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Abstract. The classical problem of learning a classifier relies on a set
of labelled examples, without ever questioning the correctness of the
provided label assignments. However, there is an increasing realisation
that labelling errors are not uncommon in real situations. In this pa-
per we consider a label-noise robust version of the logistic regression
and multinomial logistic regression classifiers and develop the following
contributions: (i) We derive efficient multiplicative updates to estimate
the label flipping probabilities, and we give a proof of convergence for
our algorithm. (ii) We develop a novel sparsity-promoting regularisa-
tion approach which allows us to tackle challenging high dimensional
noisy settings. (iii) Finally, we throughly evaluate the performance of
our approach in synthetic experiments and we demonstrate several real
applications including gene expression analysis, class topology discovery
and learning from crowdsourcing data.

1 Introduction

In the context of supervised learning, a classification rule is to be derived from a
set of labelled examples. Regardless of the learning approach used, the induction
of the classification rule crucially relies on the given class labels. Unfortunately,
there is no guarantee that the class labels are all correct. The presence of class
label noise inherent in training samples has been reported to deteriorate the
performance of the existing classifiers in a broad range of classification problems
[12,25,21]. Remarkably, examples of mislabelling have been reported even in
biomedical sciences where the number of instances is only of the order of tens
[1,15,26]. There is an increasing research literature that aims to address the
issues related to learning from samples with noisy class label assignments. The
seemingly straightforward approach is by means of data preprocessing where
any suspect samples are removed or relabelled [3,2,9]. However, these approaches
hold the risk of removing useful data too, especially when the number of training
examples is limited.

In this paper, we take a model based approach and consider a label-noise
robust logistic regression and multinomial logistic regression. There are already
several works employing latent variable models of this kind, especially in the
field of epidemiology, econometrics and computer-aided diagnosis (see [20,7,23]
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and references therein), and more recently for learning from crowds [23]. Our
approach develops these ideas further while it differs in certain respects. [20]
studied label-noise robust logistic regression with known label flipping probabil-
ities but they reckon problems when these probabilities are unknown. In turn, we
try to learn the classifier jointly with estimating the label flipping probabilities.
The robust model discussed in [7] is also structurally similar to ours although
they provided no algorithmic solution to learning the model. In contrast, one of
our novel contributions in this paper is to develop an efficient learning algorithm
together with a proof of its convergence. The recent work in [23] focuses on
learning from multiple noisy labels and demonstrate that multiple sets of noisy
labels increases performance. In contrast, our goal is to learn with a single set
of noisy labels – which is considerably harder. In addition, we develop a novel
sparsity-promoting regularisation approach which allows us to tackle challenging
high dimensional noisy settings.

2 Label-Noise Robust Logistic Regression

We now describe the label-noise robust logistic regression (rLR) model. We will
use the term ‘robust’ to differentiate this from traditional logistic regression
(LR). Consider a set of training data D = {(x1, ỹ1), . . . , (xN , ỹN)}, where xn ∈
R

m and ỹn ∈ {0, 1}, where ỹn denotes the observed (possibly noisy) label of xn.
In the classical scenario for binary classification, the log likelihood is defined as:

N∑

n=1

ỹn log p(ỹ = 1|xn,w) + (1− ỹn) log p(ỹ = 0|xn,w). (1)

where w is the weight vector orthogonal to the decision boundary and it deter-
mines the orientation of the separating plane. If all the labels were presumed
to be correct, we would have p(ỹ = 1|xn,w) = σ(wTxn) = 1

1+e(−wT xn)
and

whenever this is above 0.5 we would decide that xn belongs to class 1.
However, when label noise is present, making predictions in this way is no

longer valid. Instead we will introduce a latent variable y, to represent the true
label, and we model p(ỹ = k|xn,w) as the following:

p(ỹ = k|xn,w) =

1∑

j=0

p(ỹ = k|y = j)p(y = j|xn,w)
def
= Sk

n (2)

where k ∈ {0, 1}. Therefore, instead of Eq.(1), we define the log likelihood of our
model as the following:

L(w) =

N∑

n=1

ỹn logS
1
n + (1− ỹn) logS

0
n (3)

In Eq.(2), p(ỹ = k|y = j)
def
= γjk represents the probability that the label

has flipped from the true label j into the observed label k. These parameters
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form a transition table that we will refer to as the ‘gamma matrix’ from now
on. Now, to classify a novel data point xq, we predict that ŷq = 1 whenever
p(y = 1|xq,w) = σ(wTxq) =

1

1+e(−wT xq)
returns a value greater than 0.5, and

ŷq = 0 otherwise.

