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Abstract. Many machine learning systems rely on data collected in the
wild from untrusted sources, exposing the learning algorithms to data
poisoning. Attackers can inject malicious data in the training dataset
to subvert the learning process, compromising the performance of the
algorithm producing errors in a targeted or an indiscriminate way. Label
flipping attacks are a special case of data poisoning, where the attacker
can control the labels assigned to a fraction of the training points. Even
if the capabilities of the attacker are constrained, these attacks have
been shown to be effective to significantly degrade the performance of
the system. In this paper we propose an efficient algorithm to perform
optimal label flipping poisoning attacks and a mechanism to detect and
relabel suspicious data points, mitigating the effect of such poisoning
attacks.

Keywords: adversarial machine learning ➲ poisoning attacks ➲ label flip-
ping attacks ➲ label sanitization

1 Introduction

Many modern services and applications rely on data-driven approaches that use
machine learning technologies to extract valuable information from the data
received, provide advantages to the users, and allow the automation of many
processes. However, machine learning systems are vulnerable and attackers can
gain a significant advantage by compromising the learning algorithms. Thus,
attackers can learn the blind spots and the weaknesses of the algorithm to ma-
nipulate samples at test time to evade detection or inject malicious data into
the training set to poison the learning algorithm [6]. These attacks have already
been reported in the wild against antivirus engines, spam filters, and systems
aimed to detect fake profiles or news in social networks.

Poisoning attacks are considered one of the most relevant and emerging se-
curity threats for data-driven technologies [9], especially in cases where the data
is untrusted, as for example in IoT environments, sensor networks, applications
that rely on the collection of users’ data or where the labelling is crowdsourced
from a set of untrusted annotators. Related work in adversarial machine learn-
ing has shown the effectiveness of optimal poisoning attacks to degrade the
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performance of popular machine learning classifiers –including Support Vector
Machines (SVMs) [4], embedded feature selection methods [16], neural networks
and deep learning systems [12]– by compromising a small fraction of the train-
ing dataset. Previous attacks assume that the attacker can manipulate both,
the features and the labels of the poisoning points. For some applications this
is not possible, and the attacker’s capabilities are constrained to the manip-
ulation of the labels. These are known as label flipping attacks. Even if these
attacks are more constrained, they are still capable of degrading significantly
the performance of learning algorithms, including deep learning [17].

Few general defensive mechanisms have been proposed against poisoning at-
tacks in the context of classification problems. For example, in [13] the authors
propose an algorithm that evaluates the impact of each training sample in the
performance of the learning algorithms. Although this can be effective in some
cases, the algorithm does not scale well for large datasets. In [14], an outlier de-
tection scheme is proposed to identify and remove suspicious samples. Although
the defensive algorithm is capable of successfully mitigating the effect of opti-
mal poisoning attacks, its performance is limited to defend against label flipping
attacks. Other more algorithm-dependent alternatives are described in Sect. 2.

In this paper we first propose an algorithm to perform label flipping poison-
ing attacks. The optimal formulation of the problem for the attacker is com-
putationally intractable. We have developed an heuristic that allows to craft
efficient label flipping attacks at a reduced computational cost. On the other
hand, we also propose a defensive mechanism to mitigate the effect of label flip-
ping attacks with label sanitization. We have developed an algorithm based on
k -Nearest-Neighbours (k-NN) to detect malicious samples or data points that
have a negative impact on the performance of machine learning classifiers. We
empirically show the effectiveness of our algorithm to mitigate the effect of label
flipping attacks on a linear classifier for 3 real datasets.

The rest of the paper is organised as follows: in Sect. 2 we describe the related
work. In Sect. 3 we introduce a novel algorithm to perform optimal label flipping
poisoning attacks. In Sect. 4 we present our defensive algorithm to mitigate the
effect of label flipping attacks by identifying and relabelling suspicious samples.
In Sect. 5 we show our experimental evaluation on real datasets assessing the
validity of our proposed defence. Sect. 6 concludes the paper.

