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ABSTRACT Multi-label classification tackles the problems in which each instance is associated with

multiple labels. Due to the interdependence among labels, exploiting label correlations is the main means

to enhance the performances of classifiers and a variety of corresponding multi-label algorithms have

been proposed. Among those algorithms Classifier Chains (CC) is one of the most effective methods.

It induces binary classifiers for each label, and these classifiers are linked in a chain. In the chain, the labels

predicted by previous classifiers are used as additional features for the current classifier. The original CC

has two shortcomings which potentially decrease classification performances: random label ordering, noise

in original and additional features. To deal with these problems, we propose a novel and effective algorithm

named LSF-CC, i.e. Label Specific Features based Classifier Chain for multi-label classification. At first,

a feature estimating technique is employed to produce a list of most relevant features and labels for each

label. According to these lists, we define a chain to guarantee that the most frequent labels that appear in

these lists are top-ranked. Then, label specific features can be selected from the original feature space and

label space. Based on these label specific features, corresponding binary classifiers are learned for each label.

Experiments on several multi-label data sets from various domains have shown that the proposed method

outperforms well-established approaches.

INDEX TERMS Classifier chains, label specific features, multi-label learning.

I. INTRODUCTION

The traditional single-label classification aims to assign a

label for each instance from a finite set of labels, including

binary and multi-class classification [1]. However, real-world

applications usually need to assign multiple labels simul-

taneously. For example, a large number of documents on

the web site often require several topics with the purpose

of the improved quality of search and recommendation [2];

automatically assigning keywords to an uploaded web image

makes it easy to be searched directly using text-based image

retrieval systems [3]; in social network analysis, with the help

The associate editor coordinating the review of this manuscript and

approving it for publication was Julien Le Kernec .

of multiple labels associated with nodes, accuracy and stabil-

ity methods of community discovery with linear time com-

plexity can be obtained to reveal the organizational principle

and dynamic characteristic of the real network [4]; annotating

image-level labels for high-resolution aerial imagery offers

a holistic understanding of those images and makes tasks

of urban mapping, ecological monitoring and geomorpho-

logical analysis more effective at low cost [5]. Multi-label

classification is a supervised machine learning framework

for these scenarios, which aims at automatically assigning

correct labels to unseen instances. In recent years, multi-label

classification has become a hot topic in the research area

of data mining and machine learning due to its extensive

applications.
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One popular strategy for multi-label classification is prob-

lem transformation [6], which decomposes the original prob-

lem into one or more binary classification subproblems.

Many algorithms in multi-label learning have followed this

strategy, in which binary relevance (BR) [7] is a represen-

tative one. BR constructs a subproblem for each label, and

the instance associated with the label is viewed as a positive

one, otherwise negative. BR has one obvious shortcoming,

i.e. it trains binary classifiers for each label independently

and completely ignores the dependence relationships among

labels. Because of this shortcoming, it usually gives rise to

the suboptimal prediction performancewhen strong label cor-

relation exists. For example, an image tagged with ‘‘desert’’

usually is likely to be tagged with ‘‘camel’’. Due to the exis-

tence of dependency relationships among labels, multi-label

classification tends to be more challenging than traditional

single-label classification. Exploiting label correlation has

become the main impetus in multi-label learning to improve

prediction performance [8]–[13]. For example, to incorporate

label correlations in BR, the Classifier Chains (CC) [9] was

proposed. CC links these binary classifiers in a given sequen-

tial order, such that each classifier incorporates the labels

predicted by the previous classifiers as additional features.

Despite its simplicity, a comprehensive recent empirical study

demonstrated that CC is among the top best-performing

algorithms [14].

Except for the challenge of label correlations, the high-

dimensional feature space is another challenge in multi-label

learning [2], [15], [16]. As we know, the noise and irrele-

vant features within the data also put an obstacle to a given

learning task, such as computational burden, over-fitting,

and poor performance. To solve these problems, a lot of

feature reduction based approaches have been presented, and

most of them construct an identical feature subset for all

labels [17]. Recently, Zhang and Wu [18] discussed that

each label in multi-label problems is supposed to determine

by some specific features of its own, so existing classi-

fiers learning from the identical feature set for all labels

might be suboptimal. From then on, label specific features

attracted great interest in multi-label learning [11], [19]–[22].

According to the type of extracting label specific features,

existing algorithms can be roughly divided into two major

categories: label-specific feature extraction and label-specific

feature selection. label-specific feature extraction converts

high-dimensional feature space into low-dimensional fea-

ture space for each label through transforming or mapping.