2.1 Parameter Estimation with Multiplicative Updates

Learning the rLR requires us to estimate the weight vector w as well as the
label-flipping probabilities γjk. To optimise the weight vector, we can use any
nonlinear optimiser. Here we decided to employ conjugate gradients because of
its well known computational efficiency, which basically performs the Newton
update step along the direction u = g − uoldβ, where g = ∇wL(w) is the
gradient:

g =
N∑

n=1

[(
ỹn(γ11 − γ01)

S1
n

+
(1− ỹn)(γ10 − γ00)

S0
n

)
σ(wTxn)(1− σ(wTxn)) · xn

]
(4)

One may verify that setting γ01 and γ10 to 0 and γ00, γ11 to 1, after some
algebra, Eq.(4) will reduce to the well-known gradient expression of classical
logistic regression. The parameter β that works best in practice can be obtained

from the Hestenes-Stiefel formula, β = gT (g−gold)
(uold)T (g−gold)

. Then, the update equation

for w is simply the following:

wnew = wold − gTu

uTHu
u, (5)

where H is the Hessian matrix.
To obtain the updates for the label-flipping probabilities, we introduce La-

grange multipliers to ensure that γ00 + γ01 = 1 and γ10 + γ11 = 1. Conveniently,
after some algebra, the stationary equations yield the following multiplicative
update equations:

γ00 =
γ00

∑N
n=1

[
(1−ỹn)

S0
n

(1− σ(wTxn))
]

γ00
∑N

n=1

[
(1−ỹn)

S0
n

(1− σ(wTxn))
]
+ γ01

∑N
n=1

[
ỹn
S1
n
(1− σ(wTxn))

] (6)

γ11 =
γ11

∑N
n=1

[
ỹn
S1
n
σ(wTxn)

]

γ10
∑N

n=1

[
(1−ỹn)

S0
n

σ(wTxn)
]
+ γ11

∑N
n=1

[
ỹn
S1
n
σ(wTxn)

] (7)

Our rLR training algorithm is then to alternate between updating each parame-
ter in turn, until convergence. It is worth noting that the objective we are trying
to optimise is non-convex. Hence, the result will inevitably depend on the initial-
isation of those parameters, and we will return to this point in the experimental
section. However, convergence to a local optimum is guaranteed, as we shall see
shortly.
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2.2 Multiclass Label-Noise Robust Logistic Regression

It is both useful and straightforward to generalise the two-class rLR of the pre-
vious section to multiclass problems. We again introduce the true class label y
as a latent variable and write:

p(ỹ = k|xn,wk) =

K−1∑

j=0

p(ỹ = k|y = j) · p(y = j|xn,wj)
def
= Sk

n (8)

where p(y = k|xn,wk) is modelled using a softmax function, e(w
T
k xn)

∑K−1
l=0 e(w

T
l

xn)
, and

wk is the weight vector corresponding to class k. The maximum likelihood (ML)
estimate of wk is obtained by maximising the data log-likelihood,

L(w) =
N∑

n=1

K−1∑

k=0

δ(ỹn = k) logSk
n (9)

where δ(ỹn = k) is the Kronecker delta function that gives the value 1 when its
argument is true and the value 0 otherwise. The optimisation is again accom-
plished using the conjugate gradient method where the gradient becomes:

g =

N∑

n=1

K−1∑

k=0

δ(ỹn = k)

Sk
n

×
e(w

T
c xn)xn

(∑K−1
j=0 (γck − γjk) · e(wT

j xn)
)

(∑K−1
l=0 e(w

T
l xn)

)2 (10)

Further, the estimates of γjk in the gamma matrix again can be obtained by
efficient multiplicative update equations:

γjk =
1

C
× γjk

N∑

n=1

δ(ỹn = k)

Sk
n

· e(w
T
j xn)

∑K−1
l=0 e(w

T
l xn)

, (11)

where the constant term C equals
∑K−1

k=0 γjk
∑N

n=1
δ(ỹn=k)

Sk
n

× e
(wT

j xn)

∑K−1
l=0 e(w

T
l

xn)
.

To classify a new point, we decide ŷq = argmaxk
e(w

T
k xq)

∑K−1
l=0 e(w

T
l

xq)
.

3 Convergence of the Algorithm

We shall now prove that the learning algorithms proposed in the previous sec-
tions, for both rLR and rmLR, converge. The idea of the proof is to show that
the objective function being optimised, Eq.(9) is nondecreasing under any of our
parameter updates. Indeed, the maximisation w.r.t. the weight vector w by the
conjugate gradient method (CG) enjoys the known property of CG to provide
monotonically improving estimation of the target [8], which guarantees that an
objective function being maximised is nondecreasing. Now, it remains to prove
that our multiplicative updates for γjk are also guaranteed to be nondecreasing.
To do this, we use the notion of an auxiliary function, in a similar spirit to the
proofs in [14].
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Definition 1. G(h, h′) is an auxiliary function for F (h) if

G(h, h′) ≤ F (h), G(h, h) = F (h) (12)

are satisfied.

