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Abstract In 2007, Labeled Faces in the Wild was released in an effort to spur re-

search in face recognition, specifically for the problem of face verification with un-

constrained images. Since that time, more than 50 papers have been published that

improve upon this benchmark in some respect. A remarkably wide variety of inno-

vative methods have been developed to overcome the challenges presented in this

database. As performance on some aspects of the benchmark approaches 100% ac-

curacy, it seems appropriate to review this progress, derive what general principles

we can from these works, and identify key future challenges in face recognition. In

this survey, we review the contributions to LFW for which the authors have provided

results to the curators (results found on the LFW results web page). We also review

the cross cutting topic of alignment and how it is used in various methods. We end

with a brief discussion of recent databases designed to challenge the next generation

of face recognition algorithms.
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1 Introduction

Face recognition is a core problem and popular research topic in computer vision

for several reasons. First, it is easy and natural to formulate well-posed problems,

since individuals come with their own label, their name. Second, despite its well-

posed nature, it is a striking example of fine-grained classification–the variation of

two images within a class (images of a single person) can often exceed the variation

between images of different classes (images of two different people). Yet human

observers have a remarkably easy time ignoring nuisance variables such as pose and

expression and focusing on the features that matter for identification. Finally, face

recognition is of tremendous societal importance. In addition to the basic ability to

identify, the ability of people to assess the emotional state, the focus of attention,

and the intent of others are critical capabilities for successful social interactions. For

all these reasons, face recognition has become an area of intense focus for the vision

community.

This article reviews research progress on a specific face database, Labeled Faces

in the Wild (LFW), that was introduced to stimulate research in face recognition for

images taken in common, everyday settings. In the remainder of the introduction,

we review some basic face recognition terminology, provide the historical setting

in which this database was introduced, and enumerate some of the specific moti-

vations for introducing the database. In Section 2, we discuss the papers for which

the curators have been provided with results. We group these papers by the proto-

cols for which they have reported results. In Section 3, we discuss alignment as a

cross-cutting issue that affects almost all of the methods included in this survey. We

conclude by discussing future directions of face recognition research, including new

databases and new paradigms designed to push face recognition to the next level.

1.1 Verification and identification

In this article, we will refer to two widely used paradigms of face recognition: iden-

tification and verification. In identification, information about a specific set of in-

dividuals to be recognized (the gallery) is gathered. At test time, a new image or

group of images is presented (the probe). The task of the system is to decide which

of the gallery identities, if any, is represented by the probe. If the system is guaran-

teed that the probe is indeed one of the gallery identities, this is known as closed set

identification. Otherwise, it is open set identification, and the system is expected to

identify when an image does not belong to the gallery.

In contrast, the problem of verification is to analyze two face images and decide

whether they represent the same person or two different people. It is usually assumed

that neither of the photos shows a person from any previous training set.

Many of the early face recognition databases and protocols focused on the prob-

lem of identification. As discussed below, the difficulty of the identification problem

was so great that researchers were motivated to simplify the problem by controlling
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the number of image parameters that were allowed to vary simultaneously. One of

the salient aspects of LFW is that it focused on the problem of verification exclu-

sively, although it was certainly not the first to do so.1 While the use of the images

in LFW originally grew out of a motivation to study learning from one example and

fine-grained recognition, a side effect was to render the problem of face recognition

in real-world settings signficantly easier–easier enough to attract the attention of a

wide range of researchers.

1.2 Background

In the early days of face recognition by computer, the problem was so daunting

that it was logical to consider a divide-and-conquer approach. What is the best way

to handle recognition in the presence of lighting variation? Pose variation? Occlu-

sions? Expression variation? Databases were built to consider each of these issues

using carefully controlled images and experiments.2 One of the most comprehen-

sive efforts in this direction is the CMU Multi-PIE3 database, which systematically

varies multiple parameters over an enormous database of more than 750,000 im-

ages [38].

Studying individual sources of variation in images has led to some intriguing in-

sights. For example, in their efforts to characterize the structure of the space of im-

ages of an object under different lighting conditions, Belhumeur et al. [15] showed

that the space of faces under different lighting conditions (with other factors such

as expression and pose held constant) forms a convex cone. They propose doing

lighting invariant recognition by examining the distance of an image to the convex

cones defined for each individual.

Despite the development of methods that could successfully recognize faces in

databases with well-controlled variation, there was still a gap in the early 2000’s be-

tween the performance of face recognition on these controlled databases and results

on real face recognition tasks, for at least two reasons:

• Even with two methods, call them A and B, that can successfully model two

types of variation separately, it is not always clear how to combine these methods

to produce a method that can address both sources of variation. For example, a

method that can handle significant occlusions may rely on the precise registration

of two face images for the parts that are not occluded. This might render the

method ineffective for faces that exhibit both occlusions and pose changes. As

another example, the method cited above to handle lighting variations [15] relies

on all of the other parameters of variation being fixed.

1 Other well-known benchmarks had previously used verification. See, for example, this bench-

mark [80].
2 For a list of databases that were compiled before LFW, see the original LFW technical report [49].
3 The abbreviation PIE stands for Pose, Illumination, and Expression.
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• There is a significant difference between handling controlled variations of a pa-

rameter, and handling random or arbitrary values of a parameter. For example, a

method that can address five specific poses may not generalize well to arbitrary

poses. Many previously existing databases studied fixed variations of parame-

ters such as pose, lighting, and decorations. While useful, this does not guaran-

tee the handling of more general cases of these parameters. Furthermore, there

are too many sources of variation to effectively cover the set of possible obser-

vations in a controlled database. Some databases, such as the ones used in the

2005 Face Recognition Grand Challenge [77], used certain “uncontrolled set-

tings” such as an office, a hallway, or outdoor environments. However, the fact

that these databases were built manually (rather than mining previously existing

photos) naturally limited the number of settings that could be included. Hence,

while the settings were uncontrolled in that they were not carefully specified,

they were drawn from a small fixed set of empirical settings that were available

to the database curators. Algorithms tuned for such evaluations are not required

to deal with a large amount of previously unseen variability.

In 2006, while results on some databases were saturating, there was still poor per-

formance on problems with real-world variation.

1.3 Variations on traditional supervised learning and the

relationship to face recognition

In parallel to the work in the early 2000’s on face identification, there was a growing

interest in the machine learning community in variations of the standard supervised

learning problem with large training sets. These variations included:

• learning from small training sets [68, 35],

• transfer learning–that is, sharing parameters from certain classes or distributions

to other classes or distributions that may have less training data available [76],

and

• semi-supervised learning, in which some training examples have no associated

labels (e.g. [73]).

Several researchers chose face verification as a domain in which to study these

new issues [21, 30, 36]. In particular, since face verification is about deciding

whether two face images match (without any previous examples of those identities),

it can be viewed as an instance of learning from a single training example. That is,

letting the two images presented be I and J, I can be viewed as a single training

example for the identity of a particular person. Then the problem can be framed as

a binary classification problem in which the goal is to decide whether image J is in

the same class as image I or not.

In addition, face verification is an ideal domain for the investigation of transfer

learning, since learning the forms of variation for one person is important informa-
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tion that can be transferred to the understanding of how images of another person

vary.

One interesting paper in this vein was the work of Chopra et al. from CVPR

2005 [30]. In this paper, a convolutional neural network (CNN) was used to learn

a metric between face images. The authors specifically discuss the structure of the

face recognition problem as a problem with a large number of classes and small

numbers of training examples per class. In this work, the authors reported results on

the relatively difficult AR database [66]. This paper was a harbinger of the recent

highly successful application of CNNs to face verification.

