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Abstract
Most existing action quality assessment (AQA) methods provide only an overall quality score for the input video and lack
an evaluation of each substage of the movement process; thus, these methods cannot provide detailed feedback for users.
Moreover, the existing datasets do not provide labels for substage quality assessment. To address these problems, in this
work, a new label-reconstruction-based pseudo-subscore learning (PSL) method is proposed for AQA in sporting events. In
the proposed method, the overall score of an action is not only regarded as a quality label but also used as a feature of the
training set. A label-reconstruction-based learning algorithm is built to generate pseudo-subscore labels for the training set.
Moreover, based on the pseudo-subscore labels and overall score labels, a multi-substage AQA model is fine-tuned from
the PSL model to predict the action quality score of each substage and the overall score for an athlete. Several ablation
experiments are performed to verify the effectiveness of each module. The experimental results show that our approach
achieves state-of-the-art performance.

Keywords Action quality assessment · Substage quality assessment · Label reconstruction · Pseudo-subscore learning ·
Multi-substage AQA model

1 Introduction

Action quality assessment (AQA), which aims at assessing
the action quality of a performer and providing detailed
feedback to help the executor improve his/her action quality,
has received increasing attention in the field of computer
vision. AQA is widely used in sports quality scoring [1–9],
exercise quality evaluation during the rehabilitation training
of stroke patients [10–14] and completion quality evaluation
of other exercises in daily life [15, 16].

The purpose of AQA in sporting events is to provide an
automatic objective assessment mechanism that simulates
subjective human perception in assessing the quality of
actions completed by athletes. On the basis of related field
experience and knowledge of sports evaluation, a referee
will give an overall score based on the performance of an
athlete in each of multiple action substages. For example,
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the diving process can be divided into five substages: start,
takeoff, drop, entry, and end. The overall score for diving
performance is computed using the execution score for each
substage and the difficulty level of the action, as shown
in Fig. 1. Accordingly, this paper argues that stagewise
quality evaluation is a reasonable and beneficial approach
for building an accurate sports evaluation system for AQA
in sporting events.

More importantly, substage quality assessment is an
effective way to obtain detailed feedback on the perfor-
mance of athletes in each substage of sports actions, which
is more meaningful than simply providing an overall score.
However, most existing methods treat AQA as a score
regression problem, in which the overall scores are taken
as the training labels to train an AQA regression model to
directly map input videos to quality scores. Such methods
ignore the details of the individual substages and cannot
provide meaningful instruction for users. To fill these gaps,
this paper discusses how to evaluate the action quality of
various substages in sports when only an overall score is
provided for each performance, as is the case in almost all
published datasets, and aims to find an effective AQAmodel
that can generate a quality score for each substage and thus
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Fig. 1 Example of multi-substage AQA in diving

obtain a more accurate overall quality score based on the
performance of an athlete in all substages.

However, due to the lack of quality labels for each sub-
stage, accurate performance evaluation in each substage is
a challenging problem. In the existing work on AQA, all
of the available datasets provide only overall score labels
as indicators of action quality rather than individual sub-
stage labels. Only the UNLV-Diving dataset [1], which was
annotated by [2], provides a segmentation label for each
substage, and it still lacks a quality score label for each sub-
stage. In addition, the manual annotation of substage scores
requires professional knowledge and experience, which is
difficult to obtain.

To solve these problems, this work aims to automatically
generate pseudo substage score labels for the training data
and then train a multi-substage AQA model based on the
generated pseudo-subscores in combination with the overall
score labels. To this end, we propose a label-reconstruction-
based pseudo-subscore learning (PSL) method, in which the
overall score is regarded not only as a label but also as an
input feature. We decompose the regression process from
visual features to the overall score into two stages: mapping
from visual features to subscores and mapping from subscores

to the overall score. Accordingly, the network structure
of the proposed PSL model is mainly composed of three
parts: a backbone network for the feature extractor, a
label decomposition network for the subscore generator,
and a label construction network for the overall score
generator. In particular, in the label decomposition network,
the overall score label is used as a feature and is fused
with the visual features of the substage segments to generate
subscores. The label decomposition network is followed
by the label construction network; together, they form the
label reconstruction network (LRN). After pseudo-subscore
generation, the multi-substage AQA model is fine-tuned
from the PSL model. The calculation process in this work
is summarized in Fig. 2 and includes two modules: the PSL
module and the AQA model learning module.