Because the translated features are completely different from

the original features, it is difficult to understand the relation-

ship between them. LIFT [18] is one of the representative

algorithms of feature extraction. It exploits the label specific

features by conducting clustering analysis on positive and

negative instances respectively, and the new features are rep-

resented by distances between the original instances and the

centers of clusters. Label-specific feature selection attempts

to eliminate as many as possible redundant features from the

original feature space and preserve discriminative features

for each label, which can preserve the original meaning of

features. LLSF [23] is one of the representative algorithms

of feature selection. It exploits label specific features through

linear regression with ℓ1 normmodeling the discriminant and

sparsity of them.

Motivated by the aforementioned works, we propose a

novel classifier chain method named LSF-CC, i.e. Label

Specific Features based Classifier Chains for multi-label

classification. LSF-CC follows the common framework of

the classifier chain method, and constructs binary classi-

fiers in a predetermined ordering, in which each classifier

uses the predictions of previous classifiers in the chain as

additional features. Because the wrong predictions would

propagate along the chain, and an inadequate label order-

ing can potentially decrease the performance of classifier

chainmethods. Another important issue of the classifier chain

method is that the features, no matter the original feature or

the additional features, usually include redundant and irrel-

evant features, which may bring disadvantages to learning

algorithms. To deal with those problems, LSF-CC optimizes

the label ordering in a chain of classifiers according to label

correlations and selects label specific features from original

feature space and label space. Then, it learns the correspond-

ing binary classifiers with them. Comparison with CC and

other state-of-the-art manifests the efficiency of our proposed

method. The key contributions of our method are summarized

as follows:
1) Our proposed algorithm LSF-CC figures out the two

shortcomings of traditional classifier chain based algo-

rithms which can potentially decrease their perfor-

mance: the random label ordering and the noises in

original and additional features.

2) Our method considers label correlations from a global

perspective. For each label, the relations between it and

all outputting labels are measured.

3) Existing feature selection algorithms usually extract

features from feature space, while the proposed algo-

rithm can select label specific features for each label

from feature and label space.

The rest of this article is organized as follows. Section II

briefly reviews the related work on multi-label learning.

In Section III, we describe the detail of our proposed algo-

rithmLSF-CC. Parameter settings, data sets and experimental

results are shown in Section IV. Finally, Section V concludes

this paper.

II. RELATED WORKS

Early multi-label classification originated from the investiga-

tion of multi-label text categorization techniques [24]. At that

time, what is driving these studies is the need for efficient

retrieval of large numbers of documents on the Internet.

Nowadays, with the continuous development and in-depth

application of information collection, data transmission and

web services in all walks of life, a large amount of multi-label
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data has been accumulated, and the researches on multi-label

classifications have been gradually extended to image and

video annotation, gene function, music emotion classifica-

tion and other fields. In recent years, a lot of multi-label

classification algorithms have been presented, which can be

divided into twomain categories: problem transformation and

algorithm transformation [6].

Problem transformation methods decompose the multi-

label problem into one or more single-label subproblems,

then they can directly figure out via traditional classification

models. To do it, problem transformation methods mainly

depend on three strategies: binary relevance, label power-

set and pairwise. Binary relevance methods learn a binary

classifier for each label. BR [7] is one of the representa-

tive binary relevance methods. It constructs binary classi-

fiers independently, in which the label correlations are not

considered at all. To incorporate label correlation into BR,

Godbole and Sarawagi [25] proposed stacking BR model,

which contains two-layer of BR. In the meta-level, all the

predicts of the base label classifiers are used as additional

features for learning the final binary classifiers. Because label

correlations usually exist among part rather than all of the

labels, this type of stacking BR model usually introduces

noises or redundant features into learning. A few works try

to select a part of the outputs of the base level BR as addi-

tional features for meta-level learning, such as BR+ [26],

SMBPO [11]. Read et al. proposed classifier chains (CC) [9]

model for multi-label classification, which constructs a chain

of binary classifiers, each for a label. CC learns these clas-

sifiers one by one, and in the chain each classifier is learned

using the original features augmented with all labels asso-

ciated with the previous classifiers in the chain. It works

by a random label sequence, so its performance is seriously

constrained by the choice of label ordering. If the previous

predictions are wrong, the errors will propagate in the next

steps. In order to mitigate the error propagation introduced

by random ordering, some methods resort to an ensemble of

classifier chains [9], other works turn to optimize the label

ordering [27]. Label powerset methods treat related labels

of each instance as an atomic label. Then, the multi-label

problem is transformed to a single-label multi-class problem,

such as RAkEL [28] and EPS [29]. Label powerset methods

overcome the label independence problem, but suffer from

the huge label combinations when the label set is large and

labeling is very variable. Pairwise methods decompose the

multi-label problem with q labels into q(q − 1)/2 binary

classification subproblems, in which each subproblem is

responsible for a pair of labels. Then, the predictions are

combined into a ranking based on the ensemble of those

binary classifiers, such as PRC [30] and PRC [31]. Obviously,

pairwisemethods are greatly affected by the number of labels,

and when there are too many labels, those methods are too

complex to be practical.

Problem transformation methods are independent

from specific classification algorithms, while algorithm

transformation methods adapt existing single-label algo-

rithms for the purpose of multi-label classification. Much

of the literature is focussed on modifications to decision

trees [32], k nearest neighbors [34], neural network [35] and

support vector machine [36]. ML-C4.5 [37] builds a decision

tree through a top-down approach, with the root containing

all the training samples. For a non-leaf node in the tree, each

feature is examined one by one to find an appropriate dividing

point, so that the data of the node can be divided to obtain

the maximum information gains. Clus-HMC [32] employed a

decision tree for hierarchical multi-label prediction. It divides

the sample set in the current node into several disjoint sub-

sets with the principle of minimizing intra-cluster variance.

In Clus-HMC, the intra-cluster variance of a node is defined

as the distances between each label vector of instance and the

average label vector. Bp-MLL [35] firstly employs a neural

network for multi-label classification, which designs an opti-

mized objective function to discriminate label pairs between

the relevant labels and the irrelevant labels. RankSVM [36]

proposed a multi-label classification algorithm based on a

large margin ranking system that shares common properties

with SVMs.

III. THE PROPOSED ALGORITHM

Let xi ∈ X = Rd denotes the instance with d features,

Y = {y1, y2, . . . , yq} are the label set. The multi-label train-

ing set D = {(xi,Yi)|1 ≤ i ≤ n} consists of n instances,

where Yi ⊆ Y is the labels associated with xi. For conve-

nience, Yi is often represented as a logic vector ci. If yj ∈

Yi, then cij = 1; otherwise cij = 0. Therefore, D can

be represented as the combination of input matrix X =

[x1, x2, . . . , xn]
T and output matrix Y = [c1, c2, . . . , cn]

T .

The task of multi-label learning is to define a predictor h :

X → {1,−1}q from D. If we learn classifiers for each label,

then h = [h1, h2, . . . , hq]. And, for the label yi, its predictor

hi : X → {1, 0}.

FIGURE 1. The framework of LSF-CC.

Our proposed algorithm, LSF-CC, is shown in Figure 1,

which includes three steps: label ordering optimization, label

selection and feature selection. In the first step, we establish

an optimized sequence of labels according to label correla-

tions, so that the labels at the beginning of the sequence are
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as dependent as possible on the labels that follow them. For

the current label in the sequence, its previous labels may not

all be related to it, that is, not all those labels are suitable

to be the new features for the label. Therefore, in the step

of label selection, for a label in the sequence, we select the

most related labels from previous ones as its new feature.

In the step of feature selection, the label-specific features

are achieved by removing irrelevant and redundant features

from the original feature space in a filtered manner. Then,

the corresponding binary classifiers are learned based on

those label-specific features coming from feature space and

label space.

A. LABEL ORDER OPTIMIZATION

The biggest problem of the original CC algorithm lies in the

unstable operation effect caused by the random label order-

ing for training, which is difficult to be applied to practical

problems. Therefore, it is necessary to select an adequate

label ordering and train the corresponding binary classifiers

according to it, so as to achieve the goal of improving the

performance of the classifier chain algorithm. In order to opti-

mize the ordering of labels, first the correlations among labels

are estimated. According to those correlations, we select the

most related label subset Ri for each label yi. Then, the num-

ber of the appearance of each label is accounted based on

those subsets R1,R2, . . . ,Rq. The more times a label appears,

the more other labels are correlated with it. For those frequent

labels, they should be predicted as early as possible, so that

their predicting results can be used as additional features

for correlated labels. In other words, those labels should be

ranked first in the label ordering.

In order to estimate label correlations, here the well-known

feature estimating method ReliefF [38] is used. ReliefF

considers that good features should differentiate between

instances from different classes and should have the same

value for instances from the same class. For a given

instance xi, ReliefF searches its k-nearest neighbors from

the same and different classes respectively. Then, ReliefF

penalizes every feature which has different values between

xi and instances from the same class and rewards ones that

have different values between xi and instances from different

classes. ReliefF can be applied on discrete or continuous fea-

tures. Furthermore, ReliefF can deal with noisy, incomplete

and multi-class data sets. Because of those characteristics,

ReliefF was shown to be very efficient in estimating features.

Recently ReliefF is used in multi-label learning for feature

selection [39], [40]. Existing methods usually utilize ReliefF

to estimate features. In our algorithm labels are used as addi-

tional features to construct classification models. So, we give

an attempt to estimate labels by ReliefF. Similar to features,

good labels should differentiate between logic vectors from

different classes and should have the same value for logic vec-

tors from the same class. Formally, for a label yl(1 ≤ l ≤ q),

function diff (yl, ci, cj) calculates the difference between the

values of yl for two logic vectors ci and cj. As the value of yl
is discrete, the function is defined in Eq.(1):

diff (yl, ci, cj) =

{

0 cil = cjl

1 cil 6= cjl
(1)

We let a vector wl = [wl1,wl2, . . . ,wlq]
T record the

estimating values of all labels in terms of label yl . Each

elementwle(1 ≤ e ≤ q) ranges from−1 to 1, and it is initially

set as 0. The larger value of wle indicates the label ye is more

important for label yl . wle is repeatedly calculated for z times.

For each time, we randomly select a label vector ci and search

for its two k−nearest neighbor set: one from the same class,

denoted by Hi, and the other from a different class, denoted

by Mi. Then wle is updated by Eq.(2).

wle = wle −

k
∑

j=1

diff (ye, ci,Hi(j))/(zk)

+

k
∑

j=1

diff (ye, ci,Mi(j))/(zk) (2)

Algorithm 1 presents the whole process of label ordering

optimization. In Algorithm 1, Step 1 estimates the qualities of

all labels according to the ReliefF method. Steps 2-6 select

the p most relevant labels for each label and save them in

lacorelaiton. Step 7 counts the times of appearance of each

label yi in lacorelaiton(i, :). Step 8 sorts the statistical results

in descending order and save corresponding labels in LI . Step

9 initializes the list with the first label in LI , as most labels

relate to it. Steps 10-21 continue to select appropriate labels to

input list in sequence. The candidate label needs to be judged

with two conditions: 1) it appears as many times as possible in

lacorelaiton, which means that there are as many subsequent

labels depending on them as possible; 2) existing labels in

the current label ordering should be as relevant as possible

with it. These two conditions are intended to ensure that the

previous labels in the ordering are as dependent as possible

by the subsequence labels, so that they are suitable to be the

additional features of the current label. To guarantee the prior-

ity of the label which satisfies condition (1), the loop in steps

12-15 traverse L1 from front to end. Note that the loop may

not find the label satisfies the condition (2). Step 11 initial-

izes candidate1 and candicate2, where variable candidate1

records the label that satisfies the condition (1) and the vari-

able candidate2 records the label that satisfies the conditions

(1) and (2). Step 13 searches for the label that satisfies the

condition (1). Step 14 searches for the label that satisfies the

conditions (1) and (2). If candidate2 is successfully found,

Step 17 assigns candidate2 to list(i), otherwise, list(i) is

candidate1.

Example 1: In order to demonstrate Algorithm 1 more

clearly, hear the data set Emotions (described in Section IV) is

used to describe the whole process of label ordering optimiza-

tion. Emotions had six labels y1, y2, . . . , y6. We randomly

select four-fifths of its instances for running Algorithm 1.

In terms of performing Step 1, the results of W are shown

as (3), at the bottom of the next page.
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Algorithm 1 Label Ordering Optimization Based on Label

Correlations
Input:

Y : the output matrix;

p: the cardinality of the related label subsets

Output:

lacorelaiton: the most related label subsets;

list: the label ordering;

1: estimate all labels for yi and save them inW [i, :];

2: for each label yi do

3: sort W [i, :] in descending order;

4: save the corresponding labels of previous p elements

of W [i, :] in lacorelaiton[i, :];

5: lacorelaiton[i, ; ]← lacorelaiton[i, :]− yi;

6: end for

7: count the frequency of each label in lacorelaiton and save

it in occnum;

8: sort occnum in descending order, and save the corre-

sponding labels in LI ;

9: list(1)← LI (1);

10: for i = 2 : q do

11: candidate1←−1; candidate2←−1;

12: for j = 2 : q do

13: search for j until LI (j) /∈ list , then set candidate1←

j;

14: Search for j until LI (j) /∈ list and list ∩

lacorelaiton(LI (j), :) 6= ∅, then set candidate2← j;

15: end for

16: if candidate2 == −1 then

17: list(i)← LI (candidate1)

18: else

19: list(i)← LI (candidate2)

20: end if

21: end for

The value of p is set to be 5. after running Steps 2-6, we can

get the lacorelaiton:

lacorelaiton =

















2 3 4 5

3 4 5 6

1 4 5 6

1 3 5 6

1 2 3 6

2 3 4 5

















(4)

According to Step 7, occnum = [3, 3, 5, 4, 5, 4]. It denotes

the times of occurrence of y1, y2, . . . , y6 in lacorelaiton

respectively. Then, LI = [3, 5, 4, 6, 1, 2] in the Step 8.

It illustrates among all labels y3 is the most frequent one, then

y5 follows, and so on. According to Step 9, list(1) = y3. Steps

10-26 determine the order of the subsequence five labels.

When i = 2, we determine the second label of the list . First,

LI (2), i.e. y5 is to be considered as a candidate. Because

y3 ∈ lacorelaiton(5, :), that is, the conditions in Step 16 hold,

list(2) = y3. By that analogy, the final result of the list is

y3, y5, y4, y6, y1, y2. It is the optimized label ordering.

Algorithm 2 Label Selection

Input:

lacorelaiton: the most related label subsets;

list: the label ordering;

Output:

lsl: the selected label subset for each label;

1: prelb = [];

2: for i = 1 : length(list) do do

3: curlb = list(i);

4: lsl[curlb, :] = [];

5: for in = 1 : length(prelb) do do

6: if ismenber(prelb(in), lacorelaiton[curlb, :]) then

7: lsl[curlb, :] = [lsl[curlb, :], prelb(in)];

8: end if

9: end for

10: prelb = [prelb, list(i)];

11: end for

B. LABEL SELECTION

As mentioned in Section I, for each label the original CC

employs all its previous labels as additional features. Because

there may not exist correlations between the current label and

all its previous labels, it will degenerate the performances

of classifiers. In section III-A, we have presented how to

compute the label correlations and the optimal label ordering.

With the result of Algorithm 1, for each label the most related

label subset can be selected. Note that lacorelaiton records

the corresponding related labels for each label, it can not

be treated as additional features directly, as the labels in

lacorelaiton may not locate in front of the current label. So,

for each label yi, its selected label subset consists of those

labels which locate in lacorelaiton[i, :] and in front of it in the

list . The process of feature selection is shown in Algorithm 2.

W =

















1 0.0212 0.1948 0.2200 0.0440 0.0192

0.0008 1 0.0192 0.0312 0.2600 0.0516

0.1104 −0.0020 1 0.0152 0.0360 0.2172

0.2388 0.0144 0.1788 1 0.0604 0.2012

0.0292 0.2752 0.0580 −0.0016 1 0.0640

−0.0068 0.0988 0.2672 0.1576 0.0500 1

















(3)
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In Algorithm 2, prelb denotes the previous labels of

the label curlb, and the selected label subset is saved in

lsl[curlb, :]. Steps 5-9 present the process of label selection

for the label curlb, in which the labels in prelb are checked

one by one whether they are related with curlb. The related

labels are saved in lsl[curlb, :].

Example 2:With the results lacorelaiton and list of exam-

ple 1, Algorithm 2 is ran and the process of label selection

for each label is shown in Table 1. As shown in Table 1,

the selected label set of label y3 is none, as it is the first

label in the label ordering list and need none of labels as

additional features. The selected label subset for y5 is {y3}

and the selected label subset for y4 is {3, 5}, and so on. Note

that for label y1, its selected label set is {y3, y5, y4}, which is

a subset of its previous labels in the label ordering list .

TABLE 1. An example of label selection.

C. FEATURE SELECTION

Different from the original CC, considering the original

feature space may include redundant or irrelevant features,

in LSF-CC we select the appropriate feature subset for each

label to train. Here the ReliefF is employed to estimate the

quality of features, then the feature subset is selected accord-

ing to a ratio parameter r , which identifies the percentage of

the selected features. The process of feature selection is show

in Algorithm 3.

Algorithm 3 Feature Selection

Input:

D: the training set;

r : the ratio of the selected features;

Output:

lsf : the selected features for each label;

1: estimate all labels for yi and save them inW [i, :];

2: for each label yi do

3: sort W [i, :] in descending order;

4: select corresponding feature subset which locate in

front of W [i, :] from original feature space according

to r , and save those features in lsf [i, :];

5: end for

IV. EXPERIMENTS

A. EVALUATION METRICS

The outputs of a test instance in multi-label learning involve

multiple labels simultaneously, which could be partially cor-

rect, fully wrong or fully correct. This makes the traditional

single-label classification evaluation metrics, such as recall,

precision and F-measure are not suitable for evaluating the

performance ofmulti-label algorithms [41]. Therefore, a vari-

ety of evaluation metrics for multi-label learning are pro-

posed, in which we use five widely-used evaluation metrics

to verify the performance in our experiments [6], [41]. Those

metrics include Hamming Loss, Micro-F1, Macro-F1 and

Exact-Match. We let test data set T = {(xi,Yi)|1 ≤ i ≤ m},

where Yi is the ground truth labels and Ŷi is its predicted

labels. These performance evaluation metrics are defined as

follows.

1) Hamming Loss

Hamming Loss evaluates how many times the labels are

misclassified, which returning the mean value across the

test set. We compare the pairs between the predictive labels

and the ground truth labels, when there is an inconsistency,

i.e. one label is ‘‘1’’ but the other is ‘‘0’’, it shows the label is

misclassified. Eq.(5) shows the expression of the Hamming

Loss.

Hamming Loss =
1

m

m
∑

i=1

1

q

q
∑

j=1

JYij 6= ŶijK, (5)

here J·K is an indicator function. If the logic expression in it

is true, it returns 1; otherwise, it returns 0.

2) Micro-F1

Micro-F1 evaluates the F-measure averaging on the predic-

tion matrix. It is formally described as

Micro− F1 =
2

∑q
j=1

∑m
i=1 YijŶij

∑q
j=1

∑m
i=1 Yij +

∑q
j=1

∑m
i=1 Ŷij

. (6)

3) Macro-F1

Macro-F1 evaluates the F-measure averaging on each

label, as represented in Eq.(7).

Macro− F1 =
1

q

q
∑

j=1

2
∑m

i=1 YijŶij
∑m

i=1 Yij +
∑m

i=1 Ŷij
. (7)

4) Exact-Match

Exact-Match evaluates how many times the ground truth

labels and the predicted labels are exactly matched. It is

defined as follows:

Exact −Match =
1

m

m
∑

i=1

JYi = ŶiK. (8)

The domain of values of those evaluationmetrics discussed

above all vary between [0,1]. For Hamming Loss, the smaller

the values the better the performance. For Macro-F1, Micro-

F1 and Exact-Match, the larger the values the better the

performance.

B. COMPARISON METHODS

As discussed in Section III, the proposed LSF-CC has two

characteristics. One is that the label ordering is optimal. The

other is that for each label its classifier is learned based
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on label specific features which consist of selected features

extracting from the original feature and label space. In order

to obtain insight or deeper understanding of LSF-CC, we also

explore the performance of LSF-CC which extracts label

specific features from original feature spaces rather than label

space. We denote the original LSF-CC as LSF-CC-PL and its

variant as LSF-CC-AL. In these algorithms, the parameters

k = 5, m = 500, and p = q ∗ 0.5. r is searched from

{0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1} to obtain the best

overall performance.

As for the original algorithm CC, it also can be changed

in the same manner. First, the label ordering can be opti-

mized according to the method described in Section III-A.

We denote it as CC-LO. Furthermore, according to the

method in Algorithm 2, the label subset are selected as addi-

tional features for CC. We denote it as CC-LS. As one of

representative methods of problem transformation, BR [7] is

also compared with our proposed algorithm.

For all the above methods LSF-CC-PL, LSF-CC-AL,

CC-LS, CC-LO and BR, they belong to problem transfor-

mation methods and need a base classifier for each label.

In our experiments, we employ two common classifiers as

base classifier: the k-nearest neighbours with k = 5 and

LIBSVM [33] with linear kernel.

We also compare LSF-CC with three other kinds of

algorithms which do not belong to the classifier chain

based category: ML-kNN [34], LPLC [42] and LLSF [23].

ML-kNN is a multi-label classifier deriving from the tradi-

tional k-nearest neighbor technique and Baysian inference.

For each test instance, its k nearest neighbors in the training

data are firstly founded. Then, according to the statistical

information about the ground truth labels of these neighbor-

ing instances, maximum a posteriori principle is utilized to

determine which labels are associated with the test instance.

LPLC finds the most correlated labels for ground truth labels

of each instance in the training stage, then make prediction

through estimating with the distribution of each label in the

k nearest neighbors and their most correlated local pairwise

label correlations. For both ML-kNN and LPLC, the param-

eter k is set as 10. LLSF can be viewed as a feature selection

method that employs linear regression with ℓ1 norm to model

the sparsity of label specific features. In our experiments, its

weighting parameters α, β and γ are set to be 0.1, 0.1 and

0.01 respectively, as introduced in the related paper.

The experimental settings and corresponding character-

istics for all comparing algorithms are shown in Table 2.

Here, ‘‘CC based’’ denotes whether the algorithm belongs to

Classifier chain based one, while ‘‘LC’’, ‘‘LO’’, ‘‘FS’’ and

‘‘LS’’ denote whether the algorithm utilizes label correla-

tions, label ordering, feature selection and label selection for

classification.

C. DATASETS

We carried out experiments on eight multi-label benchmark

data sets with different types and sizes, which are summarized

in Table 3. Here, D, dim(D), L(D) and ‘‘Cardinality’’ denote

TABLE 2. The experimental settings and corresponding characteristics for
all comparing algorithms.

TABLE 3. Detailed information on the experimental data set.

the number of instances, features, labels and the average num-

ber of labels over all instances, while ‘‘Density’’ is defined as

the division of cardinality by the number of labels.

D. EXPERIMENTAL RESULTS AND DISCUSSION

For all the evaluation metrics, we run each algorithm by

performing 5-fold cross-validation on the training set and the

average predictive performances on test sets are reported. For

each evaluation metric, ‘‘↑’’ indicates the larger the value

the better the performance, while ‘‘↓’’ indicates the smaller

the value the better the performance. Each result consists

of mean and rank. The best results over each dataset are

highlighted in bold type. If two or more algorithms achieve

the same performances on one data set for a given evaluation

metric, the values of the corresponding rank are assignedwith

the average result of them. To demonstrate the results more

clearly, we compute the average rank for each algorithm over

all evaluation metrics on a specific data set, which is recoded

in the last column for each table.

We conduct two groups of experiments on the eight data

sets introduced in Section IV-C. In the first group of exper-

iments, we compare our proposed algorithm with CC-LS,

CC-LO and BR, which all belong to problem transforma-

tion methods. These algorithms all need a base classifier for

each label. Here we employ SVM and 5-NN as the base

classifier respectively. In the second group of experiments,

we compare the performance of our proposed algorithm with

MLkNN, LPLC and LLSF, which all belong to the category

of problem transformation. Note that MLkNN and LPLC

employ maximum a posteriori principle for classification and

LLSF employs regression weights for classification, instead

of SVM or 5-NN as the base classifier.
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TABLE 4. Results of each comparing algorithm with svm as a base
classifier on Image, Emotions, Medical and Languagelog.

TABLE 5. Results of each comparing algorithm with svm as a base
classifier on Enron, Yeast, Slashdot and Genbase.

In the first group of experiments, Tables 4 and 5 report

the detailed experimental results with SVM as base clas-

sifier among our proposed algorithms and those algo-

rithms of problem transformation, i.e. CC-LS, CC-LO and

BR. In order to compare their effectiveness more intu-

itively, we present the average rank of each algorithm

in Figures 2 and 3. In Figure 2, for each metric, the average

rank of each algorithm over all data sets is depicted. For

example, the ranks of Hamming Loss of LSF-CC-LS on each

data set are {1, 3, 1, 2, 2, 5, 1, 3.5}, then the average rank of

LSF-CC-LS for Hamming Loss is (1+ 3+ 1+ 2+ 2+ 5+

1+ 3.5)/8 = 2.3125. While in Figure 3, for each algorithm,

its overall average rank over all experiments is depicted. For

example, the average ranks of LSF-CC-LS on each data set

are {2.25, 2, 2.75, 2.875, 3, 3.75, 1.5, 3.75}, then the overall

average rank of it is (2.25+2+2.75+2.875+3+3.75+1.5+

3.75)/8 = 2.73. According to these experimental results,

we have the following remarks:

FIGURE 2. The average rank of each algorithm (with SVM as a base
classifier) across all data sets in terms of all evaluation metrics. The lower
the rank, the better the performance.

FIGURE 3. The overall average rank of all six algorithms (with SVM as a
base classifier). The lower the rank, the better the performance.

1) We compare the performances between CC and its

variants, i.e. CC-LO and CC-LS to reveal their short-

comings. To sum up, the performance of CC is the

worst, whereas, CC-LS performs best. Specifically,

according to Tables 4 and 5, CC shows the worst per-

formances on Emotions, Language log, Enron, Yeast,

Slashdot and Genbase than CC-LO and CC-LS obvi-

ously. CC-LS outperforms CC and CC-LO on Emo-

tions, Enron, Slashdot andGenbase. CC-LO obtains the

best performance on Image, Language log and Yeast.

Figure 2 also shows that for all evaluation metrics,

CC performs worst and CC-LS performs best. This

shows that the classification performances of CC can be

improved by optimizing the label ordering or removing

the redundancy in the label space at the same time.

2) According to Figure 2, LSF-CC-PL and LSF-CC-AL

improve the performances of CC on all evaluation

metrics. These experimental results also verify that the

performance of CC can be improved by optimizing

the label ordering and removing the redundancy in the

feature space.

3) On the three data sets Image, Emotions and Slashdot,

LSF-CC-PL exceeds LSF-CC-AL significantly, while

on the data set Yeast, LSF-CC-AL exceeds LSF-CC-PL

significantly. For the other four data sets, their perfor-

mances are equal or very close. According to Figure 3,

in general, LSF-CC-PL outperforms LSF-CC-AL on

the overall performances. According to these results,
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we can conclude that it is important for classifier chain

based algorithms to select features from not only fea-

ture space but also label space.

4) Through a comprehensive comparison among all algo-

rithms, we can find that LSF-CC-PL performs best,

followed by CC-LS and LSF-CC-AL, and then the

other three are the worst. This fully proves that the pro-

posed algorithm is very effective in improving the tradi-

tional CC algorithm via label specific features and label

ordering optimization. This also shows that although

CC-LO and CC-LS achieve performance improvement

by adapting CC with label ordering optimization and

removing the redundancy in label space, its perfor-

mance can be further improved by extracting the label

specific features from the feature space.

TABLE 6. Results of each comparing algorithm with 5-NN as a base
classifier on Image, Emotions, Medical and Language log.

TABLE 7. Results of each comparing algorithm with 5-NN as a base
classifier on Enron, Yeast, Slashdot and Genbase.

Tables 6 and 7 report the detailed experimental results

with 5-NN as base classifier among our proposed algorithms

FIGURE 4. The average rank of each algorithm (with 5-NN as a base
classifier) across all data sets in terms of all evaluation metrics. The lower
the rank, the better the performance.

FIGURE 5. The overall average rank of all six algorithms (with 5-NN as a
base classifier). The lower the rank, the better the performance.

and those algorithms of problem transformation, i.e. CC-LS,

CC-LO and BR. We can easily find the superiority of our

proposed algorithm. For example, on the eight data sets,

LSF-CC-PL achieves better performance than all the com-

pared methods on Image, Emotions, Language log, Enron,

Yeast and Slashdot, while LSF-CC-AL achieves the best

performance onMedical. On Emotions, Language log, Enron

and Slashdot its performance is close to LSF-CC-PL. Fur-

thermore, we present the average rank of each algorithm

in Figures 4 and 5. From these results, we can draw similar

conclusions as mentioned above, and the superiority of our

proposed algorithm is more prominent. In general, for each

evaluation metric, our proposed algorithm LSF-CC-PL per-

formances best, followed by LSF-CC-AL. From the perspec-

tive of overall performance, LSF-CC-PL also is apparently

higher than other algorithms, and followed by LSF-CC-AL.

In the second group of experiments, Tables 8 and 9 report

experimental results among our proposed algorithms and

three algorithms of algorithm transformation, i.e. MLkNN,

LPLC, and LLSF. We can observe that the overall perfor-

mances of LSF-CC-PL are better than that of the other com-

pared methods. LSF-CC-PL achieves the best performances

over five data sets Image, Emotions, Enron, Yeast and Slash-

dot. Of all the compared algorithms, the performances of

LSF-CC-AL is the closest to that of algorithm LSF-CC-PL.

These experimental results testify the competitive perfor-

mance of our proposed algorithm comparing with the state-

of-the-art algorithm transformation methods.
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TABLE 8. Results of our proposed algorithms (with svm as a base
classifier) and MLkNN, LPLC and LLSF on data sets Image, Emotions,
Medical and Languagelog.

TABLE 9. Results of our proposed algorithms (with svm as a base
classifier) and MLkNN, LPLC and LLSF on data sets Enron, Yeast, Slashdot
and Genbase.

V. CONCLUSION

The traditional classifier chain based algorithm CC randomly

selects label order and then learns the corresponding binary

classifier one by one. For the current label, the learning algo-

rithm takes the original feature space and all the labels before

it in the chain as input, and utilizes the higher-order label

relationship by this way. we discusses two disadvantages of

CC that affect the classification performance: random label

order, original feature and new feature noises. In order to

overcome these shortcomings, a novel and effective classifier

chain based algorithm LSF-CC is proposed. There are two

key ideas in it. First, an optimized label order is determined

by using the label correlations. The principle is that if a

label is more related with other labels, it should be learned

more early. After the label dependencies are calculated using

the ReliefF method, the label order is determined according

to this principle. Secondly, for the current label, the label

specific features are selected from the original feature space

and the label space respectively, and the corresponding binary

classifier is learned according to these label specific features.

Experimental results show that our proposed algorithm is

effective. LSF-CC not only solves the shortcomings of tra-

ditional classifier chain based algorithm, but also provides

a general framework for further improving the CC model.

Within this framework, it is possible to further explore how to

use other theoretical and technical means to determine label

correlations and label specific features.
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