1.3.1 Faces in the Wild and Labeled Faces in the Wild

Continuing the work on fine-grained recognition and recognition from a small num-

ber of examples, Ferencz et al. [57, 36] developed a method in 2005 for deciding

whether two images represented the same object. They presented this work on data

sets of cars and faces, and hence were also addressing the face verification prob-

lem. To make the problem challenging for faces, they used a set of news photos

collected as part of the Berkeley “Faces in the Wild” project [19, 18] started by

Tamara Berg and David Forsyth. These were news photos taken from typical news

articles, representing people in a wide variety of settings, poses, expressions, and

lighting. These photos proved to be very popular for research, but they were not

suited to be a face recognition benchmark since a) the images were only noisily la-

beled (more than 10% were labeled incorrectly), and b) there were large numbers

of duplicates. Eventually, there was enough demand that the data were relabeled

by hand, duplicates were removed, and protocols for use were written. The data

were released as “Labeled Faces in the Wild” in conjunction with the original LFW

technical report [49].

There were several goals behind the introduction of LFW. These included

• stimulating research on face recognition in unconstrained images;

• providing an easy-to-use database, with low barriers to entry, easy browsing, and

multiple parallel versions to lower pre-processing burdens;

• providing consistent and precise protocols for the use of the database to encour-

age fair and meaningful comparisons;

• curating results to allow easy comparison, and easy replication of results in new

research papers.

In the following section, we take a detailed look at many of the papers that have

been published using LFW. We do not review all of the papers. Rather we review

papers for which the authors have provided results to the curators, and which are

documented on the LFW results web page.4 We now turn to describing results pub-

lished on the LFW benchmark.

4 http://vis-www.cs.umass.edu/lfw/results.html.
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2 Algorithms and methods

In this section, we discuss the progression of results on LFW from the time of its

release until the present. LFW comes with specific sets of image pairs that can be

used in training. These pairs are labeled as “same” or “different” depending upon

whether the images are of the same person. The specification of exactly how these

training pairs are used is described by various protocols.

2.1 The LFW Protocols

Originally, there were two distinct protocols described for LFW, the image-restricted

and the unrestricted protocols. The unrestricted protocol allows the creation of ad-

ditional training pairs by combining other pairs in certain ways. (For details, see the

original LFW technical report [49].)

As many researchers started using additional training data from outside LFW to

improve performance, new protocols were developed to maintain fair comparisons

among methods. These protocols were described in a second technical report [47].

The current six protocols are:

1. Unsupervised.

2. Image-restricted with no outside data.

3. Unrestricted with no outside data.

4. Image-restricted with label-free outside data.

5. Unrestricted with label-free outside data.

6. Unrestricted with labeled outside data.

In order to make comparisons more meaningful, we discuss the various protocols in

three groups.

In particular, we start with the two protocols allowing no outside data. We then

discuss protocols that allow outside data not related to identity, and then outside data

with identity labels. We do not address the unsupervised protocol in this review.

2.1.1 Why study restricted data protocols?

Before starting on this task, it is worth asking the following question: Why might

one wish to study methods that do not use outside data when their performance

is clearly inferior to those that do use additional data? There are several possible

answers to this question.

Utility of methods for other tasks. One reason to consider methods which use

limited training data is that they can be used in other settings in which training data

are limited. That is, it may be the case that in recognition problems other than face

recognition, there may not be available the hundreds of thousands or millions of
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images that are available to train face recognizers. Thus, a method that uses less

training data is more transportable to other domains.

Statistical efficiency versus asymptotic optimality. It has been known since the

mid-seventies [87] that many methods, such as K–nearest neighbors (K-NN), con-

tinue to increase in accuracy with increasing training data until they reach optimal

performance (also known as the Bayes error rate). In other words, if one only cares

about accuracy with unlimited training data and unlimited computation time, there

is no method better than K-NN.

Thus, we know not only that many methods will continue to improve as more

training data is added, but that many methods, including some of the simplest meth-

ods, will achieve optimal performance. This makes the question of statistical effi-

ciency a primary one. The question is not whether we can achieve optimal accuracy

(the Bayes error rate), but rather, how fast (in terms of training set size) we get

there. Of course, a closely related question is which method performs best with a

fixed training set size.

At the same time, using equivalent data sets for training removes the question

that plagues papers trained on huge, proprietary data sets: how much of their perfor-

mance is due to algorithmic innovation, and how much is simply due to the specifics

of the training data?

Despite our interest in fixed training set protocols, at the same time, the practical

issues of how to collect large data sets, and find methods that can benefit from them

the most, make it interesting to push performance as high as possible with no ceiling

on the data set size. The protocols of LFW consider all of these questions.

Human learning and statistical efficiency. Closely related to the previous point

is to note that humans solve many problems with very limited training data. While

some argue that there is no particular need to mimic the way that humans solve

problems, it is certainly interesting to try to discover the principles which allow

them to learn from small numbers of examples. It seems likely that these principles

will improve our ability to design efficient learning algorithms.

Allowed
information →

Protocol ↓

Same/Different

Labels for

LFW training

pairs allowed?

Identity

info for

LFW train-

ing images

allowed?

Annotations

for LFW

training data

allowed?

Non-LFW

images

allowed?

Non-LFW

anno-

tations

allowed?

Same/Different

labels for non-

LFW pairs

allowed?

Identity

info for

non-LFW

images

allowed?

Unsupervised no no yes yes yes no no

Image-Restricted,

No Outside Data yes no no no no no no

Unrestricted,

No Outside Data yes yes no no no no no

Image-Restricted,

Label-Free Outside Data yes no yes yes yes no no

Unrestricted,

Label-Free Outside Data yes yes yes yes yes no no

Unrestricted,

Labeled Outside Data yes yes yes yes yes yes yes

Table 1 This table summarizes the new LFW protocols. There are six protocols altogether, shown

in the left column. The allowability for each category of data is shown to the right. The second

LFW technical report gives additional details about these protocols [47].
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2.1.2 Order of discussion

Within each protocol, we primarily discuss algorithms in the order with which we

received the results. Note that this order does not always correspond to the official

publication order.5 We make every effort to remark on the first authors to use a par-

ticular technique, and also to refer to prior work in other areas or on other databases

that may have used similar techniques previously. We apologize for any oversights

in advance. Note that some methods, especially some of the commercial ones, do not

give much detail about their implementations. Rather than devoting an entire section

to methods for which we have little detail, we summarize them in Section 2.5. We

now start with protocols incorporating labeled outside data.

2.2 Unrestricted with labeled outside data

This protocol allows the use of same and different training pairs from outside of

LFW. The only restriction is that such data sets should not include pictures of peo-

ple whose identities appear in the test sets. The use of such outside data sets has

dramatically improved performance in several cases.

2.2.1 Attribute and simile classifiers for face verification, 2009 [53]

Kumar et al. [53] present two main ideas in this paper. The first is to explore the use

of describable attributes for face verification. For attribute classifiers 65 describable

visual traits such as gender, age, race, and hair color are used. At least 1000 positive

and 1000 negative pairs of each attribute were used for training each attribute clas-

sifier. The paper gives the accuracy of each individual attribute classifier. Note that

the attribute classifier does not use labeled outside data, and thus, when not used

in conjunction with the simile classifier, qualifies for the unlabeled outside data

protocols.

The second idea develops what they call simile classifiers, in which various clas-

sifiers are trained to rate face parts as “similar” or “not similar” to the face parts of

certain reference individuals. To train these “simile” classifiers, multiple images of

the same individuals (from outside of the LFW training data) are used, and thus this

method uses outside labeled data.

The original paper [53] gives an accuracy of 85.29±1.23% for the hybrid system,

and a follow-up journal paper [54] gives slightly higher results of 85.54±0.35%.