The definition is useful because of the following lemma.

Lemma 1. [14] If G is an auxiliary function, then F is nondecreasing under
the update

hi+1 = argmax
h

G(h, hi) (13)

Proof. F (hi+1) ≥ G(hi+i, hi) ≥ G(hi, hi) = F (hi)

We will show that by defining an appropriate auxiliary function to the objective
function Eq. (9), regarded as a function of Γ , the update equations Eq.(11) for
γjk are guaranteed to converge to a local optimum.

Lemma 2. Define

G(Γ, Γ̃ ) =

N∑

n=1

K−1∑

k=0

δ(ỹn = k)

K−1∑

j=0

γ̃jkp(y = j|xn,w)
∑K−1

l=0 γ̃lkp(y = l|xn,w)
×

(
log γ̃jkp(y = j|xn,w)− log

γ̃jkp(y = j|xn,w)
∑K−1

l=0 γ̃lkp(y = l|xn,w)

)
(14)

This is an auxiliary function for

L(Γ ) =

N∑

n=1

K−1∑

k=0

δ(ỹn = k) log

K−1∑

j=0

γjkp(y = j|xn,w) (15)

Proof. For G(Γ, Γ̃ ) to be an auxiliary function it needs to satisfy the aforemen-
tioned conditions. It is straightforward to verify that G(Γ, Γ ) = L(Γ ). To show
that G(Γ i+1, Γ i) ≤ L(Γ i+1), we observe that:

log
K−1∑

j=0

γjkp(y = j|xn,w) ≥
K−1∑

j=0

αjk log

(
γjkp(y = j|xn,w)

αjk

)
, (16)

by Jensen’s inequality and due to the convexity of the log function. This inequal-
ity is valid for all non-negative αjk that sum to one. Setting

αjk =
γ̃jkp(y = j|xn,w)

∑K−1
l=0 γ̃lkp(y = l|xn,w)

, (17)

we see that our objective function L(Γ ) is always greater than or equal to the
auxiliary function (14).
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Lemma 3. The multiplicative update rule of the label flipping probability γjk
given in Eq. (11) is guaranteed to converge.

Proof. The maximum of G(Γ, Γ̃ ) with respect to γjk is found by setting the
derivative to zero:

dG(Γ, Γ i)

dγjk
=

N∑

n=1

δ(ỹn = k)
αjk

γjk
− λ = 0, (18)

Using the fact that
∑

j γjk = 1, we obtain the value of the Lagrange multiplier
λ. Putting it back into Eq. (18) we arrive at:

γjk =
1

C
× γ̃jk

N∑

n=1

δ(ỹn = k) · p(y = j|xn,w)
∑K−1

l=0 γ̃lkp(y = l|xn,w)
, (19)

where C equals
∑K−1

k=0 γ̃jk
∑N

n=1 δ(ỹn = k) p(y=j|xn,w)
∑K−1

l=0 γ̃lkp(y=l|xn,w)
. Writing out pos-

terior probability p(y = j|xn,w) as a softmax function and noting that by defini-

tion
∑K−1

l=0 γ̃lkp(y = l|xn,w) equals Sk
n, Eq. (19) then takes the same form as the

update rule in Eq. (11). Since G(Γ, Γ̃ ) is an auxiliary function, it is guaranteed
that the value of L is nondecreasing under this update.

Theorem 1. By alternating between the updates of the weight vector w while the
matrix Γ is held fixed, and the updates of the elements of Γ while w is fixed, the
objective function of rmLR is nondecreasing and is thus guaranteed to converge.

Proof. The proof follows directly from the fact that optimising w using CG
is monotonically nondecreasing and from Lemma 3, that optimising Γ is also
nondecreasing. Consequently, the objective function being optimised is mono-
tonically increasing under alternating these iterations.

Finally, note that as rmLR is a direct generalisation of rLR, the proof also covers
the case of rLR.

3.1 Comparison with EM Based Optimisation

The algorithm developed in [23] in the context of multiple sets of noisy labels
could also be instantiated for our problem, as an alternative to the above ap-
proach. The method in [23] proposes an EM algorithm where the true labels are
the hidden variables. Instead, we had these hidden variable integrated out when
optimising the parameters. It is hence interesting to see how they compare.

