double the spatial area of the output). There are no 

normalization or ReLU operations on the last layer of the network. The number of output 

channels per layer are shown in Supplementary Fig. 1. The 2D and 3D models use 2D or 3D 

convolutions, respectively.

Due to memory constraints associated with GPU computing, we trained the model on 

batches of either 3D patches ( 64 px × 64 px × 32 px, YXZ) for light microscopy data or on 

2D patches (256 px × 256 px) for conjugate array tomography data, which were randomly 

subsampled uniformly both across all training images as well as spatially within an image. 

The training procedure took place in a typical forward-backward fashion, updating model 

parameters via stochastic gradient descent (backpropagation) to minimize the mean squared 

error between output and target images. All models presented here were trained using the 

Adam optimizer19 with a learning rate of 0.001 and with beta values of 0.5 and 0.999 for 

50,000 mini-batch iterations. We used a batch size of 24 for 3D models and of 32 for 2D 

models. Running on a Pascal Titan X, each model completed training in approximately 16 

hours for 3D models (205 hours for DNA+) and in 7 hours for 2D models. Training of the 

DNA+ model was extended to 616,880 mini-batch iterations. For prediction tasks, we 

minimally crop the input image such that its size in any dimension is a multiple of 16, to 

accommodate the multi-scale aspect of the CNN architecture. Prediction takes 

approximately 1 second for 3D images and 0.5 seconds for 2D images. Our model training 

pipeline was implemented in Python using the PyTorch package (http://pytorch.org).

3D light microscopy model results analysis and validation

For 3D light microscopy applications, model accuracy was quantified by the Pearson 

correlation coefficient, r =   ∑ x − x y − y

∑ x − x 2∑ y − y 2 , between the pixel intensities of the model’s 

output, y, and independent ground truth test images, xx (Fig. 1c, Supplemental Figures 3, 4b, 

5b, 6). To estimate the theoretical upper bound on the performance of a model, we calculated 

the correlation between a theoretical model which is able to perfectly predict the spatial 

fluctuations of the signal but is unable to predict the random fluctuations in the target image 

that arise from fundamentally unpredictable phenomena (such as noise in the electronics of 

the camera or fluctuations in number of photons collected from a fluorescent molecule). 

Intuitively as the relative size of random fluctuations increases relative to the size of 

predictable signal, one would expect the performance of even a perfect model to degrade. 

The images in Figure 1 of DNA-labeled targets and predictions make this point, in so far as 

the model can not be expected to predict the background noise in the DNA-labeled imagery. 

Therefore, to estimate a lower bound on the amplitude of the random fluctuations we 

analyzed images of cells that were taken with identical imaging conditions but contained no 

fluorescent labels, for example, images taken with microscope settings designed to detect 
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Hoechst staining, but with cells for which there was no Hoechst dye applied, or images 

taken with microscope settings designed to detect GFP but with cells with no GFP present. 

We used the variance of pixel intensities across the image as an estimate of the variance of 

random fluctuations (N), and then averaged that variance across control images in order to 

arrive at our final estimate. Calculating the correlation between a perfect model prediction S 
(equal to the predictable image) and an image T which is the combination of the predictable 

image and the random fluctuations (Tx,y,z = Nx,y,z + Sx,y,z), is Cmax = SNR
1 + SNRwhere 

SNR = < S2 >
< N2 >

. If we assume the correlation between the predictable component and the 

random component is zero, then the variance of the predictable image (<S2>) can be 

calculated by taking the variance of the measured image (<T2>) and subtracting the variance 

of the random fluctuations (<N2>. The result is a formula for the theoretical upper bound of 

model performance which depends only on the lower bound estimate of the variance of the 

noise, and the variance of the measured image. We report the average value of Cmax for all 

images in the collection as black tick marks in Figure 1c.

Registration across imaging modalities

We employed a 2D version of our tool trained on the montage pairs described below. 

Electron microscopy (EM) images were reflection padded to 1504 px × 1504 px, passed 

through the trained model, and then predictions were cropped back to the original input size 

to generate a myelin basic protein (MBP) prediction image. This MBP prediction image was 

first roughly registered to the larger MBP IF images using cross-correlation-based template 

matching for a rigid transformation estimate. Next, the residual optical flow20 between the 

predicted image transformed by the rigid estimate and the MBP IF image was calculated, 

which was then used to fit a similarity transformation that registers the two images, 

implemented using OpenCV (www.opencv.org). 90 prediction images were randomly 

selected from the larger set, where more than 1% of the predicted image pixels were greater 

than 50% of the maximum intensity, to ensure that the images contained sufficient MBP 

content to drive registration. Ground truth transformation parameters were calculated by two 

independent authors on this subset of EM images by manual registration (3–4 minutes per 

pair) to the MBP IF images using TrakEM2. Since the images were registered using a 

similarity transformation where it is possible for the registration accuracy of the central 

pixels and those at the edges to be different, the registration errors were calculated by 

computing the average difference in displacement across an image, as measured in pixels of 

the target IF image. We report these results for registration differences (Fig. 2) between 

authors and between the algorithm estimate and one of the authors.