2 Related Work

Optimal poisoning attacks against machine learning classifiers can be formulated
as a bi-level optimization problem where the attacker aims to inject malicious
points into the training set that maximize some objective function (e.g. increase
the overall test classification error) while, at the same time, the defender learns
the parameters of the algorithm by minimizing some loss function evaluated
on the tainted dataset. This strategy has been proposed against popular binary
classification algorithms such as SVMs [4], logistic regression [11], and embedded
feature selection [16]. An extension to multi-class classifiers was proposed in [12],
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where the authors also devised an efficient algorithm to compute the poisoning
points through back-gradient optimization, which allows to poison a broader
range of learning algorithms, including neural networks and deep learning sys-
tems. An approximation to optimal poisoning attacks was proposed in [10] where
the authors provide a mechanism to detect the most influential training points.
The authors in [17] showed that deep networks are vulnerable to (random) label
noise. In [3], a more advanced label flipping poisoning attack strategy is proposed
against two-class SVMs, where the attacker selects the subset of training points
that maximizes the error, evaluated on a separate validation set, when their la-
bels are flipped. Label flipping attacks have been deeply investigated also by the
computational learning theory community. In this community, the case where
attacker can alter a fraction of the training data labels is often referred to as ad-
versarial classification noise and the goal is to design polynomial-time algorithms
for PAC learning. However, solutions to this problem have only been found in
very restricted distributional settings, e.g. isotropic log-concave marginal distri-
butions realized by a linear model passing through the origin [2]. However, in
practice, the marginal data distribution is unknown and realizability is often
violated, making these algorithms not very appealing for practical applications.
Stronger results releasing realizability are known only for the case when even
more restrictive assumptions on the attacker model are made [1].

Defences against optimal poisoning attacks typically consist either in iden-
tifying malicious examples and discarding them from the training data [14] or
they require to sove some robust optimization problem [5, 8]. For example, the
authors in [14] propose the adoption of outlier detection algorithms to remove
the poisoning data points from the training set before training. A white-box

model, where the attacker is aware of the outlier preprocessing, is considered
in [15]. In this latter work authors approximate a data-dependent upper bound
on the performance of the learner under data poisoning with an online learning
algorithm, assuming that some data sanitization is performed before training.
Although the experimental evaluation supports the validity of this approach to
mitigate optimal poisoning attacks, the capabilities of the algorithm to reduce
the effect of more constrained attack strategies is limited. [5] proposes a robust
version of logistic regression which comes with strong statistical guarantees, but
it requires distributional assumption on the data generating distribution and
assumes the poisoning level to be known. Instead, the defensive algorithm in [8]
iteratively trains the model while trimming the training data based on the cur-
rent error estimates. However, [8] focuses in the context of linear regression and
the proposed defence requires to estimate a priori the number of poisoning data
points.

Specific mechanisms to defend against label flipping are described in [10,13].
The authors in [13] propose to measure the impact of each training example on
the classifier’s performance to detect poisoning points. Examples that affect neg-
atively the performance are then discarded. Although effective in some cases, the
algorithm scales poorly with the number of samples. Following the same spirit, a
more scalable approach is proposed in [10] through the use of influence functions,
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where the algorithm aims to identify the impact of the training examples on the
training cost function without retraining the model.

3 Label Flipping Attacks

In a poisoning attack, the adversary injects malicious examples in training
dataset to influence the behaviour of the learning algorithm according to some
arbitrary goal defined by the attacker. Typically, adversarial training examples
are designed to maximize the error of the learned classifier. In line with most of
the related work, in this paper, we only consider binary classification problems.
We restrict our analysis to worst-case scenarios, where the attacker has per-
fect knowledge about the learning algorithm, the loss function that the defender
is optimizing, the training data, and the set of features used by the learning
algorithm. Additionally we assume that the attacker has access to a separate
validation set, drawn from the same data distribution than the defender’s train-
ing and test sets. Although unrealistic for practical scenarios, these assumptions
allows us to provide worst-case analysis of the performance and the robustness
of the learning algorithm when is under attack. This is especially useful for
applications that require certain levels of assurance on the performance of the
system.

We consider the problem of learning a binary linear classifier over a do-
main X ⊆ R

d with labels in Y = {−1,+1}. We assume that the classifiers
are parametrized by w ∈ R

d, so that the output of the classifier is given by
hw(x) = sign(w⊤x). We assume the learner to have access to an i.i.d. training
dataset S = {(xi, yi)}

m
i=1

drawn from an unknown distribution D over X ×Y.
In a label flipping attack, the attacker’s goal is to find a subset of p examples

in S such that when their labels are flipped, some arbitrary objective function
for the attacker is maximized. For the sake of simplicity, we assume that the
objective of the attacker is to maximize the loss function, ℓ(w, (xj , yj)), evaluated
on a separate validation dataset SV = {(xj , yj)}

n
j=1

. Then, let u ∈ {0, 1}m with
‖u‖0 = p and let Sp = {Pi}

m
i=1

a set of examples defined such that: Pi = (xi, yi)
if u(i) = 0, and Pi = (xi,−yi) otherwise. Thus, u is an indicator vector to specify
the samples whose labels are flipped and Sp = {(x′

i, y
′
i)}

m
i=1

denotes the training
dataset after those label flips. We can formulate the optimal label flipping attack
strategy as the following bi-level optimization problem:

u∗ ∈ argmax
u∈{0,1}m,‖u‖0=p

1

n

n∑

j=1

ℓ(w, (xj , yj))

s.t. w = Aℓ(Sp)

(1)

where the parameters w are the result of a learning algorithm Aℓ that aims to
optimize a loss function ℓ on the poisoned training set Sp.