Similar to [23], let yn be the hidden true labels, and denote Pn = p(yn =
1|x,w, ỹn) the posterior of these. Then, the expected complete log likelihood
(so-called Q-function) can then be written as:

Q(w, Γ ) =

N∑

n=1

Pn log(γ ỹn

11 γ
1−ỹn

10 σ(wTxn))+(1−Pn) log(γ
ỹn

01 γ
1−ỹn

00 (1−σ(wTxn)))

(20)
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– The E-step involves optimising Pn based on given data and current estimated
of γjk:

Pn =
γ ỹn

11 γ
1−ỹn

10 σ(wTxn)

γ ỹn

11 γ
1−ỹn

10 σ(wTxn) + γ ỹn

01 γ
1−ỹn

00 (1− σ(wTxn))
(21)

– The M-step then re-estimate the value of γjk using Pn from the E-step. For
example γ11 can be update using:

γ11 = p(ỹn = 1|yn = 1) =

∑N
n=1 Pnỹn∑N
n=1 Pn

(22)

Now, observe that substituting the r.h.s. of Pn into the M-step equations, we
recover our multiplicative form of updates – with one subtle but important
difference: In the EM approach Pn is computed with old values of the parameters
(from the previous iteration). Instead, our multiplicative updates use the latest
fresh values of all the parameters they depend on. This implies that our algorithm
has a better chance to converge in fewer iterations, and in addition it saves the
storage cost of the posteriors Pn during the iterations. Worth noting also that Pn

can be useful for interpretation— however we can compute this after convergence
using the final values of the parameters.

4 Sparse Extension via a Bayesian-Regularised
Generalised Lasso

In many real world problems, especially in biomedical domains, we are faced
with high dimensional data with more features than observations, while only a
subset of the features is relevant to the target. Sparsity-inducing regularisation
approaches have been effective in such cases [19,24,4]. In this section we show
that our model can be extended to support such regularised estimation. Akin to
generalised Lasso [24], we will employ L1-regularisation terms on each component
of w. We should mention that other approaches such as Automatic Relevance
Determination based on t-prior [19] could also be used in a similar manner.

Our regularised objective is now the following:

max
w

N∑

n=1

log p(ỹn|xn,w)−
m∑

i=1

αi|wi| (23)

where m is the number of features and αi are Lagrange multipliers that balance
between fitting the data well and having small parameter values. Eq.(23) is not
differentiable at the origin. To counter this, here we adopt a very simple, yet
effective smooth approximation originally proposed in [16] for Lq-regularisation.
This is to approximate |wi| ≈ (w2

i + γ)1/2, and we have set γ = 10−8 in the
reported experiments.

Now, the regularisation parameters αi need to be determined. The common
approach would be to use cross-validation — however, this would need to make
use of the labels of the validation sets, which have no guarantee of being correct
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in our problem setting. We turn to a Bayesian regularisation approach where
αi is eliminated from the model by marginalisation. Bayesian regularisation was
found comparable in performance to cross-validation [5], and in particular it was
also demonstrated to be effective for L1-regularised logistic regression [4].

Our version will be different from the one in [4] mainly because the latter is
tied to their specific implementation in that αi = α for all i for which wi �= 0,
and a Jeffreys hyperprior is posited only on these non-zero components. This
requires an estimate of the number of non-zeros. Instead, we will simply posit
independent Jeffreys priors on each αi and let the ones that are not supported
by the data die out naturally.

We begin by considering a Bayesian interpretation of the problem in Eq.(23).
That is, the posterior distribution of w, conditional on α, can be written as

p(w|D,α) ∝ p(D|w)p(w|α). (24)

Now the first term on the r.h.s is the data likelihood, while the second term cor-
responds to our regularisation term. If we take logarithm of the whole expression,
we have: log p(w|D,α) = log p(D|w) + log p(w|α) + const.

Thus, the regularisation term in Eq.(23) is just the negative logarithm of
the conditional prior distribution, conditioned on α, up to an additive con-
stant. The conditional prior p(w|α) is then given by a product of independent

Laplace distributions with parameters α: p(w|α) =
∏m

i=1 p(wi|αi) =
∏m

i=1 αi

2m exp

(−∑m
i=1 αi|wi|) ≈

∏m
i=1 αi

2m exp
(−∑m

i=1 αi(w
2
i + γ)1/2

)
. Now, we want to elimi-

nate its dependency on α by marginalisation, i.e. to have the marginal prior as
the following:

p(w) =

∫
p(w|α)p(α)dα (25)

For this, we posit Jeffrey’s priors, p(αi) ∝ 1
αi
, on each αi. This is the non-

informative improper limit of a Gamma prior, and it has the advantage that it
is parameter-free. Substituting this and p(wi|αi) and performing the integral in
Eq. (25),

∫∞
0

1
αi

αi

2 exp(−αi(w
2
i + γ)1/2)dαi =

1
2(w2

i+γ)1/2
,we obtain the following

marginal prior:

p(w) =
1

2

m∏

i=1

1

(w2
i + γ)1/2

, (26)

which implies that negative log of the marginal prior − log p(w) =
∑m

i=1 log(
(w2

i + γ)1/2
)
+ const. Now, replacing the regularisation term that appears in

Eq.(23) by the above marginal prior, and taking derivative with respect to the
model parameters wi again as we did before, now we have:

∂L(w)

∂wi
=

∂

∂wi

N∑

n=1

[
ỹ log(S1

n) + (1 − ỹ) log(S0
n)

]
+

1

(w2
i + γ)1/2

∂

∂wi

(
m∑

i=1

log((w2
i + γ)1/2)

)

(27)
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From this, we read off the estimates of the regularisation parameters as:

αi =
1

(w2
i + γ)1/2

(28)

The optimisation of the log-likelihood is then to alternate between optimising w
along with updating αi according to Eq.(28) until convergence in reached, and of
course, we alternate this with the fixed point update equations of the label flip-
ping probabilities given in the previous sections. Generalising the sparse regression
procedure described in this section to multi-class settings is straightforward.

5 Experimental Validation and Applications

5.1 Simulated Label Noise

Before presenting real applications where no ground truth is available for an
objective validation, we first assess our algorithm on real world data sets us-
ing artificial class label noise. We used three standard data sets from the UCI
repository: Boston, Liver (binary) and Iris (multiclass). Since it has been shown
theoretically that symmetric label noise is relatively harmless, for example see
[18], here only asymmetric label noise of various levels was artificially injected
for the purpose of systematic testing. In addition, we will compare our result
to two existing methods: (i) Depuration [2], which is a non-parametric method
based on nearest neighbours, previously proposed for the same problem of deal-
ing with label-noise in classification; and (ii) Support Vector Machines (SVM),
which has the well-known margin and slack-variable mechanism built in, and
which may provide some robustness. The reason to compare with SVM is to
find out to what extent class label noise could be considered to be a normal
part of any classification problem — and conversely, to what extent it actually
needs the special treatment that we developed in the previous sections. Code
that reproduces the results of our experiments is available on request.

It should be noted that when applying Depuration and SVM, we again face
with the problem of model selection. A general approach to model selection is
a standard cross validation technique. Although this works well in a traditional
setting where all class labels are correct, it is no longer applicable here. This
problem was also reported in [13], However, the solution they resort to is simply
to assume that there is a trusted validation set available. This may be unrealistic
in many real situations, and especially so in small-sample problems as in [26].

Figure 1 summarises our results on three classification data sets. It is clear
that both rLR and rmLR outperform each algorithm on each of the data sets
tested. Depuration (denoted as ‘Dep’ in the figure) tends to perform well in a very
high level of noise (i.e. 50% upwards) while at the lower range, its performance is
slightly worse. The comparative results with SVM also demonstrate convincingly
that class label noise does need special attention and it is naive to consider label
noise as a normal part of classification problems. We see that our algorithm
developed explicitly for this problem does indeed achieve improved classification
performance overall.
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Fig. 1. Classification errors on real world data sets when the labels are artificially
flipped asymmetrically
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Fig. 2. ROC curves. Labels are asymmetrically flipped at 30% noise.

Next, we assess our methods’ ability to detect the instances that were wrongly
labelled. There are two types of possible errors: (i) a false positive is when a
point is believed to be mislabelled when in fact it is labelled correctly; and
(ii) a false negative is when a point is believed to be labelled correctly when
in fact its label is incorrect. A good way to summarise both, while also using
the probabilistic output given by the sigmoid or the softmax functions, may be
obtained by constructing the Receiver Operating Characteristic (ROC) curves.
Figure 2 shows the ROC curves for all real world data sets tested, at a asymmetric
noise level of 30%. Superimposed for reference we also plotted the ROC curves
that correspond to the traditional classifier that believes that all points have the
correct labels. The gap between the two curves is well apparent in all four cases
tested, and it quantifies the gain obtained by our modelling approach in each
setting. The area under the ROC curve signifies the probability that a randomly
drawn and mislabelled example would be flagged by our method. For the sake
of clarity of the graph, the results from Depuration and SVM were not included
here as we have already seen that they are inferior to rLR and rmLR. We now
turn to demonstrating real applications in several domains.

5.2 Application to Finding Mislabelled Gene Arrays in Colon
Cancer Data

So far we presented controlled experiments where the label-noise was artifi-
cially created. It is now most interesting to demonstrate the effectiveness of our
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approach on a data set whose labels are genuinely inaccurate. In this section we
take the Colon Cancer data set [1]. This contains expression levels of 2000 genes
from 40 tumour and 22 normal colon tissues, and there is some evidence in the
biological literature that label noise may be present [6,15,11,21,26].

We split the data into 52 training points and 10 test points. In order to
get a more reliable accuracy figure, we have excluded from the test set all of
the instances which are suspected to be wrong based on the existing evidence.
Instead, these instances will be placed in the training set in all the training-
testing splits that we consider. We note that the number of instances affected by
label noise is unequal for the two classes: approximately 20% of normal tissues
were labelled as tumour while 10% of tumour tissues were labelled as normal.
The nature of mislabelling corresponds to a slightly asymmetric flipping scenario
that we have previously discussed. Hence the label noise will likely perturb the
learning of traditional classifiers.

