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Abstract

Efforts to mitigate the COVID-19 crisis revealed that fast, accurate, and scalable testing is crucial for curbing the current

impact and that of future pandemics. We propose an optical method for directly imaging unlabeled viral particles and

using deep learning for detection and classification. An ultrasensitive interferometric method was used to image four

virus types with nanoscale optical path-length sensitivity. Pairing these data with fluorescence images for ground

truth, we trained semantic segmentation models based on U-Net, a particular type of convolutional neural network.

The trained network was applied to classify the viruses from the interferometric images only, containing

simultaneously SARS-CoV-2, H1N1 (influenza-A virus), HAdV (adenovirus), and ZIKV (Zika virus). Remarkably, due to the

nanoscale sensitivity in the input data, the neural network was able to identify SARS-CoV-2 vs. the other viruses with

96% accuracy. The inference time for each image is 60 ms, on a common graphic-processing unit. This approach of

directly imaging unlabeled viral particles may provide an extremely fast test, of less than a minute per patient. As the

imaging instrument operates on regular glass slides, we envision this method as potentially testing on patient breath

condensates. The necessary high throughput can be achieved by translating concepts from digital pathology, where a

microscope can scan hundreds of slides automatically.

Introduction

COVID-19 is an infectious disease caused by the severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

which reached pandemic proportions in 20201. The global

impact of the disease on the healthcare systems and its

socioeconomic ramifications are severe and, likely, long-

lasting2. The prompt response and public health measures

have proven effective in limiting the spread of the virus,

decreasing the number of active cases, and ultimately the

mortality rate3. Fast, accurate, and scalable testing has

been recognized unanimously as crucial for mitigating the

impact of COVID-19 and future pandemics4.

Diagnostic test accuracy is characterized by the sensi-

tivity, defined as the probability of a positive result in a

diseased patient, and specificity, given by the probability

of a negative result in a healthy patient. Furthermore, the

negative predictive value represents the chance of an

individual with a negative test to be disease-free and,

conversely, the positive predictive value is the chance that

a person with a positive test is infected. In addition to

these accuracy metrics, throughput and cost are impor-

tant for deploying testing at scale. Recently, Weissleder

et al. have reviewed the current status of the COVID-19

diagnostic tests4. Briefly, nucleic acid tests (NATs) rely on

the viral RNA being amplified via polymerase chain

reaction (PCR) and are the most broadly used in the clinic
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today. NATs have been implemented on automated

instruments and provide a result in several hours. Their

accuracy may vary, with false-negative rates reported in

the order of 30%4,5. Serological tests assess the patient’s

response to the viral infection through proteins such as

immunoglobulin G. The efficacy of these tests relies on

prior knowledge about the patient’s immune status as well

as potential previous exposures to other virus types. The

accuracy of serological tests is very high when performed

~20 days after the infection or first symptoms, but may

lead to high false-negative rates for early patients and false

positives for patients previously exposed to other viruses4.

Common antigen tests can be performed using naso-

pharyngeal swabs and yield results in less than one hour.

These tests operate on detecting proteins associated with

the SARS-CoV-2 virus (nucleocapsid or spike proteins)

using lateral flow or enzyme-linked immunosorbent assay

(ELISA) tests.

Recently, accelerated efforts have been devoted to

developing alternative testing procedures. These alternative

detection schemes involve the use of plasmonic bio-

sensors6–8, fluorescence imaging of labeled virus particles

and detection through machine learning9, microfluidic

immunoassays coupled with fluorescence detections10, etc.

While these approaches represent advances in SARS-CoV-

2 detection methodologies, they still require either labeling

or addition of foreign particles/solutions for the detection

of SARS-CoV-2.

Holographic quantitative-phase imaging methods have

been used for virus sensing and counting of HSV parti-

cles11. This study is an important precursor of our method

and shares important similarities as well as differences.

While both are quantitative-phase imaging techniques,

methods of bringing specificity are different. Reference 11

uses chemical specificity based on antibody–antigen-based

binding of virus particles on the glass slide. Virus particles

are then counted based on their size estimate through

computational means. In our study, for the generation of

ground-truth data, we used fluorescence-stained virus

particles and then used deep neural network for detection

and classification of different virus types present in the

sample. Other label-free imaging modalities, such as inter-

ferometric scattering microscopy (iSCAT)12,13 have shown

tremendous potential for the detection of diffraction-

limited samples, like nanoparticles14 and viruses15–18.

