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Abstract— Scarcity of annotated images hampers the
building of automated solution for reliable COVID-19 diag-
nosis and evaluation from CT. To alleviate the burden of
data annotation, we herein present a label-free approach for
segmenting COVID-19 lesions in CT via voxel-level anomaly
modeling that mines out the relevant knowledge from nor-
mal CT lung scans. Our modeling is inspired by the obser-
vation that the parts of tracheae and vessels, which lay in
the high-intensity range where lesions belong to, exhibit
strong patterns. To facilitate the learning of such patterns at
a voxel level, we synthesize ‘lesions’ using a set of simple
operations and insert the synthesized ‘lesions’ into normal
CT lung scans to form training pairs, from which we learn
a normalcy-recognizing network (NormNet) that recognizes
normal tissues and separate them from possible COVID-19
lesions. Our experiments on three different public datasets
validate the effectiveness of NormNet, which conspicu-
ously outperforms a variety of unsupervised anomaly de-
tection (UAD) methods.

Index Terms— COVID-19, label-free lesion segmentation,
voxel-level anomaly modeling

I. INTRODUCTION

THE world has been facing a global pandemic caused by a

novel Coronavirus Disease (COVID-19) since December

2019 [1], [2]. According to the report from World Health

Organization, COVID-19 has infected over 62 millions people

including more than half a million deaths up to November

30 [3]. In clinics, real-time reverse-transcription–polymerase-

chainreaction (RT-PCR) [4], [5] and the radiological imaging

techniques, e.g., X-ray and computed tomography (CT), play

a key role in COVID-19 diagnosis and evaluation [2], [6].

Due to the high spatial resolution and the unique relation-

ship between CT density and lung air content [7]–[10], CT is

widely preferred to recognize and segment the typical signs

of COVID-19 infection [11]. Furthermore, segmentation of

COVID-19 lesions provides crucial information for quantita-

tive measurement and follow-up assessment [12]. As it is time-

consuming for experts to go through the 3D CT volumes slice

by slice, automatic segmentation is highly desirable in clinical

practice [2], [13]. Recently, deep learning based methods have

been proposed for COVID-19 lesion screening [2] and some
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of them are proved successful for COVID-19 segmentation

[11]–[13].

TABLE I

A SUMMARY OF PUBLIC COVID-19 DATASETS. THE QUANTITY IS

SPECIFIC TO THE CASES OF COVID-19.

Dataset Modality Quantity Task

COVID-CT [17] CT image 342 Diagnosis
SIRM-COVID [18] 2D CT image 340 Diagnosis
SIRM-Seg [18], [19] CT image 110 Segmentation
Radiopedia [19], [20] CT volume 9 Segmentation
Coronacase [21], [22] CT volume 20 Segmentation
Mosmed [23] CT volume 50 Diagnosis
BIMCV [24] CT / X-rays 5381 Diagnosis
UESTC [15] CT volume 120 Segmentation

Despite such success, they all rely on large-scale well-

labeled datasets. However, obtaining such datasets is very

difficult due to two related concerns. On the one hand, labeling

a 3D CT volume is costly and time-consuming. Often it

needs experienced radiologists, who are busy fighting the

COVID-19 pandemic and hence lack time for lesion labeling.

On the other hand, the COVID-19 lesions not only have a

variety of complex appearances such as Ground-Glass Opacity

(GGO), reticulation, and consolidation [5], but also have high

variations in texture, size, and position. Those diversities raise

a great demand for rich annotated datasets. Accordingly, large-

scale well-labeled COVID-19 datasets are scarce, which limits

the use of Artificial Intelligence (AI) to help fight against

COVID-19. As reported in Table I, most of the public COVID-

19 datasets focus on diagnosis which only have classification

information, while only a few of them provide semantic seg-

mentation labels. While research attempts [14]–[16] have been

made to address the challenges, these works, nevertheless, still

need annotated images for training purpose. In this paper, we

present a label-free approach, requiring no lesion annotation.

Although it is very difficult to build a large well-labeled

COVID-19 dataset, collecting a large-scale normal CT volume

dataset is much easier. It is also interesting to notice that the

patterns of normal lungs are regular and easy to be modeled.

The thorax of a normal person consists of large areas of air

and a few tissues (such as tracheae and vessels [7]), which

can be clearly distinguished by CT intensity [7]. As shown

in Fig. 1(a), the air region is usually displayed as black

background, with its Hounsfield unit (HU) value around -1000

[7]. Meanwhile, the tissue (with its HU > −500 [7]) has its

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TMI.2021.3066161

© IEEE 2021. This article is free to access and download, along with rights for full text and data mining, re-use and analysis.



0278-0062 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2021.3066161, IEEE

Transactions on Medical Imaging
2 IEEE TRANSACTIONS ON MEDICAL IMAGING, UNDER REVIEW

Healthy Healthy COVID COVID (a)

COVID

Synthesis

Normal

Features of NormNet

Decision

Boundary

(b)

Fig. 1. (a) Healthy and COVID-19 lung CT images (top) and its corresponding thorax area (bottom), clipped with an Hounsfield unit (HU) range of
[−800, 100] and scaled to [0, 1]. (b) The visualization of 2D t-SNE of the features from the last layer of NormNet for COVID-19 lesions, synthetic
‘lesions’ and normal contexts. We build a rich synthetic ‘lesion’ library, which serves as a superset relative to the COVID-19 lesions. The NormNet
learns a tight decision boundary between normal textures and the diverse ‘lesions’, which can further be used to segment COVID-19 lesions.

intensity values similar to those of lesions, but it exhibits a

regular pattern, which makes it amenable for modeling say

by a deep network. This fact motivates us to formulate lesion

segmentation as a voxel-level anomaly modeling problem.

We hypothesize that if all the normal signals are captured at

a voxel level, then the remaining abnormal voxels are localized

automatically, which are grouped together as lesions. To facil-

itate voxel-level anomaly modeling, we design a novel proxy

task. Firstly, we manually produce anomalies as synthetic

‘lesions’ and insert them into normal CT images, forming pairs

of normal and ‘abnormal’ images for training. The ‘lesion’

synthesis procedure constitutes a few simple operations, such

as random shape generation, random noise generation within

the shape and traditional filtering. Then using these training

pairs, we learn a deep image-to-image network that recognizes

normal textures from synthetic anomalies images. The state-

of-the-art 3D image segmentation model, 3D U-Net [25], is

adopted as our deep network, which we call as a normalcy-

recognizing network (NormNet).

