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Abstract. We address the problem of instance label stability in multiple
instance learning (MIL) classifiers. These classifiers are trained only on
globally annotated images (bags), but often can provide fine-grained an-
notations for image pixels or patches (instances). This is interesting for
computer aided diagnosis (CAD) and other medical image analysis tasks
for which only a coarse labeling is provided. Unfortunately, the instance
labels may be unstable. This means that a slight change in training data
could potentially lead to abnormalities being detected in different parts
of the image, which is undesirable from a CAD point of view. Despite
MIL gaining popularity in the CAD literature, this issue has not yet
been addressed. We investigate the stability of instance labels provided
by several MIL classifiers on 5 different datasets, of which 3 are medi-
cal image datasets (breast histopathology, diabetic retinopathy and com-
puted tomography lung images). We propose an unsupervised measure to
evaluate instance stability, and demonstrate that a performance-stability
trade-off can be made when comparing MIL classifiers.

1 Introduction

Obtaining ground-truth annotations for patches, which can be used to train
supervised classifiers for localization of abnormalities in medical images can be
very costly and time-consuming. This hinders the use of supervised classifiers
for this task. Fortunately, global labels for whole images, such as the overall
condition of the patient, are available more readily. Multiple instance learning
(MIL) is an extension of supervised learning which can train classifiers using
such weakly labeled data. For example, a classifier trained on images (bags),
where each bag is labeled as healthy or abnormal and consists of unlabeled
image patches (instances), would be able to label patches of a novel image as
healthy or abnormal.

MIL is becoming more and more popular in CAD [9,13,6,20,16,3,21,18,12].
In many of these applications, it is desirable to obtain instance labels, and to
inspect the instances which are deemed positive. For example, in [13], weakly
labeled x-ray images of healthy subjects and patients affected by tuberculosis are
used to train a MIL classifier which can provide local abnormality scores, which
can be visualized across the lungs. Furthermore, the MIL classifier outperforms
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its supervised counterpart which has access to fine-grained labels, showing the
potential of MIL for CAD applications.

A pitfall in using MIL classifiers to obtain instance labels is that these labels
might be unstable, for example, if a different subset of the data is used for train-
ing. This is clearly undesirable in a diagnostic setting, because abnormalities
would be highlighted in different parts of the image. For example, in [12] a MIL
classifier is used to identify which of the 8 regions (instances) of the tibial tra-
becular bone (bag) are most related to cartilage loss. The “most positive” region
labeled positive by only 20% of the classifiers, trained on different subsets of the
data. We have not been able to identify other research where this phenomenon
is investigated, which emphasizes the importance of the present work.

In rare cases where instance-level annotations are available, such as in [9],
instance labels can be evaluated using AUC. The results here show that the best
bag classifier does not correspond to the best instance classifier, emphasizing
that bag-level results are not reliable if instance labels are needed. Another
approach is to evaluate the instances qualitatively. However, this is typically
done for a single run of the classifier, which raises the question whether the
same abnormalities would be found if the training set would change slightly.

We propose to evaluate the stability of instance-labeling MIL classifiers as an
additional measure for classifier comparison. We evaluate two stability measures
on three CAD datasets: computed tomography lung images with chronic ob-
structive pulmonary disease (COPD), histopathology images with breast cancer
and diabetic retinopathy images. We demonstrate how stability varies in popu-
lar MIL classifiers, and show that choosing the classifier with the best bag-level
performance may not lead to reliable instance labels.

2 Multiple Instance Learning

In multiple instance learning, a sample is a bag or set Bi = {xi
k|k = 1, ..., ni} ⊂

R
d of ni instances, each instance is thus a d-dimensional feature vector. We

are given labeled training bags {(Bi, yi)|i = 1, ...Ntr} where yi ∈ {0, 1}. The
standard assumption is that there exist hidden instance labels zik ∈ {0, 1} which
relate to the bag labels as follows: a bag is positive if and only if it contains at
least one positive instance.

Originally, the goal in MIL is to train a bag classifier fB to label previously
unseen bags. Several MIL classifiers do this by inferring an instance classifier fI ,
and combining the outputs of the bag’s instances, for example by the noisy-or
rule, fB(Bi) = maxk{fI(xi

k)}. An example of such an instance-level classifier is
SimpleMIL, which propagates the bag label to its instances and simply trains
a supervised classifier on the, possibly noisy, instance labels. Classifiers which
explicitly use the MIL assumption are miSVM [1] and milBoost [19], which are
MIL adaptations of popular learning algorithms. For example, miSVM extends
the SVM by not only searching for the optimal hyperplane w which defines fI ,
but also for the instance labels {zki } which are consistent with the bag label
assumptions:
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Another group, bag-level classifiers, typically represent each bag as a single
feature vector and use supervised classifiers for training fB directly [4,5]. Such
classifiers are often robust, but usually can not provide instance labels. A no-
table exception is MILES [4], which represents each bag by its similarities to a
set of prototype instances, si = [s(Bi,x

1
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)] where

s(Bi,x) = exp(−mink ||x−xi
k||) or any other kernel. A sparse classifier then se-

lects the most discriminative features, which correspond to instance prototypes.
It is assumed that discriminative prototypes from positive bags are positive, in-
stances can therefore be classified based on their similarity to these prototypes.