Here, we present a new approach for SARS-CoV-2

detection, which relies on direct, label-free imaging of

viral particles. We employed spatial light-interference

microscopy (SLIM), a highly sensitive interferometric

method, to image viruses deposited on a glass slide.

Although individual viruses are below the diffraction limit

of the microscope, the optical path-length information

retrieved by SLIM unravels the nanoscale distribution of

the refractive index associated with the individual and

aggregated viral particles. We paired these data with deep-

learning algorithms, specifically optimized for viral-

particle detection and classification. Using fluorescence

markers for specific virus tagging, we retrieved “ground

truth” data by imaging the same field of view with both

SLIM and epifluorescence. To emulate a more realistic

application environment, we synthesized datasets where

different virus types were “digitally mixed” onto the same

SLIM image for deep-learning development and evalua-

tion. Thus, in addition to SARS-CoV-2, we imaged H1N1,

HAdV, and ZIKV. While a situation where a patient is

exposed simultaneously to these four viruses is highly

unlikely, we wanted to test it as a challenging task for our

method and evaluate the specificity of our deep-learning

model. Following the training process, we tested the

convolutional neural network (CNN) on unseen samples,

classifying one virus type vs. the rest. Our results indicated

a 96% area under the receiver-operating characteristic

curve for SARS-CoV-2, 99% for H1N1, 92% for HAdV,

and 91% for ZIKV.

This preclinical study demonstrates that sensitive

imaging of unlabeled particles, paired with artificial

intelligence (AI), can provide the foundation for a rapid,

high-throughput, scalable test. The fact that the assay can

be performed on the specimen placed on a glass slide

allows for simple and fast sample collection, via, e.g.,

breath condensates. The image acquisition and inference

take 100ms in total, which means that the entire test,

including specimen collection, can be performed within a

minute. Throughput can be scaled up by borrowing

engineering concepts from whole-slide scanners in digital

pathology, where hundreds of slides can be automatically

fed into the imaging instrument. As the specimen requires

minimum preparation and the instrument can be made

portable, in principle, the technology can be deployed as a

point-of-care solution.

The paper is structured as follows. First, we present the

workflow for multimodal imaging and ground-truth data

acquisition. Next, we describe the SLIM imaging system

and its sensitivity to the nanoscale ultrastructure of viral

particles. We show 3D tomograms of the four virus types,

to illustrate the subtle texture difference that the instrument

captures, which the AI tools exploit for classification. We

describe the convolutional neural network, which is a ver-

sion of U-Net optimized for this problem. Finally, we pre-

sent the accuracy of classifying the four virus types. We end

with a discussion of the next steps necessary to implement

this technology as a reliable clinical testing solution.

Results

Workflow

Figure 1 depicts the workflow of our approach (see

Fig. S1 and Supplementary Information Section S1 for

details on sample preparation). We tagged the deactivated
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virus samples with Rhodamine B isothiocyanate as detailed

in “Materials and Methods”. The staining was followed by

dialysis to remove unbound fluorophores. The sample was

deposited on a glass slide, fixed with EtOH, and air-dried

(Fig. 1a). The slide was imaged using multimodal SLIM and

epifluorescence, overlaid for the same field of view (Fig. 1b).

The resulting images were processed to extract pairs of

images associated with individual particles (Fig. 1c). A

U-Net convolutional neural network was trained using

these data, with the fluorescence images acting as ground

truth. The U-Net output provides a semantic segmentation

map, i.e., an image that classifies and labels the various

virus types (Fig. 1d).