5 Some authors have sent results to the curators before papers have been accepted at peer-reviewed

venues. In these cases, as described on the LFW web pages, we highlight the result in our results

table in red, indicating that it has not yet been published at a peer-reviewed venue. In most cases,

the status of such results are updated once the work has been accepted at a peer-reviewed venue.

However, we maintain the original order in which we received the results.
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These numbers should be adjusted downward slightly to 84.52% and 84.78% since

there was an error in how their accuracies were computed.6

This paper was also notable in that it gave results for human recognition on LFW

(99.2%). While humans had an unfair advantage on LFW since many of the LFW

images were celebrities, and hence humans have seen prior images of many test

subjects, which is not allowed under any of the protocols, these results have never-

theless been widely cited as a target for research. The authors also noted that humans

could do remarkably well using only close crops of the face (97.53%), and even us-

ing only “inverse crops”, including none of the face, but portions of the hair, body,

and background of the image (94.27%).

2.2.2 Face Recognition with Learning-Based Descriptor, 2010 [26]

Cao et al. [26] develop a visual dictionary based on unsupervised clustering. They

explore K-means, principal components analysis (PCA) trees [37] and random pro-

jection trees [37] to build the dictionary. While this was a relatively early use of

learned descriptors, they were not learned discriminatively, i.e. to optimize perfor-

mance.

One of the other main innovative aspects of this paper was building verification

classifiers for various combinations of poses such as frontal-frontal, or rightfacing-

leftfacing, to optimize feature weights conditioned on the specific combination of

poses. This was done by finding the nearest pose to training and test examples using

the Multi-PIE data set [38]. Because the Multi-PIE data set uses multiple images

of the same subject, this paper is put in the category with outside labeled data.

However, it seems plausible that this method could be used on a subset of multi-PIE

that did not have images of the same person, as long there was a full range of labeled

poses. Such a method, if pursued would qualify these techniques for the category

image-restricted with label-free outside data.

The highest accuracy reported for their method was 84.45±0.46%.

2.2.3 An Associate-Predict Model for Face Recognition, 2011 [110]

This paper was one of the first systems to use a large additional amount of outside

labeled data, and was, perhaps not coincidentally, the first system to achieve over

90% on the LFW benchmark.

The main idea in this paper (similar to some older work [13]) was to associate

a face with one person in a standard reference set, and use this reference person to

predict the appearance of the original face in new poses and lighting conditions.

6 The authors reported that their classifier failed to complete, due to a failed preprocessing step,

in 53 out of 6000 cases. According to the footnote in their journal paper, they scored about 85%

of these cases as correct. However, according to the protocol, if an answer is not given, the test

sample must be considered incorrect.
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Building on the previous work by one of the co-authors [26], this paper also

uses different strategies depending upon the relative poses of the presented face

pair. If the poses of the two faces are deemed sufficiently similar, then the faces

are compared directly. Otherwise, the associate-predict method is used to try to map

between the poses. The best accuracy of this system on the unrestricted with labeled

outside data was 90.57±0.56%.

2.2.4 Leveraging Billions of Faces to Overcome Performance Barriers in

Unconstrained Face Recognition, 2011 [95]

This proprietary method from Face.com uses 3D face frontalization and illumina-

tion handling along with a strong recognition pipeline and achieves 91.30±0.30%

accuracy on LFW. They report having amassed a huge database of almost 31 billion

faces from over a billion persons.

They further discuss the contribution of effective 3D face alignment (or frontal-

ization to the task of face verification, as this is able to effectively take care of

out-of-plane rotation, which 2D based alignment methods are not able to do. The

3D model is then used to render all images into a frontal view. Some details are

given about the recognition engine – it uses non-parametric discriminative models

by leveraging their large labeled data set as exemplars.

2.2.5 Tom-vs-Pete Classifiers and Identity-Preserving Alignment for Face

Verification, 2012 [16]

This work presented two significant innovations. The first was to do a new type of

non-affine warping of faces to improve correspondences while preserving as much

information as possible about identity. While previous work had addressed the prob-

lem of non-linear pose-normalization (see, for example, the work by Asthana et al. [10,

11]), it had not been successfully used in the context of LFW.

In particular, as the authors note, simply warping two faces to maximize simi-

larity may reduce the ability to perform verification by eliminating discriminative

information between the two individuals. Instead, a warping should be done to max-

imize similarity while maintaining identity information. The authors achieve this

identity-preserving warping by adjusting the warping algorithm so that parts with in-

formative deviations in geometry (such as a wide nose) are preserved better (see the

paper for additional details). This technique makes about a 2% (91.20% to 93.10%)

improvement in performance relative to more standard alignment techniques.

This paper was also one of the first evaluated on LFW to use the approximate

symmetry of the face to its advantage. Since using the above warping procedure

tends to distort the side of the face further from the camera, the authors reflect the

face, if necessary, such that the side closer to the camera is always on the right

side of the photo. This results in the right side of the picture typically being more

faithful to the appearance of the person. As a result, the learning algorithm which is
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subsequently applied to the flipped faces can learn to rely more on the more faithful

side of the face. It should be noted, however, that the algorithm pays a price when the

person’s face is asymmetric to begin with, since it may need to match the left side

of a person’s face to their own right side. Still this use of facial symmetry improves

the final results.

The second major innovation was the introduction of so-called Tom-vs-Pete clas-

sifiers as a new type of learned feature. These features were developed by using

external labeled training sets (also labeled with part locations) to develop binary

classifiers for pairs of identities, such as two individuals named Tom and Pete. For

each of the
(

n
2

)

pairs of identities in the external training set, k separate classifiers

are built, each using SIFT features from a different region of the face. Thus, the

total number of Tom-vs-Pete classifiers is k×
(

n
2

)

. A subset of these were chosen by

maximizing discriminability.

The highest accuracy of their system was 93.10±1.35%. However, they increased

accuracy (and reduced the standard error) a bit further by adding attribute features

based upon their previous work, to 93.30±1.28%.

2.2.6 Bayesian Face Revisited: A Joint Formulation, 2012 [28]

One of the most important aspects of face recognition in general, viewed as a clas-

sification problem, is that all of the classes (represented by individual identities)

are highly similar. At the same time, within each class is a significant amount of

variability due to pose, expression, and so on. To understand whether two images

represent the same person, it can be argued that one should model both the distribu-

tion of identities, and also the distribution of variations within each identity.

This basic idea was originally proposed by Moghaddam et al. in their well-known

paper “Bayesian face recognition” [69]. In that paper, the authors defined a dif-

ference between two images, estimated the distribution of these differences condi-

tioned on whether the images were drawn from the same identity or not, and then

evaluated the posterior probability that this difference was due to the two images

coming from different identities.

Chen et al. [28] point out a potential shortcoming of the probabilistic method

applied to image differences. They note that by forming the image difference, infor-

mation available to distinguish between two classes (in this case the “same” versus

“different” classes of the verification paradigm) may be thrown out. In particular, if

x and y are two image vectors of length N, then the pair of images, considered as a

concatenation of the two vectors, contains 2N components. Forming the difference

image is a linear operator corresponding to a projection of the image pair back to N

dimensions, hence removing some of the information that may be useful in deciding

whether the pair is “same” or “different”. This is illustrated in Figure 1. To address

this problem, Chen et al. focus on modeling the joint distribution of image pairs

(of dimension 2N) rather than the difference distribution (of dimension N). This is

an elegant formulation that has had a significant impact on many of the follow-up

papers on LFW.
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Fig. 1 When the information from two images is projected to a lower dimension by forming the

difference, discriminative information may be lost. The joint Bayesian approach [28] strives to

avoid this projection, thus preserving some of the discriminative information.

