
C o m p u t a t i o n a l  
G e o m e t r y  

Theory and Applications 
ELSEVIER Computational Geometry 11 (1998) 209-218 

Label placement by maximum independent set in rectangles 

Pankaj K. Agarwal a,,, 1, Marc van Kreveld b,2, Subhash Suri c,3 
a Department of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129, USA 

b Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands 
c Department of Computer Science, Washington University, St. Louis, MO 63130, USA 

Communicated by E. Welzl; accepted 31 August 1998 

Abstract 

Motivated by the problem of  labeling maps, we investigate the problem of computing a large non-intersecting 
subset in a set of  n rectangles in the plane. Our results are as follows. In O(n log n) time, we can find an O(log n)- 
factor approximation of  the maximum subset in a set of  n arbitrary axis-parallel rectangles in the plane. If  all 
rectangles have unit height, we can find a 2-approximation in O(n logn) time. Extending this result, we obtain a 
(1 + l /k)-approximation in time O(n logn + n 2k-1) time, for any integer k/> 1. © 1998 Elsevier Science B.V. All 
rights reserved. 

1. Introduction 

Automated label placement is an important problem in geographic information systems (GIS), and 
has received considerable attention in recent years (for instance, see [6,9])i The label-placement problem 
includes positioning labels for area, line and point features. The primary focus within the computational 
geometry community has been on labeling point features [5,7,15,16]. A basic requirement in the label- 
placement problem is that the labels are pairwise disjoint. Subject to this basic constraint, the most 
common optimization criteria are the number of features labeled and the size of the labels. Other 
variations include the choice of the shapes of the labels and the legal placements allowed for each point. 
Unfortunately, even in simple settings, the problem turns out to be NP-hard [3,7]. 

In this paper we assume that each label is an orthogonal rectangle of fixed size and we want to place 
as many labels as possible. More precisely, let S be a set of n points in the plane. For each point Pi E S, 

* Corresponding author. E-mail: pankaj @cs.duke.edu. 
1 Research partially supported by National Science Foundation Grant CCR-93-01259, by an Army Research Office MURI 

grant DAAH04-96-1-0013, by a Sloan fellowship, by an NYI award, and by matching funds from Xerox Corporation, and by a 
grant from the U.S.-Israeli Binational Science Foundation. 

2 Research partially supported by the ESPRIT IV LTR Project No. 21957 (CGAL), and by the Dutch Organization for 
Scientific Research (NWO). 

3 Research partially supported by NSF Grant CCR-9501494. 

0925-7721/98/$ - see front matter © 1998 Elsevier Science B.V. All rights reserved. 
PII: S 0925-7721 (98)00028 -5 



210 P.. K. A garwal et al. / Computational Geometry I1 (1998) 209-218 

oTwotown 
+4.2 

+3.7 +5.3 3.3+4.1 

.Onetown Six'town" +5.7 
Th reetown • +3.1 

47.2 
43. 2 •Fivetown 

Fourtown 
• +5.5 •Seventown 

4.9 + 
3.6 + +4.2 

Fig. 1. Point labels that are names of towns, mixed with epicenters of earthquakes labeled with their magnitude. 

we have a label ri, and a set rri of marked points on the boundary of r i . Typical choices of ~i include the 
endpoints of the left edge of ri, the four vertices of ri, or the four vertices and middle points of the four 
edges of ri. A valid placement of r i is a translated copy r i + (Pi - x i )  of r i for some xi ~ zri, that is, ri is 
placed so that one of the marked positions on the boundary of ri coincides with the point Pi. A feasible  

configuration is a family of pairs { (Pil,  xil ) . . . . .  (Pig, xik) }, where all the ij are different and xij ~ ~rij, so 
that the rectangles in [ril + (Pil - xil ) . . . . .  rik + (Pik - xik ) } are pairwise disjoint. The label-placement  
problem is to find a largest feasible configuration. 

In practice the labels are subject to additional constraints, which help in simplifying and improving 
the algorithms. Restricting the shape of the labels to be same size squares is one such approach [7,15, 
16], because in many technical maps all labels have the same size. Think of mapping measurements at 
sample points in a terrain, or maps showing magnitudes of earthquakes at points that are the epicenters. 
Another interesting case is when all labels have the same height but arbitrary width. This situation arises, 
for example, if we want to label points with names on a map and all labels are in the same font size, or 
when different types of point labels occur on a map. In this paper we consider the second case. 

