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Abstract 

The immunohistochemical (IHC) staining of the human epidermal growth factor receptor 2 (HER2) 

biomarker is widely practiced in breast tissue analysis, preclinical studies and diagnostic decisions, 

guiding cancer treatment and investigation of pathogenesis. HER2 staining demands laborious tissue 

treatment and chemical processing performed by a histotechnologist, which typically takes one day to 

prepare in a laboratory, increasing analysis time and associated costs. Here, we describe a deep learning-

based virtual HER2 IHC staining method using a conditional generative adversarial network that is 

trained to rapidly transform autofluorescence microscopic images of unlabeled/label-free breast tissue 

sections into bright-field equivalent microscopic images, matching the standard HER2 IHC staining that 

is chemically performed on the same tissue sections. The efficacy of this virtual HER2 staining 

framework was demonstrated by quantitative analysis, in which three board-certified breast pathologists 

blindly graded the HER2 scores of virtually stained and immunohistochemically stained HER2 whole 

slide images (WSIs) to reveal that the HER2 scores determined by inspecting virtual IHC images are as 

accurate as their immunohistochemically stained counterparts. A second quantitative blinded study 

performed by the same diagnosticians further revealed that the virtually stained HER2 images exhibit a 

comparable staining quality in the level of nuclear detail, membrane clearness, and absence of staining 

artifacts with respect to their immunohistochemically stained counterparts. This virtual HER2 staining 

framework bypasses the costly, laborious, and time-consuming IHC staining procedures in laboratory, 

and can be extended to other types of biomarkers to accelerate the IHC tissue staining used in life 

sciences and biomedical workflow.  
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Intr oduction 

The immunohistochemical (IHC) staining of tissue sections plays a pivotal role in the evaluation process 

of a broad range of diseases. Since its first implementation in 19411, a great variety of IHC biomarkers 

have been validated and employed in clinical and research laboratories for characterization of specific 

cellular events2, e.g., the nuclear protein Ki-67 associated with cell proliferation3, the cellular tumor 

antigen P53 associated with tumor formation4, and the human epidermal growth factor receptor 2 (HER2) 

associated with aggressive breast tumor development5. Due to its capability of selectively identifying 

targeted biomarkers, IHC staining of tissue has been established as one of the gold standards for tissue 

analysis and diagnostic decisions, guiding disease treatment and investigation of pathogenesis6ï8.  

Though widely used, the IHC staining of tissue still requires a dedicated laboratory infrastructure and 

skilled operators (histotechnologists) to perform laborious tissue preparation steps and is therefore time-

consuming and costly. Recent years have seen rapid advances in deep learning-based virtual staining 

techniques, providing promising alternatives to the traditional histochemical staining workflow by 

computationally staining the microscopic images captured from label-free thin tissue sections, bypassing 

the laborious and costly chemical staining process. Such label-free virtual staining techniques have been 

demonstrated using autofluorescence imaging9,10, quantitative phase imaging11, light scattering imaging12, 

among others13ï15, and have successfully created multiple types of histochemical stains, e.g., hematoxylin 

and eosin (H&E)9ï14, Massonôs trichrome9ï11, and Jones silver stains9ï11. These previous works did not 

perform any virtual IHC staining and mainly focused on the generation of structural tissue staining, which 

enhances the contrast of specific morphological features in tissue sections. In a related line of research, 

deep learning has also enabled the prediction of biomarker status (e.g., Ki -67 quantification16) and tumor 

prognostic from H&E-stained microphotographs of various malignancies including hepatocellular 

carcinoma17, breast cancer18ï22, bladder cancer23, thyroid cancer24,25, and melanoma26. These studies 

highlight a possible correlation between the presence of specific biomarkers and morphological 

microscopic changes in the tissue; however, they do not provide an alternative to IHC stained tissue 

images that reveal sub-cellular biomarker information for pathologistsô diagnostic inspection for e.g., 

inter- and intra-cellular signatures such as cytoplasmic and nuclear details27. 