Another appealing aspect of this paper is the analysis that shows the relationship

between the joint Bayesian method and the reference-based methods, such as the

simile classifier [53], the multiple one-shots method [96], and the associate-predict

method [110]. The authors show that their method can be viewed as equivalent to a

reference method in the case that there are an infinite number of references, and that

the distributions of identities and within class variance are Gaussian.

The accuracy of this method while using outside data for training (unrestricted

with labeled outside data ) was 92.42±1.08%.

2.2.7 Blessing of Dimensionality: High-dimensional Feature and Its Efficient

Compression for Face Verification, 2013 [29]

This paper argues that high-dimensional descriptors are essential for high perfor-

mance, and also describes a method for compression termed as rotated sparse re-

gression. They construct the high-dimensional feature using local binary patterns

(LBP), histograms of oriented gradients (HOG) and others, extracted at 27 facial

landmarks and at five scales on 2D aligned images. They use principal components
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analysis (PCA) to first reduce this to 400 dimensions and use a supervised method

such as linear discriminant analysis (LDA) or a joint Bayesian model [28] to find

a discriminative projection. In a second step, they use L1-regularized regression to

learn a sparse projection that directly maps the original high-dimensional feature

into the lower-dimensional representation learned in the previous stage.

They report accuracies of 93.18±1.07% under the unrestricted with label-free

outside data protocol and 95.17±1.13% using their WDRef (99,773 images of 2,995

subjects) data set for training following the unrestricted with labeled outside data

protocol.

2.2.8 A Practical Transfer Learning Algorithm for Face Verification, 2013 [25]

This paper applies transfer learning to extend the high performing joint Bayesian

method [28] for face verification. In addition to the data likelihood of the target do-

main, they add the KL-divergence between the source and target domains as a reg-

ularizer to the objective function. The optimization is done via closed-form updates

in an expectation-maximization framework. The source domain is the non-public

WDRef data set used in their previous versions [28, 29] and the target is set to be

LFW. They use the high-dimensional LBP features from [29], reducing its size from

over 10,000 dimensions to 2,000 by PCA.

They report 96.33±1.08% accuracy on LFW in the unrestricted with labeled

outside data protocol, which improves over the results from using joint Bayesian

without the transfer learning on high dimensional LBP features [29].

2.2.9 Hybrid Deep Learning for Face Verification, 2013 [91]

This method [91] uses an elaborate hybrid network of convolutional neural networks

(CNNs) and a Classification-RBM (restricted Boltzmann machine), trained directly

for verification. A pair of 2D aligned face images are input to the network. At the

lower part, there are 12 groups of CNNs, which take in images each covering a par-

ticular part of the face, some in colour and some in grayscale. Each group contains

five CNNs that are trained using different bootstrap samples of the training data. A

single CNN consists of four convolutional layers and a max-pooling layer. Similar

to [48], they use local convolutions in the mid- and high-level layers of the CNNs.

There can be eight possible “input modes” or combinations of horizontally flipping

the input pair of images and each of these pairs are fed separately to the networks.

The output from all these networks is in layer L0, having 8∗5∗12 neurons. The next

two layers average the outputs, first among the eight input modes and then the five

networks in a group. The final layer is a classification RBM (models the joint distri-

bution of class labels, binary input vectors and binary hidden units) with two outputs

that indicate same or different class for the pairs, which is discriminatively trained

by minimizing the negative log probability of the target class given the input, using

gradient descent. The CNNs and the RBM are trained separately; then the whole
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model is jointly fine-tuned using back-propagation. Model averaging is done by

training the RBM with five different random sets of training data and averaging the

predictions. They create a new training data set, “CelebFaces”, consisting of 87,628

images of 5,436 celebrities collected from the web. They report 91.75±0.48% ac-

curacy on the LFW in the unrestricted with label-free outside data protocol and

92.52±0.38% following the unrestricted with labeled outside data protocol.

2.2.10 POOF: Part-Based One-vs-One Features for Fine-Grained

Categorization, Face Verification, and Attribute Estimation, 2013 [17]

When annotations of parts are provided, this method learns highly discriminative

features between two classes based on the appearance at a particular landmark or

part that has been provided. They formulate face verification as a fine-grained clas-

sification task, for which this descriptor is designed to be well suited.

For training a single “POOF” or Part-Based One-vs-One Feature, it is provided a

pair of classes to distinguish and two part locations - one for alignment and the other

for feature extraction. All the images of the two classes are aligned with respect

to the two locations using similarity transforms with 64 pixels horizontal distance

between them. A crop of 64× 128 at the mid-point of the two locations is taken

and grids of 8× 8 and 16× 16 are placed on it. Gradient direction histograms and

color histograms are used as base features for each cell and concatenated. A linear

support vector machine (SVM) is trained on these to separate the two classes. These

SVM weights are used to find the most discriminative cell locations and a mask is

obtained by thresholding these values. Starting from a given part location as a seed,

its connected component is found in the thresholded mask. Base features from cells

in this connected component are concatenated and another linear SVM is used to

separate the two classes. The score from this SVM is the score of that part-based

feature.

They learn a random subset of 10,000 POOFs using the database in [16], get-

ting two 10,000-dimensional vectors for each LFW pair. They use both absolute

difference (| f (A)− f (B)|) and product ( f (A). f (B)) of these vectors to train a same-

versus-different classifier on the LFW training set. They report 93.13±0.40% accu-

racy on LFW following the unrestricted with labeled outside data protocol.

2.2.11 Learning Discriminant Face Descriptor for Face Recognition, 2014 [58]

This approach learned a “Discriminative Face Descriptor” (DFD) based upon im-

proving the LBP feature (which are essentially differences in value of a particular

pixel to its neighbours). They use the Fisher criterion for maximizing between class

and minimizing within class scatter matrices to learn discriminative filters to ex-

tract features at the pixel level as well as find optimal weights for the contribution

of neighbouring pixels in computing the descriptor. K-means clustering is used to
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find the most dominant clusters among these discriminant descriptors (typically of

length 20). They reported best performance using K=1024 or 2048.

They used the LFW-a images and cropped the images to 150×130. They further

used a spatial grid to encode separate parts of the face separately into their DFD rep-

resentation and also apply PCA whitening. The descriptors themselves were learned

using the FERET data set (unrestricted with labeled outside data ), however the au-

thors note that the distribution of images in FERET is quite different from that of

LFW – performance on LFW is an indicator of the generalizable power of their

descriptor. They report an LFW accuracy of 84.02±0.44%.

2.2.12 Face++, 2014

We discuss two papers from the Face++/Megvii Inc. group here, both involving

supervised deep learning on large labeled data sets. These, along with Facebook’s

DeepFace [97] and DeepID[92], exploited massive amounts of labeled outside data

to train deep convolutional neural networks (CNNs) and reach very high perfor-

mance on LFW.

In the first paper from the Face++ group, a new structure, which they term the

pyramid CNN [34] is used. It conducts supervised training of a deep neural net-

work one layer at a time, thus greatly reducing computation. A four-level Siamese

network trained for verification was used. The network was applied on four face

landmarks and the outputs were concatenated. They report an accuracy of 97.3% on

the LFW unrestricted with labeled outside data protocol.

The Megvii Face Recognition System [113] was trained on a data set of 5 million

labeled faces of around 20,000 identities. A ten-layer network was trained for iden-

tification on this data set. The second-to-last layer, followed by PCA, was used as

the face representation. Face verification was done using the L2 norm score, achiev-

ing 99.50±0.36% accuracy. With the massive training data set size, they argue that

the advantages of using more sophisticated architectures and methods become less

significant. They investigate the long tail effect of web-collected data (lots of per-

sons with very few image samples) and find that after the first 10,000 most frequent

individuals, including more persons with very few images into the training set does

not help. They also show in a secondary experiment that high performance on LFW

does not translate to equally high performance in a real-world security certification

setting.

2.2.13 DeepFace: Closing the Gap to Human-Level Performance in Face

Verification, 2014 [97]

This paper from Facebook [97] has two main novelties - a method for 3D face

frontalization7 and a deep neural net trained for classification. The neural network

7 See Section 3 for a discussion of previous work on 3D frontalization.
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featured 120 million parameters, and was trained on 4,000 identities having 4 mil-

lion images (the non-public SFC data set). This paper was one of the first papers to

achieve very high accuracies on LFW using CNNs. However, as mentioned above,

other papers that used deep networks for face recognition predated this by several

years [70, 48]. Figure 2 shows the basic architecture of the DeepFace CNN, which is

typical of deep architectures used on other non-face benchmarks such as ImageNet.

 Image after 
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3x152x152

32 11x11 filters

Convolutional
Layer

3x3 kernel

Max Pooling
Layer
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Convolutional
Layer
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Fig. 2 The architecture of the DeepFace convolutional neural network [97]. This type of architec-

ture, which has been widely used in other object recognition problems, has become a dominant

presence in the face recognition literature.

3-D frontalized RGB faces of size 152×152 are taken as input, followed by 32

11×11 convolution filters (C1), a max-pooling layer (2×2 size with stride of two

pixels, M2) and another convolutional layer with 16 9×9 filters (C3). The next three

layers (L4-6) are locally connected layers [48], followed by two fully connected

layers (F7-8). The 4096-dimensional F7 layer output is used as the face descrip-

tor. ReLU activation units are used as the non-linearity in the network and dropout

regularization is applied to F7 layer. L2-normalization is applied to the descriptor.

Training the network for 15 epochs took three days. The weighted χ2 distance is

used as the verification metric. Three different input image types (3D algined RGB,

grayscale with gradient magnitude and orientation and 2-D aligned RGB) are used,

and their scores are combined using a kernel support vector machine (SVM). Using

the restricted protocol, this reaches 97.15% accuracy. Under the unrestricted proto-

col, they train a Siamese network (initially using their own SFC data set, followed by

two epochs on LFW pairs), reaching 97.25% after combining the Siamese network

with the above ensemble. Finally, adding four randomly-seeded DeepFace networks

to the ensemble a final accuracy of 97.35±0.25% is reached on LFW following the

unrestricted with labeled outside data protocol.

2.2.14 Recover Canonical-View Faces in the Wild with Deep Neural

Networks, 2014 [115]

In this paper, the authors train a convolutional neural network to recover the canon-

ical view of a face by training it on 2D images without any use of 3D information.

They develop a formulation using symmetry and matrix-rank terms to automatically
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select the frontal face image for each person at training time. Then the deep network

is used to learn the regression from face images in arbitrary view to the canonical

(frontal) view.

After this canonical pose recovery is performed, they detect five landmarks from

the aligned face and train a separate network for each patch at each landmark along

with one network for the entire face. These small networks (two convolutional and

two pooling layers) are connected at the fully connected layer and trained on the

CelebFaces data set [91] with the cross-entropy loss to predict identity labels. Fol-

lowing this, a PCA reduction is done, and an SVM is used for the verification task,

resulting in an accuracy of 96.45±0.25% under the unrestricted with labeled outside

data protocol.

2.2.15 Deep Learning Face Representation from Predicting 10,000 Classes,

2014 [92]

In this approach, called “DeepID” [92], the authors trained a network to recognize

10,000 face identities from the “CelebFaces” data set [91] (87,628 face images of

5436 celebrities, non-overlapping with LFW identities). The CNNs had four convo-

lutional layers (with 20, 40, 60 and 80 feature maps), followed by max-pooling, a

160-dimensional fully-connected layer (DeepID-layer) and a softmax layer for the

identities. The higher convolutional layers had locally shared weights. The fully-

connected layer was connected to both the third and fourth convolutional layers in

order to see multi-scale features, referred to as a “skipping” layer. Faces were glob-

ally aligned based on five landmarks. The input to a network was one out of 60

patches, which were square or rectangular and could be both colour or grayscale.

Sixty CNNs were trained on flipped patches, yielding a 160∗2∗60 dimensional de-

scriptor of a single face. PCA reduction to 150 dimensions was done before learning

the joint Bayesian model, reaching an accuracy of 96.05%. Expanding the data set

(CelebFaces+ [88]) and using the joint Bayesian model for verification gives them a

final accuracy of 97.45±0.26% under the unrestricted with labeled outside data pro-

tocol.

2.2.16 Surpassing Human-Level Face Verification Performance on LFW with

GaussianFace, 2014 [65]

This method uses multi-task learning and the discriminative Gaussian process la-

tent variable model (DGP-LVM) [55, 100] to be one of the top performers on

LFW. The DGP-LVM [100] maps a high-dimensional data representation to a lower-

dimensional latent space using a discriminative prior on the latent variables while

maximizing the likelihood of the latent variables in the Gaussian process (GP)

framework for classification. GPs themselves have been observed to be able to make

accurate predictions given small amounts of data [55] and are also robust to situa-

tions when the training and test data distributions are not identical. The authors
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were motivated to use DGP-LVM over the more usual GPs for classifications as the

former, by virtue of its discriminative prior, is a more powerful predictor.

The DGP-LVM is reformulated using a kernelized linear discriminant analysis

to learn the discriminative prior on latent variables and multiple source domains

are used to train for the target domain task of verification on LFW. They detail

two uses of their Gaussian Face model - as a binary classifier and as a feature

extractor. For the feature extraction, they use clustering based on GPs [51] on the

joint vectors of two faces. They compute first and second order statistics for input

joint feature vectors and their latent representations and concatenate them to form

the final feature. These GP-extracted features are used in the GP-classifier in their

final model.

Using 200,000 training pairs, the “GaussianFace” model reached 98.52±0.66%

accuracy on LFW under the unrestricted with labeled outside data protocol, sur-

passing the recorded human performance on close-cropped faces (97.53%).

2.2.17 Deep Learning Face Representation by Joint

Identification-Verification, 2014 [88]

Building on the previous model, DeepID [92], “DeepID2” [88] used both an iden-

tification signal (cross-entropy loss) and a verification signal (L2 norm verification

loss between DeepID2 pairs) in the objective function for training the network, and

expanded the CelebFaces data set to “CelebFaces+”, which has 202,599 face images

of 10,177 celebrities from the web. 400 aligned face crops were taken to train a net-

work for each patch and a greedy selection algorithm was used to select the best 25

of these. A final 4000 (25*160) dimensional face representation was obtained, fol-

lowed by PCA reduction to 180-dimensions and joint Bayesian verification, achiev-

ing 98.97% accuracy.

The network had four convolutional layers and max-pooling layers were used

after the first three convolutional layers. The third convolutional layer was locally

connected, sharing weights in 2× 2 local regions. As mentioned before, the loss

function was a combined loss from identification and verification signals. The ratio-

nale behind this was to encourage features that can discriminate identity, and also

reduce intra-personal variations by using the verification signal. They show that us-

ing either of the losses alone to train the network is sub-optimal and the appropriate

loss function is a weighted combination of the two.

A total of seven networks are trained using different sets of selected patches

for training. The joint Bayesian scores are combined using an SVM, achieving

99.15±0.13% accuracy under the unrestricted with labeled outside data protocol.
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2.2.18 Deeply Learned Face Representations are Sparse, Selective and

Robust, 2014 [93]

Following on with the DeepID “family” of models, “DeepID2+” [93] increased the

number of feature maps to 128 in the four convolutional layers, the DeepID size

to 512 dimensions and expanded their training set to around 290,000 face images

from 12,000 identities by merging the CelebFaces+ [88] and WDRef [29] data sets.

Another interesting novelty of this method was the use of a loss function at multiple

layers of the network, instead of the standard supervisory signal (loss function) in

the top layer. They branched out 512-dimensional fully-connected layers at each of

the 4 convolutional layers (after the max-pooling step) and added the loss function

(a joint identification-verification loss) after the fully-connected layer for additional

supervision at the early layers. They show that removal of the added supervision

lowers their performance, as well as some interesting analysis on the sparsity of

the neural activations. They report that only about half the neurons get activated

for an image, and each neuron activates for about half the images. Moreover they

found a difference of less than 1% when using a binary representation by threshold-

ing, which led them to state that the fact that a neuron is activated or not is more

important than the actual value of that activation.

This report an accuracy of 99.47±0.12% (unrestricted with labeled outside data )

using the joint Bayesian model trained on 2000 people in their training set and com-

bining the features from 25 networks trained on the same patches as DeepID2 [88].

2.2.19 DeepID3: Face Recognition with Very Deep Neural Networks, 2015 [89]

“DeepID3” uses a deeper network (10 to 15 feature extraction layers) with Inception

layers [94] and stacked convolution layers (successive convolutional layers with-

out any pooling layer in between) on a similar overall pipeline to DeepID2+ [93].

Similar to DeepID2+, they include unshared weights in later convolutional layers,

max-pooling in early layers and the addition of joint identification-verification loss

functions to branched-out fully connected layers from each pooling layer in the net-

work.

They train two networks, one using the stacked convolution and the other using

the recently-proposed Inception layer used in the GoogLeNet architecture, which

was a top-performer in the ImageNet challenge in 2015 [94]. The two networks

reduce the error rate of DeepID2+ by 0.81% and 0.26%, respectively.

The features from both the networks on 25 patches is combined into a vector

of about 30,000 dimensions. It is PCA reduced to 300 dimensions, followed by

learning a joint Bayesian model. It achieved 99.53±0.10% verification accuracy on

LFW (unrestricted with labeled outside data ).



20 Erik Learned-Miller, Gary Huang, Aruni RoyChowdhury, Haoxiang Li, Gang Hua

2.2.20 FaceNet: A unified embedding for face recognition and clustering,

2015 [82]

This model from Google, called the FaceNet [82], uses 128-dimensional represen-

tations from very deep networks, trained on a 260-million image data set using a

triplet loss at the final layer - the loss separates a positive pair from a negative pair

by a margin. An online hard negative exemplar mining strategy within each mini-

batch is used in training the network. This loss directly optimizes for the verification

task and so a simple L2 distance between the face descriptors is sufficient.

They use two variants of networks. In NN1, they add 1×1×d convolutional lay-

ers between the standard Zeiler&Fergus CNN [112] resulting in 22 layers. In NN2,

they use the recently proposed Inception modules from GoogLeNet [94] which is

more efficient and has 20 times lesser parameters. The L2-distance threshold for

verification is estimated from the LFW training data. They report results, follow-

ing the unrestricted with labeled outside data protocol, on central crops of LFW

(98.87±0.15%) and when using a proprietary face detector (99.6±0.09%) using the

NN1 model, which is the highest score on LFW in the unrestricted with labeled

outside data protocol. The scores from using the NN2 model were reported to be

statistically in the same range.

2.2.21 Tencent-BestImage, 2015 [8]

This commercial system followed the unrestricted with labeled outside data pro-

tocol and built their system combining an alignment system, a deep convolutional

neural network with 12 convolution layers, and the joint Bayesian method for ver-

ification. The whole system was trained on their data set - “BestImage Celebrities

Face” (BCF), which contains about 20,000 individuals and 1 million face images

and is identity-disjoint with respect to LFW. They divided the BCF data into two

subsets for training and validation. The network was trained on the BCF training set

with 20 face patches. The features from each patch were concatentated, followed

by PCA and the joint Bayesian model learned on BCF validation set. They report

an accuracy of 99.65±0.25% on LFW under the unrestricted with labeled outside

data protocol.

2.3 Label-free outside data protocols

In this section, we discuss two of the LFW protocols together–image-restricted with

label-free outside data and unrestricted with label-free outside data. While these

results are curated separately for fairness on the LFW page, conceptually they are

highly similar, and are not worth discussing separately.

These protocols allow the use of outside data such as additional faces, landmark

annotations, part labels, and pose labels, as long as this additional information does
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Method Net. Loss Outside data # models Aligned Verif. metric Layers Accu.

DeepFace [97] ident. 4M 4 3D wt. chi-sq. 8 97.35±0.25

Canon. view CNN [115] ident. 203K 60 2D Jt. Bayes 7 96.45±0.25

DeepID [92] ident. 203K 60 2D Jt. Bayes 7 97.45±0.26

DeepID2 [88] ident. + verif. 203K 25 2D Jt. Bayes 7 99.15±0.13

DeepID2+ [93] ident. + verif. 290K 25 2D Jt. Bayes 7 99.47±0.12

DeepID3 [89] ident. + verif. 290K 25 2D Jt. Bayes 10-15 99.53±0.10

Face++ [113] ident. 5M 1 2D L2 10 99.50±0.36

FaceNet [82] verif. (triplet) 260M 1 no L2 22 99.60±0.09

Tencent [8] - 1M 20 yes Jt. Bayes 12 99.65±0.25

Table 2 CNN top results: As some of the highest results on LFW have been from using supervised

convolutional neural networks (CNNs), we compare the details of the top-performing CNN meth-

ods in a separate table. N.B. – unknown parameters that were not mentioned in the corresponding

papers are denoted with a “-”.

not contain any information that would allow making pairs of images labeled “same”

or “different”. For example, a set of images of a single person (even if the person

were not labeled) or a video of a person would not be allowed under these protocols,

since any pair of images from the set or from the video would allow the formation

of a “same” pair.

Still, large amounts of information can be used by these methods to understand

the general structure of the space of faces, to build supervised alignment methods,

to build attribute classifiers, and so on. Thus, these methods would be expected to

have a significant advantage over the “no outside data” protocols.

2.3.1 Face recognition using boosted local features, 2003 [50]

One of the earliest methods applied to LFW was developed at Mitsubishi Electric

Research Labs (MERL) by Michael Jones and Paul Viola [50]. This work built on

the authors’ earlier work in boosting for face detection [101], adapting it to learn

a similarity measure between face images using a modified AdaBoost algorithm.

They use filters that act on a pair of images as features, which are a set of linear

functions that are a superset of the “rectangle” filters used in their face detection

system. A threshold on the absolute difference of the scalar values returned by a

filter applied on a pair of faces can be used to determine valid or invalid variation of

a particular property or aspect of a face (the validity being with respect to whether

the faces belong to the same identity).

The technical report was released before LFW, and so does not describe appli-

cation to the database, but the group submitted results on LFW after publication,

achieving 70.52±0.60%.
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2.3.2 LFW Results Using a Combined Nowak Plus MERL Recognizer, 2008

[46]

This early system combined the method of Nowak et al. [74] with an unpublished

method [46] from Mitsubishi Electric Research Laboratory (MERL), and thus tech-

nically counts as a method whose full details are not published. However, some

details are given in a workshop paper [46].

The MERL system initially detects a face using a Viola-Jones frontal face de-

tector, followed by alignment based on nine facial landmarks (also detected using

a Viola-Jones detector). After alignment, some simple lightning normalization is

done. The score of the MERL face recognition system [50] is then averaged with

the score from the best-performing system of that time (2007), by Nowak and Ju-

rie [74].

The accuracy of this system was 76.18±0.58%.

2.3.3 Is that you? Metric Learning Approaches for Face Identification, 2009

[39]

This paper presents two methods to learn robust distance measures for face veri-

fication, the logistic discriminant-based metric learning (LDML) and marginalized

K–nearest neighbors (MkNN) classifier. The LDML learns a Mahalanobis distance

between two images to make the distances between positive pairs smaller than the

distances between negative pairs and obtain a probability that a pair is positive in a

standard linear logistic discriminant model. The MkNN classifies an image pair be-

longs to the same class with the marginal probability that both of them are assigned

to the same class using a k–nearest neighbor classifier. In the experiments, they

represent the images as stacked multi-scale local descriptors extracted at nine facial

landmarks. The facial landmarks detector is trained with outside data. Without using

the identify labels for the LFW training data, the LDML achieves 79.27±0.6% un-

der the image-restricted with label-free outside data protocol. They obtain this accu-

racy by fusing the scores from eight local features including LBP, TPLBP, FPLBP,

SIFT and their element-wise square root variants with a linear combination. This

multiple feature fusion method is shown to be effective in a number of literatures.

Under the unrestricted with label-free outside data protocol, they show that the per-

formance of LDML is significantly improved with more training pairs formed using

the identity labels. And they obtain their best performance 87.50± 0.4% accuracy

by linearly combining the 24 scores with the three methods LDML, large margin

nearest neighbor (LMNN) [102] and MkNN over the eight local features.

2.3.4 Multiple One-Shots for Utilizing Class Label Information, 2009 [96]

The authors extend the one-shot similarity (OSS) introduced in [104] which we

will describe under the image-restricted, no outside data protocol. In brief, the OSS
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for an image pair is obtained by training a binary classifier with one image in the

pair as the positive sample and a set of pre-defined negative samples to classify

the other image in the pair. This paper extends the OSS to be multiple one-shots

similarity vector by producing OSS scores with different negative sample sets. Each

set reflecting either a different subject or a different pose. In their face verification

system, the faces are firstly aligned with a commercial face alignment system. The

aligned faces are published as the “aligned” LFW data set or LFW-a data set. The

face descriptors are then constructed by stacking local descriptors extracted densely

over the face images. The information theoretic metric learning (ITML) method

is adopted to obtain a Mahalanobis matrix to transform the face descriptors and a

linear SVM classifies a pair of faces to be matched or not based on the multiple

OSS scores. They achieve their best result 89.50± 0.51% accuracy by combining

16 multiple OSS scores including eight descriptors (SIFT, LBP, TPLBP, FPLBP

and their square root variants) under two settings of the multiple OSS scores (the

subject-based negative sample sets and pose-based negative sample sets).

2.3.5 Attribute and Simile Classifiers for Face Verification. 2009 [53]

We discussed the attribute and simile classifiers for face verification [53] under the

unrestricted with labeled outside data protocol. The authors’ result with the attribute

classifier qualifies for the unrestricted with label-free outside data protocol. They

reported their result with the attribute classifier on LFW as 85.25±0.60% accuracy

in their follow-up journal paper [54].

2.3.6 Similarity Scores based on Background Samples, 2010 [105]

In this paper, Wolf et al. [105] extend the one-shot similarity (OSS) introduced

in [104] to the two-shot similarity (TSS). The TSS score is obtained by training a

classifier to classify the two face images in a pair against a background face set. Al-

though the TSS score by itself is not discriminative for face verification, they show

that the performance is improved by combining the TSS scores with OSS scores and

other similarity scores. They extend the OSS and TSS framework to use linear dis-

criminant analysis instead of an SVM as the online trained classifier. In addition to

OSS and TSS, they propose to represent each image in the pair with its rank vector

obtained by retrieving similar images from the background face set. The correla-

tion between the two rank vectors provides another dimensionality of the similarity

measure of the face pair. In their experiments, they use the LFW-a data set to handle

alignment. Combining the similarities introduced above with eight variants of local

descriptors, they obtain an accuracy of 86.83± 0.34% under the image-restricted

with label-free outside data protocol.
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2.3.7 Rectified Linear Units Improve Restricted Boltzmann Machines, 2010

[70]

Restricted Boltzmann machines (RBMs) are often formulated as having binary-

valued units for the hidden layer and Gaussian units for the real-valued input layer.

Nair and Hinton [70] modify the hidden units to be “noisy rectified linear units”

(NReLUs), where the value of a hidden unit is given by the rectified output of the

activation and some added noise, i.e. max(0,x+N(0,V )), where x is the activation of

the hidden unit given an input, and N(0,V ) is the Gaussian noise. RBMs with 4000

NReLU units in the hidden layer are first pre-trained generatively, then discrimina-

tively trained as a feed-forward fully-connected network using back-propagation (in

the latter case the Gaussian noise term is dropped in the rectification).

In order to model face pairs, they use a “Siamese” network architecture, where

the same network is applied to both faces and the cosine distance is the symmetric

function that combines the two outputs of the network. They show that that NRe-

LUs are translation equivariant and scale equivariant(the network outputs change

in the same way as the input), and combined with the scale invariance of cosine

distance the model is analytically invariant to the rescaling of its inputs. It is not

translation invariant. LFW images are center-cropped to 144× 144, aligned based

on the eye location and sub-sampled to 32× 32 3-channel images. Image intensi-

ties are normalized to be zero-mean and unit-variance. They report an accuracy of

80.73±1.34% (image-restricted with label-free outside data ). It should be noted

that because the authors use manual correction of alignment errors, this paper does

not conform to the LFW protocols, and thus need not be used as a comparison

against fully automatic methods.

2.3.8 Face Recognition with Learning-based Descriptor, 2010 [26]

This paper was discussed under the unrestricted with labeled outside data protocol.

With the holistic face as the only component, the method qualifies for the image-

restricted with label-free outside data protocol, under which the authors obtain an

accuracy of 81.22±0.35%.

2.3.9 Cosine Similarity Metric Learning for Face Verification, 2011 [72]

This paper proposes cosine similarity metric learning (CSML) to learn a transforma-

tion matrix to project faces into a subspace in which cosine similarity performs well

for verification. They define the objective function to maximize the margin between

the cosine similarity scores of positive pairs and cosine similarity scores of negative

pairs while regularizing the learned matrix by a predefined transformation matrix.

They empirically demonstrate that this straightforward idea works well on LFW

and that by combining scores from six different feature descriptors their method

achieves an accuracy of 88.00± 0.38% under the image-restricted with label-free
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outside data protocol. Subsequent communication with the authors revealed an error

in the use of the protocol. Had the protocol been followed properly, our experiments

suggest that the results would be about three percent lower, i.e., about 85%. Still,

this method has played an important role in subsequent research as a popular choice

for the comparison of feature vectors.

2.3.10 Beyond Simple Features: A Large-Scale Feature Search Approach to

Unconstrained Face Recognition, 2011 [31]

This method [31] uses the biologically-inspired V1-like features that are designed

to approximate the initial stage of the visual cortex of primates. It is essentially a

cascade of linear and non-linear functions. These are stacked into two and three

layer architectures, HT-L2 and HT-L3 respectively. These models take in 100×100

and 200× 200 grayscale images as inputs. A linear SVM is trained on a variety

of vector comparison functions between two face descriptors. Model selection is

done on 5,915 HT-L2 and 6,917 HT-L3 models before the best five were selected.