We will study the case when ~ri has a constant number of positions on the boundary of r i . The 
rectangles are closed; they include the boundary. Let Ri = {ri + (Pi - -  X j )  I Xj E 7"t'i} and set R = UiLI Ri. 
The label-placement problem is the same as computing a largest subset of pairwise disjoint rectangles 
in R. Since all rectangles in Ri have a common intersection point Pi, at most one rectangle can be chosen 
from each Ri.  Consider the intersection graph G ( R )  of R: the nodes of G ( R )  are the rectangles of R 
and there is an edge between two nodes if the corresponding rectangles intersect. A subset of pairwise 
disjoint rectangles in R corresponds to an independent set in G ( R ) .  We want to compute a maximum 
independent set of G ( R ) .  Abusing the terminology slightly, we will say that we want to compute a 
maximum independent set of R. Computing an independent set even of unit squares is known to be 
NP-hard [8,12]. This suggests that one should aim for approximation algorithms. We call an algorithm 
an e-approximation algorithm, for s > 1, if it returns an independent set of size at least F / s ,  where F is 
the size of a maximum independent set of R. 

Although it is known that no polynomial-time f2 (nl/4)-approximation algorithm exists for maximum 
independent sets in arbitrary graphs [1], no such lower bound is known for intersection graphs of 
rectangles. In this paper we present an O(n log n)-time (log n)-approximation algorithm for rectangles. 1 
For the case that all rectangles in R have the same height, we describe an (1 + 1/k)-approximation 

1 All logarithms in this paper are base 2. 



PK. Agarwal et al. / Computational Geometry 11 (1998) 209-218 211 

algorithm whose running time is O(nlogn + n2~-1), for any k/> 1. This is an important case, since 
it models the label-placement problem when all labels have the same font size. It is an open problem 
whether a c-approximation algorithm exists for arbitrary rectangles, for any positive constant c. 

The paper is organized as follows. Section 2 summarizes the previous work on the label-placement 
problem. In Section 3 we describe the approximation algorithm for arbitrary orthogonal rectangles. 
Section 4 describes our approximation algorithm for unit-height rectangles, which is based on dynamic 
programming. 

2. Previous research 

There has been much work on label placement in the cartography community; see, e.g., [6,9] and 
the references therein for a sample of results. Algorithms researchers have also studied labeling maps. 
Formann and Wagner [7] considered the label placement for point features in the plane using square 

labels. Specifically, an axis-aligned square label is placed for each point such that the point coincides 
with one of the vertices of its labeling square. They used the size of the square label as the optimization 
criterion, subject to the condition that all points must receive a label. The square represents the text or 
measurement to be placed at the point. Their optimization is motivated by the maximum font size: since 
the problem allows scaling in the x-direction, it is the same as rectangular label placement for equal-size 
labels. 

Given a point p, there are four positions for placing a square label so that the point coincides with one 
of the corners of the label. If all four positions of labels are allowed, then the problem of determining 
whether labels of given size can be placed is NP-complete. Formann and Wagner give an O(n logn) 
time algorithm that guarantees a label size at least half the optimum [7]. They also show that no better 
approximation is possible unless P = NP. Formann and Wagner's approach is to grow all four possible 
labels around the points, removing candidate placements when they conflict with other growing labels. 
Whether the remaining labels allow a placement is done by solving 2-SAT problems. Kurera et al. [13] 
studied the same problem, but developed an exact, super-polynomial algorithm that can be applied for 
sets with up to roughly 100 points. 

Wagner and Wolff [15,16] have noted that, in practice, the approach of Formann and Wagner hardly 
ever results in square sizes significantly greater than half the optimum. They also study several variations 
and their implementation and find ways to improve on the size of the squares in practice. 

Doddi et al. [5] allow more general shapes of labels, e.g., circles, nonoriented rectangles, ellipses, and 
present approximation algorithms in each case. Like Formann and Wagner, they also approximate the 
size of labels. See also [11,14]. 