Here, we present a deep learning-based label-free virtual IHC staining method (Fig. 1), which transforms 

autofluorescence microscopic images of unlabeled tissue sections into bright-field equivalent images, 

matching the standard IHC stained images of the same tissue samples. In this study, we specifically 

focused on the IHC staining of HER2, which is an important cell surface receptor protein that is involved 

in regulating cell growth and differentiation28,29. Assessing the level of HER2 expression in breast tissue, 

i.e., HER2 status, is routinely practiced based on the HER2 IHC staining of the formalin-fixed, paraffin-
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embedded (FFPE) tissue sections, and helps predict the prognosis of breast cancer and its response to 

HER2-directed immunotherapies5,29ï33. For example, the intracellular and extracellular studies of HER2 

have led to the development of pharmacological anti-HER2 agents that benefit the treatment of HER2-

positive tumors34ï38. Further efforts are being made to develop new pharmacological solutions that can 

counter HER2-directed-drug resistance and improve treatment outcomes in clinical trials39ï42. With 

numerous animal models established for preclinical studies and life sciences related research, a deeper 

understanding of the oncogene, biological functionality, and drug resistance mechanisms of HER2 is 

being explored43ï47. In addition to these, HER2 biomarker was also used as an essential tool in developing 

and testing of novel biomedical imaging48,49, statistics50, and spatial transcriptomics51 methods. 

The presented virtual HER2 staining method is based on a deep learning-enabled image-to-image 

transformation, using a conditional generative adversarial network (GAN), as shown in Fig. 2. Once the 

training phase was completed, two blinded quantitative studies were performed using new breast tissue 

sections with different HER2 scores to demonstrate the efficacy of our virtual HER2 staining framework. 

For this purpose, we used the semi-quantitative Dako HercepTest scoring system52, which involves 

assessing the percentage of tumor cells that exhibit membranous staining for HER2 along with the 

intensity of the staining. The results are reported as 0 (negative), 1+ (negative), 2+ (weakly 

positive/equivocal), and 3+ (positive). In the first study, three board-certified breast pathologists blindly 

graded the HER2 scores of virtually stained HER2 whole slide images (WSIs) as well as their IHC 

stained standard counterparts. Our results and the statistical analysis revealed that determining the HER2 

status based on our virtual HER2 WSIs is as accurate as standard analysis based on the chemically-

prepared IHC HER2 slides. In the second study, the same pathologists rated the staining quality of both 

virtual HER2 and standard IHC HER2 images using different metrics, i.e., nuclear detail, membrane 

clearness, background staining, and staining artifacts. This study revealed that at least two pathologists 

out of the three agreed that there is no statistically significant difference between the virtual HER2 

staining image quality and the standard IHC HER2 staining image quality in the level of nuclear detail, 

membrane clearness, and absence of staining artifacts. 

The presented framework achieved the first demonstration of label-free virtual IHC staining, and bypasses 

the costly, laborious, and time-consuming IHC staining procedures that involve toxic chemical 

compounds. This virtual HER2 staining technique has the potential to be extended to virtual staining of 

other biomarkers and may accelerate the IHC-based tissue analysis workflow in life sciences and 

biomedical applications, while also enhancing the repeatability and standardization of IHC staining. 
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Results 

Label-free virtual HER2 staining of breast tissue  

We demonstrated our virtual HER2 staining method by training deep neural network (DNN) models with 

a dataset of 25 breast tissue sections collected from 19 unique patients, constituting in total 20,910 image 

patches, each with 1024×1024 pixels. Once a DNN model was trained, it virtually stained the unlabeled 

tissue sections using their autofluorescence microscopic images captured with DAPI, FITC, TxRed, and 

Cy5 filter cubes (see Methods section), matching the corresponding bright-field images of the same field-

of-views, captured after standard IHC HER2 staining. In the network training and evaluation process, we 

employed a cross-validation approach. Separate network models were trained with different dataset 

divisions to generate 12 virtual HER2 WSIs for blind testing, i.e., 3 WSIs at each of the 4 HER2 scores 

(0, 1+, 2+, and 3+). Each virtual HER2 WSI corresponds to a unique patient that was not used during the 

network training phase. Note that all the tissue sections were obtained from existing tissue blocks, where 

the HER2 reference (ground truth) scores were provided by UCLA Translational Pathology Core 

Laboratory (TPCL) under UCLA IRB 18-001029. 

Fig. 3 summarizes the comparison of the virtual HER2 images inferred by our DNN models against their 

corresponding IHC HER2 images captured from the same tissue sections after standard IHC staining. 