Imaging procedure

A key element in our approach is the spatial light-

interference microscope described in Fig. 2a. SLIM

belongs to the family of quantitative-phase-imaging (QPI)

instruments19, which have found broad applications in

biomedicine20–31 due to their ability to image unlabeled,

highly transparent structures. SLIM is implemented as an

add-on module to an existing phase-contrast microscope

and, in essence, controls rigorously the phase shift

between the incident and scattered field emerging from

the specimen32,33. We used a Nikon Eclipse Ti-inverted

microscope outfitted with a SLIM module (CellVista

SLIM Pro, Phi Optics, Inc.), which allows for fully auto-

mated data acquisition. The microscope objective pupil is

relayed onto the surface of a phase-only spatial-light

modulator (SLM), such that the phase shift between the

incident and scattered light is controlled precisely

(Fig. 2a). We record four intensity frames associated with

individual phase shifts, applied in increments of π⁄2, as

shown in Fig. 2b. The four intensity images are combined

as described in33,34 to decouple the amplitudes of the

incident and the scattered fields from the phase

a b

c d

Virus

 deactivation

Fluorescence

 staining

Dialysis Fixation

with

90% Ethanol

Sample preparation Imaging instrument

PC+FL microscope

Image processing Machine Learning

SLIM  image

U-Net

Classification

SLIM 

module

Fig. 1 Virus-particle classification using SLIM and machine learning. a Sample-preparation protocol, viruses were deactivated, stained with

Rhodamine B isothiocyanate, and dialyzed for two days to reduce fluorescence background, and then placed on a slide, fixed with 90% EtOH, and air-

dried. b We added a SLIM module to a traditional phase-contrast microscope for quantitative-phase information. c SLIM and fluorescence were

registered, single 48 × 48 spots were cropped from the image and segmented to provide a label for multiclass classification. d We synthesized a new

dataset by randomly placing the cropped virus particles onto a background image acquired during the same experiment. A deep neural network was

trained with this dataset to perform virus-particle classification. Given a SLIM image, the model will output a class label for each pixel in the image
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information and obtain a quantitative phase map asso-

ciated with the specimen (Fig. 2b). Because the interfering

fields in SLIM propagate along a common path, the phase

measurement is highly stable to within a fraction of a

nanometer pathlength33. Due to the white-light illumi-

nation associated with the phase-contrast microscope, the

SLIM images are free of speckles, which convert into

subnanometer spatial pathlength sensitivity33. These

attributes make SLIM ideal for the challenging task of

imaging viral particles on a glass slide. Figure 2c illustrates

the significant boost in contrast present in SLIM com-

pared with traditional phase-contrast microscopy.

To further investigate the surface morphology of SARS-

CoV-2 particles captured in Fig. 2b, we imaged 200-nm

polystyrene beads through SLIM. The surface roughness

of polystyrene beads and SARS-CoV-2 particle displays

significant differences as observed in Fig. S9. Furthermore,

we also tested the spatial optical path-length sensitivity of

our SLIM system by imaging sample-less area of a glass

slide. Following the noise analysis in literature33, we

measured the spatial optical path-length sensitivity to be

0.7 nm (see Supplementary Information section S5 and

Fig. S10) which agrees well with the reported values in the

literature33. To illustrate the detection of the ultra-

structure in SLIM images, we simulated a model of two

sub-diffraction-sized cylindrical particles, modeling spikes

on the surface of SARS-CoV-2 particle. As discussed in

Supplementary Information Section S6 and Fig. S11, while

not resolved according to the Rayleigh criterion, the

nanoscale profile can be detected by SLIM.

Virus detection and classification via SLIM

SARS-CoV-2, H1N1, HAdV and ZIKV were separately

stained as illustrated in Fig. S1 (see Methods section and

Supplementary Information Section S1 for more details)

with Rhodamine B isothiocyanate that has an emission at

595 nm. We performed dual-channel phase-fluorescence

imaging on the samples. Figure 3 illustrates the imaging

results for SARS-CoV-2, with SLIM (Fig. 3a) and fluor-

escence (Fig. 3b) images obtained on the same field of

view. We registered the dual-channel images using

MATLAB for perfect overlay (see Supplementary Infor-

mation Section S2 for details on image acquisition and

processing). The regions denoted by the dash rectangular

selections in Fig. 3(a, b) are zoomed in and shown in Fig. 3

(c, d). The discrete particles shown in the yellow rec-

tangles reveal a 100% correspondence between phase and

fluorescence, proving that SLIM is sensitive to the

refractive index of the viral particles.