Christensen et al. [3] provide a comparison of several approaches to place as many labels as possible 
on a map. They consider point labels, line labels, and area labels. A further comparison can be found 
in [2]. 

3. Arbitrary size rectangular labels 

We describe a simple, divide-and-conquer algorithm for computing a large independent set in a set R 
of n orthogonal rectangles in the plane. We sort the horizontal edges of R by their y-coordinates and 



212 P.K. Agarwal et al. / Computational Geometry 11 (1998) 209-218 

their vertical edges by their x-coordinates; this step takes O(n log n) time. This sorting is done only once 
in the beginning. If n ~< 2, we compute the maximum independent set in O(1) time. Otherwise, we do 
the following. 
1. Let Xmed be the median x-coordinate among the abscissae of R. 
2. Partition the rectangles of R into three groups: R1, R2 and R12, where R12 contains rectangles 

intersecting the line £: x = Xmed, and R1 and R2 contains the rectangles lying to the left and right, 
respectively, of the line. 

3. Compute 112, the (real) maximum independent set of R12. Recursively compute I1 and 12, the 
approximate maximum independent sets in R1 and R2, respectively. 

4. If 11121/> Illl + 1121, return 112, otherwise return 11 tO 12. 
The first observation is that the rectangles in R1 are disjoint from the rectangles in R2. Consequently, 
11 tO 12 is an independent set. The second observation is that since all rectangles in R12 intersect the line £, 
it suffices to compute a largest nonoverlapping subset of intervals in the set J --- {r fq £ [ r 6 R12}, in order 
to compute 112. This one-dimensional problem can be solved optimally by the following greedy strategy 
in O(n log n) time. Sort the intervals in the ascending order of their bottom endpoints. Add the topmost 
interval l, with highest bottom endpoint, to the independent set; delete all intervals intersecting l; and 
repeat until no intervals remain. Recall that the horizontal edges of rectangles in R are sorted by their y- 
coordinates, so we can sort the intervals in J by their bottom endpoints in linear time. Since IR11 ~< In I/2 
and [g2l ~< In I/2, the overall running time of the algorithm is O(n log n). 

Next, we prove by induction that our algorithm computes an independent set of size at least 
F / m a x ( l ,  log n), where y is the largest independent set. For n <~ 2, we compute a largest independent 
set, so the claim is obviously true for n ~< 2. Suppose it is true for all m < n. Let I* be a maximum 
independent set of R. Similarly, let I?, I~ and I~2 be the maximum independent sets of R1, R2 and 
R12, respectively. Since the algorithm computes a maximum independent set 112 of R12, we have 
11121 = tI~21/> II* n R121. By the induction hypothesis, 

1131 I I * n R l l  II*NR21 
Illl ) log(n/2--------) ~> log n -- 1 and similarly, 1121) log n - 1" 

Therefore, 

{ I I*NRI I+I I*NR2[}  
[I[=max{l112[,lI1[+lI2[}>~max [I* fq R121, ]-~ogn -- ]- 

>/max { l i .  n R121, I,*[ - [I* C~ R121 }. 
log n - 1 

If I l* C) R121 ~> [ I ' l / l og  n, the induction step is proved. Otherwise, 

II*1 - II* N R~2l II*l - II*l/logn II*1 /> 
log n - 1 log n - 1 log n '  

and the induction step is proved as well. Hence, we obtain the following result. 

Theorem 1. Let R be a set of n axis-parallel rectangles in the plane. An independent set of R of size 
at least y / l o g n  can be computed in time O(n logn), where y is the size of a maximum independent set 
in R. 



P.K. Agarwal et al. / Computational Geometry 11 (1998) 209-218 213 

4. Approximation scheme for unit-height rectangles 

In this section we develop a polynomial-time approximation algorithm for computing an independent 
set of rectangles of fixed height, but of arbitrary width. As discussed earlier, our class is clearly more 
general than unit squares, and this added generality is important for labeling maps. We assume without 
loss of generality that all rectangles have unit height. We first develop a 2-approximation algorithm 
that takes O(nlogn)  time. Then, using dynamic programming, we obtain a (1 + 1/k)-approximation 
algorithm whose running time is O(n logn + n 2k-1) time, for any k ~> 1. 