Both the WSIs and the zoomed-in regions show a high degree of agreement between virtual staining and 

standard IHC staining. These results indicate that a well-trained virtual staining network can reliably 

transform the autofluorescence images of unlabeled breast tissue sections into the bright-field equivalent, 

virtual HER2 images, which match their IHC HER2 stained counterparts, across all the HER2 statuses, 0, 

1+, 2+, and 3+. Upon close examination, our board-certified pathologists confirmed that the comparison 

between the IHC and virtual HER2 images showed equivalent staining with no significant perceptible 

differences in intracellular features such as membrane clarity or nuclear details. In particular, the virtual 

staining network clearly produced the expected intensity and distribution of membranous HER2 staining 

(or lack thereof) in tumor cells. In HER2 positive (3+, Figs. 3a-e) breast cancers, both virtually stained 

and IHC stained images showed strong complete membranous staining in >10% of tumor cells, as well as 

dim cytoplasmic staining in tumor cells. None of the stromal and inflammatory cells showed false 

positive staining and the nuclear details of the tumor cells were comparable in both panels. In equivocal 

(2+, Figs. 3f-j) tumors, virtual images showed weak to moderate membranous staining in >10% of tumor 

cells, providing the same amount of membranous staining of tumor cells in corresponding areas. HER2 

negative (1+, Figs. 3k-o) tumors showed faint membranous staining in 10% or more of tumor cells. None 

of the stromal and inflammatory cells showed faint staining. HER2 negative (0, Figs. 3p-t) tumor showed 

no staining in the tumor cells. 
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Blind evaluation and quantification of virtual HER2 staining 

Next, we evaluated the efficacy of the presented virtual HER2 staining framework with a quantitative 

blinded study in which the 12 virtual HER2 WSIs and their corresponding standard IHC HER2 WSIs 

were mixed and presented to three board-certified breast pathologists who graded the HER2 score (i.e., 

3+, 2+, 1+, or 0) for each WSI without knowing if the image was from a virtual stain or standard IHC 

stain. Random image shuffling, rotation, and flipping were applied to the WSIs to promote blindness in 

evaluations. The HER2 scores of the virtual and the standard IHC WSIs that were blindly graded by the 

three pathologists are summarized in Fig. 4 and compared to their reference, ground truth scores provided 

by UCLA TPCL. The confusion matrices of virtual HER2 WSIs (Fig. 4a) and IHC HER2 WSIs (Fig. 4b), 

each corresponding to N=36 evaluations, reveal that our virtual HER2 staining approach achieved a 

similar level of accuracy for HER2 status assessment as the standard IHC staining. Close examination of 

these confusion matrices reveals that the sum of the diagonal elements of the virtual HER2-based 

evaluations (22) is higher than that of the IHC HER2 (19), showing that more cases were correctly scored 

based on virtual HER2 WSIs compared to those based on standard IHC HER2 WSIs. Furthermore, the 

sum of the absolute off-diagonal errors of virtual HER2-based evaluations (14) is smaller than that of the 

standard IHC HER2 (18). Based on the same confusion matrices shown in Fig. 4, a chi-square test was 

performed to compare the degree of agreement between virtual staining and standard IHC staining 

methods in HER2 scoring. The test results indicate that there is no statistically significant difference 

between the two methods (P=0.4752, see Supplementary Table 1). 

In addition to evaluating the efficacy of virtual staining in HER2 scoring, we also quantitatively evaluated 

the staining quality of the virtual HER2 images and compared them to the standard IHC HER2 images. In 

this blinded study, we randomly extracted 10 regions-of-interest (ROIs) from each of the 12 virtual HER2 

WSIs and 10 ROIs at the same locations from each of their corresponding IHC HER2 WSIs, building a 

test set of 240 image patches. Each image patch has 8000¦8000 pixels (1.3¦1.3 mm2), which was also 

randomly shuffled, rotated, and flipped before being reviewed by the same three pathologists. These 

pathologists were asked to grade the image quality of each ROI based on four pre-designated feature 

metrics for HER2 staining: membrane clearness, nuclear detail, absence of excessive background 

staining, and absence of staining artifacts (Fig. 5). The grade scale for each metric is from 1 to 4, with 4 

representing perfect, 3 representing very good, 2 representing acceptable, and 1 representing 