For machine learning, we cropped out single particles

within 48 × 48 pixel images. Figure 3 (e–j) shows two

examples of the cropped image set comprising of SLIM

(Fig. 3(e, h)), fluorescence (Fig. 3(f, i)), and binary mask

(Fig. 3(g, j)). Following the same imaging procedure, we

imaged H1N1 (Fig. S2), HAdV (Fig. S3), and ZIKV

(Fig. S4) for SLIM and fluorescence. We cropped out

48 × 48 pixel images and performed segmentation to

produce labels for four classes of virus. Although our

images are still diffraction-limited, SLIM’s nanoscale

sensitivity to pathlength allows for efficient detection of

viral particles.
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Some signatures of the ultrastructure present in our

SLIM data are demonstrated in deconvolved images (Sup-

plementary Information Section S3). Using this operation,

one can see that clumps of particles can be separated via

deconvolution (Fig. S5).

Deconvolution SLIM

Resolution of our imaging system is approximately

335 nm (illumination at 550 nm, objective 100x/1.45 with

condenser NA 0.55). Following Rayleigh’s resolution cri-

terion, two objects with separation less than the width of

point spread function (PSF), cannot be fully resolved. The

individual virus particles used in this study have an aver-

age diameter of less than 150 nm, which makes them

subdiffraction objects for optical imaging. In order to push

the resolution beyond the diffraction limit, we performed a

deconvolution with the microscope’s PSF (Supplementary

Information Section S3). To estimate the PSF, we identi-

fied the smallest spot in the images via a Matlab script.

Using this PSF, the images were deblurred by employing

the iterative Richardson–Lucy algorithm with total varia-

tion regularization (see Supplementary Information Sec-

tion S3 for more details)35,36. Figure S5 illustrates the

deconvolution results for the four virus classes. Thus, the

deconvolution is able to produce deblurred images with

clumps separated into smaller groups. However, it should

be noted that the size of the deconvolved particles does

not necessarily match the actual size of the virus particles

as the decoupling of PSF and virus is still not perfect.

However, we can successfully separate clumps into sub-

sequent individual viruses, which the neural network is

likely to pick up for classification.

Quantitative analysis

One advantage of SLIM over fluorescence is the

inherent ability to measure not only shape descriptors like

diameter, orientation, circularity, etc., but also quantify

the phase information associated with the sample, which

can then be used to extract biophysical information, such

as cell dry mass density. From the SLIM images, we

35

26

18

9

0

s (nm) I (a.u.)

410

349

288

227

166

SLIM

SARS-CoV-2

Fluorescence
a b

c d

e f g h i j

Fig. 3 Correlated SLIM-fluorescence imaging results for SARS-CoV-2. a SLIM, colorbar represents optical path-length fluctuations in nm, and b

fluorescence image, colorbar represents intensity in a.u., for the same field of view. c, d Cropped SLIM and fluorescence images from the region

inside the white rectangle in a and b, yellow boxes highlight the correspondence between SLIM and fluorescence. e One 48 × 48 cropped image of

SLIM, f fluorescence, and g corresponding segmentation mask prepared for AI. Another cropped set for h SLIM, i fluorescence, and j segmentation

mask. Scale bar represents 5μm for a, b and 1 μm for e–j
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extracted the total dry mass and surface dry mass density

for each measured particle (see Supplementary Informa-

tion Section S3 for details). We observed shifts in the dry

mass density for different virus classes as shown in

Fig. S6a. Figure S6(b–d) with p-values 1.35e-12, 8.84e-6

and 1.23e-5, respectively, demonstrates the statistical

significance of the dry mass-density differences between

SARS-CoV-2 and H1N1, HAdV, and ZIKV, respectively,

obtained by applying Kruskal–Wallis test (in MATLAB)

to single-virus data. These results indicate that dry mass

density, which is incorporated into the SLIM data, is a

marker that helps the machine-learning algorithm to

detect SARS-CoV-2.