4.1. A 2-approximation algorithm 

Consider a set R of n unit-height rectangles in the plane. We draw a set of horizontal lines, 
£1, £2 . . . . .  £m, where m ~< n, so that the following three conditions hold: 
(1) the separation between two lines is strictly more than one, 
(2) each line intersects at least one rectangle, and 
(3) each rectangle is intersected by some line. 
Note that minimum separation condition implies that a rectangle cannot be intersected by more than one 
line. The lines can be drawn from top to bottom using an incremental approach. These lines partition the 
set R into subsets R1, R2 . . . . .  Rm, where Ri is the set of rectangles in R that intersect line £i. 

We compute a maximum independent set M/ for each Ri, which takes o(Igi l  log IRil) time, using 
the one-dimensional greedy algorithm. Since the line ~i does not intersect any rectangle of R \ Ri, the 
rectangles in Mi do not intersect any rectangle of Mj except for j = i - 1 or j = i + 1. Consider the two 
independent sets {M1 U M3 U. . .  U M2rm/27-1} and {M2 U M4 U. . .  U M2Lm/2J}. Clearly, the larger of these 
two must have size at least y/2,  and thus we have a 2-approximation algorithm. The running time of the 
algorithm is O(n logn), since finding the lines ~i and forming the corresponding partition can be done in 
a single pass through the rectangles after sorting them by their y-coordinates. 

Theorem 2. Let R be a set of n unit height axis-parallel rectangles in the plane. In O(n logn) time, we 
can compute an independent set of size at least y /2, where y is the size of a maximum independent set 
of R. 

4.2. A (1 + 1/ k )-approximation algorithm 

We will improve the approximation factor to (1 + 1/k), for any k ~> 1, by combining dynamic 
programming with the shifting technique of Hochbaum and Maass [10]. The basic idea is to partition the 
rectangles by horizontal lines £1, £e . . . . .  ~rn as before, but then use dynamic programming to optimally 
solve the subproblem for each subset of rectangles intersected by k consecutive lines. Suppose the lines 
are labeled £1, £2 . . . . .  £m from top to bottom, and Ri is the set of rectangles intersecting the line £i. We 
set Ri = 0 for i > m. Define R/k = Ri U Ri+l g . . .  U Ri+k-l, that is, R/~ is the set of rectangles intersecting 
any line in the set {£i, £i+l . . . . .  £i+~-1}. We will refer to the R/k's as subgroups. 

We now define k + 1 groups G1 . . . . .  Gk+l (see Fig. 2), where 

G j = R ~ - l u U  Ri(k+l)+ = R \  URi(k+l)+j .  
i>~O i>/O 



214 P.K. Agarwal et al. / Computational Geometry 11 (1998) 209-218 

. . . . . . . . . . . . . . . . . . . . . .  . . . . . .  i i i i i i i i i i i i i l l  . . . . . . . . . . . . . .  

D 
....... iL.i ............. ".. ........... "..~.'.. ....... " ...... i.i ....................... i. 

~3 

g4 

g5 

g6 

g7 

£8 

Fig. 2. The group G2 for k = 3. 

That is, for 1 ~< j ~< k + 1 the group Gj is obtained from R by deleting rectangles intersected by every 
(k + 1)st line, starting with the £j th  line. 

We make two key observations about these groups of rectangles. First, consider two consecutive 
subgroups within any group, such as R~ and R~+ 2 in GI. No rectangle of R~ intersects a rectangle 

k • the line £k+1 separates these subgroups. By extension, this means that for any group G j, the in Rk+ 2, 
rectangles in a subgroup of Gj are disjoint from the rectangles of any other subgroup of G j .  Thus, if we 
combine the independent sets for all the subgroups, we get an independent set of the whole group Gj. 
Second, since a group is formed by deleting all rectangles that intersect every (k + 1)st line, the union 
of all rectangles in R \ G j  is intersected by at most [ m / ( k  + 1)7 lines. If we compute a maximum 
independent set for each Gj and choose the largest one, we can miss at most y / ( k  + 1) rectangles by the 
pigeon hole principle. Hence we get an (1 + 1 / k )  factor approximation. This is exactly the shifting idea 
of Hochbaum and Maass [10], and this is precisely what we will do as well. 

We give a dynamic programming solution for computing a maximum independent set M ( R ~ )  for 

any subgroup R~, that is, a set of rectangles intersected by k consecutive lines in £1, £2 . . . . .  £m. After 

computing M ( R ~ )  for every j ~> 1, the rest of the algorithm is straightforward. 
For ease of exposition, we describe the algorithm for the case k = 2, but all the ideas generalize 

readily. Without loss of generality, let us consider the problem of computing a maximum independent 
set for R 2 = R1 U R2, that is, the rectangles intersecting £1 or  £2. Let X = (Xl, x 2 . . . . .  Xg) denote the 
sequence of distinct abscissae of the vertical edges of R1 U R2, sorted in increasing order (left to right). 
Note that only the ordinates of the bottom edges of rectangles in R1 and of the top edges of rectangles in 
R2 are relevant. Let Y = (Yl, Y2 . . . . .  Yh) denote the sequence of distinct ordinates of bottom edges from 
R1 and of top edges from R2, sorted in the increasing order (bottom to top). Add to X the value x0 where 
x0 < xl. Add to Y the value Y0, which is the ordinate of the line £2 minus 1, and the value Yh+l, which is 
the ordinate of the line £1 plus 1. Note that Y0 < Yl and Yh < Yh+l. 



P.K. A garwal et al. / Computational Geometry 11 (1998) 209-218 2 1 5  

II 
A[p,q,t] : 7 

P ..... ~ Ii ! ~ ]  
iii i ~ .  - - i -  I 
iiiiii~ii !iliiiii!i~!iii ; :  

~ Li-- 1 . . . . . . . . . .  

I 
q 

gl 

g2 

Fig. 3. Polygonal line defined by p, q, t and its relation to the table entry A[p, q, t]. 

With each triple r = (p, q, t),  where 0 ~< p,  q ~< g and 0 ~< t ~< h + 1, we associate a polygonal line 
)~ defined as follows: if p = q, then )~ is the vertical line x = p;  otherwise ;~ consists of  a vertical ray 
emanating from the point (Xp, Yt) in the (+y)-direct ion,  the horizontal segment connecting (Xp, Yt) to 

(Xq, Yt), and another vertical ray emanating from the point (Xq, Yt) in the ( -y ) -d i rec t ion ,  see Fig. 3. Let  
Rr _c R denote the set of  rectangles whose interiors lie to the left of  the polyline ;~r- Let  M~ denote a 
maximum independent set of  R~, and let A~ = IMr I. We now describe how we compute A~ for all triples 
r = (p, q, t). We will construct a three-dimensional table A, in which A[p, q, t] will store the value of  
A(p,q,t). 

We consider the case when p > q; the case p < q is symmetric. I f  p ---- q, the third index t plays no 
role. We can fill out the entry A[p, p, ..] as the case where p > q and the third index is h + 1. So we need 
only consider the case p > q. 

If p > q and no rectangle in Rr N R1 has its fight edge at x = Xp, then Rr = R(p_l,q,t); therefore 
A[p, q, t] = A[p - 1, q, t]. Otherwise, let r 6 RI be the rectangle whose fight edge is at x = Xp. 
(Let us assume that there is only one such rectangle; we will discuss later how to handle the case 
when the right edges of  many rectangles lies on the line x = Xp.) Suppose the left edge of  r lies on 
the line x = xi and its bottom edge lies on the line y = yj. If  j < t (or yj < Yt), then r ~ Rr, so 

Rr = R(p_l,q,t) and A[p, q, t] = A lp  - 1, q, t]. Otherwise, R~ = R(p_l,q,t) U { r } .  If  r ¢ M~, then again 
Alp,  q, t] = A[p - 1, q, t]. On the other hand, if r 6 Mr,  then none of  the other rectangles in Rr that 
intersect r can belong to Mr. There are two cases when r 6 Mr,  see Fig. 4. If  i > q (or xi > Xq), then let 
r '  = (i - 1, q, t),  otherwise let r '  = (i - 1, q, j - 1). It is easy to see that i f r  6 Mr,  then M~ ---- M~, U {r}. 
Therefore, Ar = A~, + 1. Hence, we obtain the following for A[p, q, t], assuming that p > q: 

I A[p - 1, q, t], no rectangle in R(p,q.t) n RI has the fight edge at x = xp; 
max (A[p - 1,q, t], a[i - 1,q, t] + 1), 

R(p.q,t ) N Rl has a rectangle r with the fight edge at x = Xp, the left edge at 
A [ p , q , t ] =  x = x i ,  and i > q ;  

max ( a [ p -  1,q, t], a[i - 1,q, j - 1] + 1), 
R(p,q,t) N Rl has a rectangle r with the fight edge at x = Xp, the left edge at 
x = xi with i ~< q, and the bottom edge at y = yj. 

If  there are many rectangles in Rr N R1 with the right edge on the line x = Xp, we divide them into 
two subsets-- the ones whose left edge lies to the left of  x = Xq and the ones whose left edge does not lie 
to the left of  x = Xq. For each rectangle in the first category, we use the third case and for all rectangles 
in the second category we apply the second case. We then choose the one that gives the maximum 



2 1 6  P.K. Agarwa l  et  al. / Computat ional  Geometry  11 (1998) 209 -218  

p - l . p  
I 
I 
I 
I 

! 
I 
! 
I 
q 

i - 1  p 
i I 

! 
i 

gz ] g2 
i 
q 

gx 

i - 1  P 
:-i ~ , 

j - 1 ............. i 
.: . . . .  I t ! 
I g2 ! 
I 
q 

Fig. 4. Filling out the entry A[p, q, t]; the three cases. 

value. We can fill out the three-dimensional table A in a standard dynamic programming manner [4]. 
Geometrically, the only constraint on filling out the entries is that when A[p, q, t] is being computed, we 
must have computed the entries corresponding to the polygonal lines that lie in the closure of the subplane 
left of )~(p,q,t). A straightforward implementation of the dynamic programming requires O(I R1 U R2 [ 3) 
t ime--most entries take constant time to fill out, except when several rectangles have their fight edge at 
the same p or q. However, we can afford to spend time proportional to the number of rectangles, since 

the total work still adds up to O(IR1 U R213). 
Let [Ri [ = n i ,  for i = 1, 2 . . . . .  m, where m is the number of lines used to partition R. Then, clearly 

~iml IRi[ = ~ n i  = n. In order to compute an independent set of size 2F/3, we perform the dynamic 
programming algorithm m - 1 times, once for each pair of consecutive lines. Thus the total time 

complexity is 

m - 1  

Z O((ni q- ni+]) 3) = O(n3). 
i = l  

Observe that if ni = O(V~) for all i - - a  situation that is likely to occur in practice----~en the running 
time is only O(n2). It is straightforward to adapt the algorithm so that it computes the independent set 

rather than the size of it. 

T h e o r e m  3. Let R be a set of  n unit-height axis-parallel rectangles in the plane. In O(n 3) time, we can 
compute an independent set of  size at least 2F/3, where Y is the size of  a maximum independent set of R. 

Extending the technique to a (1 + 1/k)-approximation algorithm is straightforward. We need to 
compute an optimum solution for the union of rectangles intersecting k consecutive lines. In the dynamic 
programming algorithm, instead of a 3-dimensional table, we need to fill out a (2k - 1)-dimensional 
table. Geometrically, a (2k - 1)-tuple corresponds to a weakly y-monotone, rectilinear polyline with 
two vertical half-lines, k - 2 horizontal edges, and k - 3 vertical edges. Each vertical edge has its 
x-coordinate in X, and each horizontal edge has its y-coordinate in Y. This gives us the polynomial- 
time approximation scheme with the following performance. 

T h e o r e m  4. Let R be a set of  n unit-height axis-parallel rectangles in the plane. In O(n 2k-l) time, we 
can compute an independent set of size at least y/(1  + 1/k), for any k >1 1, where / is the size of  a 
maximum independent set of R. 



P.K. Agarwal et al. /Computational Geometry 11 (1998) 209-218 217 

5. Conclusions 

We have given approximation algorithms for computing maximum size non-intersecting subset in sets 
of rectangles. The work is motivated from label placement at points, where the rectangles represent the 
bounding boxes of labels. The approximation scheme was known for the restrictive case of unit size 
square labels [11], which occurs for fixed precision decimal numbers as labels. We gave a different 
approximation scheme for unit height labels with varying widths, which is the standard situation for 
labels that are names, or labels of different type with fixed font size. 