unacceptable. Fig. 5a summarizes the staining quality scores of virtual HER2 and standard IHC HER2 

images based on our pre-defined feature metrics, which were averaged over all image patches and 

pathologists. Figs. 5b-e further compare the average quality scores at each of the 4 HER2 statuses under 

each feature metric. In Fig. 5b, the membrane clearness scores of HER2 negative ROIs are noted as ñnot 
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applicableò since there is no staining of the cell membrane in HER2 negative samples. It is important to 

emphasize that, the standard IHC HER2 images had an advantage in these comparisons because they were 

pre-selected: a significant percentage of the standard IHC HER2 tissue slides suffered from unacceptable 

staining quality issues (see Discussion and Supplementary Fig. 1), and therefore they were excluded from 

our comparative studies in the first place. Nevertheless, the quality scores of virtual and standard IHC 

HER2 staining are very close to each other and fall within their standard deviations (dashed lines in Fig. 

5). We also performed one-sided t-tests on each feature metric evaluated by board-certified pathologists 

to determine whether standard IHC HER2 images are statistically significantly better than the virtual 

HER2 images in staining quality. The t-test results showed that only for the metric of óabsence of 

excessive background stainingô, two of the three pathologists reported a statistically significant 

improvement in the quality of the standard IHC staining compared to the virtual staining. For the rest of 

the feature metrics (i.e., nuclear details, membrane clearness, and staining artifacts), at least two of the 

three pathologists reported that the staining quality of the IHC HER2 images is not statistically 

significantly better than their virtual HER2 counterparts (Supplementary Table 2). Also note that the 

virtually stained HER2 images did not mislead the diagnosis at the whole slide level as also analyzed 

using the confusion matrices shown in Fig. 4 and the chi-square test reported in Supplementary Table 1.  

Besides rating the staining quality of each ROI, the pathologists also graded a HER2 score for each ROI, 

the results of which are reported in Supplementary Fig. 2. Each histogram in Supplementary Fig. 2a 

summarizes the HER2 scores of the 10 ROIs extracted from each WSI evaluated by 3 pathologists (i.e., 

N=30 evaluations). The reference (ground truth) HER2 scores of the corresponding WSIs are plotted as 

gray dashed lines. This analysis reveals that, for the majority of the patients, there is no discrepancy 

between HER2 scores evaluated from virtually generated ROIs and standard IHC stained ROIs. For the 

cases where there is a disagreement (e.g., Patients #5 and #11), the histograms of the virtual HER2 scores 

were centered closer to the reference HER2 scores (dashed lines) compared to the histograms of the 

standard IHC-based HER2 scores. It is important to also note that grading the HER2 scores from sub-

sampled ROIs vs. from the WSI can yield different results due to the inhomogeneous nature of the tissue 

sections.  

 

Discussion 

We demonstrated a deep learning-enabled label-free virtual IHC staining method. By training a DNN 

model, our method generated virtual HER2 images from the autofluorescence images of unlabeled tissue 

sections, matching the bright-field images captured after standard IHC-staining. Compared to chemically 



8 
 

performing the IHC staining, our virtual HER2 staining method is rapid and simple to operate. The 

conventional IHC HER2 staining involves laborious sample treatment steps demanding a 

histotechnologistôs periodic monitoring (see Supplementary Note 1), and this whole process typically 

takes one day before the slides can be reviewed by diagnosticians. In contrast, the presented virtual HER2 

staining method bypasses these laborious and costly steps, and generates the bright-field equivalent HER2 

images computationally using the autofluorescence images captured from label-free tissue sections. After 

the training is complete (which is a one-time effort), the entire inference process using a virtual staining 

network only takes ~12 seconds for 1 mm2 of tissue using a consumer-grade computer, which can be 

further improved by using faster hardware acceleration units.  

Another advantage of the presented method is its capability of generating highly consistent and repeatable 

staining results, minimizing the staining variations that are commonly observed in standard IHC staining. 

The IHC HER2 staining procedure is delicate and laborious as it requires accurate control of time, 

temperature, and concentrations of the reagents at each tissue treatment step; in fact, it often fails to 

generate satisfactory stains. In our study, ~30% of the sample slides were discarded because of 

unsuccessful standard IHC staining and/or severe tissue damage even though the IHC staining was 

performed by accredited pathology labs. Supplementary Fig. 1 shows two examples of the standard IHC 

staining failures we experienced, including complete tissue damage and false negative staining that failed 

to reflect the correct HER2 score. In contrast, our computational virtual staining approach does not rely 

on the chemical processing of the tissue and generates reproducible results, which is important for the 

standardization of the HER2 interpretation by eliminating commonly experienced staining variations and 

artifacts.  