In the PSL module, the label reconstruction loss is com-
puted to train the model. After training, each training video
and its overall score are fed into the PSL model again,
and the output of the label decomposition network is taken
as the pseudo-subscore labels of the training video. In the
multi-substage AQAmodule, the overall score feature in the
label decomposition network is removed to form the sub-
score prediction network (SPN), which replaces the label
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Fig. 2 Calculation process applied in this work. It involves temporal semantic segmentation, feature representation, a PSL model, and a
multi-substage AQA model

decomposition network in the PSL model to form the AQA
model. Finally, the AQA model is retrained based on the
generated pseudo-subscore and overall score labels.

The contributions of this work are summarized as fol-
lows:

(1) We propose a novel multi-substage AQA method that
can not only evaluate the overall quality of sports
actions but also give a score for each action substage
as detailed feedback.

(2) We propose a label-reconstruction-based PSL method
to generate pseudo-subscore labels for the training
data. The generated pseudo-subscore labels and orig-
inal overall score labels are then applied together to
train the proposed AQA model.

(3) Ablation experiments are performed to verify the
effectiveness of each module. In addition, a new
score prediction task for the Olympic diving finals is
designed in an illustrative experiment. The experimen-
tal results show that the proposed method achieves
state-of-the-art performance.

The remainder of this paper is organized as follows.
Section 2 introduces related works, and Section 3 describes
the algorithms used to implement the proposed method.
Section 4 presents and discusses the experimental results,
and Section 5 concludes the paper.

2 Related work

Action understanding is a classic research topic in computer
vision. Previous works have focused on the problem of
action recognition, which is regarded as a classification
problem. In recent years, an increasing number of AQA
tasks have been deeply studied by scholars, usually by using
a regression model to predict action quality scores. In both
cases, the basic approach used is action feature learning.
In this section, a brief summary of the methods of action
feature learning and recognition is presented first, and then,
a detailed review of AQA methods is provided.

2.1 Action feature learning and recognition

Action recognition in video is widely applied in many
fields. How to encode the action information of a video into
high-level features has become a key issue for such tasks.

In addition to the traditional methods of video action
recognition, the extraction of spatiotemporal information
from video based on deep learning networks has become
a popular focus of research in recent years. To process
video data with temporal and spatial information, 3D con-
volutional networks have been widely used [17]. 3D con-
volutional networks extend 2D convolutions to 3D space
to encompass the time dimension. Similarly, since recur-
rent neural network (RNN) and long short-term memory
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(LSTM) structures can process temporal signals, they have
also been used to extract features of video frames.

On the basis of the 3D convolutional neural network
(CNN) model named C3D, several action feature learning
methods have been proposed, such as the 3D ResNet
network [18], the 3D ResNeXt network [19], and an inflated
3D convolutional neural network (I3D) [20]. Qiu et al.
[21] proposed a pseudo-3D convolutional network based on
ResNet, in which the 3D convolution kernel is decoupled
into two 2D convolution kernels. To reduce the number
of parameters, a pretrained 2D CNN network was used to
improve the performance of the 3D convolutional network.
He et al. [22] divided C3D into two paths, a slow path
and a fast path, and designed an end-to-end network for
action recognition. The slow path was used to capture spatial
semantics, and the fast path was used to capture motion
information with temporal resolution.

2.2 AQAmethods

Consistent with the annotation style of the available datasets,
most AQA studies have applied a regression network to
map input videos to performance scores and have used
the ranking accuracy or score error as the final evaluation
metric. A general method was designed by [3] to evaluate
the quality of seven different sports, including diving and
figure skating. Similar to other methods, the training of the
network in that method was also based on the overall score
of the movement. Through graph-based joint relationship
modeling, the authors of [23] designed a method that could
be used to assess action quality in gymnastics competitions
and surgical procedures.

AQA research has also focused on expanding the scope
of application of the developed methods beyond that of the
original research with the aim of solving more practical
problems. For example, Parmar et al. [24] designed a method
for the automatic evaluation of levels of piano playing.
In the remote environment motivated by COVID-19, this
method, as a pioneering work on the automatic evaluation
of teaching skills, is expected to play an important role in
future online teaching. In addition to the assessment of the
level or quality of specific skills in professional fields or in
daily life [10–12, 15, 16, 24], AQA tasks have also been
applied in rehabilitation [13, 14] and sporting events [1–
3, 5–9, 25–28]. Due to the differences in the domain rules
and action characteristics in different applications, special
evaluation methods need to be developed for different tasks.
In this work, we focus on the application of AQA in sporting
events, which is discussed in detail below.