The algorithms for labeling support the situation where several positions for the label of any point 
are allowed. The restriction is that all positions of the label of a point intersect each other. Also, the 
asymptotic running time is not affected if a constant number of positions is allowed for each label. 

The maximum non-intersecting subset of rectangles problem can be seen as a maximum independent 
set problem in a special type of graph. The approximation algorithm we presented for these graphs is 
considerably better than what is theoretically possible for general graphs. However, we were not able to 
obtain a polynomial time, constant-factor approximation algorithm for the case of arbitrary axis-parallel 
rectangles. This is an interesting open problem. 

Acknowledgements 

The authors thank Alexander Wolff for helpful comments. 

References 

[1] M. Bellare, M. Sudan, Improved non-approximability results, in: Proc. 26th Annu. ACM Sympos. Theory 
Comput., 1994, pp. 184-193. 

[2] J. Christensen, S. Friedman, J. Marks, S. Shieber, Empirical testing of algorithms for variable-sized label 
placement, in: Proc. 13th Annu. ACM Sympos. Comput. Geom., 1997, pp. 415-417. 

[3] J. Christensen, J. Marks, S. Shieber, An empirical study of algorithms for point-feature label placement, ACM 
Trans. Graph. 14 (1995) 202-232. 

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, Cambridge, MA, 1990. 
[5] S. Doddi, M. Marathe, A. Mirzaian, B. Moret, B. Zhu, Map labeling and its generalization, in: Proc. 8th 

ACM-SIAM Sympos. Discrete Algorithms, 1997, pp. 148-157. 
[6] J.S. Doerschler, H. Freeman, A rule-based system for dense-map name placement, Commun. ACM 35 (1992) 

68-79. 
[7] M. Formann, F. Wagner, A packing problem with applications to lettering of maps, in: Proc. 7th Annu. ACM 

Sympos. Comput. Geom., 1991, pp. 281-288. 
[8] R.J. Fowler, M.S. Paterson, S.L. Tanimoto, Optimal packing and covering in the plane are NP-complete, 

Inform. Process. Lett. 12 (3) (1981) 133-137. 
[9] H. Freeman, Computer name placement, in: D.J. Maguire, M.E Goodchild, D.W. Rhind (Eds.), Geographical 

Information Systems: Principles and Applications, Longman, London, 1991, pp. 445-456. 
[ 10] D.S. Hochbaum, W. Maas, Approximation schemes for covering and packing problems in image processing 

and VLSI, J. ACM 32 (1985) 130-136. 
[11] H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J. Rosenkrantz, R.E. Stearns, A unified approach 

to approximation schemes for NP- and PSPACE-hard problems for geometric graphs, in: Proc. 2nd Europ. 
Symp. on Algorithms, Lecture Notes in Computer Science, Vol. 855, 1995, pp. 424-435. 



218 P.K. Agarwal et al. /Computational Geometry 11 (1998) 209-218 

[12] H. Imai, T. Asano, Finding the connected components and a maximum clique of an intersection graph of 
rectangles in the plane, J. Algorithms 4 (1983) 310-323. 

[13] L. Ku~era, K. Mehlhorn, B. Preis, E. Schwarzenecker, Exact algorithms for a geometric packing problem, in: 
Proc. 10th Sympos. Theoret. Aspects Comput. Sci., Lecture Notes in Computer Science, Vol. 665, Springer, 
New York, 1993, pp. 317-322. 

[14] M.V. Marathe, H. Breu, H.B. Hunt III, S.S. Ravi, D.J. Rosenkrantz, Simple heuristics for unit disk graphs, 
Networks 25 (1995) 59-68. 

[15] E Wagner, A. Wolff, An efficient and effective approximation algorithm for the map labeling problem, in: 
Proc. 3rd Annu. European Sympos. Algorithms, Lecture Notes in Computer Science, Vol. 979, Springer, New 
York, 1995, pp. 420-433. 

[16] F. Wagner, A. Wolff, Map labeling heuristics: Provably good and practically useful, in: Proc. 1 lth Annu. ACM 
Sympos. Comput. Geom., 1995, pp. 109-118. 