The interest in MIL for computer aided diagnosis has grown over the
past decade, as illustrated by Table 1. Supervised evaluation of instances is only
performed in a few studies – where (a part) of the data has been annotated at
the instance level. Otherwise, papers examine the instances qualitatively, such
as displaying the most abnormal instances [13], or not at all, although instance
labels would be interesting from a diagnostic point of view [6,9]. As our proposed
evaluation is unsupervised, it can easily be adopted in all these studies.

Table 1. Evaluation of MIL in CAD tasks. Columns show bag (B) and instance (I)
evaluation: supervised (+), qualitative (◦) or none (–).

Task B I Task B I

Cancer histology [9] + + Diabetic retinopathy [9] + –
COPD in CT [6] + – Tuberculosis in XR [13] + ◦
Cancer histopathology [22] + + Osteoarthritis in MRI [12] + ◦
Diabetic retinopathy [16] + + Pulmonary embolism in CT [11] + –
Myocardial infarction in ECG [18] + – COPD in CT [17] + –
Colorectal cancer in CT [8] + –

3 Instance Stability

We are interested in evaluating the similarity of a labeling, or vector of outputs
of two classifiers z = fI(X) and z′ = f ′

I(X), trained on slightly different subsets
of the training data, for the test set X = [x1

1, . . . ,x
N
nN

]ᵀ. The stability measure
should be monotonically increasing with the number of instances the clas-
sifiers agree on, have limits, and most importantly, be unsupervised, i.e. not
dependent on the hidden instance labels zi.

The general concept of stability is important in machine learning, and different
aspects of it have been addressed in the literature. Leave-one-out stability [15]
measures to what extent a decision boundary changes when a sample is removed
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from the training data, but is not appropriate because it is supervised. An un-
supervised version where bags are left out, and true labels are substituted by
classifier outputs, is related to the measures we propose. The kappa statistic is
unsupervised, but does not follow the monotonicity property in class imbalance
settings which could occur in MIL. Clustering stability [2] compares the outputs
of two clustering procedures and is unsupervised. It is appropriate for our goal
and is in fact related to the measures proposed in what follows.

Let n00 = |{i|zi = 0 ∧ z′i = 0}|, n01 = |{i|zi = 0 ∧ z′i = 1}| , n10 = |{i|zi =
1 ∧ z′i = 0}| and n11 = |{i|zi = 1 ∧ z′i = 1}|. An intuitive measure that satisfies
the properties above is the agreement fraction:

S(z, z′) = (n00 + n11)/(n01 + n10 + n11 + n00). (2)

In a situation with many true negative instances, the value of S would be
inflated due to the negative instances that the classifiers agree on. As a result,
the classifier can still be unstable with respect to the positive instances. Due to
the nature of CAD tasks, we might consider it more important for the classifiers
to agree on the positive instances. Therefore we also consider the agreement on
positive labels only, or Jaccard distance:

S+(z, z
′) = n11/(n01 + n10 + n11). (3)

We emphasize that the novelty does not lie in the measures themselves, well-
known as they are. The novelty resides in what they measure in this context: we
derive these measures as the appropriate ones for the stability that we want to
quantify.

Classifier Selection. If instance classification stability is a crucial issue, one can
study our measure in combination with bag-level AUC (or any other accuracy
measure) and select a MIL classifier with a good trade-off of AUC and instance
stability. We can see each classifier as a possible solution, parametrized by these
two values. Intermediate solutions between classifiers fI and f ′

I can in theory
be obtained by designing a randomized classifier, which trains classifier fI with
probability p and classifier f ′

I with probability 1−p. In the AUC-stability plane,
the Pareto frontier is the set of classifiers which are Pareto efficient, i.e. no
improvement can be made in AUC without decreasing instance stability and
vice versa. Optimal classifiers can therefore be selected from this Pareto frontier.
While the classifier with the highest AUC is in this set, it is not necessarily the
only desirable solution, if the instance labels are of importance.

4 Experiments and Results

Datasets. The datasets are shown in Table 2. The Musk datasets are benchmark
problems of molecule activity prediction. In Breast, an instance is a 7× 7 patch
from a 896×768 tissue microarray analysis image from a patient with a malignant
(+) or benign (–) tumor. In Messidor, an instance is a 135 × 135 patch from a
700 × 700 fundus image of a diabetes (+) or healthy (–) subject. In COPD, a
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bag is a CT image of a lung of a subject with COPD (+) or a healthy subject
(–). An instance is a region of interest (ROI) of 41 × 41 × 41 voxels, with the
center inside the segmentation of the lung field.