In sports, the overall AQA score is composed of an exe-
cution score and a difficulty level. The difficulty level is

predefined in accordance with the action routines, whereas
the execution score is assessed by referees. Movement in
sports is highly variable, and AQA in sporting events usu-
ally involves features of multiple action substages. [1, 4,
29] considered that the overall score for diving is obtained
by multiplying the execution score by the difficulty level,
and the difficulty level was used as a variable in the exper-
iment. Similarly, [8, 25] combined the execution score and
the difficulty level for diving evaluation. Nekoui et al. [8]
combined postures and scoring rules, while [25] combined
different key fragments to generate the final feature for
AQA. Xiang et al. [2] divided the process of diving into dif-
ferent stages, discussed the contributions of these different
stages to the overall score, and evaluated diving perfor-
mance on this basis. Zeng et al. [27] combined the dynamic
and static information in a video and considered the periodic
contributions of different stages to the final score over a long
period of movement. A dynamic and static context-aware
hybrid attention network was designed for quality assess-
ment over long periods in sports. Xu et al. [5] combined
the generation of two kinds of scores in figure skating—the
total element score (TES) and the total program component
score (PCS)—to design an automatic evaluation method
for figure skating based on two kinds of attention mecha-
nisms.

Other AQA methods for use in sporting events have
also been reported. Parmar et al. [7] designed a multitask
learning framework to complete AQA tasks by combining
the pose, category and overall score of diving movements.
Tang et al. [28] proposed a score distribution learning
method for perceiving uncertainty to account for the
subjectivity of the scores of different judges. Considering
that most existing AQA methods are limited to individual
behaviors and lack the ability to model asymmetric
relationships between subjects, Gao et al. [9] designed
an AQA method for synchronized diving and surgical
operation. Nekoui et al. [26] proposed a network structure
named EAGLE-Eye, based on visual and posture cues and
consisting of two modules: a pose heatmap extractor and
an appearance feature extractor. This method quantifies
the quality of execution of an action based on fine- and
coarse-grained time dependencies.

3Method

In this section, we describe the proposed method in detail.
As shown in Fig. 2, we present the pipeline of our work
in three parts: temporal semantic segmentation and fea-
ture representation, the PSL model, and the multi-substage
AQA model.
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3.1 Temporal semantic segmentation and feature
extraction

To obtain detailed action quality feedback, the input video
V is first segmented into several substage clips, V = {p1,

..., pn}, pi ∈ R
W∗H∗T , where W and H are the image

width and height, respectively; T is the length of each
clip; and n is the number of clips. In this work, we use
an off-the-shelf encoder–decoder temporal convolutional
network (ED-TCN) [30] as the model for temporal semantic
segmentation. After temporal segmentation, each clip
corresponds to one substage of the action to be assessed.
Temporal segmentation is an offline process in this work.
The core component of the proposed method lies in
the further processing of the segmented clips, which are
provided as input to the feature backbone network for
feature extraction.

In this paper, a pseudo-3D CNN model (P3D) [21] is
selected as the backbone network for feature extraction.
P3D uses a 1 × 3 × 3 spatial convolution and a 3 × 1 ×
1 temporal convolution to simulate the commonly used
3 × 3 × 3 3D convolution. These parameters represent the
time, width, and height dimensions, respectively. Through
simplification compared with a traditional 3D CNN of the
same depth, P3D can obtain accurate action recognition
results with fewer parameters and an improved opera-
tion speed. To ensure fair comparisons with state-of-the-
art methods, the network structure of P3D used in the
proposed method is set to be the same as that in the litera-
ture [2].

3.2 PSLmodel

In the first module of the proposed method, the PSL model
is built to obtain the pseudo-score values for each substage.
This model consists of three parts: a feature backbone
network, a subscore generator (label decomposition) and an
overall score generator (label construction). The network
structure of the PSL model is shown in Fig. 3. The feature
backbone network is followed by the subscore generator.
In accordance with the purpose of the LRN, the subscore
generator generates subscores for the input substage
clips, whereas the overall score generator calculates the
corresponding overall score from the subscores produced by
the subscore generator. Thus, the subscore and overall score
generators in the PSL model together constitute the LRN
structure.

Let the features extracted from the feature backbone
network be denoted by fi ∈ R

m, where m is the number
of feature dimensions and i is the substage index. After
feature extraction, the input substage clips are transformed
into a feature set V = {f1, ..., fn}. In PSL, the overall
score label is also regarded as a feature and is embedded

into the features of each substage to obtain new features
{fl1, ..., fln}, where fli ∈ R

m+1. These new features are
used as the input to the subscore generator.