In practice, we increase the difficulty of the proxy task

by building a ‘lesion’ library as rich as possible, which

serves as a superset relative to the COVID-19 lesions. To

distinguish normal contexts from these various anomalies,

the NormNet is learned to be highly sensitive to the normal

contexts, resulting in a tight decision boundary around the

distribution of normal tissues. Finally, as shown in Fig. 1(b),

this boundary can also be used to segment COVID-19 lesions.

We validate the effectiveness of NormNet on three different

public datasets. Experimentally, it clearly outperforms various

competing label-free approaches and its performances are even

comparable to those of supervised method by some metrics.

It should be noted that our approach differs from a research

line called unsupervised anomaly detection (UAD) [26]–[29],

which aims to detect the out-of-distribution (OOD) data by

memorizing and integrating anomaly-free training data and

has been successfully applied in many instance-level holis-

tic classification scenarios. Further, our method differs from

those methods in the inpainting [30] task, whose images

in both training and testing sets are contaminated by the

masks (noises) from the same domain. Finally, our method

is different from synthetic data augmentation [31], which

manually generates lesions according to the features generated

from labeled lesion area. In contrast, we do not need any image

with labeled COVID-19 lesions.

In summary, we make the following contributions:

• We propose the NormNet, a voxel-level anomaly mod-

eling network, to distinguish healthy tissues from the

COVID-19 lesion in the thorax area. This training pro-

cedure only needs a large-scale healthy CT lung dataset,

without any labeled COVID-19 lesions.

• We design an effective strategy for generating synthetic

‘lesions’ using only three simple operations: random

shape, noise generation, and image filtering.

• The experiments show that our NormNet achieves better

performances than various competing label-free methods

on three different COVID-19 datasets.

II. RELATED WORK

A. COVID-19 screening and segmentation for chest CT

Deep learning based methods for chest CT greatly help

COVID-19 diagnosis and evaluation [2], [6]. Wang et al. [32]

proposed a weakly-supervised framework for COVID-19 clas-

sification at the beginning of the pandemic, which achieved

high performance. Wang et al. [33] exploited prior-attention

residual learning for more discriminative COVID-19 diagno-

sis. Ouyang et al. [34] solved the imbalanced problem of

COVID-19 diagnosis by a dual-sampling attention network.

However, it is more difficult for the COVID-19 segmentation

task due to the lack of well-labeled data [16], lesion diversi-

ties [5] and noisy labels [15]. Researchers have made attempts

to address the above challenges. For example, to tackle the

problem of labeled data scarcity, Ma et al. [22] annotated

20 CT volumes from coronacases [21] and radiopedia [20].

Fan et al. [16] proposed a semi-supervised framework called

Inf-Net. Zhou et al. [14] solved the same issue by fitting the

dynamic change of real patients’ data measured at different

time points. However, all of these models depended on data

with semantic labels. In this work, we propose an unsupervised

anomaly modeling method called NormNet, which achieves

comparable performances, but with no need of labeled data.
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Fig. 2. The overall framework of proposed NormNet. We first insert random noises (fake ‘lesions’) B to the healthy lung area Mi. Then we train
the NormNet to segment the healthy tissues in the healthy area Mi ⊙ (1 − G) and high intensity range (Hi > τ ). In the inference time, the
NormNet segment healthy tissues precisely and treat the remaining COVID-19 lesions as anomalies.

B. Anomaly detection

Anomaly detection or outlier detection is a lasting yet active

research area in machine learning [35]–[37], which is a key

technique to overcome the data bottleneck [38]. A natural

choice for handling this problem is one-class classification

methods, such as OC-SVM [39], SVDD [40], Deep SVDD

[41] and 1-NN. These methods detect anomaly by clustering

a discriminate hyper-lane surrounding the normal samples in

the embedding space.

In medical image analysis, there was another line of research

which successfully detected anomaly in instance-level by find-

ing the abnormal area [42]. Recently, CNN-based generative

models such as Generative Adversarial Networks (GAN) [43],

and Variational Auto-encoders (VAE) [44] have been proved

essential for unsupervised anomaly segmentation [45]. These

methods first captured the normal distribution by learning

a mapping between the normal data and a low-dimensional

latent space by reconstruction loss. They assumed that if this

process is only trained with normal distributions, a lesion area

with abnormal shape and context can not be correctly mapped

and reconstructed, resulting in high reconstruction error, which

helped to localize the lesion area. The f-AnoGAN method [46]

learned the projection by solving an optimization problem,

while VAE [44] tackled the same problem by penalizing

the evidence lower bound (ELBO). Several extensions such

as context encoder [47], constrained VAE [48], adversarial

autoencoder [48], GMVAE [49], Bayesian VAE [50] and

anoVAEGAN [51] improved the accuracy of the projection.

Based on the pretrained projection, You et al. [49] restored

the lesion area by involving an optimization on the latent

manifold, while Zimmerer et al. [38] located the anomaly with

a term derived from the Kullback-Leibler (KL)-divergence.

Different from classification, lesion segmentation usually

depends on locally fine-grained texture information. Unluckily,

the decoder may loose some detailed texture information [52],

which limited the accuracy of the reconstruction and caused

false-positives. To make matters worse, as shown in Fig. 1(a),

healthy textures in Lung CT are fine-grained and need a more

precise reconstruction. On the other hand, the calibrated likeli-

hood of the decoder may not be precise enough [53]. The out-

of-distribution data had some possibilities to be successfully

reconstructed [54], which raised false-negatives.

NormNet is designed to alleviate such issues by modeling

the normal tiussue at a voxel level. Specifically, we propose a

proxy task of separating healthy tissues from diverse synthetic

anomalies. Firstly, we choose a 3D U-Net [25] as backbone,

which uses the skip connection to alleviate the loss of infor-

mation. Next, we make the appearance of synthetic ‘lesions’

as diverse as possible to encourage our NormNet to be highly

sensitive to normal textures. As a consequence, a tight decision

boundary around normal tissues can be used to recognize

healthy tissues and to segment COVID-19 lesions.

III. METHOD

In this section, we firstly introduce the overall framework

of our NormNet. Then we illustrate how to generate diverse

‘lesions’ in the given lung mask. Finally, we clarify how to

post-process the healthy voxels predicted by our NormNet to

obtain the final lesion mask for an unseen test image.

A. Overall framework

Let {R1, R2, · · · , RT } be a set of T healthy lung CT

images. We clip the raw image Ri with an HU range of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TMI.2021.3066161

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



0278-0062 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2021.3066161, IEEE

Transactions on Medical Imaging
4 IEEE TRANSACTIONS ON MEDICAL IMAGING, UNDER REVIEW

[−800, 100] and scale the clipped image to [0, 1], obtaining

R′
i. As shown in Fig. 2, our method firstly use nnUnet [55]

to obtain the lung masks {M ′
1,M

′
2, · · · ,M

′
T } and the thorax

areas {H ′
1, H

′
2, · · · , H

′
T } with H ′

i = R′
i⊙M ′

i , where ⊙ stands

for voxel-wise multiplication. It is worth noting that because

no segmentation model can achieve 100% accuracy, and there

are always some edges caused by segmentation errors left in

the thorax area H ′
i , we introduce a simple pre-processing step

(in Section III-B) to remove erroneous edges and generate a

new lung mask Mi. Finally the thorax areas are updated to

{H1, H2, · · · , HT } with Hi = H ′
i ⊙Mi.

Then we use the synthetic ‘lesion’ generator described in

Section III-C to synthesize various ‘lesions’ B within the lung

masks Mi with diverse shapes G and textures, and inject them

into the thorax area Hi to form the input Ai. Because the

healthy voxels in the high-intensity range (say HU≥ T with

the threshold T = −500) have regular patterns and meaningful

clinical content (tracheae and vessels [7]), we concentrate on

segmenting normal patterns within high intensity range and

normal areas. Accordingly, we compute ground truth as

GTi = π(Hi ≥ τ)⊙ (1−G), (1)

where π(.) is an indicator function that produces a binary

mask. Note that the value of τ in Hi is equivalent to the

HU threshold; for example, T = −500 means τ = 0.33. Our

NormNet is learned to predict the healthy part from Ai via

encouraging it to be close to GTi (aka minimizing Dice loss

and cross-entropy loss). In this procedure, our NormNet learns

to capture the context of healthy tissues quickly and precisely.

When our NormNet is applied to an unseen COVID-19

CT volume, it recognizes the healthy part of the volume

with a high confidence and the lesion part of the volume

with a low confidence. The confidence scores thus can be

used as a decision boundary to predict the healthy parts and

lesions. Because our training process is random, we form an

ensemble by learning five random models under the same

setting. A majority-vote for healthy parts is conducted as the

final prediction.

At last, we design a post-processing procedure in Sec-

tion III-D to obtain the final prediction. As NormNet is trained

to segment the voxels with HU≥ T , a small number of lesion

voxels whose HU< T are not taken into consideration and

might get missed. So, we grow the localized lesion areas (in

high-intensity range) to bring them back.

B. Removing erroneous edges

As mentioned above, this step is to separate the wrong edges

caused by segmentation errors from lung mask M ′
i . For a pair

of inputs {M ′
i , H

′
i}, we select all the connected areas [56] in

thorax area H ′
i with most of the voxels lying on the edges

of the lung segmentation mask M ′
i , and mark them as the

wrong edges Ei. To avoid injecting noise into those edges, we

use the lung mask without those edges, formulated as Mi =
M ′

i\Ei. Note that we only launch this process in the training

phase, leveraging the fact that no lesion occurs inside a healthy

volume.

C. Synthetic ‘lesion’ generator

As shown in Fig. 3, the generator constitutes a set of simple

operations, following the two steps: (i) generating lesion-like

shapes; (ii) generating lesion-like textures. It is worth noting

that all of the parameters are chosen for one purpose: generate

diverse anomalies evenly. The visualization of each step can

be found in Supplementary Material. Below, we elaborate each

step.

1) Generating lesion-like shapes: Multiple COVID-19 le-

sions may exist in a CT scan and they have various shapes.

To obtain multiple lesion-like shapes with a CT, we propose

the following pipeline. Below, U [a, b] denotes a continuous

uniform distribution within the range [a, b], while F [a, b]
denotes a discrete uniform distribution.

• For each lung mask Mi with a shape of size

[32, 512, 512], compute a factor λ = |Mi|
|Mmax|

to make

sure that smaller masks generate fewer ellipsoids, where

Mmax is the biggest mask in training set.

• Create several ellipsoids as follows: (1) Sample a num-

ber Ns ∼ F [5λ, 10λ] and then generate Ns small-size

ellipsoids with the principal semi-axes of each ellipsoid

randomly selected from U [3, 10]; (2) Sample a number

Nm ∼ F [5λ, 10λ] and then generate Nm medium-size

ellipsoids with the principal semi-axes of each ellipsoid

randomly selected from U [10, 32]; and (3) Generate a

large size ellipsoid with a probability of PL = 0.2λ and

with its principal semi-axes ∼ U [32, 64].
• For each generated ellipsoid, deform it using elastic

transformation [57] with random parameters and rotate

it to align with random axes, yielding a blob C. Then

position this blob at a random center inside the lung Hi.

At this stage, we have a set of blobs {C1, C2, . . .}. Then

we merge connected blobs and obtain several non-adjacent

blobs {G1, G2, . . .} with varying shapes. For each blob Gj ,

we synthesize a patch of ‘lesion’ Bj by the following steps.

2) Generating lesion-like textures: The texture pattern of

lesions varies1; thus it is challenging to generate lesion-like

textures. Below we outline our attempt of doing so using a

set of simple operations. It should be noted that our method

still has room for optimization, but it is already empirically

effective.

We follow a series of three steps, namely noise generation,

filtering [58], and scaling/clipping operations, to generate the

lesion-like textures.

• Noise generation. For each voxel denoted by x, generate

salt noise b1(x)

b1(x) =
{ 1 with a probability a(x);

0 with a probability 1− a(x),
(2)

where the voxel-dependent probability function a(x) will

be defined later.

• Filtering [58]. Filter the noise image b1(x) to obtain b2(x)
using a Gaussian filter g with a standard deviation σb.

b2(x) = g(x;σb)⊗ b1(x), (3)

1The only prior knowledge we used is that water, tissues, infections have
much higher intensities than air in lung CT [7].
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Fig. 3. The schematic diagram of the proposed noise generator. We generate several diverse shapes and fill the connected areas with various
filtered and scaled salt noises.

where ⊗ is the standard image filtering operator. The

standard deviation σb is randomly sampled as follows:

σb ∼
{ U [0.8, 2] with a probability of 0.7;

U [ 2, 5] with a probability of 0.3.
(4)

.

• Scaling and clipping. This yields the lesion-like pattern

Bj(x).

Bj(x) = clip[0,1](βb2(x)), (5)

with β being the scaling factor that is obtained by

β = µ0/mean0.2(b2(x)), (6)

where µ0 ∼ U [0.4, 0.8] and meant(f(x)) is the mean

intensity of the image f(x) that passes the threshold t.

Now, we describe how to obtain the voxel-dependent proba-

bility function a(x), again using a series of noise generation,

filtering [58], and scaling operations.

• Noise generation. For each voxel x, independently sample

the uniform probability U [0, 1] to get a noise image

a1(x) ∼ U [0, 1].
• Filtering. Filter the noise image a1(x) to obtain a2(x)

using a Gaussian filter g with a standard deviation σa.

a2(x) = g(x;σa)⊗ a1(x), (7)

where the standard deviation σa ∼ U [3, 15].
• Scaling. This yields the desired function a(x).

a(x) = scale[aL,aU ](a2(x))

= (aU − aL) ∗
a2(x)− a2,min

a2,max − a2,min

+ aL, (8)

where aU ∼ U [0, 0.3], aL ∼ U [0, 0.3] and aU − aL >
0.15.

Finally, we inject the synthetic lesions Bj into the various

blobs Gj , and place these blobs at random centers inside the

lung area Hi. Mathematically, the image Ai with synthetic

‘lesions’ is generated by finding the maximum value of the

lung area Hi and the synthetic lesions Bj at each voxel point:

Ai = max(Hi, B1, B2, · · · ). (9)

Our goal is to learn a network that takes Ai as input and

outputs GTi.

Coronacase #002

After pre-processing

(a)

(b) (c) (d)

(e)(f) (g)

Image > 0.33 Healthy Part Lesion Part: (b) – (c)
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Fig. 4. The illustration of the post-processing process.This step
removes the healthy part from the COVID-19 CT volume and generate
final prediction by mean filtering and growing.

D. Post processing

A post processing procedure is designed to obtain the final

lesion prediction based on difference between the original CT
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volume and predicted healthy areas. As illustrated in Fig. 4,

the final prediction is obtained with the following steps:

• Compute the lung mask (Fig. 4(b)) and predict the healthy

part by NormNet (Fig. 4(c));

• Compute the lesion region by subtracting the predicted

healthy part from lung mask to get Fig. 4(d). Considering

that only bright voxels ≥ τ are in the lung mask, the full-

voxel raw lesion areas (Fig. 4(f)) is calculated, aiming to

‘recover’ less bright lesions;

• Mean filtering F with kernel size k is then applied to

Figs. 4(d) and 4(f) to smooth the lesion region (with

kernel sizes of kd and kf ) and then to remove the

background noise via thresholding (with thresholds of td
and tf ), which yields the results in Fig. 4(e) and 4(g),

respectively;

• Binary dilation [59] is used to grow the lesion regions of

Fig. 4(e) to bring the missing voxels in the low intensity

range (HU < T) back. Then, we remove the voxels out

of the full lesion regions defined by Fig. 4(g) to prevent

over-growing.

Ifinal = Dilation(Ie) ∗ Ig, (10)

where Ifinal is the prediction in Fig. 4; Ie is Fig. 4(e),

and Ig is Fig. 4(g).

IV. EXPERIMENTS

Below we firstly provide a brief description of the various

CT lung datasets used in our experiments. Then we present

our experimental settings and the baseline approaches we im-

plement and compare. Finally, we show our main experimental

results, hyper-parameter analyses and an ablation study.

A. Datasets

One distinguishing feature of the paper lies in unleashing

the power embedded in existing datasets. Rather than using

a single dataset, we seamlessly integrate multiple CT lung

datasets for three different tasks of healthy lung modeling,

COVID-19 lesion segmentation, and general-purpose lung

segmentation into one working solution.

1) CT datasets for healthy lung modeling: LUNA16 [60] is

a grand-challenge on lung nodule analysis. The images are

collected from The Lung Image Database Consortium image

collection (LIDC-IDRI) [61], [62], [64], and each image is

labeled by 4 experienced radiologists. As half of the images

are healthy and clean except for those containing nodule areas,

we select 453 CT volumes from LUNA16 and remove the

slices with nodules to formulate our healthy lung CT dataset.

2) CT datasets for COVID-19 lesion segmentation : To mea-

sure the performance of our methods towards COVID-19 seg-

mentation, we choose two public COVID-19 CT segmentation

datasets in Table I and one UESTC with semantic labels. It is

worth noting that our method segments the COVID-19 lesions

under the unsupervised setting, and thus the labeled datasets

are only used for testing.

• Coronacases: There are 10 public CT volumes in the [21]

uploaded from the patients diagnosed with COVID-19.

These volumes are firstly delineated by junior annota-

tors2, and then refined by two radiologists with 5 years

experience, and finally, all the annotations are verified and

refined by a senior radiologist with more than 10 years

experience in chest radiology diagnosis [22].

• Radiopedia: Another 8 axial volumetric CTs are released

from Radiopaedia [20] and have been evaluated by a

radiologist as positive with voxel-wise labeling on lesion

regions [19].

• UESTC: A large-scale well labeled datasets [63] contain-

ing 120 CT volumes, of which 50 are labeled by experts

and 70 by non-experts.

3) CT datasets for general purpose lung segmentation :

To obtain the accurate lung area in the CT volume, we

choose nnU-Net [55] as our lung segmentation method, which

is proved to be state-of-the-art segmentation framework in

medical imaging analysis. We use three lung CT datasets with

semantic labels for the lung region:

• NSCLC left and right lung segmentation: This dataset

consists of lung volume segmentation collected on 402

CT scans from The Cancer Imaging Archive NSCLC

Radiomics [64]–[66].

• StructSeg lung organ segmentation: This dataset consists

of 50 lung cancer patient CT scans with lung organ

segmentation. The dataset served as a segmentation chal-

lenge during MICCAI 2019 [67].

• MSD Lung tumor segmentation This dataset consists of

63 labelled CT scans, which served as a segmentation

challenge during MICCAI 2018 [68]. The lung regions

are labeled by Ma et al. [22].

We choose 2D U-Net as the backbone. The model is trained

by nnU-Net [55] in 5-fold cross-validation, which segments

the lung region very precisely with Dice scores larger than

0.98 in both Coronacases and Radiopedia datasets.

B. Experimental settings

1) Evaluation metrics: We use several metrics widely used

to measure the performance of segmentation models in med-

ical imaging analysis, including precision score (PSC), sensi-

tivity (SEN) and Dice coefficient (DSC), which are formulated

as follows:

PSC =
tp

tp+ fp
;SEN =

tp

tp+ fn
;DSC =

2tp

2tp+ fn+ fp
,

where tp, fp and fn refer to the true positive, false positive

and false negative respectively.

2) Pre-processing: All of the images in the training and

testing sets are segmented for the lung region at first. Then

we unify their spacing to 0.8 × 0.8 × 1mm3, as well as

orientation. Next, all of the images are clipped with window

range [−800, 100] and normalized to [0, 1]. Finally, the lung

regions are centralized and padded to 512× 512 with 0.

2Ma et al. provide 20 well-labeled CT volumes, in addition to the 10
volumes of coronacases, the other 10 volumes have been clipped to [0 –
255] without any information about HU, which is not applicable based on
our methods.
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(a) (b) (c) (d) (a) (b) (c) (d)

Fig. 5. Visual results of our NormNet for COVID-19 segmentation. (a), (b), (c) and (d) represents input (after lung segmentation), healthy tissues
(predicted from our NormNet), lesion parts, and final segmentation, respectively. The green, blue, and red areas in (d) refer to true positive, false
negative, and false positive, respectively.

3) Training and inference details: We choose 3D U-Net [25]

as backbone for NormNet, implemented by MONAI [69]. As

all of the volumes in both training and testing phases are well

aligned, no more augmentation is needed. The NormNet is

trained on a TITAN RTX GPU and optimized by the Adam

optimizer [70] with default settings. We train our network for

2000 iterations with a batch size of 8, and set the learning

rate to 3e-4. For the testing phase, as the contexts of healthy

signals are precisely captured by our NormNet, these signals

are predicted with high probability. Therefore, we select those

voxels with probability > 0.95 as healthy parts in the COVID-

19 CT volume. For the mean filtering in the post processing,

we set kernel sizes (kd, kf ) to (9, 7) and thresholds (td, tf )

to (0.2, 0.15) 3 for lesion parts with bright voxels (Fig. 4d)

and full voxels (Fig. 4f), respectively. We obtain these values

according to the hyperparameter search, which are fixed to all

of three COVID-19 datasets.

C. Baselines

We compare our methods with existing deep learning

based methods4 in medical imaging analysis for unsupervised

anomaly detection (UAD) methods to evaluate the effective-

ness of our approach. To eliminate the influence of irrelevant

factors, we use the images with only lung regions as training

and testing sets for all of the experiments (except for VAE

Original). These encoder-decoder based methods are trained

with a learning rate of 3e-4 and a batch size of 16 for 6000

iterations. To obtain the best performance for each method,

we perform a greedy search up to two decimals to get the

threshold with best Dice score for each COVID-19 dataset.

• AE: An Autoencoder with a dense bottleneck to learn a

mapping between latent space z ∈ R
128 and input space

3We use hyper-parameter search for the 4 parameters on 3 CT volumes
from the dataset ‘Coronacase’

4We follow the experimental setting in [28] and use their source
code: https://github.com/StefanDenn3r/unsupervised_

anomaly_detection_brain_mri.

R
D×H×W , which assumes that only normal input can be

successfully reconstructed.

• VAE [44]: Different to AE, VAE use KL-divergence

and resampling to constrain the latent space. As the

reconstruction is more difficult for lung CT images, so

we set α for KL loss as 1e-6.

• VAE Spatial [51]: A VAE with a spatial (fully-

convolutional) bottleneck, which learns a mapping be-

tween latent space z ∈ R
8×8×128 and R

D×H×W .

• VAE Original: A VAE trained with the full lung CT

images, instead of lung regions (after lung segmentation).

• Context VAE [47]: An expansion of VAE, which forces

the encoder of VAE to capture more information by

reconstructing a input image with cropped patches.

• Constrained VAE [48]: An expansion of VAE, which

uses the encoder to map the reconstructed image to the

same point as the input in the latent space.

• GMVAE [49]: An expansion of VAE, which replaces the

mono-modal prior of the VAE with a Gaussian mixture.

• Bayesian VAE [50]: An expansion of VAE, which

aggregates a consensus reconstruction by Monte-Carlo

dropout.

• KL Grad [38]: Use the gradient map derived from KL

loss to segment anomalies.

• VAE restoration [49]: Restore the abnormal input to de-

crease the evidence lower bound (ELBO). The restoration

part is marked as the detected abnormal area.

• f-AnoGAN [45]: Different from VAE, f-AnoGAN learns

such a mapping by solving an optimization problem. To

keep the training process of f-Anogan stable, we resize

the lung image to [64, 64] after center crop.

In order to reveal the top-line for each dataset, we train nnU-

Net [55] in 5-fold cross-validation5. Furthermore, to test the

performance of the supervised model when inferring unseen

datasets, we train nnU-Net on two COVID-19 datasets and test

on the remaining one, called nnU-Net-Unseen. At last, we test

580% of the data are used in the training set.
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the pretrained models6 of two (semi-)supervised methods of

COPLE-Net [15] and Inf-Net [16] on the same datasets.

D. Segmentation results

As shown in Fig. 6, NormNet is much more sensitive to the

contexts of healthy voxels than possible anomalies (COVID-

19 lesions our work). To validate the ability of our NormNet

to recognize healthy voxels from anomalies, we collect all

bright voxels with τ ≥ 0.33 of the CT volumes. As in Table

II, our method successfully recognizes healthy voxels from

the COVID-19 lesion voxels with AUC larger than 85%. The

high specificity ensures that most of the lesions are treated

as anomaly. Our NormNet firstly votes for the healthy tissues

from the CT volumes with COVID-19 lesions. Then, the post-

processing procedure grows the lesion area to contain more

lesions with less bright voxels (τ < 0.33). We also use mean

filtering in the post-processing to remove the isolated healthy

voxels that are segmented as anomaly, as shown in Fig. 5c.

Therefore, our method reaches the Dice scores of 69.8%,

59.3%7 and 61.4%8 (shown in Table III) in the three different

COVID-19 datasets respectively. The visual results shown

in Fig. 5 reveal that most of the COVID-19 lesions are

successfully (green area) segmented by our NormNet. Fur-

thermore, without the expensive annotations, our NormNet

achieves competitive performances on the three public datasets

against these (semi-)supervised models. The performance of

Inf-Net [16], which is overall similar to that of our NormNet,

is rather stable across the three datasets as it is trained based on

a different dataset. However, on the largest dataset (UESTC),

NormNet still has performance gaps (the Dice scores of

10.2%, 17.4% and 20.2%), compared to the supervised meth-

ods. Specifically NormNet has precision gaps on Radiopedia

(18.7%) and UESTC (21.7%), as well as sensitivity gaps on

Coronacases (16.1%) and Radiopedia (14.9%).

TABLE II

THE RESULTS OF SEGMENTATION PERFORMANCES OF BRIGHT VOXELS.

Dataset Precision Sensitivity Specificity AUC

Coronacases 90.5 78.6 81.2 87.0
Radiopedia 93.1 70.9 86.9 89.7
UESTC 92.1 77.6 84.7 88.4

On the other hand, the other unsupervised anomaly detection

methods have limited power to segment COVID-19 lesion.

As shown in Fig. 7, due to the inaccurate reconstructions,

the reconstruction-based methods such as VAE [44] and f-

AnoGAN [45] can not reconstruct the healthy tissues precisely.

On the other hand, the encoder can not make sure to treat the

COVID-19 lesion as anomaly, and suppress the lesion in the

reconstruction results. These two serious shortcomings result

6Released in their official websites. COPLE-Net: https:

//github.com/HiLab-git/COPLE-Net; Inf-Net: https:

//github.com/DengPingFan/Inf-Net
7We remove CT volume #6 from the Radiopedia dataset as it has only

about 70 positive voxels in 42 slices.
8We select the CT volumes with the spacing of z-axis less than 5 mm,

since our training set (LUNA16) only contains CT volumes with the spacing
of z-axis less than 5 mm.

Heatmap HeatmapGround Truth Ground Truth

0

1

Fig. 6. The heatmap from the first down-sampling block of the NormNet.
The NormNet captures the contexts of healthy tissues precisely.

VAE

VAE Original

Context VAE

f-AnoGAN

Restoration

(a) (b) (c) (d)

KL Grad

Fig. 7. Visual results of various UAD methods. (a), and (d) refer to input
(after pre-processing), and final results, respectively. The image (b) in
the ”KL Grad” method means the gradient map of KL loss, while it in the
other methods means reconstruction or restoration results. The image
(c) of the methods (except for ’KL Grad’) means difference map.

in low COVID-19 segmentation performances, reported in

Table III. Compared to other UAD methods, NormNet captures

the healthy signals and segments anomalies more precisely.

E. Ablation study

1) Voting: To explore the effects of randomness in the

training process, we evaluate the performances of the 5 models

and thier voting results with different number of iterations. As

shown in Table V, the performances of the 5 models oscillate

as the iteration increases, while the NormNet alleviates this

problem through the voting mechanism of 5 models.

2) Modules of synthetic ‘lesion’ generator: The steps of

synthetic ‘lesion’ generator can be roughly divided into three

parts: Generate shapes (Gj in Section III-C.1), probability

maps (ai in (8)), and salt noises (Bi in (6)). To investigate
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TABLE III

THE QUANTITATIVE RESULTS OF OUR METHOD COMPARED TO OTHER UAD METHODS AND NNU-NET. FOR EACH COLUMN, THE TOP, SECOND AND

THIRD VALUES ARE HIGHLIGHTED.

Methods
Coronacases Radiopedia UESTC

DSC (%) PSC (%) SEN (%) DSC (%) PSC (%) SEN (%) DSC (%) PSC (%) SEN (%)

nnU-Net [55] 80.1±6.73 80.2±12.4 82.3±9.30 76.7±5.81 77.1±14.0 80.5±13.1 81.6±9.43 83.0±11.7 81.7±11.6
nnU-Net-Unseen 78.1±12.0 79.0±13.6 78.9±13.5 68.0±19.8 60.9±22.9 87.6±9.72 79.3±8.19 82.8±12.8 77.6±8.71
COPLE-Net [15] 68.2±10.8 77.3±9.57 63.4±16.9 59.3±17.7 57.9±16.0 63.3±23.0 83.9±9.47 84.8±10.5 84.6±12.0
Inf-Net [16] 66.9±14.0 74.5±15.6 63.3±16.5 67.8±13.3 65.2±17.1 75.9±13.4 63.9±11.8 70.4±17.9 62.2±12.8

AE 28.3±15.5 21.5±15.3 52.1±11.3 30.3±17.7 24.4±19.0 58.9±6.2 21.1±22.5 21.9±25.7 44.0±11.1
VAE [44] 26.4±14.5 19.8±14.0 50.1±9.8 28.1±17.5 21.6±17.6 62.3±5.7 21.3±20.4 16.7±20.1 44.6±11.7
VAE Spatial [51] 27.4±16.5 21.0±16.4 49.9±11.9 30.7±19.8 24.8±20.7 59.2±8.0 25.4±22.2 18.3±26.4 42.7±13.5
VAE Original 10.9±8.0 6.9±6.1 41.3±8.2 12.3±10.5 8.5±8.9 44.9±4.9 10.2±10.4 5.2±11.6 31.9±4.7
Context VAE [47] 29.7±16.0 21.8±15.6 61.0±9.8 32.3±21.3 24.3±20.6 72.2±6.0 27.2±26.7 19.2±25.8 52.2±9.4
Constrained VAE [48] 27.9±14.8 21.0±14.7 53.2±10.5 29.2±17.7 22.9±18.3 61.3±5.6 22.2±17.3 17.8±20.4 39.3±7.4
GMVAE [49] 25.7±16.4 20.2±14.4 51.0±12.6 28.6±17.7 22.3±19.5 63.3±7.2 24.7±20.3 18.8±26.4 40.9±11.8
Bayesian VAE [50] 27.5±15.0 20.8±14.7 50.9±11.4 29.6±16.8 23.5±17.6 58.2±6.8 22.0±17.2 15.7±16.0 40.1±12.3
KL Grad [38] 9.5±8.2 5.5±5.2 65.5±19.7 10.2±14.2 6.7±10.3 39.1±20.3 7.9±12.8 6.2±9.4 56.7±19.5
VAE Restoration [49] 12.8±4.5 16.3±10.1 12.1±2.5 9.1±3.7 16.5±16.0 8.8±1.6 6.4±2.8 13.1±14.3 7.0±1.0
f-AnoGAN [45] 15.4±12.6 10.8±10.8 38.3±13.2 19.7±17.3 14.2±14.9 55.2±8.9 12.1±11.8 8.7±13.1 40.3±8.2

Proposed w/o growing 67.1±17.7 85.7±6.89 60.0±22.5 54.6±17.4 59.2±18.6 54.4±17.7 61.5±18.3 68.1±25.2 69.1±21.1
Proposed 69.8±15.2 82.1±8.92 66.2±22.2 59.3±16.9 58.3±18.0 65.6±18.7 61.4±19.4 61.3±26.1 77.6±19.6

TABLE IV

THE ABLATION STUDY FOR MODULES OF ‘LESION’ GENERATOR, THRESHOLD T , HYPER-PARAMETERS OF ‘LESION’ GENERATOR AND

POST-PROCESSING. THE DICE SCORE IS USED AS METRICS.

Dataset
Hyper-parameters of ‘lesion’ generator

NormNet
i ii iii iv v vi vii viii ix x xi xii xiii xiv

Coronacases 68.8 68.0 70.5 70.8 69.1 69.5 68.5 66.5 66.9 70.6 66.2 68.2 66.5 64.1 69.8
Radiopedia 60.8 61.0 60.4 55.0 57.0 58.9 57.3 59.1 60.7 58.4 58.3 60.3 54.6 53.2 59.3
UESTC 61.2 61.3 61.6 60.3 63.0 61.4 60.7 60.9 62.2 62.2 60.5 62.7 59.9 60.8 61.4

Dataset
Param. of post-processing Threashold T Modules of generator Other strategies

NormNet
kd kf td tf -700 -600 -400 -300 Bi ai Gi Edge Areas Lesions

Coronacases 70.0 69.8 70.1 67.1 57.6 67.3 69.7 60.7 37.9 64.5 51.9 68.7 45.3 55.2 69.8
Radiopedia 59.7 60.0 60.0 58.9 52.2 59.7 55.7 54.0 40.8 55.6 55.1 52.6 44.5 55.3 59.3
UESTC 61.0 61.2 60.7 61.4 51.9 62.4 60.2 54.9 38.4 56.9 47.3 57.1 35.2 55.4 61.4

TABLE V

THE DICE SCORES OF FIVE MODELS AND VOTING PERFORMANCE WITH

DIFFERENT NUMBER OF ITERATIONS ON CORONACASES.

Iterations model1 model2 model3 model4 model5 voting

1500 68.5 69.4 63.9 70.5 69.8 68.9
2000 70.2 70.0 69.8 68.8 66.1 69.8
2500 68.0 63.4 71.4 66.7 69.9 69.2

the influence of each part, we train a new NormNet without

the corresponding diversity:

• Fixed shapes (Gi): Generate 5 ellipsoids with radius =

12 for any lung area Hi without any deformation.

• Fixed probability maps (ai): Set ai = 0.2.

• Fixed salt noises (Bi): Set σb = 2 and µ0 = 150 for

synthetic salt noises with the same texture.

As shown in Table IV, the loss of diversities affects the

accuracy of the decision boundary and the segmentation per-

formance. Especially, the biggest performance drop in ‘Fixed

Bi’ prompts that the diverse salt noises make the largest

contributions to encourage NormNet to learn tight decision

boundary around the normal tissues.

RAW HU > -700 HU > -600 HU > -500

0                                                                                                                            1  

Fig. 8. The visualization of masks under different HU thresholds. Many
noisy voxels with complex contexts occur when setting the threshold as
T = −700. We use a colormap for better visualization of the nuances.

3) Hyparameter analysis: The threshold of HU: T is

important in our method, since it filters the background noises

while trying to keep the pattern complexity at a level that can

be effectively managed by the network. On the one hand, if

the threshold is too high, our NormNet only segments healthy

voxels in a small-scale set, which causes more abnormal voxels

missing. On the other hand, if the threshold is too small,

some noisy voxels with complex contexts (as shown in Fig. 8)

weaken the ability of NormNet to correctly model the normal

voxels. As shown in Table IV, the performance drops rapidly

when the HU threshold T = −700.

Hyper-parameters of ‘lesion’ generator: For the sensitiv-
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ity analyses, we change the choice of parameters separately9:

• Shape of ellipsoids: Turn off the elastic-deformation10 (i)

and rotation (ii), respectively.

• Number of ellipsoids: (iii) Generate fewer ellipsoids by

changing Nm, Ns ∼ F [5λ, 10λ] to Nm, Ns ∼ F [3λ, 8λ]
and PL from 0.2λ to 0.1λ. (iv) Generate more ellipsoids

by setting Nm, Ns to ∼ F [7λ, 12λ] and PL = 0.3λ.

• Size of ellipsoids: (v) Select the principal semi-axes of

large-size and small-size ellipsoids from U [3, 10] and

U [32, 64] to U [6, 10] and U [32, 48] , respectively.

• Filtering a(x): Select the standard deviation σa from (vi)

U [2, 18] and (vii) U [4, 12], respectively.

• Scaling a(x): Set the range of aU , aL from U [0, 0.3] to

(viii) U [0.5, 0.25] and (ix) U [0, 0.35], respectively.

• Filtering b(x): (x) Change the probability values of 0.7

and 0.3 in Eq. (4) to 0.5 and 0.5, respectively; (xi) Change

U [0.8, 2] in Eq. (4) to U [0.6, 2]; and (xii) Change U [2, 5]
in Eq. (4) to U [2, 4].

• Scaling b(x): Set the range of µ0 from U [0.4, 0.8] to (xiii)

U [0.45, 0.75] and (ix) U [0.35, 0.85], respectively.

As shown in Table IV, the performances of most experi-

ments are stable and greatly outperform other UAD methods.

This confirms that there is a wide of range of parameter

choices for the ‘lesion’ generator as long as it can produce

diverse ‘lesions’ with a balanced probability, forming a rich

‘lesion’ database. Therefore, the decision boundary of the

learned NormNet can separate out the distribution of normal

tissue, thereby segmenting COVID-19 lesions from normal

tissues.

Hyper-parameters of post-processing: Here, we set up

four experiments by individually changing the kernel sizes k
and threshold t for both Fig. 4(d) and Fig. 4(f): kd = 7, kf =
9, td = 0.15, tf = 0.2. When the hyperparameter makes a

small fluctuation, all of the performances are stable.

4) Other training strategies: 11 Without removing erro-

neous edges (‘edge’ in Table IV): Use Mi = M ′
i as lung

mask in Section III-B. Despite our lung-segmenting nnU-Net

achieves a high performance in lung segmentation, there are

still some false positives around the edge of lung, which appear

random and noisy. These noisy textures without consistent pat-

terns confuse the NormNet to capture regular normal textures,

which cause the performance drop in Table IV.

Directly segmenting healthy areas instead of healthy

tissues (‘areas’ in Table IV): There are three types of voxels

in the lung area: 1) Plenty of ‘air’ voxels [7], whose intensities

are around 0 after clipping with a Hounsfield unit (HU) range

of [−800, 100] and scaled to [0, 1]; 2) Healthy tissues; and 3)

COVID-19 or synthetic lesions. Here, we redefine the ground-

truth GTi in Eq. (1) as Mi ⊙ (1 − G), which represents

‘healthy areas’ instead of the original ‘healthy tissues’. In

this setting, the NormNet is trained to segment too many

low-intensity voxels (voxels of ‘air’) as healthy voxels, rather

9We mark the experiments with Roman numbers, e.g., (i).
10Due to the limitation of computation resources, we turn off elastic-

deformation in all of the following experiments.
11More analyses and visualizations in both training and inference stages

can be found in the supplementary material.

than focus on healthy tissues whose voxels lie in the high-

intensity range. This imbalance limits the power of precisely

recognizing those healthy tissues in high intensities range from

various anomalies (lesions). Thus, false-positives occur when

segmenting COVID-19 CT volumes.

Directly segmenting synthetic ‘lesions’ (‘lesions’ in Ta-

ble IV): Here, we set GTi = Mi ⊙ G in Eq. (1) to force

the NormNet to segment synthetic ‘lesions’ from ‘air’ voxels

and healthy tissues directly. However, because there are still

differences between synthetic and COVID-19 lesions, the

segmentation network has more risk to over-fit the synthetic

‘lesions’. On the contrary, to recognize healthy tissues from

plenty of ‘air’ voxels and lesions, the segmentation network

must be highly sensitive to healthy tissues. The learned tight

decision boundary arising from such sensitivity can be used to

segment plenty of anomalies including synthetic and COVID-

19 lesions with better generalization, which is the motivation

to design the NormNet. The experimental results are shown in

Table IV, in which performance drops in Dice coefficient are

clearly observed for the model of learning to directly segment

synthetic ‘lesions’.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed the NormNet, a voxel-level

anomaly modeling network to recognize normal voxels from

possible anomalies. A decision boundary for normal contexts

of the NormNet was learned by separating healthy tissues from

the diverse synthetic ‘lesions’, which can be further used to

segment COVID-19 lesions, without training on any labeled

data. The experiments on three different COVID-19 datasets

validated the effectiveness of the NormNet.

(a) (b) (c)

Fig. 9. Samples of failure predictions to show the limitation of our
method. The red area means false positive while the blue area indicates
false negative.

Despite the improvement compared to existing unsupervised

anomaly detection methods, there was still a gap between our

methods and supervised methods such as nnU-Net [55]. After

exploring the failure predictions of our methods, we found that

they were divided into three categories:

1) The NormNet segments all anomalies such as pulmonary

fibrosis (the first row shown in Fig. 9), rather than

COVID-19 lesions only.

2) Gaps between datasets: for example, most of the layer

thicknesses in Luna16 dataset are around 1mm. How-

ever, in Radiopedia dataset slices were padded together,

which generated different contexts. The unseen contexts
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were treated as anomalies by our NormNet, which

resulted in the most of false-positives in Radiopedia.

3) Our NormNet gave up modeling the noisy patterns

in low-intensity range. Although most of lesions can

be successfully detected, a small part of lesions with

their intensity smaller than τ were still missed (as

shown in the right column of Fig. 9). Segmenting these

small lesions also serves as a difficult problem for both

supervised methods [15] and anomaly detection.

For a better performance on COVID-19 segmentation, we

plan to extend our method to address the above limitations

mainly in the following three aspects: 1) Modeling more ‘non-

COVID-19’ contexts including other diseases; and 2) Explor-

ing a better way of modeling low-intensity normal voxels

as much as possible by mitigating the impact of noise with

an array of denoising methods. 3) Creating a more effective

synthetic ‘lesions’ generator for network learning by exploring

different generation schemes, such as using a deeper hierarchy

and a universal generation [71] by investigating cross-anatomy

or even cross-modality possibilities. 4) Exploring the idea

of metric learning such as Deep SVDD [41] to get tighter

decision boundary.

Beyond COVID-19 lesion segmentation in Lung CT, we

believe that it is possible to extend the NormNet to other

modalities (e.g. MRI) by defining a similar proxy task, such

as denoising or inpainting, etc. The NormNet can be learned

to ‘recover’ the polluted healthy texture back to normal if the

contexts of healthy tissues are sufficiently captured. We are

going to investigate this direction in future.
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