Tomographic reconstructions

To get a better understanding of the viral particles, we

performed a tomographic reconstruction of diffraction-

limited SLIM, using the Amira (Thermo Scientific)

software (see Supplementary Information Section S4 for

details). The results are shown in Fig. 4, where volu-

metric reconstructions of the particle cores (Fig. 4 (a–d)),

and surface reconstructions (Fig. 4 (e–h)) for each par-

ticle are illustrated. These reconstructions provide an

insight into structural dissimilarities that exist even in

the diffraction-limited SLIM images. Surface irregula-

rities can be seen for SARS-CoV-2 in Fig. 4 (a,e). Figure 4

(b,f) shows the H1N1 particle, which again has an irre-

gular surface but of different texture. Figure 4 (c,g) shows

a clump of at least two HAdV particles with hexagonal

boundary visible in the lower portion of Fig. 4g. ZIKV

(Fig. 4 (d,h)) is significantly smoother compared with

SARS-CoV-2. The structural signatures present in these

reconstructions agree with the TEM images showing

irregular surface morphology for SARS-CoV-237,38 and

H1N139, hexagonal cross-section for HAdV40, and

smoother surface of ZIKV41,42. These reconstructions

suggest that signatures of structural information still

exist in the diffraction-limited SLIM images, due to the

nanoscale path-length sensitivity of SLIM. These subtle

features help the machine-learning algorithm to suc-

cessfully classify these particles.

To assess the structural differences on a large scale, we

performed volumetric reconstructions of groups of par-

ticles. Movies S1–S4 show the overall structural differ-

ences in diffraction-limited SLIM images. It can be seen

that the maximum-intensity projections of four virus

classes exhibit differences in the structure, mainly, irre-

gular surfaces for SARS-CoV-2 (Movie S1) and H1N1

(Movie S2), hexagonal projections for HAdV (Movie S3),

and smoother surface for ZIKV particles (Movie S4). 3D

surface reconstructions of a group of particles for each

virus class are presented in Fig. S7.

The ultrastructure is less evident in the 2D images as its

visibility is highly dependent on the orientation of the

particle and focus during imaging. The effect of z-level

slicing on the visibility of the ultrastructure is shown in

Fig. S8, where z-levels marked by yellow boxes show

higher visibility of surface roughness in the case of SARS-

CoV-2 particle as compared with red-boxed image, where

the virus core is in focus. Further evidence is shown in

Supplementary video S5, which shows the 3D volumetric

reconstruction for two SARS-CoV-2 particles.
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Convolution neural network

We formulated the virus-detection task as a semantic

segmentation problem: given an input SLIM image con-

taining several virus particles, our model predicts a

probability distribution for each pixel, denoting the

chance of this pixel belonging to one of the five classes:

background, SARS-CoV-2, H1N1, HAdV, and ZIKV. An

argmax operation turns the model output into a class

label for each pixel. As all our raw SLIM images were of

pure-culture virus particles, we synthesized a new dataset

via “digital mixing” for machine-learning development

and evaluation (see Supplementary Information Section

S7 for details).

The deep neural network we used was adapted from the

U-Net (Fig. 5a and Fig. S12a)43. Our model was trained

using the digitally mixed SLIM images as input and the

corresponding segmentation maps as ground truth (Fig. 5

(b,c) and Fig. S12(b,c)). We divided the machine-learning

task into two steps. Two types of datasets were prepared

based on two data-curation strategies. The first dataset

was semiautomatic, with manual cropping followed by

automatic segmentation, fixed concentration of viruses

per digitally mixed image, and placement of virus particles

on a grid with artificial-phase background. The second

dataset was fully automatic, with automatic segmentation

followed by automatic cropping, varying (but balanced)

concentration of viruses per digitally mixed image, and

random placement of virus particles on a blank image for

digital mixing.

Our first model (Fig. S12) was a proof-of-concept test

run. We manually cropped out 48 × 48 pixel regions of

single virus particles from the images for all four viruses,

collecting approximately 1200 cropped images. These

cropped images were segmented, digitally mixed with an

artificial background (see Methods section and Supple-

mentary Information Sections S2 and S7). Every digitally

mixed image has five particles per class. We kept 500

particles out as the test dataset, and trained the neural

network on the remaining particles (see Supplementary

Information Section S7). During evaluation, we noticed

that our model sometimes predicted more than one label

per particle. To solve this issue, we used a postprocessing

strategy to enforce particle-level consistency in our model

prediction (see Fig. S13 and Supplementary Information

Section S7 for details on postprocessing method). After

the postprocessing, we achieved the following area under

the ROC curve (AUC) values for four viruses (Fig. S14a):

98% for SARS-CoV-2, 98% for H1N1, 96% for HAdV, and

97% for ZIKV. The average precision and recall for

this model are 0.80 and 0.88 (SARS-CoV-2), and 0.82 and

0.73 (H1N1), 0.88 and 0.78 (HAdV), 0.82 and 0.84 (ZIKV)

(see Fig. S14b).