The subscore generator (label decomposition) is con-
structed as a fully connected network. In this work, this
network includes five fully connected layers. The numbers
of nodes in these layers are m + 1, m/4, m/32, m/128, and
1. The first layer takes the label-embedded features as input.
The structure of these fully connected layers will be fur-
ther discussed in the ablation study section. The Sigmoid

function is applied as the activation function in the last fully
connected layer, and the output is the predicted subscore.
The calculation process of the subscore generator can be
expressed as follows:

fli = L ⊕ fi

f t
li = FC(Wt , f t−1

li )

sbsi = Sigmoid(f ′
li ) (1)

where ⊕ represents the feature concatenation operation;
FC(·) represents the fully connected operation; L repre-
sents the score label; f ′

li represents the output of the last
fully connected layer; Wt = {wt

i‖i = 1, 2, ..., ht } repre-
sents the parameters of the t-th layer, with ht representing
the number of parameters of the fully connected operation
in this layer; and sbsi represents the subscore for the i-
th substage. A subscore generator with the same structure
is built for each substage in order to predict the subscores
independently.

The overall score generator (label construction) takes the
subscores for each substage as its input and predicts the
overall score of the video, which is achieved by means of a
fully connected layer, as expressed in (2):

S = Sigmoid

(
n∑

i=1

(wi × sbsi)

)
(2)

where S denotes the predicted overall score of the input
video and the wi are the weight parameters in this fully
connected layer.

Finally, in this work, an end-to-end PSL model is built by
concatenating the feature backbone network, the subscore
generator and the overall score generator. To train the PSL
model, considering that the overall score in the sporting
events of interest is the product of an execution score and
a difficulty level, we use two scores as the labels of each
input video in this work: the overall score and the execution
score. The mean square error (MSE) function is applied as
the label reconstruction loss losspsl to measure the error
between the overall score label and the predicted score. In
the case in which the execution score is used as the label, the
output of the PSL model is multiplied by the difficulty level
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to generate the predicted overall score. The loss function
losspsl is defined as follows:

losspsl = 1

N

N∑
i=1

(Si − Li)
2

= 1

N

N∑
i=1

((Se
i − Le

i )
2 × d2

i ) (3)

where N is the number of training videos. Si denotes the
predicted overall score for the i-th training sample, and
Li denotes the overall score label. Similarly, Se

i denotes
the predicted execution score for the i-th training sample,
and Le

i denotes the execution score label. di denotes the
difficulty level of the i-th sample. According to the score
computation rules for diving competitions, Si = Se

i ×di and
Li = Le

i × di .
After PSL model training, the pseudo-subscores of the

training set are obtained. The training videos are fed into the
trained PSL model, and the pseudo-scores for the various
substages of each video, SBS = {sbs1, ..., sbsn}, are
extracted by the subscore generator. It should be emphasized
that for the PSL model, all operations involve only the
training data, and none of the test data are used. Finally, the
LRN-based PSL algorithm is summarized in Algorithm 1.

3.3 Multi-substage AQAmodel

In the second module, the multi-substage AQA model is
implemented. In the PSL model, the labels of the training
data are applied as the features; however, for AQA, the
labels are unknown and need to be predicted. Therefore, we
need to transfer the PSL model to the AQA model. In detail,
the label features are removed from the label decomposition
network of the PSLmodel, and a new SPN is built. This SPN
is also constructed as a fully connected network consisting
of five fully connected layers, with m, m/4, m/32, m/128,
and 1 nodes. The output of the feature backbone network is
fed into the SPN, which is followed by the label construction
network to form the multi-substage AQA model, as shown
in Fig. 4. The calculation process of the multi-substage
AQA model is expressed as shown in (4):

f t
i = FC(Wt , f t−1

i )

Ssub
i = Sigmoid(f ′

i )

S = Sigmoid

(
n∑

i=1

wi × Ssub
i

)
(4)

where Ssub
i and S are the quality scores for each substage

and the overall video, respectively.
After PSL, for each training video, we obtain pseudo-

subscore labels SBS and an overall score label L. The
proposed multi-substage AQA model is trained based on
these two sets of labels. To conduct this training, the MSE
loss function is again applied to compute the subscore and
overall prediction errors. The loss function for the i-th
substage can be formulated as shown in (5):

losssub
i = (Ssub

i − sbsi)
2 (5)

Then, the total loss function used to train the multi-
substage AQA model is defined as the sum of the substage
and overall losses, as shown in (6):

losso = (S − L)2

losstotal = losso +
n∑

i=1

losssub
i (6)

where losso is the loss in terms of the predicted overall
score.