1 Solving the bi-level
optimization problem in (1) is intractable, i.e. it requires a combinatorial search

1 For simplicity we assume that the attacker aims to maximize the average loss on a
separate validation dataset.
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amongst all the possible subsets of p samples in S whose labels are flipped.
To sidestep this difficulty in Algorithm 1 we propose a heuristic to provide a
(possibly) suboptimal but tractable solution to Problem (1). Thus, our proposed
algorithm greedily selects the examples to be flipped based on their impact on the
validation objective function the attacker aims to maximize. At the beginning we
initialize u = 0, Sp = S, I = [1, . . . ,m], where I is the search space, described
as a vector containing all possible indices in the training set. Then, at each
iteration the algorithm selects from S(I) the best sample to flip, i.e. the sample
that, when flipped, maximizes the error on the validation set, e(j), given that
the classifier is trained in the tainted dataset S′ (which contains the label flips
from previous iterations). Then, the index of this sample, ij , is removed from I,
the ij-th element of u is set to one, and Sp is updated accordingly to the new
value of u.

Algorithm 1: Label Flipping Attack (LFA)

Input: training set S = {(xi, yi)}
m
i=1, validation set SV = {(xj , yj)}

n
j=1, # of

examples to flip p.
Initialize: u = 0, Sp = S, I = [m]
for k ← 1 to p do

for j ← 1 to |I| do
S′ = Sp, S

′

Ij
= (xIj ,−yIj )

w∗ ∈ argmin
w

1

m

∑m
i=1

ℓ(w, (x′

i, y
′

i))
e(j) = 1

n

∑n
j=1

ℓ(w, (xj , yj))

end
ik = argmaxi∈I e(i)
uik = 1, I = I/{ik}
Sp = S(u)

end
Output: poisoned training set Sp, flips u

4 Defence against Label Flipping Attacks

We can expect aggressive label flipping strategies, such as the one described in
Sect. 3, to flip the labels of points that are far from the decision boundary to
maximize the impact of the attack. Then, many of these poisoning points will be
far from the genuine points with the same label, and then, they can be considered
as outliers.

To mitigate the effect of label flipping attacks we propose a mechanism to
relabel points that are suspicious to be malicious. The algorithm uses k-NN
to assign the label to each instance in the training set. The goal is to enforce
label homogeneity between instances that are close, especially in regions that
are far from the decision boundary. The procedure is described in Algorithm 2.
Thus, for each sample in the (possibly tainted) training set we find its k nearest
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neighbours, Ski
using the euclidean distance.2 Then, if the fraction of data points

in Ski
with the most common label in Ski

–denoted as conf(Ski
)– is equal or

greater than a given threshold η, with 0.5 ≤ η ≤ 1, the corresponding training
sample is relabelled with the most common label in Ski

. This can be expressed
as mod (Ski

), the mode of the sample labels in Ski
. The algorithm can also be

repeated several times until no training samples are relabelled.

Algorithm 2: kNN-based Defence

1 Parameters: k, η.
2 Input: training set S = {(xi, yi)}

m
i=1.

3 for i← 1 to m do
4 Ski

= k-NN(S/i)
5 if (conf(Ski

) ≥ η) then y′

i = mod (Ski
)

6 else y′

i = yi
7 end
8 Output: S

Poisoning points that are far from the decision boundary are likely to be
relabelled, mitigating their malicious effect on the performance of the classifier.
Although the algorithm can also relabel genuine points, for example in regions
where the two classes overlap (especially for values of η close to 0.5), we can
expect a similar fraction of genuine samples relabelled in the two classes, so
the label noise introduced by Algorithm 2 should be similar for the two classes.
Then, the performance of the classifier should not be significantly affected by
the application of our relabelling mechanism. Note that the algorithm is also
applicable to multi-class classification problems, although in our experimental
evaluation in Sect. 5 we only consider binary classification.