For illustrative purpose, we evaluate predictive performance on the test set
averaged over 1000 training-testing splits and observe that rLR significantly
outperform its traditional competitors and achieves an impressive accuracy with
the error rate of 2.08 ± 0.055, while the performance of LR (3.66 ± 0.064) and
SVM (4.08 ± 0.063) lag behind. We should note, these results are not directly
comparable to other studies where the mislabelled points have not been excluded
from the test set.

More importantly, biologists are interested in understanding the nature of
data rather than classification accuracy figures. Here we demonstrate the use of
algorithm for detecting the wrongly labelled instances. This is particularly useful
in scientific applications, where a sample detected as potentially mislabelled
could then be handed over to the domain expert for confirmation or further
study. In Table 1 we compare the results of previous attempts at this problem
with rLR.

The penultimate line gives the frequency rates of mislabelling detections com-
puted from 20 independent runs on the whole data set, with independent random
initialisation, and using

∑K−1
j=0,j �=ỹn

p(y = j|xn,w) thresholded at 0.5 each time.
Since the objective function that we optimise is non-convex, as mentioned pre-
viously, our greedy iterative algorithm finds one of its local optima at each run,
and hence different runs can come up with different detections depending on the
initialisation. A frequency rate of 1 means that the probability that the true la-
bel differs from the observed one for that point was estimated to be higher than
0.5 in all of the 20 repeated runs. A value of 0.15 means that it was estimated
to be higher than 0.5 in 3 out of the 20 runs.

We observe that rLR can identify up to 8 distinct mislabelled points, and these
cover all except one of the union of all previously identified mislabellings, and do
not detect any other point outside this union. We also note that this total of 8
points were not identified at any single run of our algorithm either. This suggests
that in this case having several local optima is not necessarily a bad thing for
the application, as it allows us to have different views at the problem which
may be more comprehensive than a simplified single view. The last row provides
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Table 1. Identifying mislabelled points from the Colon Cancer data set. The first row
is the ‘gold standard’ with biological evidence. The last two rows present our results
(see text for explanations). The rest are the results from previous studies.

Source Suspects identified Extra samples
identified

Alon et al. [1] T2 T30 T33 T36 T37 N8 N12 N34 N36
Furey et al. [6] ◦ ◦ ◦ ◦ ◦ ◦
Li et al. [15] ◦ ◦ ◦ ◦ ◦
Kadota et al. [11] ◦ ◦ ◦ ◦ ◦ T6,N2
Malossini et al. [21] ◦ ◦ ◦ ◦ ◦ ◦ ◦ T8,N2,N28,N29

reg-rLR by frequency 0.15 1.00 1.00 1.00 0 0.25 0.1 1.00 1.00
reg-rLR degree of belief 0 0.70 0.66 0.76 0 0.54 0.54 0.59 0.60

the degree of belief, ie. the actual probabilities from
∑K−1

j=0,j �=ỹn
p(y = j|xn,w),

without any thresholding, for the single best run out of the 20 independent
trials, selected by the best minimum of the objective function being minimised
by our algorithm. Seven points, namely T30,T33,T36,N8,N12,N34 and N36 were
detected in this best run. The probabilities that we see here mean the confidence
of each of these detections. Relating these back to the previous row of the table,
the frequency rates, we see that those samples that were identified with a higher
degree of belief (T33, T36, N34 and N36) also have a higher frequency of being
detected.

5.3 Application to Structure Discovery: Inferring a Class-Topology
in Multi-class Problems

The next experiment demonstrates a different use of our label-noise robust clas-
sifier, namely to infer the internal topological structure of the data classes. For
many real-world classification tasks the labelling process is somewhat subjective
as there is no clear-cut boundary between the classes. For example, in the case
of classifying text messages according to topic, some instances could be assigned
to more than one category. Thus, interpreting the gamma matrix as the adja-
cency matrix of a directed graph could reveal the internal structure of the data
set under study. To demonstrate this idea, we employed rmLR on Newsgroups1

data set. The corpus was subject to tokenisation, stop words removal, and Porter
stemming to remove the word endings prior to cosine normalisation.