4 Experiment

4.1 Experimental setting

Dataset In this paper, the UNLV-Diving dataset is used
to verify the effectiveness of the proposed method. This
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Fig. 3 Illustration of the PSL model. It consists of a feature extractor, a subscore generator and an overall score generator

dataset includes 370 videos from the semifinals and finals
of the men’s 10-m platform at the 2012 London Olympics.
Each video sample includes overall score, difficulty level
and substage segmentation labels. The difficulty level
values range from 2.7 to 4.1, and the overall score values
range from 21.6 to 102.6. In the original split, 300 of the
videos in the dataset are used as the training set, and the
remaining 70 videos are used as the test set.

In accordance with the characteristics of the UNLV-
Diving dataset, we design a new AQA task called finals
ranking prediction, in which the semifinal videos are used as
the training data to train the model and predict the scores and
ranking of the athletes in the finals. Specifically, in the finals

of the men’s 10-m platform at the 2012 London Olympics,
there were 12 athletes who took turns performing six rounds
of diving actions, corresponding to a total of 72 videos.
These videos are used as the test videos for the AQA model,
and the remaining 298 video samples from the semifinals
are used as the training set. After the sixth round, the total
score for each athlete is calculated and ranked.

Evaluation metrics To evaluate the performance of the
proposed method, Spearman’s correlation coefficient (SRC)
ρ, as defined in (7), is used to measure the accuracy of
score ranking. In some works, the MSE [6] and the mean
Euclidean distance (MED) [4, 25] have also been applied to
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Fig. 4 Illustration of the multi-substage AQA regression model
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measure the accuracy of the predicted scores. In this work,
all of these evaluation metrics are adopted.

ρ = cov(RS, RG)

σRS
σRG

(7)

MED = 1

N

N∑
i=1

|si − gi | (8)

MSE = 1

N

N∑
i=1

(si − gi)
2 (9)

whereRS andRG represent the ranking sequences of the test
videos in terms of the predicted scores and the ground truth,
respectively; cov(·, ·) is the covariance of these two ranking
sequences; and σRS

and σRG
are the standard deviations of

RS and RG, respectively. The larger the value of ρ is, the
more relevant the predicted value is to the ground truth, and
the better the effect of the method. For the MED and MSE,
si denotes the predicted score, and gi denotes the ground
truth; the smaller either of these metric values is, the smaller
the distance between the predicted score and the ground
truth, and thus, the better the performance.

For the finals ranking prediction task, in addition to
calculating the SRC, MED and MSE of the test video
ranking sequence, we can also calculate these evaluation
metrics for the 12 athletes in the finals. The total scores
of the 12 athletes are used to calculate these SRC, MED,
and MSE values, which are denoted by A-SRC, A-MED
and A-MSE, respectively. All of these indicators are used to
evaluate the accuracy of the proposed method in predicting
the outcome of the finals.

A − SRC = cov(RA
S , RA

G)

σRA
S
σRA

G

(10)

A − MED = 1

12

12∑
i=1

∣∣∣sA
i − gA

i

∣∣∣ (11)

A − MSE = 1

12

12∑
i=1

(
sA
i − gA

i

)2
(12)

where RA
S and RA

G represent the ranking sequences of the
total scores of the 12 athletes in the finals in terms of
the predicted and ground-truth values, respectively, and
σRA

S
and σRA

G
are the standard deviations of RA

S and RA
G,

respectively. For A-MED and A-MSE, sA
i denotes the

predicted total score of the i-th athlete, and gA
i denotes the

ground-truth total score of the i-th athlete.

Implementation details In the experiment, the substage
segmentation model was trained based on ED-TCN [30].
Each diving video was segmented into five substages. A
P3D model pretrained on a kinetics dataset was used as

the feature backbone network. The input size of the feature
backbone network was set to 16× 160× 160, which means
that each substage was sampled into 16 frames and that the
images were resized to 160 × 160. The dimensionality m

of the features extracted by the P3D model was 2,048. Due
to the randomness of frame sampling, during the testing
process, we repeated the sampling process 35 times and took
the average of the corresponding evaluation metrics as the
final experimental result.