3D fluorescence image predictions from a 2D model

To compare performance between models trained on 2D and 3D data, we trained a 2D DNA 

model for evaluation against the DNA+ model. The 2D model, was trained on the same 

dataset with the same training parameters as the DNA+ with the exception that training 

patches of size 64 px × 64 px were sampled from random z-slices of the 3D training images. 

The model was trained for 250,000 mini-batch iterations with a batch size of 24 for a total 

training time of approximately 18 hours. After training, 3D predicted fluorescence images 
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were formed by inputing sequential 2D bright-field z-slices into the model and combining 

the outputs into 3D volumes (Supplementary Fig. 4).

Life Sciences Reporting Summary

The Life Sciences Reporting Summary can be found along with the supplementary material.

Software and Data—Software for training models is available at https://github.com/

AllenCellModeling/pytorch_fnet/tree/release_1. Data used to train the 3D models is 

available at https://downloads.allencell.org/publication-data/label-free-prediction/index.html.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Label-free imaging tool pipeline and application using 3D transmitted light-to-fluorescence 

models. a) Given transmitted light and fluorescence image pairs as input, the model is 

trained to minimize the mean squared error (MSE) between the fluorescence ground truth 

and output of the model. b) Left to right, an example of a 3D input transmitted light image, a 

ground-truth confocal DNA fluorescence image, and a tool prediction. c) Distributions of the 

image-wise Pearson correlation coefficient (r) between ground truth (target) and predicted 

test images derived from the indicated subcellular structure models. Each target/predicted 

image pair in the test set is a point in the resultant r distribution; the 25th, 50th and 75th 

percentile image pairs are spanned by the box for each indicated structure, with whiskers 

indicating the last data points within the 1.5x interquartile range of the lower and upper 

quartiles. The number of images (n) was 18 for the cell membrane, 10 for the DIC nuclear 

envelope, and 20 for all other distributions. For a complete description of the structure 

labels, see Methods. Black bars indicate maximum correlation between the target image and 

a theoretical, noise-free image (Cmax; for details see Methods). d) Individual subcellular 

structure models are applied to the same input and combined to predict multiple structures. 

e) Localization of DNA (blue), cell membrane (red), nuclear envelope (cyan) and 

mitochondria (orange) as predicted for time lapse transmitted light (bright-field) input 

images taken at 5-minute intervals (center z-slice shown); a mitotic event with stereotypical 

reorganization of subcellular structures is clearly evident. Similar results were observed for 

two independent time-series input image sets. All results shown here are obtained from new 

transmitted light images not used during model training.
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Figure 2: 
Label-free imaging tool facilitates 2D automated registration across imaging modalities. We 

first train a model to predict a 2D myelin basic protein immunofluorescence image (MBP-

IF) from a 2D electron micrograph (EM) and then register this prediction to automate cross-

modal registration. a) An example EM image with a highlighted subregion (left), the MBP-

IF image corresponding to the same subregion (middle), and the label-free imaging tool 

prediction of the same subregion given only the EM image as input (right). b) The EM 

image of the subregion to be registered (top left) is passed through the trained 2D model to 

obtain a prediction for the subregion (bottom left), which is then registered to MBP-IF 

images within a larger field of view (bottom right) (see Methods for details). Only a 20 μm × 

20 μm region from the 204.8 μm × 204.8 μm MBP-IF search image is shown; predicted and 

registered MBP-IF are overlaid (in green) together with the EM image. c) Histogram of 

average distance between automated registration and manual registration as measured across 

90 test images, in units of pixels of MBP-IF data. This distribution has an average of 1.16 

± 0.79 px, where manual registrations between two independent annotators differed by 0.35 

± 0.2 px.

Ounkomol et al. Page 13

Nat Methods. Author manuscript; available in PMC 2019 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Online Methods
	3D Live Cell Microscopy
	Imaging
	Tissue Culture
	Data for training and evaluation


	Electron and Immunofluorescence Microscopy
	Imaging
	Data Used for Training and Evaluation
	Model Architecture Description and Training
	3D light microscopy model results analysis and validation
	Registration across imaging modalities
	3D fluorescence image predictions from a 2D model
	Life Sciences Reporting Summary
	Software and Data


	References
	Figure 1:
	Figure 2:

