
Label-Free Supervision of Neural Networks with
Physics and Domain Knowledge

Russell Stewart , Stefano Ermon
Department of Computer Science, Stanford University

{stewartr, ermon}@cs.stanford.edu

Abstract

In many machine learning applications, labeled data is scarce
and obtaining more labels is expensive. We introduce a new
approach to supervising neural networks by specifying con-
straints that should hold over the output space, rather than di-
rect examples of input-output pairs. These constraints are de-
rived from prior domain knowledge, e.g., from known laws of
physics. We demonstrate the effectiveness of this approach on
real world and simulated computer vision tasks. We are able
to train a convolutional neural network to detect and track
objects without any labeled examples. Our approach can sig-
nificantly reduce the need for labeled training data, but in-
troduces new challenges for encoding prior knowledge into
appropriate loss functions.

Introduction

Applications of machine learning are often encumbered by
the need for large amounts of labeled training data. Neu-
ral networks have made large amounts of labeled data even
more crucial to success (Krizhevsky, Sutskever, and Hinton
2012; LeCun, Bengio, and Hinton 2015). Nonetheless, we
observe that humans are often able to learn without direct
examples, opting instead for high level instructions for how
a task should be performed, or what it will look like when
completed. In this work, we ask whether a similar princi-
ple can be applied to teaching machines; can we supervise
networks without individual examples by instead describing
only the structure of desired outputs?

Contemporary methods for learning without labels of-
ten fall under the category of unsupervised learning. Au-
toencoders, for example, aim to uncover hidden structure in
the data without having access to any label. Such systems
succeed in producing highly compressed, yet informative
representations of the inputs (Kingma and Welling 2013;
Le 2013). However, these representations differ from ours as
they are not explicitly constrained to have a particular mean-
ing or semantics.

In this paper, we constrain the type-level semantics of the
hidden variables we hope to discover, but still train with-
out labels by learning from constraints (see (Shcherbatyi and
Andres 2016) for an introduction to this idea). Intuitively, al-
gebraic and logical constraints are used to encode structures

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

X Y
f g

R

Figure 1: Constraint learning aims to recover the transfor-
mation f without providing labels y. Instead, we look for a
mapping f that captures the structure required by g.

and relationships that are known to hold because of prior
domain knowledge. The process of providing these neces-
sary constraints may still require large amounts of domain
specific engineering.

Nevertheless, by training without direct examples of the
values our hidden (output) variables take, we gain several
advantages over traditional supervised learning, including
1) a reduction in the amount of work spent labeling, and 2)
an increase in generality, as a single set of constraints can
be applied to multiple data sets without relabeling. The pri-
mary contribution of this work is to demonstrate how con-
straint learning may be used to supervise neural networks
across three practical computer vision tasks. We explore the
challenge of simultaneously learning feature representations
over raw data and avoiding trivial, low entropy solutions in
the constraint space.

Problem Setup

In a traditional supervised learning setting, we are given a
training set D = {(x1, y1), · · · , (xn, yn)} of n training ex-
amples. Each example is a pair (xi, yi) formed by an in-
stance xi ∈ X and the corresponding output (label) yi ∈ Y .
The goal is to learn a function f : X → Y mapping in-
puts to outputs. To quantify performance, a loss function
ℓ : Y × Y → R is provided, and a mapping is found via

f∗ = argmin
f∈F

n
∑

i=1

ℓ(f(xi), yi) (1)

where the optimization is over a pre-defined class of func-
tions F (hypothesis class). In our case, F will be (convolu-
tional) neural networks parameterized by their weights.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2576

By restricting the space of possible functions specifying
the hypothesis class F , we are leveraging prior knowledge
about the specific problem we are trying to solve. Informally,
the so-called No Free Lunch Theorems state that every ma-
chine learning algorithm must make such assumptions in or-
der to work (Wolpert 2002). Another common way in which
a modeler incorporates prior knowledge is by specifying an
a-priori preference for certain functions in F , incorporat-
ing a regularization term R : F → R, and solving for
f∗ = argminf∈F

∑n

i=1 ℓ(f(xi), yi)+R(f). Typically, the
regularization term R : F → R specifies a preference for
“simpler” functions (Occam’s razor).

In many ML settings, the input space X is complex (im-
ages), while the output space Y is simple (e.g., a binary clas-
sification problem where Y = {0, 1}). Here, we are inter-
ested in structured prediction problems, where both X and
Y are complex. For example, in our first experiment, X cor-
responds to image sequences (video) and Y to the height
of an object as it is moving through the air. The goal is to
identify a function f∗ that correctly maps frames to the cor-
responding height of the object. Clearly, the heights in each
frame are not independent, and the sequence demonstrates
a well-defined structure. In fact, we known from elemen-
tary physics that any correct sequence of outputs forms a
parabola.

In this paper, we model prior knowledge on the structure
of the outputs by providing a weighted constraint function
g : X × Y → R, used to penalize “structures” that are not
consistent with our prior knowledge. When Y is a (multidi-
mensional) discrete space (e.g., describing many potential
binary attributes of an image) as in our third application,
g can be specified compactly using a graphical model ap-
proach, as a sum of weighted potential or constraints that
only depend on a small subsets of the variables (Richard-
son and Domingos 2006) (Lafferty, McCallum, and Pereira
2001).

The question we explore in this paper is whether this weak
form of supervision is sufficient to learn interesting func-
tions. While one clearly needs labels, y, to evaluate f∗, la-
bels may not be necessary to discover f∗. If prior knowl-
edge informs us that outputs of f∗ have other unique prop-
erties among functions in F , we may use these properties
for training rather than direct examples y. Specifically, we
consider an unsupervised approach where the labels yi are
not provided to us, and optimize for a necessary property of
the output, g instead. That is, we search for

f̂∗ = argmin
f∈F

n
∑

i=1

g(xi, f(xi)) +R(f) (2)

In some experiments, we find that commonly used hypothe-
sis classes (convolutional layers encoding translation invari-
ance) and regularization terms R may be sufficient to avoid
functions f ∈ F optimizing (2) but not (1). In these settings,
we can optimize (2) in place of (1) with Stochastic Gradient
Descent (SGD), freeing us from the need for labels.

When optimizing (2) is not sufficient to find f∗, we will
add additional regularization terms to supervise the machine
towards correct convergence. For example, as we will see in

our person detection experiment, if g is undesirably satisfied
by a f ≡ C constant output, we can add a term to favor out-
puts with higher entropy. The process of designing the loss
g and the regularization term R is a form of supervision, and
can require a significant time investment. But unlike hand
labeling, it does not increase proportional to the size of the
data, |D|, and can be applied to new data sets often without
modification.

Experiments
The goal of our method is to train a network, f , mapping
from inputs to outputs that we care about, without needing
direct examples of those outputs. In our first two experi-
ments, we construct a mapping from an image to the loca-
tion of an object it contains. Learning is made possible by
exploiting structure that holds in images over time. In our
third experiment, we map an image to two boolean variables
describing whether or not the image contains two special ob-
jects. Learning exploits the unique causal semantics existing
between these objects. Across our experiments, we provide
labels only for the purpose of evaluation.

Tracking an object in free fall

In our first experiment, we record videos of an object
being thrown across the field of view and aim to learn
the object’s height in each frame. Our goal is to ob-
tain a regression network on color images, i.e. a map-
ping from ❘

height×width×3 → ❘. We will train this net-
work as a structured prediction problem operating on a se-
quence of N images to produce a sequence of N heights,
(

❘
height×width×3

)N
→ ❘

N , and each piece of data xi will
be a vector of images, x. Rather than supervising our net-
work with direct labels, y ∈ R

N , we instead supervise the
network to find an object obeying the elementary physics of
free falling objects. Because gravity acts equally on all ob-
jects, we need not encode the object’s mass or volume.

An object acting under gravity will have a fixed acceler-
ation of a = −9.8m/s2, and the plot of the object’s height
over time will form a parabola:

yi = y0 + v0(i∆t) + a(i∆t)2

where ∆t = 0.1s is the duration between frames. This equa-
tion provides a necessary constraint, which the correct map-
ping f∗ must satisfy. We thus train f by making incremental
improvements in the direction of better satisfying this equa-
tion.

Given any trajectory of N height predictions, f(x), we
fit a parabola with fixed curvature to those predictions, and
minimize the resulting residual. Formally, we specify a =
[a∆t2, a(2∆t)2, . . . , a(N∆t)2] and set

ŷ = a+A(ATA)−1AT (f(x)− a) (3)

where

A =

⎡

⎢

⎢

⎢

⎢

⎣

∆t 1
2∆t 1
3∆t 1

...
...

N∆t 1

⎤

⎥

⎥

⎥

⎥

2577

Figure 2: As the pillow is tossed, the height forms a parabola over time. We exploit this structure to independently predict the
pillow’s height in each frame without providing labels.

That is, we subtract away the fixed acceleration term, fit a
line with parameters corresponding to the initial height and
velocity, and add the acceleration component back in. The
constraint loss is then defined as

g(x, f(x)) = g(f(x)) =
N
∑

i=1

|ŷi − f(x)i|

where we note that the vector ŷ from (3) is a function of the
predictions f(x), rather than ground truth labels. Because g
is differentiable almost everywhere, we can optimize equa-
tion (2) with SGD. Surprisingly, we find that when combined
with existing regularization methods for neural networks,
this optimization is sufficient to recover f∗ up to an addi-
tive constant C (specifying what object height corresponds
to 0). Qualitative results from our network applied to fresh
images after training are shown in Figure. (2)

Training details Our data set 1 is collected on a laptop we-
bcam running at 10 frames per second (∆t = 0.1s). We fix
the camera position and record 65 diverse trajectories of the
object in flight, totalling 602 images. For each trajectory, we
train on randomly selected intervals of N ≥ 3 contiguous
frames. For our experiments, we chose N = 5, and held out
25 trajectories for evaluation.

Images are resized to 56 × 56 pixels before going into a
small, randomly initialized neural network with no pretrain-
ing. We use 3 Conv/ReLU/MaxPool blocks followed by 2
Fully Connected/ReLU layers with dropout probability 0.5
and a single regression output. We group trajectories into
batches of size 16, for a total of 80 images on each iteration

1https://github.com/russell91/labelfree

of training. We use the Adam optimizer (Kingma and Ba
2014) in TensorFlow (Abadi et al. 2016) with a learning rate
of 0.0001 and train for 4,000 iterations. The network was
generally robust to small changes in these hyperparameters.

Evaluation For evaluation, we manually labeled the
height of our falling objects in pixel space. Note that label-
ing the true height in meters requires knowing the object’s
distance from the camera, so we instead evaluate by mea-
suring the correlation of predicted heights with ground truth
pixel measurements. All results are evaluated on test images
not seen during training. Note that a uniform random output
would have an expected correlation of 12.1%. Our network
results in a correlation of 90.1%. For comparison, we also
trained a supervised network on the labels to directly pre-
dict the height of the object in pixels. This network achieved
a correlation of 94.5%, although this task is somewhat eas-
ier as it does not require the network to compensate for the
object’s distance from the camera.

This experiment demonstrates that one can teach a neural
network to extract object information from real images by
writing down only the equations of physics that the object
obeys.

Tracking the position of a walking man

In our second experiment, we now seek to extend the de-
tection of free falling objects to other types of motion. We
will aim to detect the horizontal position of a person walking
across a frame without providing direct labels y ∈ R. To this
end, we exploit structure that holds over time by assuming
the person will be walking at a constant velocity over short
periods of time. We thus formulate a structured prediction

2578

Figure 3: The network independently predicts the position of the walking man in each frame. Supervision tells the network that
outputs must describe an object moving at constant (but non-zero) velocity.

problem f :
(

R
height×width×3

)N
→ N , and treat each train-

ing instances xi as a vector of images, x, being mapped to
a sequence of positions, y, for which we do not have direct
labels.

We work with a previously collected data set where we
observed that the constant velocity assumption approxi-
mately holds. Given the similarities to our first experiment
with free falling objects, we might hope to simply remove
the gravity term from equation (3) and retrain. However, in
this case, that is not possible, as the constraint provides a
necessary, but not sufficient, condition for convergence.

Given any sequence of correct outputs, (y1, . . . ,yN), the
modified sequence, (λ∗y1+C, . . . , λ∗yN+C) (λ,C ∈)
will also satisfy the constant velocity constraint. In the worst
case, when λ = 0, f ≡ C, and the network can satisfy the
constraint while having no dependence on the image. Em-
pirically, we observe that f ≡ C is very easy to learn, and
if we do not explicitly guard against this trivial solution, the
network will always converge to it.

We encode the desire for a nontrivial output by adding
two additional loss terms. First, we reward the network for
outputting a greater standard deviation of values across the
sequence:

h1(x) = −std(f(x))

However, this objective introduces a problem by providing

infinite reward as λ → ∞. We counterbalance this effect
by requiring that the output across the image sequence to lie
within a fixed range, [0, 10]:

h2(x) = max(ReLU(f(x)− 10)) +

max(ReLU(0− f(x)))

The final loss is thus:

g(x) = ||(A(ATA)−1AT − I) ∗ f(x)||1 +

γ1 ∗ h1(x) +

γ2 ∗ h2(x)

We alternatively might have measured the constraint loss in
a scale-invariant manner (e.g. by whitening outputs before
measuring the inertial loss). This is consistent with the prin-
ciple that there are multiple options for sufficiency terms to
guide convergence.

Training Details As shown in Figure (3), our network is
indeed able to discover the horizontal position of person
walking in front of the camera. Our data set contains 11 tra-
jectories across 6 distinct scenes, totalling 507 images re-
sized to 56 × 56. We train our network to output linearly
consistent positions on 5 strided frames from the first half
of each trajectory, and hold out the second half for evalua-
tion. γ1 represents the standard deviation bonus, and γ2 the

2579

boundary violation penalty. We choose γ1 = 0.6 < γ2 =
0.8, leading the network to find the solution with maximal
λ not violating the boundary constraint. We choose exactly
the same hyperparameters (dropout ratio, number of itera-
tions, number of hidden units, etc.) on both this experiment
and the free fall experiment, demonstrating some degree of
robustness to these parameters.

Evaluation Our test labels are measured in pixels,
whereas our predictions are in arbitrary units up to affine
transformation. Thus, we find the best affine transformation
(α, β) mapping our predictions onto pixel space for each tra-
jectory, and measure the correlation. Note that α and β can
differ between scenes, and thus this metric does not demon-
strate a complete solution to the object detection problem
(random noise averages a 45% correlation over 5 predic-
tions). Nonetheless, we find that our predictions are 95.4%
correlated with the ground truth. Surprisingly, the same net-
work trained with direct supervision struggled more with
generalization, and scored a correlation of 80.5% on the test
set (99.8% on training). We attribute this decreased perfor-
mance to overfitting on the small amount of training data
available (11 trajectories), and would expect a near perfect
correlation for a well trained supervised classifier.

This experiment demonstrates the possibility of learning
to detect an inertial object without labels. Importantly, it also
shows that even when the primary structural constraint is not
sufficient to guide learning, we may impose additional terms
to encourage a correct, nontrivial solution.

Detecting objects with causal relationships

In the previous experiments, we explored options for incor-
porating constraints pertaining to dynamics equations in real
world phenomena, i.e., prior knowledge derived from ele-
mentary physics. Other sources of domain knowledge can
in principle be used to provide supervision in the learning
process. For example, significant efforts have been devoted
in the past few decades to construct large knowledge bases
(Lenat 1995; Bollacker et al. 2008). This knowledge is typi-
cally encoded using logical and constraint based formalisms.
Thus, in this third experiment, we explore the possibilities of
learning from logical constraints imposed on single images.
More specifically, we ask whether it is possible to learn from
causal phenomena.

We provide images containing a stochastic collection of
up to four characters: Peach, Mario, Yoshi, and Bowser,
with each character having small appearance changes across
frames due to rotation and reflection. Example images can
be seen in Figure. (4). While the existence of objects in each
frame is non-deterministic, the generating distribution en-
codes the underlying phenomenon that Mario will always
appear whenever Peach appears. Our aim is to create a pair
of neural networks f = (f1, f2) for identifying Peach and
Mario, respectively. The networks, fk : Rheight×width×3 →
{0, 1}, map the image to the discrete boolean variables, y1
and y2. Rather than supervising with direct labels, we train
the networks by constraining their outputs to have the log-
ical relationship y1 ⇒ y2. This problem is challenging be-
cause the networks must simultaneously learn to recognize

Figure 4: Whenever Peach (blond) shows up, Mario (red)
comes around, but not vice versa. Yoshi (green) and Bowser
(orange) appear randomly. The system trains with this high
level knowledge and learns to answer whether each image
contains Peach or Mario. The first column contains example
images. The second and third columns show the attended
locations for the Peach and Mario networks, respectively.

the characters and select them according to logical relation-
ships.

Merely satisfying the constraint y1 ⇒ y2 is not sufficient
to certify learning. For example, the system might falsely
report the constant output, y1 ≡ 1, y2 ≡ 1 on every image.
Such a solution would satisfy the constraint, but say nothing
about the presence of characters in the image.

To avoid such trivial solutions, we add three loss terms:
h1, h2, and h3. h1 forces rotational independence of the out-
put by applying a random horizontal and vertical reflection
ρ, to images. This encourages the network to focus on exis-
tence of objects, rather than location. h2 and h3 allows us to
avoid trivial solutions by encouraging high standard devia-
tion and high entropy outputs, respectively. Given a batch of
M = 16 images which we denote x, we define

h1(x, k) =
1

M

M
∑

i

|Pr[fk(x) = 1]− Pr[fk(ρ(x)) = 1]|

h2(x, k) = − std
i∈[1...M]

(Pr[fk(xi) = 1])

h3(x, v) =
1

M

M
∑

i

(Pr[f(xi) = v]−
1

3
+ (

1

3
− μv))

2

μv =
1

M

M
∑

i

{v = argmax
v′∈{0,1}2

Pr[f(x) = v′]}

Even with these constraints, the loss remains invariant to
logical permutations (e.g. given a correct solution, y∗1 , y

∗
2 ,

the incorrect solution ŷ1 = y∗1 , ŷ2 = (y∗1∧y
∗
2)∨(¬y

∗
1∧¬y

∗
2)

would satisfy ŷ1 ⇒ ŷ2, and have the same entropy). We ad-
dress this issue by forcing each boolean output to derive it’s
value from a single region of the image (each character can

2580

be identified from a small region in the image.) The Peach
network, f1, runs a series of convolution and pooling layers
to reduce the original input image to a 7 × 7 × 64 grid. We
find the 64-dimensional spatial vector with the greatest mean
and use the information contained in it to predict the first
binary variable. Examples of channel means for the Mario
and Peach networks can be seen in Figure. (4). The Mario
network f2 performs the same process. But if the Peach net-
works claims to have found an object, f2 is prevented from
picking any vector within 2 spaces of the location used by
the first vector.

The final loss function is given by:

g(x) = ✶{f1(x) �=⇒ f2(x)} +
∑

k∈{1,2}

γ1h1(x, k) + γ2h2(x, k) +
∑

v �={1,0}

γ3 ∗ h3(x, v)

We construct both f1 and f2 as neural networks with 3
Conv/ReLU/MaxPool blocks as in our first two experiments.
These blocks are followed by 2 Fully Connected/ReLU
units, although the first fully connected layer receives input
from only one spatial vector as described above.

Evaluation Our input images, shown in Figure. (4), are
56 × 56 pixels. We set γ1 = 0.65, γ2 = 0.65, γ3 = 0.95,
and training converges after 4,000 iterations. On a test set
of 128 images, the network learns to map each image to a
correct description of whether the image contains Peach and
Mario.

This experiment demonstrates that networks can learn
from constraints that operate over discrete sets with
potentially complex logical rules. Removing constraints
h1, h2, or h3 will cause learning to fail. Thus, the exper-
iment also shows that sophisticated sufficiency conditions
can be key to success when learning from constraints.

Related Work

In this work, we presented a new strategy for incorporating
domain knowledge in three computer vision tasks. The net-
works in our experiments learn without labels by exploiting
high level instructions in the form of constraints.

Constraint learning is a generalization of supervised
learning that allows for more creative methods of supervi-
sion. For example, multiple-instance learning as proposed
by (Dietterich, Lathrop, and Lozano-Pérez 1997; Zhou and
Xu 2007) allows for more efficient labeling by providing
annotations over groups of images and learning to predict
properties that hold over at least one input in a group, rather
than providing individual labels. In rank learning, labels
may given as orderings between inputs with the objective
being to find an embedding of inputs that respects the or-
dering relation (Joachims 2002). Inductive logic program-
ming approaches rely on logical formalisms and constraints
to represent background knowledge and learn hypotheses
from data (Muggleton and De Raedt 1994; De Raedt 2008;
De Raedt and Kersting 2003). Various types of constraints
have also been used extensively to guide unsupervised learn-
ing algorithms, such as clustering and dimensionality reduc-
tion techniques (Lee and Seung 2001; Basu, Davidson, and

Wagstaff 2008; Zhi et al. 2013; Ermon et al. 2015). Natu-
ral language processing has seen many successful applica-
tions of constraint learning (Liang, Jordan, and Klein 2009;
Chang, Ratinov, and Roth 2007; Ganchev et al. 2010), and
the recent work of (Ratner et al. 2016) has provided a fresh
perspective on the idea of learning with labeling functions,
rather than labels, in the form of Data Programming.

Combining loss functions from constraint learning with
neural networks is particularly appealing, as reductions in
labeling effort are more impactful when feature engineer-
ing may also be avoided. Applications of constraint learning
to neural networks have been suggested by several recent
works. In (Kotzias et al. 2015), deep networks were trained
to predict sentiment labels of individual sentences in a re-
view set based on constraints for the final review score. (Lin
et al. 2016) and (Zhuang et al. 2016) trained deep convo-
lutional neural networks to construct high level compressed
embeddings of images without using labels. In (Lin et al.
2016), constraints such as invariance of embeddings to im-
age rotations, high entropy outputs, and high standard devi-
ation outputs were encoded to learn these embeddings. Our
experiments build on these ideas in a context where we can
use prior knowledge such as physical dynamics to further
constrain the output’s semantics.

The Deep Q-Network (DQN) of (Mnih et al. 2015) pro-
vides another inspirational example for training neural net-
works with constraints rather than direct labels. The DQN
may be described as an optimization of equation (2) by:

• X: (xt, xt+1) ∈ (❘height×width×3)2 (a pair of sequential
states)

• Y : (❘|a|)2 (the expected future rewards from each state)

• f : (convolutional) neural net with |a| outputs

• g: f(xt)a − (γ ∗ argmaxa′ f(xt+1)a′ + r(xt))
(the Bellman equation)

By imposing the right constraint g, DQNs transform weak
labels of the form r(xt) into a rich planning algorithm over
raw images.

Thus, a growing volume of work proposes the use of non-
traditional loss functions for neural networks. Our experi-
ments encourage an even broader range of future applica-
tions where the primary constraint is necessary, but not suf-
ficient for learning.

Conclusion

We have introduced a new method for using physics and
other domain constraints to supervise neural networks. Fu-
ture challenges include extending these results to larger data
sets with multiple objects per image, and simplifying the
process of picking sufficiency terms for new and interest-
ing problems. By freeing the operator from collecting labels,
our small scale experiments show promise for the future of
training neural networks with weak supervision.

Acknowledgments

This work was supported by a grant from the SAIL-Toyota
Center for AI Research. The authors would like to thank
Aditya Grover and Tudor Achim for helpful discussions.

2581

References

Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen,
Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin,
M.; et al. 2016. Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.

Basu, S.; Davidson, I.; and Wagstaff, K. 2008. Constrained
clustering: Advances in algorithms, theory, and applica-
tions. CRC Press.

Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; and Taylor,
J. 2008. Freebase: a collaboratively created graph database
for structuring human knowledge. In Proceedings of the
2008 ACM SIGMOD International Conference on Manage-
ment of Data, 1247–1250. ACM.

Chang, M.-W.; Ratinov, L.; and Roth, D. 2007. Guid-
ing semi-supervision with constraint-driven learning. In
Annual Meeting-Association for Computational Linguistics,
volume 45.

De Raedt, L., and Kersting, K. 2003. Probabilistic logic
learning. ACM SIGKDD Explorations Newsletter 5(1):31–
48.

De Raedt, L. 2008. Logical and relational learning.
Springer Science & Business Media.

Dietterich, T. G.; Lathrop, R. H.; and Lozano-Pérez, T. 1997.
Solving the multiple instance problem with axis-parallel
rectangles. Artificial intelligence 89(1):31–71.

Ermon, S.; Le Bras, R.; Suram, S. K.; Gregoire, J. M.;
Gomes, C. P.; Selman, B.; and van Dover, R. B. 2015. Pat-
tern decomposition with complex combinatorial constraints:
Application to materials discovery. In Twenty-Ninth AAAI
Conference on Artificial Intelligence.

Ganchev, K.; Gillenwater, J.; Taskar, B.; et al. 2010. Pos-
terior regularization for structured latent variable models.
Journal of Machine Learning Research 11(Jul).

Joachims, T. 2002. Optimizing search engines using
clickthrough data. In Proceedings of the eighth ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data mining, 133–142. ACM.

Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Kingma, D. P., and Welling, M. 2013. Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.

Kotzias, D.; Denil, M.; de Freitas, N.; and Smyth, P. 2015.
From group to individual labels using deep features. In ACM
SIGKDD.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.

Lafferty, J.; McCallum, A.; and Pereira, F. 2001. Condi-
tional random fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of the eighteenth
International Conference on Machine Learning, volume 1,
282–289.

Le, Q. V. 2013. Building high-level features using large
scale unsupervised learning. In 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing,
8595–8598. IEEE.

LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
Nature 521(7553):436–444.

Lee, D. D., and Seung, H. S. 2001. Algorithms for non-
negative matrix factorization. In Advances in neural infor-
mation processing systems, 556–562.

Lenat, D. B. 1995. Cyc: A large-scale investment in
knowledge infrastructure. Communications of the ACM
38(11):33–38.

Liang, P.; Jordan, M. I.; and Klein, D. 2009. Learning from
measurements in exponential families. In Proceedings of the
26th annual International Conference on Machine Learn-
ing. ACM.

Lin, K.; Lu, J.; Chen, C.-S.; and Zhou, J. 2016. Learning
compact binary descriptors with unsupervised deep neural
networks. CVPR.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529–533.

Muggleton, S., and De Raedt, L. 1994. Inductive logic pro-
gramming: Theory and methods. The Journal of Logic Pro-
gramming 19:629–679.

Ratner, A.; De Sa, C.; Wu, S.; Selsam, D.; and Ré, C. 2016.
Data programming: Creating large training sets, quickly.
arXiv preprint arXiv:1605.07723.

Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine Learning 62(1):107–136.

Shcherbatyi, I., and Andres, B. 2016. Convexification of
learning from constraints. arXiv preprint arXiv:1602.06746.

Wolpert, D. H. 2002. The supervised learning no-free-lunch
theorems. In Soft Computing and Industry. Springer. 25–42.

Zhi, W.; Wang, X.; Qian, B.; Butler, P.; Ramakrishnan, N.;
and Davidson, I. 2013. Clustering with complex constraints-
algorithms and applications. In AAAI.

Zhou, Z.-H., and Xu, J.-M. 2007. On the relation between
multi-instance learning and semi-supervised learning. In
Proceedings of the 24th International Conference on Ma-
chine learning, 1167–1174. ACM.

Zhuang, B.; Lin, G.; Shen, C.; and Reid, I. 2016. Fast train-
ing of triplet-based deep binary embedding networks. arXiv
preprint arXiv:1603.02844.

2582