In the training of the PSL and AQA models, the dropout
probability was set to 0.5 after average pooling was per-
formed. The learning rate was initially set to 0.0001 and
decayed every 30 training steps with a decay rate of 0.1.
The Adam optimizer was applied to train these models. Dur-
ing network optimization, L2 regularization with a weight
decay value of 0.0005 was used to mitigate overfitting.

As mentioned in Section 3.2, there are two values that
can be used as labels in the LRN: the overall score and
the execution score for each action. The overall scores were
normalized by means of max–min normalization, whereas
since the execution scores ranged from 0 to 30, they were
simply divided by 30 for normalization.

4.2 Ablation study

To verify the effectiveness of PSL and the pseudo-subscores
for AQA, an ablation study is presented in this section. In
this experiment, we used the AQA model as the baseline
model, without using the PSL model or the pseudo-sub
scores. To train the baseline model, only the overall score
loss losso in (6) was applied. We implemented the proposed
multi-substage AQA model in two ways: training from
scratch (TS) and fine-tuning from the PSL model (FTPSL).
For FTPSL, the feature backbone network and overall
score generation network of the PSL model were loaded
to initialize the corresponding modules in the AQA model,
and the SPN was trained from scratch. The experimental
results are shown in Table 1, where “OSL” and “ESL”
denote baseline models trained based on the overall score
and execution score labels, respectively.

These experimental results show that the use of the
pseudo-subscores can improve the SRC value and obviously
decrease the MSE and MED values. In the original task
for the UNLV-Diving dataset, the MSE values of the OSL
models with PSL trained using the TS and FTPSL strategies
are reduced by 70.12 and 44.34, respectively, compared to
the MSE value of the OSL model without PSL, and the
MED values of these two models are similarly reduced by
2.36 and 1, respectively. The SRC value of the model with
PSL trained with the TS strategy is the same as that of
the OSL baseline, but the proposed model trained with the
TFPSL strategy shows an improvement of 0.02. We also
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Table 1 Ablation experiments
of the proposed method Method Original task Final ranking prediction task

SRC MSE MED SRC MSE MED

OSL 0.78 130.71 8.59 0.34 165.99 11.24

OSL+PSL (TS) 0.78 60.59 6.23 0.55 84.81 7.85

OSL+PSL (FTPSL) 0.80 86.37 7.59 0.61 70.76 7.06

ESL 0.87 85.24 5.66 0.74 52.68 6.60

ESL+PSL (TS) 0.85 38.99 4.98 0.81 42.53 3.59

ESL+PSL (FTPSL) 0.87 38.68 4.80 0.75 51.68 5.15

find similar results for the ESL models, for which the MSE
values of the models with PSL are reduced by 46.25 and
46.56 with respect to that for the model without PSL, and the
MED values are decreased by 0.68 and 0.86, respectively.

Similar results are also found for the finals ranking
prediction task. For the OSL models, the MSE and MED
values of the models with PSL are decreased by 81.18,
95.23, 3.39 and 4.18 relative to the baseline, and the SRC
values are improved by 0.21 and 0.27. For the ESL models,
the MSE and MED values of the models with PSL are
decreased by 10.15, 1, 3.01 and 1.45, and the SRC values are
improved by 0.07 and 0.01. All of these comparative results
show that PSL and the generated pseudo-subscore labels can
improve the accuracy of the ranking and score predictions
of the AQA model.

In the subscore generator (label decomposition) of the
PSL model, a fully connected network with layers of
decreasing size is used to regress the scores. We also discuss
the performance of different fully connected structures,
including “2049-1024-512-64-16-1”, “2049-512-64-16-1”,
“2049-64-16-1”, “2049-16-1”, and “2049-1”, where each
numerical value represents the number of nodes in the
corresponding layer and “-” represents the fully connected
operation. The experimental results are shown in Table 2.
For this experiment, we again use the SRC, MSE and MED
as the evaluation indicators. The second structure achieves
the best performance in terms of all of these indicators and
is used in the proposed method.

Table 2 Comparison of the results of different fully connected (FC)
network structures

FC Structure SRC MSE MED

2049-1024-512-64-16-1 0.81 96.84 6.86

2049-512-64-16-1 0.85 38.99 4.98

2049-64-16-1 0.81 84.64 6.53

2049-16-1 0.82 99.43 7.43

2049-1 0.84 61.64 5.81

The structure used in our paper is indicated in bold

4.3 Comparison with state-of-the-art methods

To verify the effectiveness of the proposed method, we
compare it with state-of-the-art methods.