5 Experiments

We evaluated the performance of our label flipping attack and the proposed
defence on 3 real datasets from UCI repository:3 BreastCancer, MNIST, and
Spambase, which are common benchmarks for classification tasks. The charac-
teristics of the datasets are described in Table 1. Similar to [4, 12], for MNIST,
a multi-class problem for handwritten digits recognition, we transformed the
problem into a binary classification task, aiming at recognising digits 1 and 7.
As classifier, we used a linear classifier that aims to minimize the expected hinge

loss, ℓ(w, (x, y)) = max{0, 1 − y(w⊤x)}. We learned the parameters w with
stochastic gradient descent.

In our first experiment we evaluated the effectiveness of the label flipping
attack described in Algorithm 1 to poison a linear classifier. We also assessed

2 Any other distance, such as the Hamming distance, can be applied, depending on
the set of features used.

3 https://archive.ics.uci.edu/ml/datasets.html
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(b) MNIST
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Fig. 1: Average classification error as a function of the percentage of poisoning
points using the label flipping attack in Algorithm 1. Red line depicts the error
when no defence is applied. Blue line shows the performance of the classifier
after applying Algorithm 2.
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Name # Features # Examples # +/-

BreastCancer 30 569 212/357
MNIST (1 vs 7) 784 13,007 6,742/6,265

SpamBase 54 4,100 1,657/2,443

Table 1: Summary of the datasets used in the experiments. The rightmost column
reports the number of positive and negative examples.

the performance of our defensive strategy in Algorithm 2 to mitigate the effect
of this attack. For each dataset we created 10 random splits with 100 points for
training, 100 for validation, and the rest for testing. For the learning algorithm we
set the learning rate to 0.01 and the number of epochs to 100. For the defensive
algorithm, we set the confidence parameter η to 0.5 and selected the number
of neighbours k according to the performance of the algorithm evaluated in the
validation dataset. We assume that the attacker has not access to the validation
data, so it cannot be poisoned. In practice, this requires the defender to have
a small trusted validation dataset, which is reasonable for many applications.
Note that typical scenarios of poisoning happen when retraining the machine
learning system using data collected in the wild, but small fractions of data points
can be curated before the system is deployed. From the experimental results in
Figure 1 we observe the effectiveness of the label flipping attack to degrade the
performance of the classifier in the 3 datasets (when no defence is applied).
Thus, after 20% of poisoning, the average classification error increases by a
factor of 2.8, 6.0, and 4.5 respectively for BreastCancer, MNIST, and Spambase.
In Figure 1 we also show that our defensive technique effectively mitigates the
effect of the attack: The performance with 20% of poisoning points is similar to
the performance on the clean dataset on BreastCancer and Spambase, and we
only appreciate a very slight degradation of the performance on MNIST. When
no attack is performed, we observe that our defensive strategy slightly degrades
the performance of the classifier (compared to the case where no defence is
applied). This can be due to the label noise introduced by the algorithm, which
can relabel some genuine data points. However, this small loss in performance
can be affordable for the sake of a more secure machine learning system.

In Figure 2 we show the sensitivity of the parameters k and η in Algorithm 2.
We report the average test classification error on BreastCancer dataset for dif-
ferent configurations of our defensive strategy. In Figure 2.(a) we show the sen-
sitivity of the algorithm to the number of neighbours k, setting the value of η to
0.5. We observe that for bigger values of k the algorithm exhibits a better perfor-
mance when the fraction of poisoning points is large, and the degradation on the
performance is more graceful as the number of poisoning points increases. How-
ever, for smaller fractions of poisoning points or when no attack is performed,
smaller values of k show a slightly better classification error. In Figure 2.(b) we
observe that Algorithm 2 is more sensitive to the confidence threshold η. Thus,
for bigger values of η the defence is less effective to mitigate the label flipping
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attacks, since we can expect less points to be relabelled. Then, small values of η
show a more graceful degradation with the fraction of poisoning points, although
the performance when no attack is present is slightly worse.
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Fig. 2: Average test classification error as a function of the percentage of poison-
ing points. (a) Performance of the defensive algorithm for different values of k,
with η = 0.5. (b) Performance for different values of η for k = 10. Solid red line
depicts the baseline, when no defence is applied.

6 Conclusion

In this paper we propose a label flipping poisoning attack strategy that is ef-
fective to compromise machine learning classifiers. We also propose a defence
mechanism based on k-NN to achieve label sanitization, aiming to detect ma-
licious poisoning points. We empirically showed the significant degradation of
the performance produced by the proposed attack on linear classifiers as well
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as the effectiveness of the proposed defence to successfully mitigate the effect of
such label flipping attacks. Future work will include the investigation of similar
defensive strategies for less aggressive attacks, where the attacker considers de-
tectability constraints. Similar to [7] we will also consider cases where the attack
points collude towards the same objective, where more advanced techniques are
required to detect malicious points and defend against these attacks.
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