SARS-CoV-2

H1N1

HAdV

ZIKV

1

8 8

24

8 8

5

16 16
48 16

32 32 96 32

64 64 192 64

128 128 128

Up-sample

Down-sample

Residual 

connection

Conv 1 x 1 + Batch normalization

Conv 3 x 3 + Batch normalization

Concatenation

SLIM Ground truth Predictiona b c d

Fig. 5 Training a deep neural network to perform classification of virus particles for the second dataset. a We used a modified version of

U-Net for this semantic-segmentation task. Besides reducing the number of parameters in the network to around 0.8 million, we also added in

residual connection and batch normalization for faster convergence. Model inference on images from the test set. b Synthesized images of mixed

virus particles. c Ground truth label. d Model inference
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Our model’s excellent performance on this small, test-

run dataset was the first step achieved in the direction of

clinically usable, fast testing method. For the second phase

of development, we moved on to a more realistic approach

for data curation. To avoid bias in data selection and to

focus on automation, we employed automatic processing

to segment all the images and then crop out 48 × 48

particles from each image, based on the bounding box

information of each particle, through a MATLAB script

(see Supplementary Information Section S2). We emulated

a real-life scenario where the concentration and position of

particles per sample can vary. So, each image in our

digitally mixed dataset had between 2 and 8 particles of

each virus type, resulting in between 8 and 32 virus par-

ticles in total. In this dataset, all 4 types of virus particles

were randomly placed onto over 1600, 240 × 240 blank

(background removed by segmentation) images (see Sup-

plementary Information Sections S2 and S7 for more

details of the procedure). We randomly selected around

1000 images for training and kept the remaining 564 SLIM

images as the test dataset to evaluate our model. Similar as

the first dataset, we enforced instance-level consistency on

our model prediction via the same postprocessing step (see

Supplementary Information Section S7 and Fig. S13).

Figure 5d shows the predictions after postprocessing.

Quantitative results for this dataset are shown in Fig. 6,

where Fig. 6a shows the one-versus-all receiver-operating

characteristic (ROC) curve and Fig. 6b shows the complete

confusion matrix to better illustrate our model’s sensitiv-

ity. AUC for all four virus classes is above 91%. We

anticipate that, in clinical situations, the most challenging

issue will be to detect the SARS-CoV-2 class alone, or,

occasionally, distinguish it from the influenza virus

(H1N1). The fact that the areas under the curve yield

values of 96 and 99%, for SARS-CoV-2 and H1N1,

respectively, is very encouraging. Average precision and

recall values on the test dataset are 0.80 and 0.85 (SARS-

CoV-2), 0.98 and 0.99 (H1N1), 0.73 and 0.73 (HAdV), and

0.74 and 0.63 (ZIKV) (Fig. 6b). We used gradient-weighted

class-activation map (Grad-CAM) to visualize what

regions of our SLIM images were crucial to the network’s

performance in segmenting each type of virus particle44,45.

Figure S17 indicates that the model paid uniform attention

across the input image rather than focus more on the

surface morphologies in ZIKV, which might help explain

the relatively low performance on ZIKV particles.

We also plotted the precision and recall for SARS-CoV-

2 on every image in the second test dataset into a histo-

gram (Fig. S15). The majority of the detections have

precision/recall values nearing unity. The learning-curve

plots for both our models (for the first and second data-

sets) are shown in Fig. S16. The loss on the validation

dataset and on the training dataset converged properly,

indicating that our models did not overfit or underfit.