Comparison on the original task for theUNLV-Diving dataset
We applied the proposed method to the original task for the
UNLV-Diving dataset. The results are compared in Table 3.

For clarity, the existing methods can be divided into
two categories: methods that use difficulty level labels and
methods that do not use difficulty labels. As seen from
Table 3, the best SRC, MED and MSE values of the
proposed method are 0.87, 4.80, and 38.68, respectively.
Compared with the existing AQA methods, the proposed

Table 3 Comparison of the results of the proposed method with the
results of state-of-the-art methods

Method DL SRC MED MSE

S3D [2] × 0.86 6.90 97.46

C3D-AVG-STL [7] × 0.83 - -

JRG [23] × 0.76 - -

AIM [9] × 0.74 - -

Metric Learning[6] × 0.76 - 105.62

EAGLE-Eye [26] × 0.83 - -

SCN+ATCN [31] × 0.85 - -

USDL [32] × 0.81 - -

Adaptive [33] × 0.83 - -

C3D+SVR [1] � 0.74 - -

C3D+CNN [4] � 0.80 7.78 -

ScoringNet [25] � 0.84 5.36 -

FALCONS [8] � 0.85 - -

MRSM (ESL) [29] � 0.88 - 73.92

Ours (OSL+TS) × 0.78 6.23 60.59

Ours (OSL+FTPSL) × 0.80 7.59 86.37

Ours (ESL+TS) � 0.85 4.98 38.99

Ours (ESL+FTPSL) � 0.87 4.80 38.68

DL: difficulty level

The bold entries represents the best result
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Table 4 Comparison of the
proposed method with S3D on
the finals ranking prediction
task

Method SRC MSE MED A-SRC A-MSE A-MED

S3D (full video) 0.59 101.55 8.45 0.63 4179.87 59.12

S3D (entry substage) 0.61 78.00 8.12 0.78 4381.17 62.56

Ours (OSL+TS) 0.55 84.81 7.85 0.84 1612.82 36.60

Ours (OSL+FTPSL) 0.61 70.76 7.06 0.75 1352.71 33.06

Ours (ESL+TS) 0.81 42.53 3.59 0.81 676.80 17.78

Ours (ESL+FTPSL) 0.75 51.68 5.18 0.84 748.62 23.57

The bold entries represents the best result

method achieves state-of-the-art performance in terms of
the SRC, MED and MSE results except that it is slightly
inferior to [29] in SRC. Compared with [29], the SRC value
of the proposed method is 0.01 lower, but the MSE of the
proposed method is reduced by 35.24. This means that the
scores estimated by the proposed method are closer to the
ground truth, while the predicted score ranking results are
almost equal to those of [29]. Compared with the stacking
segmental P3D (S3D) method [2], the SRC value of the
proposed method is improved by 0.1, and the MED and
MSE values are reduced by 2.1 and 61.78, respectively,
indicating that our method is more accurate in predicting
both the ranking and the absolute scores.

Comparison on the finals ranking prediction task The pro-
posed multi-substage AQAmodel was applied to predict the
performance scores and ranking of the athletes in the finals
of the men’s 10-m platform at the 2012 London Olympics.
To verify the effectiveness of the proposed method for
this task, we compare it with S3D [2], which achieves
state-of-the-art performance on the original task for the
UNLV-Diving dataset. The experimental results are shown
in Table 4.

In [2], S3D was implemented via two strategies: with
the input sampled from the full video and with the input
sampled only from the entry substage. As seen in Table 4,
for the 70 test videos, the SRC value of the proposed
method is 0.81, an improvement of 0.2 compared with that
of S3D. The MSE value of the proposed method is 42.53,
corresponding to a decrease of 35.47. Similarly, the MED
value of the proposed method is reduced by 4.53. We also
find similar results for the total scores and rankings of the
athletes. The A-SRC value of the proposed method is 0.81,
which is improved by 0.03 compared with that of S3D.
Similarly, the A-MSE and A-MED values are decreased by
3,704.37 and 44.78, respectively.

To further evaluate the performance of the proposed
method for the finals ranking prediction task, the predicted
total score for each athlete is shown in Fig. 5. The top three
athletes are also listed in this figure. In Fig. 5, the only
identifiers used for the 12 athletes are their nationalities
and initials. The blue line represents the predicted score,
and the green line represents the true score. We find that
for the top three predictions, the recall and accuracy of the
proposed method are both 100%. However, the proposed
method fails to predict the champion among the 12 athletes.