Figure 3 shows the graph derived from the gamma matrix as obtained from 10
Newsgroups. Each node corresponds to a topic class while the length of an edge
connecting two nodes represents the strength of relationship between them. The
direction of arrows then correspond to the label flipping directions. It can be
seen from this graph that ‘atheism’ and ‘religion’ are related topics by looking
at the distance between the two as well as the bi-directional flipping relation,

1 Originally the Newsgroups corpus comprises 20 classes of postings, We use the subset
of 10 classes from [10], with term frequency count based encoding.
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alt.atheism

misc.forsale

sci.crypt

sci.electronics

sci.med

sci.space

talk.politics.guns

talk.politics.mideast

talk.politics.misc

talk.religion.misc

Fig. 3. Adjacency graph of the ten topics on the Newsgroups data set

which indeed agrees with our commonsense. Similar observation can also be made
between the ‘electronics’ and ‘for-sale’ postings. Further, the graph also visually
suggests various sub-groupings: for example, all classes related to politics are
clustered nearer to each other.

5.4 Application to Learning from Crowds: Learning to Classify
Images Using Cheaply Obtained Labelled Data

It is well reckoned that careful labelling of large amounts of data by human
experts is extremely tiresome. Suppose we were to train a classifier to distinguish
an image of ‘bike’ from other type of images. The standard machine learning
approach is to collect training images and manually label each of them — rather
labourious. Here, we suggest that we could reduce human expert intervention
and obtain the training data cheaply using annotated data from search engines.
By searching for images using keyword ‘bike’ we obtain a set of images that are
loosely categorised into ‘bike’ class, and similarly ‘not bike’ class by using its
negation. This allows us to acquire a large number of training data quickly and
cheaply. The problem is of course that the annotations returned by the search
engine are somewhat unreliable. This is where rLR comes into play. Here we
collected 520 images using the keyword ‘bike’ and 520 images using the keyword
‘not bike’ that we call theWebSearch2 dataset. We also manually label all images:
a ‘bike’ image is one that contains a bike as its main object and we make no
distinction between a bicycle and a motorbike, everything else is labelled as ‘not
bike’. This reveals 83 flips from ‘bike’ to ‘not bike’ images and 100 flips from
‘not bike’ to ‘bike’ category. The manually labelled set is only used for testing
purposes. The images are passed through a series of preprocessing including

2 Collected using Google image search engine: available upon request.
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Agreed: Bike Agreed: ¬Bike Agreed: ¬Bike P: ¬Bike,  L: bike Agreed: ¬Bike

P: ¬Bike,  L: bike P: ¬Bike,  L: bike P: ¬Bike,  L: bike P: ¬Bike,  L: bike Agreed: ¬Bike

Agreed: ¬Bike Agreed: Bike P: ¬Bike,  L: bike Agreed: ¬Bike Agreed: ¬Bike

Agreed: Bike Agreed: Bike Agreed: ¬Bike Agreed: Bike Agreed: Bike

P: ¬Bike,  L: bike Agreed: Bike Agreed: ¬Bike Agreed: Bike Agreed: Bike

Agreed: Bike Agreed: Bike P: ¬Bike,  L: bike Agreed: Bike Agreed: ¬Bike

Fig. 4. Bike search result. P is the prediction from the classifier while L is the given
label from search engine. Boxed instances are the ones that P and L don’t agree while
dotted boxes are false alarms.

extracting meaningful visual vocabulary using SIFT [17] and extracting texture
information using LBP [22], which are ultimately transformed into a 10038-
dimensional vector representation.

In Figure 4 we show examples of detecting mislabelled images. The top 30
test images sorted by their posterior probabilities are shown. We see that out
of a total of 8 suspicious detections made (boxed), only 2 were false alarms
(denoted by dotted box in the figure). Comparatively, the traditional LR model
produced 4 false alarms (not shown). To give statistical figures, we then tested
these two classifiers that were both trained on 90% of whole dataset using the
cheap noisy labels from the search engine, and tested on the ramaining 10%,
against the manual labels. We performed 100 independent bootstrap repetitions
of this experiment. The average generalisation errors and standard errors were
15.67% ± 0.04 for rLR and 18.09% ± 0.04 for standard LR. The improvement
of rLR over LR is statistically significant, as tested at the 5% level using a
Wilcoxon Rank Sum test. This suggests that there is high potential for learning
from unreliable data from the Internet using the label-noise robust algorithm
proposed.
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6 Conclusions

We proposed an efficient algorithm for learning a label-robust logistic regression
algorithm for both two-class (rLR) and multiclass (rmLR) classification prob-
lems, and we proved its local convergence. We also developed a Bayesian sparse
regularised extension for these methods which bypasses the need to perform cross
validation for model selection and is hence label-robust in its model selection pro-
cedure as well. We demonstrated the working and the advantages of our approach
in both controlled synthetic settings and in real applications. In particular, we
have seen an application in the biomedical domain, where our method can be
used to flag suspicious labels for further follow-up study. We have also seen that
the label-flipping probabilities provide an interpretable holistic graphical view
of data sets by unearthing the topology that underlies the data classes. Finally,
the model can be used to facilitate the task of annotating training examples
since it is now possible to learn the classifier from sloppily labelled but cheaply
obtained data from crowds. Extending this approach to non-linear classifiers is
the subject of our future work.