It is worth noting that our technique also works in case

of virus aggregates. Figure S18 shows some of the model

predictions for images that contain clusters, which are

correctly classified. An important point to mention is that

the introduction of any new class of particles will require

us to retrain our model. To test the model performance

in the case of dust or other subdiffraction, nonviral par-

ticles, we collected images of 25-nm polystyrene beads as

a fifth class. We prepared a new dataset by combining

four virus types and polystyrene-bead images. Following

the same procedure as for the previous two datasets, we

retrained a new network (Unet with efficientnetb0 as a

pretrained encoder). Our model achieved 0.76 F-1 score

for SARS-CoV-2 particles. The results for this training

are shown in Fig. S19.

Discussion

We presented a method for detection and classification

of SARS-CoV-2 in the presence of other viruses, by using

interferometric imaging and AI. Our results indicate that

highly sensitive phase imaging is capable of providing

subtle structural specificity of the viral particles, which in

turn, allows for their accurate classification. There are two

main components that help our model detect and classify

viruses with high accuracy. First, the specific texture of the

dry mass density can report on the differences in the

refractive index caused by the specific protein composi-

tions of the virus. Second, the nanostructure signature of

individual viruses, e.g., irregularities on the surface of

SARS-CoV-2 and H1N1, hexagonal shapes in HAdV, and

the smoother surface of ZIKV, are subtle features in the

SLIM images, exploited by the neural network.

The most likely combination of multiple viruses is

SARS-CoV-2 and H1N1, a situation that can pose a

challenge for accurate testing. However, our model

proved to be successful in detecting and differentiating

SARS-CoV-2 and H1N1 with a one-versus-all AUC of 96

and 99%, respectively.

We envision a COVID breath test based on the prin-

ciple discussed in this paper, as shown in Fig. S20. A

patient would exhale on a slide attached to a cloth mask.

The slide would then be immediately taken for imaging.

The clinical breath-condensate sample is expected to have

other nonviral particles, such as bacteria, phospholipids,

and aerosols containing potassium, calcium, and chloride,

etc.46,47. These particles can be grouped into two cate-

gories according to their size as below and above the

diffraction limit. Our model can successfully differentiate

between dust particles and viruses as shown in Fig. S19.

Particles bigger than 5 µm can be eliminated after pre-

diction by threshold operation based on size of the par-

ticle. We chose 5 µm as a limiting size because viruses can

form clusters with size less than 2 µm or greater than

2.5 µm46. Clusters can also be detected by our model as
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shown in Fig. S18. The limit of detection of our method is

1 particle in the largest field of view that the camera can

capture as shown in Fig. S21. Assuming a frame size to be

2048 × 2048, the limit of detection turns out to be 1270

particles per cm2. In exhaled-breath condensate, the

number of SARS-CoV-2 particles is estimated to be

~4000 particles per minute48. To capture virus particles

on a premarked area of slide with dimensions 1 cm ×

1 cm, we would require a minimum of ~1270 particles,

which would require a minimum of 20 s of exhalation.

However, our collection efficiency will be less than 100%,

so we can increase the collection time to a few minutes as

needed. Imaging prediction on an arbitrary field of view

inside the 1 cm × 1 cm sample area takes less than a

minute. This method will be very cost-effective, requiring

only a common mask and a standard glass slide.

Pending successful clinical testing of this approach, we

anticipate that the instrument can be implemented into a

portable device controlled by a laptop. As the inference

per field of view takes 60 ms, it is likely that the test per

specimen, sampling several fields of view, will complete

in a few seconds. Due to the lack of labels or other

reagents, the test itself is bound to be inexpensive.

Finally, to scale up throughput, we envision translating

automatic slide-scanning engineering concept from

digital pathology devices.