Since the autofluorescence input images of tissue slices were captured with standard filter sets installed 

on a conventional fluorescence microscope, the presented approach is ready to be implemented on 

existing fluorescence microscopes without hardware modifications or customized optical components. 

Our results showed that the combination of the four commonly used fluorescence filters (DAPI, FITC, 

TxRed, and Cy5) provided a very good baseline for the virtual HER2 staining performance. As an 

ablation study, we also quantitatively compared virtual staining networks that are trained with different 

autofluorescence input channels by calculating peak signal-to-noise ratio (PSNR) and structural similarity 

index (SSIM)53 between the network output and ground truth images (see Supplementary Fig. 3). Since 

the staining of the cell membrane is an important assessment factor in HER2 status evaluation, we also 

performed color deconvolution54 to split out the membrane stain channel (i.e., diaminobenzidine, DAB 

stain) followed by calculating and comparing the SSIM scores (Supplementary Fig. 4). These analyses 

revealed that the performance of the virtual staining network partially degraded with decreasing number 
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of input autofluorescence channels, motivating the use of DAPI, FITC, TxRed, and Cy5 altogether 

(Supplementary Fig. 3b).  

The success of our virtual HER2 staining method relies on the processing of the complex spatial-spectral 

information that is encoded in the autofluorescence images of label-free tissue using convolutional neural 

networks. The presented virtual staining method can potentially be expanded to a wide range of other IHC 

stains. Though our virtual HER2 staining framework was demonstrated based on autofluorescence 

imaging of unlabeled tissue sections, other label-free microscopy modalities may also be utilized for this 

task, such as holography11, fluorescence lifetime imaging55,56 and Raman microscopy57. In addition to 

generalizing to other types of IHC stains in the assessment of various biomarkers, this method can be 

further adapted to non-fixed fresh tissue samples or frozen sections, which can potentially provide real-

time virtual IHC images for intraoperative consultation during surgical operations.  

To the best of our knowledge, this is the first demonstration of label-free virtual IHC staining, and we 

believe that it opens up new avenues for various applications in life sciences and biomedical diagnostics 

and can potentially transform the traditional IHC staining workflow. 

 

Methods 

Sample preparation and standard IHC staining 

The unlabeled breast tissue blocks were provided by the UCLA TPCL under UCLA IRB 18-001029 and 

were cut into 4 ɛm thin sections. The FFPE thin sections were then deparaffinized and covered with glass 

coverslips. After acquiring the autofluorescence microscopic images, the unlabeled tissue sections were 

sent to accredited pathology labs for standard IHC HER2 staining, which was performed by UCLA TPCL 

and the Department of Anatomic Pathology of Cedars-Sinai Medical Center in Los Angeles, USA. The 

IHC HER2 staining protocol provided by UCLA TPCL is described in Supplementary Note 1.  

Image data acquisition 

The autofluorescence images of the unlabeled tissue sections were captured using a standard fluorescence 

microscope (IX-83, Olympus) with a ×40/0.95NA (UPLSAPO, Olympus) objective lens. Four fluorescent 

filter cubes, including DAPI (Semrock DAPI-5060C-OFX, EX 377/50 nm, EM 447/60 nm), FITC 

(Semrock FITC-2024B-OFX, EX 485/20 nm, EM 522/24 nm), TxRed (Semrock TXRED-4040C-OFX, 

EX 562/40 nm, EM 624/40 nm), and Cy5 (Semrock CY5-4040C-OFX, EX 628/40 nm, EM 692/40 nm) 

were used to capture the autofluorescence images at different excitation-emission wavelengths. Each 

autofluorescence image was captured with a scientific complementary metal-oxide-semiconductor 
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(sCMOS) image sensor (ORCA-flash4.0 V2, Hamamatsu Photonics) with an exposure time of 150 ms, 

500 ms, 500 ms, and 1000 ms for DAPI, FITC, TxRed, and Cy5 filters, respectively. The image 

acquisition process was controlled by ɛManager (version 1.4) microscope automation software58. After 

the standard IHC HER2 staining is complete, the bright-field WSIs were acquired using a slide scanner 

microscope (AxioScan Z1, Zeiss) with a ×20/0.8NA objective lens (Plan-Apo).  

Image preprocessing and registration  

The matching of the autofluorescence (network input) and the bright-field IHC HER2 (network ground 

truth) image pairs is critical for the successful training of an image-to-image transformation network. The 

image processing workflow for preparing the training dataset for our virtual HER2 staining network is 

described in Supplementary Fig. 5, which was implemented in MATLAB (MathWorks). First, the 

autofluorescence images (before the IHC staining) and the whole-slide bright-field images (after the IHC 

staining) of the same tissue sections were stitched into WSIs (Supplementary Fig. 5a) and globally co-

registered by detecting and matching the speeded up robust features (SURF) points59 (Supplementary Fig. 

5b). Then, these coarsely matched autofluorescence and bright-field WSIs were cropped into pairs of 

image tiles of 1024¦1024 pixels (Supplementary Fig. 5c). These image pairs were not accurately 

matched at the pixel level due to optical aberrations and morphological changes of the tissue structure 

during the standard (laborious) IHC staining procedures. In order to calculate the transformation between 

the autofluorescence image and its bright-field counterpart using a correlation-based elastic registration 

algorithm60, a registration model9 needs to be trained to match the style of the autofluorescence images to 

the style of the bright-field images (Supplementary Fig. 5d). This registration network used the same 

architecture as our virtual staining network. Following the image style transformation using the 

registration network (Supplementary Fig. 5e), the pyramid elastic image registration algorithm60,61 was 

performed to hierarchically match the local features of the sub-image blocks and calculate the 

transformation maps. The transformation maps were then applied to correct for the local wrappings of the 

ground truth images (Supplementary Fig. 5f) which were then better matched to their autofluorescence 

counterparts. This training-registration process (Supplementary Fig. 5d-f) was repeated 3-5 times until the 

autofluorescence input and the bright-field ground truth image patches were accurately matched at the 

single pixel-level (Supplementary Fig. 5g). At last, a manual data cleaning process was performed to 

remove image pairs with artifacts such as tissue-tearing (during the standard chemical staining process) or 

defocusing (during the imaging process). 

Virtual HER2 staining network  architecture and training schedule 
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In this work, a GAN-based network model62 was employed to perform the transformation from the 4-

channel label-free autofluorescence images (DAPI, FITC, TxRed, and Cy5) to the corresponding bright-

field virtual HER2 images, as shown in Fig. 2. This GAN framework includes (1) a generator network 

that creates virtually stained HER2 images by learning the statistical transformation between the input 

autofluorescence images and the corresponding bright-field IHC stained HER2 images (ground truth), and 

(2) a discriminator network that learns to discriminate the virtual HER2 images created by the generator 

from the actual IHC stained HER2 images. The generator and the discriminator were alternatively 

optimized and simultaneously improved through this competitive training process. Specifically, the 

generator (G) and discriminator (D) networks were optimized to minimize the following loss functions: 

ὰ  ὒ Ὅ ȟὋὍ ‗ ÌÏÇρ ὛὛὍὓὍ ȟὋὍ ςϳ  ὄὅὉὈ ὋὍ ȟρ 

ὰ ὄὅὉὈ ὋὍ ȟπ ὄὅὉὈὍ ȟρ 

where ὋϽ represents the generator inference, ὈϽ represents the probability of being a real, actually-

stained IHC image predicted by the discriminator, Ὅ  denotes the input label-free autofluorescence 

images, and Ὅ  denotes the ground truth, standard IHC stained image. The coefficients (ȟ‗ȟ) in 

ὰ  were empirically set as (10, 0.2, 0.5) to balance the pixel-wise smooth L1 error63 of the generator 

output with respect to its ground truth, SSIM loss53 of the generator output, and the binary cross-entropy 

(BCE) loss of the discriminator predictions of the output image. Compared to using the mean squared 

error (MSE) loss, the smooth L1 loss is a robust estimator that prevents exploding gradients by using MSE 

around zero and mean absolute error (MAE) in other parts64. Specifically, smooth L1 loss between two 

images ὃ and ὄ is defined as: 

ὒ ὃȟὄ
ρ

ὓ ὔ

ở

ờ πȢυ
ὃάȟὲ ὄάȟὲ


ȟ

ȿ ȟ ȟȿ

ȿὃάȟὲ ὄάȟὲȿ πȢυ
ȟ

ȿ ȟ ȟȿ Ợ

Ỡ 

where ά and ὲ are the pixel indices, the ὓ ὔ represents the total number of pixels in each image.  

was set to 1 in our case. 

The SSIM of two images is defined as53: 

ὛὛὍὓὃȟὄ
ς‘‘ ὧ ς„ ὧ

‘ ‘ ὧ „ „ ὧ
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where ‘ and ‘  are the mean values of the images ὃ and ὄ, „  and „  are the variance of images ὃ and 

ὄ, and „  is the covariance between images ὃ and ὄ. ὧ and ὧ were set to be πȢπρ and πȢπσ, 

respectively53.  

The BCE with logits loss used in our network is defined as: 

ὄὅὉὴȟή ή ÌÏÇÓÉÇÍÏÉÄὴ ρ ή ÌÏÇρ ÓÉÇÍÏÉÄὴ  

where ὴ represents the discriminator predictions and ή represents the actual labels (0 or 1).  

As shown in Fig. 2a, the generator network was built following the attention U-Net architecture65 with 4 

resolution levels, which can map the label-free autofluorescence images into the HER2 stained images by 

learning the transformations of spatial features at different spatial scales, catching both the high-resolution 

local features at shallower levels and the larger scale global context at deeper levels. Our attention U-Net 

structure is composed of a down-sampling path and an up-sampling path that are symmetric to each other. 

The down-sampling path contains four down-sampling convolutional blocks, each consisting of a two-

convolutional-layer residual block, followed by a leaky rectified linear unit66 (Leaky ReLU) with a slope 

of 0.1, and a 2 2 max-pooling operation with a stride size of 2 for down-sampling. The two-

convolutional-layer residual blocks contain two consecutive convolutional layers with a kernel size of 

3 3 and a convolutional residual path67 connecting the in and out tensors of the two convolutional layers. 

The numbers of the input channels and the output channels at each level of the down-sampling path were 

set to 4, 64, 128, 256, and 64, 128, 256, 512, respectively.   

Symmetrically, the up-sampling path contains four up-sampling convolutional blocks with the same 

design as the down-sampling convolutional blocks, except that the 2× down-sampling operation was 

replaced by a 2× bilinear up-sampling operation. The input of each up-sampling block is the 

concatenation of the output tensor from the previous block with the corresponding feature maps at the 

matched level of the down-sampling path passing through the attention gated connection. An attention 

gate consists of three convolutional layers and a sigmoid operation, which outputs an activation weight 

map highlighting the salient spatial features65. The numbers of the input channels and the output channels 

at each level of the up-sampling path were 1024, 1024, 512, 256, and 1024, 512, 256, 128, respectively. 

Following the up-sampling path, a two-convolutional layer residual block together with another single 

convolutional layer reduces the number of channels to 3, matching that of our ground truth images (i.e., 3-

channel RGB images). Additionally, a two-convolutional-layer center block was utilized to connect and 

match the dimensions of the down-sampling path and the up-sampling path.  
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The structure of the discriminator network is illustrated in Fig. 2b. An initial block containing one 

convolutional layer followed by a Leaky ReLU operation first transformed the 3-channel generator output 

or ground truth image to a 64-channel tensor. Then, five successive two-convolutional-layer residual 

blocks were added to perform 2× down-sampling and expand the channel numbers of each input tensor. 

The 2× down-sampling was enabled by setting the stride size of the second convolutional layer in each 

block as 2. After passing through the five blocks, the output tensor was averaged and flattened to a one-

dimensional vector, which was then fed into two fully connected layers to obtain the probability of the 

input image being the standard IHC-stained image.  

The full image dataset contains 25 WSIs from 19 unique patients, making a set of 20,910 image patches, 

each with a size of 1024 1024 pixels. For the training of each virtual staining model used in our cross-

validation studies, the dataset was divided as follows: (1) Test set: images from the WSIs of 1-2 unique 

patients (~10%, not overlapped with training or validation patients); after splitting out the test set, the 

remaining WSIs were further divided to (2) Validation set: images from 2 of the WSIs (~10%), and (3) 

Training set: images from the remaining WSIs (~80%). The network models were optimized using image 

patches of 256 256 pixels, which were randomly cropped from the images of 1024 1024 pixels in the 

training dataset. An Adam optimizer with weight decay68 was used to update the learnable parameters at a 

learning rate of 110-4 for the generator network and 1 10-5 for the discriminator network, with a batch 

size of 28. The generator/discriminator update frequency was set to 2:1. Finally, the best model was 

selected based on the best MSE loss, assisted with the visual assessment of the validation images. The 

networks converged after ~120 hours of training. 

Implementation details 

The image preprocessing was implemented in MATLAB using version R2018b (MathWorks). The virtual 

staining network was implemented using Python version 3.9.0 and Pytorch version 1.9.0. The training 

was performed on a desktop computer with an Intel Xeon W-2265 central processing unit (CPU), 64 GB 

random-access memory (RAM), and an Nvidia GeForce GTX 3090 graphics processing unit (GPU).  

Blind evaluation of HER2 images 

For the evaluation of WSIs, 24 high-resolution WSIs were randomly shuffled, rotated, and flipped, and 

uploaded to an online image viewing platform that was shared with three board-certified pathologists to 

blindly evaluate and score the HER2 status of each WSI using the Dako HercepTest scoring system52. For 

the evaluation of sub-ROI images, the 240 image patches were randomly shuffled, rotated, and flipped, 

and uploaded to an online image sharing platform GIGAmacro (https://www.gigamacro.com/). The 

pathologistsô blinded assessments are provided in Supplementary Data 1.  

https://www.gigamacro.com/
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Statistical analysis 

A chi-square test (two-sided) was performed to compare the agreement of the HER2 scores evaluated 

based on the virtual staining and the standard IHC staining. Paired t-tests (one-sided) were used to 

compare the image quality of virtual staining vs. standard IHC staining. We first calculated the 

differences between the scores of the virtual and IHC image patches cropped from the same positions, i.e., 

subtracted the score of each IHC stained image from the score of the corresponding virtually stained 

image. Then one-sided t-tests were performed to compare the differences with 0, by each feature metric 

and each pathologist (see the Supplementary Information). For all tests, a P value of Ò0.05 was 

considered statistically significant. All the analyses were performed using SAS v9.4 (The SAS Institute, 

Cary, NC).  
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Figure 1. Virtual HER2 staining of unlabeled tissue sections via deep learning. a, The standard 

immunohistochemical (IHC) HER2 staining (top) relies on tedious and costly tissue processing performed 

by histotechnologists, which typically takes ~1 day. A pre-trained deep neural network enables virtual 

HER2 staining of unlabeled tissue sections (bottom). b, Virtual HER2 staining transforms 

autofluorescence images of unlabeled tissues sections into bright-field equivalent images that match the 

images of standard IHC HER2 staining. 
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Figure 2. Virtual HER2 staining network. A GAN framework which consists of a generator model and 

a discriminator model was used to train the virtual HER2 staining network. a, The generator uses an 

attention-gated U-net structure to map the label-free autofluorescence images into bright-field equivalent 

HER2 images. b, The discriminator is a CNN composed of five successive two-convolutional-layer 

residual blocks and two fully connected layers (see Methods). Once the network models converge, only 

the generator model is used to infer the virtual HER2 images, which takes ~12 seconds for 1 mm2 of 

tissue area. 
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Figure 3. Comparison of virtual and standard IHC HER2 staining of breast tissue sections at 

different HER2 scores. a, f, k, p, Bright-field WSIs of standard IHC HER2 stained samples at a HER2 

3+, f HER2 2+, k HER2 1+, and p HER2 0. b, g, l, q, Bright-field WSIs generated by virtual staining, 

corresponding to the same samples as a, f, l, p respectively. c1-e1, c2-e2, Zoomed-in regions of interest 

from a, b at a HER2 score of 3+. h1-j1, h2-j2, Zoomed-in regions of interest from f, g at a HER2 score of 

2+. m1-o1, m2-o2, Zoomed-in regions of interest from k, l at a HER2 score of 1+. r1-t1, h2-t2, Zoomed-

in regions of interest from p, q at a HER2 score of 0. 