References

1. Alon, U., Barkai, N., Notterman, D.A., Gishdagger, K., Ybarradagger, S.,
Mackdagger, D., Levine, A.J.: Broad patterns of gene expression revealed by clus-
tering analysis of tumor and normal colon tissues probed by oligonucleotide arrays.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica 96(12), 6745–6750 (1999)

2. Barandela, R., Gasca, E.: Decontamination of Training Samples for Supervised
Pattern Recognition Methods. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M. (eds.)
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10. Kabán, A., Tiňo, P., Girolami, M.: A General Framework for a Principled Hier-
archical Visualization of Multivariate Data. In: Yin, H., Allinson, N.M., Freeman,
R., Keane, J.A., Hubbard, S. (eds.) IDEAL 2002. LNCS, vol. 2412, pp. 518–523.
Springer, Heidelberg (2002)

11. Kadota, K., Tominaga, D., Akiyama, Y., Takahashi, K.: Detecting outlying sam-
ples in microarray data: A critical assessment of the effect of outliers on sample
classification. Chem. Bio. Informatics Journal 3(1), 30–45 (2003)

12. Krishnan, T., Nandy, S.C.: Efficiency of discriminant analysis when initial samples
are classified stochastically. Pattern Recognition 23(5), 529–537 (1990)

13. Lawrence, N.D., Schölkopf, B.: Estimating a kernel fisher discriminant in the pres-
ence of label noise. In: Proceedings of the 18th International Conference on Machine
Learning, pp. 306–313. Morgan Kaufmann (2001)

14. Lee, D.D., Seung, H.S.: Algorithms for Non-negative Matrix Factorization. In:
Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information
Processing Systems, vol. 13, pp. 556–562. MIT Press (2001)

15. Li, L., Darden, T.A., Weingberg, C.R., Levine, A.J., Pedersen, L.G.: Gene assess-
ment and sample classification for gene expression data using a genetic algorithm
/ k-nearest neighbor method. In: Combinatorial Chemistry and High Throughput
Screening, pp. 727–739 (2001)

16. Liu, Z., Jiang, F., Tian, G., Wang, S., Sato, F., Meltzer, S.J., Tan, M.: Sparse logis-
tic regression with lp penalty for biomarker identification. Statistical Applications
in Genetics and Molecular Biology 6(1), 6 (2007)

17. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings
of the International Conference on Computer Vision, ICCV 1999, vol. 2, pp. 1150–
1157. IEEE Computer Society, Washington, DC (1999)

18. Lugosi, G.: Learning with an unreliable teacher. Pattern Recogn. 25, 79–87 (1992)
19. Mackay, D.J.C.: Probable networks and plausible predictions - a review of practical

Bayesian methods for supervised neural networks. Network: Computation in Neural
Systems 6, 469–505 (1995)

20. Magder, L.S., Hughes, J.P.: Logistic regression when the outcome is measured with
uncertainty. American Journal of Epidemiology 146(2), 195–203 (1997)

21. Malossini, A., Blanzieri, E., Ng, R.T.: Detecting potential labeling errors in mi-
croarrays by data perturbation. Bioinformatics 22(17), 2114–2121 (2006)

22. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Transactions on
Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

23. Raykar, V.C., Yu, S., Zhao, L.H., Valadez, G.H., Florin, C., Bogoni, L., Moy, L.:
Learning from crowds. Journal of Machine Learning Research 11, 1297–1322 (2010)

24. Roth, V.: The generalized lasso. IEEE Transactions on Neural Networks 15, 16–28
(2004)

25. Yasui, Y., Pepe, M., Hsu, L., Adam, B.L., Feng, Z.: Partially supervised learning
using an emboosting algorithm. Biometrics 60(1), 199–206 (2004)

26. Zhang, C., Wu, C., Blanzieri, E., Zhou, Y., Wang, Y., Du, W., Liang, Y.: Methods
for labeling error detection in microarrays based on the effect of data perturbation
on the regression model. Bioinformatics 25, 2708–2714 (2009)


	Label-Noise Robust Logistic Regressionand Its Applications
	Introduction
	Label-Noise Robust Logistic Regression
	Parameter Estimation with Multiplicative Updates
	Multiclass Label-Noise Robust Logistic Regression

	Convergence of the Algorithm
	Comparison with EM Based Optimisation

	Sparse Extension via a Bayesian-Regularised Generalised Lasso
	Experimental Validation and Applications
	Simulated Label Noise
	Application to Finding Mislabelled Gene Arrays in Colon Cancer Data
	Application to Structure Discovery: Inferring a Class-Topology in Multi-class Problems
	Application to Learning from Crowds: Learning to Classify Images Using Cheaply Obtained Labelled Data

	Conclusions
	References