Table 2. Datasets and their properties. Musk, Breast and Messidor can be downloaded
from a MIL data repository [5] (http://www.miproblems.org).

Dataset Bags Instances Inst per bag Features

Musk 1 47+, 45– 476 2 to 40 166
Musk 2 39+, 63– 6598 1 to 1024 166
Breast [10] 26+, 32– 2002 21 to 40 657 (intensity, LBP, SIFT)
Messidor [9,7] 654+, 546– 12352 8 to 12 687 (intensity, LBP, SIFT)
COPD [17,14] 231+, 231– 26200 50 287 (Gaussian filter bank)

Illustrative Example. Fig. 1 shows the pairwise stability measures for the
COPD validation data, for 10 MILES classifiers, each trained on random 80% of
the training data. There is considerable disagreement for both measures, which
is surprising because of the large overlap of the training sets. The measures are
quite correlated (ρ = 0.76), but S has higher values because it is inflated by
agreement on negative instances.

Fig. 1. Pairwise stability for
10 MILES classifiers for
agreement (left) and posi-
tive agreement (right) for
the COPD dataset

Fig. 2 shows how the instance classifications change in a true positive bag,
i.e., CT image from a COPD patient. This bag is always classified as positive,
but the instance labels are unstable. A perfectly stable classifier would have a
bimodal distribution, classifying instances as positive either 0 or 10 times. We
also show a number of ROIs with stable and unstable labels. Several ROIs con-
taining emphysema have unstable classifications, and one emphysemous patch is
even consistently classified as negative. This shows that while the bag is always
classified correctly, the instance labels may not be very reliable.

Evaluation. We evaluate a number of classifiers (please see Sec. 2 for descrip-
tions) from the MIL toolbox1, which we modified to output instance labels:

– simpleMIL with SVM, nearest mean (NM) and 1-nearest neighbor (1NN)
– miSVM and its variants miNM and mi1NN (based on NM and 1NN)
– MILBoost

1 http://prlab.tudelft.nl/david-tax/mil.html

http://www.miproblems.org
http://prlab.tudelft.nl/david-tax/mil.html
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Fig. 2. “Positiveness” of 50 instances (ROIs) from a positive bag. Left: How often an
ROI is classified positive, and for how many ROIs this holds. Right: Examples of 6
ROIs, for which the axial slice with most lung voxels below -910 hounsfield units is
shown. ROIs (b,d,e,f) contain emphysema (low intensity areas within the lung tissue),
but only (f) is often classified as positive. ROIs (a,c) are largely unaffected, but only
(a) is consistently classified as negative.

– MILES

We use a linear kernel and regularization parameter C = 1 for SVM, miSVM and
MILES. For each train/test split, we do the following 10 times: randomly sample
80% of the training bags (bag = subject), train the classifier, and evaluate on
the test dataset. The splits are done randomly for Musk, Breast and Messidor
and based on predefined sets for COPD.

The average bag AUCs, average pairwise instance stabilities, and the corre-
sponding Pareto frontiers for S+ (S provided similar plots, but with inflated
values) are shown in Fig. 3. Note that the (1, 0.5) point can be achieved by
a classifier which labels all instances as positive. The main observation is that
the most accurate classifier is often not the most stable one. This trade-off is
especially well-illustrated in the COPD datasets. Here we see similar behavior
between the two sets, which shows that if we were to use the validation set results
for classifier selection, we would obtain a classifier with similar performance and
stability on the test set.

With regard to the classifiers, miSVM and its variants seem to be relatively
good choices. MILES, which is a popular classifier due to its good performance,
can indeed be quite accurate, but at the same time unstable. The difference
between the mi- classifiers and MILES is probably due to the fact that MILES
trains a bag classifier fB first, and infers fI from fB, while the mi- classifiers
train fI directly. MILBoost is both inaccurate and unstable, especially for COPD
there is high disagreement on which instances to label as positive.

Note that the goal of these experiments is to demonstrate the trade-off be-
tween AUC and stability, not to maximize the AUC. Nevertheless, the best
performances achieved by classifiers tested here are [0.91, 0.80, 0.72, 0.72] for
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Fig. 3. Bag AUC vs positive instance stability and the corresponding Pareto frontiers

Breast, Messidor, and the COPD datasets. In previous works, the highest2 per-
formances for the same datasets were [0.90, 0.81, 0.74, 0.74]. This shows that our
result are on par with state of the art, despite using less data and optimization.

5 Conclusions

We addressed the issue of stability of instance labels provided by MIL classifiers.
We examined two unsupervised measures of agreement: S based on all labels,
and S+ based on positive (abnormal) labels, which might be more interesting
from a CAD point of view. Our experiments demonstrate a trade-off between
bag performance and instance label stability, and miSVM is a classifier which
provides a good trade-off. In general, we propose to use instance label stability
as an additional evaluation measure when applying MIL classifiers in CAD.
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