Prediction
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Fig. 6 Model performance on the test dataset. a The receiver-operating characteristic (ROC) curve of the model on the test dataset. The model

achieved over 0.9 area-under-curve (AUC) for all four virus types on the test dataset. The area-under-curve (AUC) for each class is computed by setting

that class as label 1 and all other classes (the three remaining virus types) as label 0. b The confusion matrix of the model inference on the test

dataset. Each row represents the ground-truth label, while each column represents the prediction. For visualization purposes, each entry in the

confusion matrix was normalized with respect to the number of true labels (sum of each row). The precision and recall are averaged across all images

in the test dataset. Both the ROC curve and the confusion matrix are evaluated on a per-particle level, where weighted average is computed to

resolve conflict in model raw prediction
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Materials and methods

Sample preparation

The viruses used in this study are: Heat-inactivated

SARS-CoV-2 (ATCC® VR-1986HK™), Influenza A virus

(H1N1) (ATCC® VR-1894™), Human adenovirus 2

(HAdV) (ATCC® VR-846™), and Zika (BEI: Zika Virus,

PRVABC59, Infected Cell Lysate, Gamma-Irradiated (NR-

50547)). HAdV and H1N1 were deactivated by UV. For

fluorescence imaging, each virus solution was stained

with Rhodamine B isothiocyanate, separately for each

experiment. The Rhodamine B isothiocyanate (RBITC)

can target any protein through the binding between

isothiocyanate and amine group on the protein. Since

the virus particles have a protein shell, it is effective to

use RBITC to label them. Dialysis was carried out to

remove unbound fluorophores from the stained solution.

Stained virus sample was dropped on a glass slide, fixed

with 90% ethyl alcohol, and air-dried (more information

in Supplementary Information Section S1).

Image acquisition and processing

We performed dual-channel correlative SLIM-

fluorescence imaging on Nikon Eclipse Ti inverted

microscope with add-on SLIM module (CellVista, Phi

Optics, Inc.). Images were acquired with Nikon Plan-Apo

100x/1.45, phase-contrast oil objective. Exposure was

kept at 30 ms and 200 ms for SLIM and fluorescence,

respectively. For 3D reconstructions, we acquired a

z-scan passing through focus, with a step size of 5 nm for

the SLIM channel only. After the image acquisition, off-

line processing involved image registration of SLIM and

fluorescence through MATLAB (see Supplementary

Information Section S2). For the first dataset, we

extracted 48 × 48 crops from SLIM and fluorescence

images. We then segmented SLIM images to prepare the

masks, which served as labels for the corresponding virus

type during automated classification. For the second

dataset, we first segmented the SLIM and fluorescence

images and then performed automatic cropping based on

bounding-box information (more information in Sup-

plementary Information Section S2).

We performed deconvolution using Richardson–Lucy

iterative algorithm with total variation (TV) regulariza-

tion35,36. We first converted the phase map obtained from

SLIM to complex field. This complex field was then used

as an input to the algorithm. We derived an initial esti-

mate for PSF from the images themselves, by choosing the

smallest spot in the images. Utilizing the properties

obtained from segmentation (area, integrated phase

values, and centroid), we carried out quantitative analysis

on single-virus particles using MATLAB (see Supple-

mentary Information Section S3).

We produced tomographic reconstructions using Amira

software (Thermo Scientific). We cropped out single

particles from the whole image and upsampled them by a

factor of 10 with bilinear interpolation to remove pixela-

tions. We then used Volren and Isosurface rendering to

reconstruct volume and surface tomograms (see Supple-

mentary Information Section S4) for each virus type.

Calibration of spatial optical path-length sensitivity of

our SLIM system was done by imaging sample-free area

on a glass slide, as outlined in Supplementary Information

Section S5. Our spatial optical path-length sensitivity was

determined to be 0.7 nm.

Machine learning

For both the first (manual selection with background)

and second (automatic selection without background)

datasets, we prepared digitally mixed images to train and

test our network. We placed single-cropped viruses from

each class, randomly in a 240 × 240 image, in fixed con-

centration for the first dataset (five particles per class) and

varying concentrations (2–8 particles per class per image)

for the second dataset. It is to be emphasized here that the

digital mixing provides no distinction between the viruses,

it only serves as a ground truth for model training. During

training, the model weights were updated using the Adam

optimizer49 against a categorical cross-entropy loss

function. During evaluation, we found that in some cases,

our model inferred more than 1 label for different parts of

the same particle. To enforce instance-level consistency

onto our model prediction, we performed a postproces-

sing step via connected-component analysis to ensure that

all pixels in each individual particle are predicted as one

class. After this postprocessing step (see Supplementary

Information Section S7), our model’s performance was

summarized into a confusion matrix on over 10,000 virus

particles from the test dataset for the second dataset.
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