Fig. 5 Predicted and
ground-truth scores of the 12
athletes in the finals. The
abscissa presents the athlete
identifiers, and the ordinate
indicates the total scores
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Fig. 6 Visualization of the execution scores for the individual substages of the test videos

Specifically, in the prediction results, the champion and
third-place athletes are swapped. In fact, the performance
of the top three athletes in the finals was very close.
The accurate evaluation of these athletes requires a more
fine-grained method, which will be addressed in our future
work.

4.4 Substage quality assessment feedback

Another advantage of the proposed method is that it provides
detailed substage motion quality feedback for each action.
To analyze the performance of the proposed method for
substage quality assessment, we visualize the normalized
execution scores for each substage of the diving actions in
the test set in Fig. 6. For this experiment, the ESL+FTPSL
model was selected to output the subscores.

From Fig. 6, we find that the subscores for the first three
substages of the test samples seem to be close, ranging from
0.45 to 0.6. For the last two substages, however, the distri-
butions of the quality scores are uneven and distinguishable.
These observations indicate that in diving, the performance
of athletes in the entry and end stages is a key factor
for assessing their overall execution scores. Accordingly,
three samples with high, medium and low overall scores
are selected; the ground truths for the overall scores of
these samples are 92.75, 70.2 and 42.9, and the values pre-
dicted by the proposed method are 94.86, 89.25 and 50.68,
respectively.

For the last two substages, representative frames and
the predicted execution scores for these three samples are
shown in Fig. 7. From this figure, we can see that for Sample
1, which shows a good entry posture and the smallest splash,
our method gives the highest execution scores for these two
substages. For Sample 3, which shows the largest splash,
the proposed method produces the lowest scores. These
results further verify that the proposed method can provide
an accurate evaluation of the last two substages of the
diving action.

In contrast, the proposed method does not seem to be
able to distinguish the quality of the first three actions; this
inability is manifested in the small range of scores. The reason
for this may be that in diving, the human posture in the first
three substages changes rapidly, and it is difficult to capture
fine-grained discriminative features in these substages. Thus,
we will also investigate this problem in future work.

Finally, we discuss the computation time of the proposed
method. We conducted all of experiments on a device with
one NVIDIA RTX 3090 graphics card. The average com-
putation time for each video in the testing process was
about 0.34 s, excluding the preliminary video segmentation
stage. Although the proposed method can quickly predict
the action quality scores from segmented videos, unfor-
tunately, most temporal segmentation networks (TSNs),
including the video segmentation model used in this paper,
are offline tools. Therefore, this method cannot yet be used
for real-time sporting events.

Sample1 3elpmaS2elpmaS

0.87

0.68

Entry

Ending

0.72

0.60

0.50

0.47

Fig. 7 Execution scores for the last two substages of selected samples
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5 Conclusion

This paper has proposed a label-reconstruction-based pseudo-
subscore learning (PSL) method for AQA in sporting events.
In the proposed method, pseudo-subscore labels are gen-
erated for the training data. Then, a multi-substage AQA
model is trained based on these pseudo-subscores in com-
bination with the original overall score labels. Experimental
results obtained on a public dataset verify the effectiveness
of the proposed method.

However, there are some limitations to our work. First,
in this work, we use the same TSN and substage labels
as in the previous work on the AQA method known as
S3D [2] to achieve video segmentation. This approach
was verified to have a very high segmentation accuracy
(96.6%) in [2]. However, the accuracy of the TSNwill affect
the performance of the proposed method. Regarding this
problem, we argue that the TSN belongs to the scope of
action temporal segmentation (ATS). In contrast, our work
focuses on the AQA problem, and the TSN is an open
and basic module in the proposed method. It can easily be
replaced by the latest and most effective ATS model. In
future work, we will also consider an AQA method without
substage segmentation or build a multitask model to solve
the TSN and AQA problems simultaneously.

Second, the frame sampling strategy leads to unstable
video features. For the feature learning network, the input
video should be sampled to form an image sequence of
a fixed length. In most existing methods, the random
sampling method is adopted. However, for the same video,
the scores predicted based on different sampling results will
be somewhat different. This is a common problem in 3D
video feature learning. As mentioned in the experimental
section, in this work, we averaged the evaluation metrics
over 35 repeated experiments to obtain the final results to
mitigate this problem. In future work, we will also pursue a
more stable and robust video feature learning method.
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