Multiple kernels were used to combine data augmentations (rescaled crops of 250×
250, 150× 150 and 125× 75), blend the top five models within each “HT class”,

and also blend models across HT classes. The HT-L3 gives an accuracy of 87.8%

while combining all of the models gives a final accuracy of 88.13±0.58% following

the image-restricted with label-free outside data protocol.

2.3.11 Face Verification Using the LARK Representation, 2011 [84]

This work extends previous work [83] in which two images are represented as two

local feature sets and the matrix cosine similarity (MCS) is used to separate faces

from backgrounds. All kinds of visual variations are addressed implicitly in the

MCS which is the weighted sum of the cosine similarities of the local features. In

this work, the authors present the locally adaptive regression kernel (LARK) local

descriptor for face verification. LARK is defined as the self-similarity between a

center pixel and its surroundings. In particular, the distance between two pixels is

the geodesic distance. They consider an image as a 3D space which includes the

2D coordinates and the gray-scale value at each pixel. The geodesic distance is

then the shortest path on the image surface. PCA is then adopted to reduce the

dimensionality of the local features. They further apply an element-wise logistic

function to generate a binary-like representation to remove the dominance of large

relative weights to increase the discriminative power of the local features. They

conduct experiments on LFW under both the unsupervised protocol and the image

restricted protocol.

In the unsupervised setting, they compute LARKs of size 7× 7 from each face

image. They evaluate various combinations of different local descriptors and simi-

larity measures and report that the LBP with Chi-square distance achieves the best

69.54% accuracy among the baseline methods. Their method achieves 72.23% ac-
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curacy. Under the image-restricted with label-free outside data protocol, they adopt

the OSS with LDA for face verification and achieve an accuracy of 85.10±0.59%

by fusing scores from 14 combinations of local descriptors (SIFT, LBP, TPLBP and

pcaLARK) and similarity measures (OSS, OSS with logistic function, MCS and

MCS with logistic function).

2.3.12 Probabilistic Models for Inference About Identity, 2012 [62]

This paper presents a probabilistic face recognition method. Instead of representing

each face as a feature vector and measuring the distances between faces in the fea-

ture space, they propose to construct a model in which identity is a hidden variable

in a generative description of the image data. Other variations in pose, illumina-

tion and etc., is described as noise. The face recognition is then framed as a model

comparison task.

More concretely, they present a probabilistic latent discriminant analysis (PLDA)

model to describe the data generation. In PLDA, the data generation depends on the

latent identity variable and an intra-class variation variable. This design helps fac-

torize the identity subspace and within-individual subspace. The model is learned

by expectation-maximization (EM) and the face verification is conducted by look-

ing at the likelihood ratio of an image pair generated by a similar pair model over

a dissimilar pair model. The PLDA model is further extended to be a mixture of

PLDA models to describe the potential non-linearity of the face manifold. Extensive

experiments are conducted to evaluate the PLDA and its variants in face analysis.

Their face verification result on LFW is 90.07±0.51% under the unrestricted with

label-free outside data protocol.

2.3.13 Large Scale Strongly Supervised Ensemble Metric Learning, with

Applications to Face Verification and Retrieval, 2012 [43]

High-dimensional overcomplete representations of data are usually informative but

can be computationally expensive. This paper proposes a two-step metric learning

method to enforce sparsity and to avoid features with little discriminability and im-

prove computational efficiency. The two-step design is motivated by the fact that

straightforwardly applying the group lasso with row-wise and column-wise L1 reg-

ularization is very expensive in high-dimensional feature spaces. In the first step,

they iteratively select µ groups of features. In each iteration, the feature group which

gives the largest partial derivative of the loss function is chosen and the Mahalanobis

matrix of a weak metric for the selected feature group is learned and assembled into

a sparse block diagonal matrix A†. With an eigenvalue decomposition, they obtain a

transformation matrix to reduce the feature dimensionality. After that, in the second

step, another Mahalanobis matrix is learned to exploit the correlations between the

selected feature groups in the lower-dimensional subspace. They adopt the projected

gradient descent method to iteratively learn the Mahalanobis matrix.
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In their experiments, they use the LFW-a data set and center crop the face images

to 110×150. By concatenating two types of features (covariance matrix descriptors

and soft local binary pattern histograms) after the first step, they achieve 92.58±
1.36% accuracy under the image-restricted with label-free outside data protocol.

2.3.14 Distance Metric Learning with Eigenvalue Optimization, 2012 [111]

In this paper, the authors present an eigenvalue optimization framework for learning

a Mahalanobis metric. They learn the metric by maximizing the minimal squared

distances between dissimilar pairs while maintaining an upper bound for the sum of

squared distances between similar pairs. They further show that this is equivalent to

an eigenvalue optimization problem. Similarly, the previous metric learning method

LMNN can also be formulated as a general eigenvalue decomposition problem.

They further develop an efficient algorithm to solve this optimization problem,

which will only involve the computation of the largest eigenvector of a matrix. In the

experiments, they show that the proposed method is more efficient than other metric

learning methods such as LMNN and ITML. On LFW, they evaluate this method

with both the LFW funneled data set and the LFW-a data set. They use SIFT features

computed at the fiducial points for faces on the funneled LFW data set and achieve

81.27±2.30% accuracy. On the “aligned” LFW data set, they evaluate three types of

features including concatenated raw intensity values, LBP and TPLBP. Combining

the scores from the four different features with a linear SVM, they achieve 85.65±
0.56% accuracy under the image-restricted with label-free outside data protocol.

2.3.15 Learning Hierarchical Representations for Face Verification with

Convolutional Deep Belief Networks, 2012 [48]

In this work [48], a local convolutional deep belief network is used to generatively

model the distribution of faces. Then, a discriminatively learned metric (ITML) is

used for the verification task. The shared weights of convolutional filters (10× 10

in size) in the CRBM (convolutional RBM) makes it possible to use high-resolution

images as input. Probabilistic max-pooling is used in the CRBM to have local trans-

lation invariance and still allow top-down and bottom-up inference in the model.

The authors argue that in images like faces, that exhibit clear spatial structure,

the weights of a hidden unit being shared across the locations in the whole image

is not desirable. On the other hand, using a layer with fully-connected weights may

not be computationally tractable without either subsampling the input image or first

applying several pooling layers. In order to exploit this structure, the image is di-

vided into overlapping regions and the weight-sharing in the CRBM is restricted to

be local. Contrastive divergence is used to train the local CRBM. Two layers of these

CRBMs are stacked to form a deep belief network (DBN). The local CRBM is used

in the second layer of their network. In addition to using raw pixels, the uniform

LBP descriptor is also used as input to the DBN. The two features are combined at
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the score level by using a linear SVM. The LFW-a face images are used as input,

with three croppings at sizes 150×150,125×75,100×100, resized to the same size

before input to the DBN. The deep learned features give competitive performance

(86.88±0.62%) to hand-crafted features (87.18±0.49%), while combining the two

gives the highest of 87.77±0.62% (image-restricted with label-free outside data ).

2.3.16 Bayesian Face Revisited: A Joint Formulation, 2012 [28]

We discussed this paper under the unrestricted with labeled outside data proto-

col. The authors also present their result under the unrestricted with label-free out-

side data protocol. Combining scores of four descriptors (SIFT, LBP, TPLBP and

FPLBP), they achieve an accuracy of 90.90±1.48% on LFW.

2.3.17 Blessing of Dimensionality: High-dimensional Feature and Its Efficient

Compression for Face Verification, 2013 [29]

We discussed this paper under the unrestricted with labeled outside data protocol.

Without using the WDRef data set for training, they report an accuracy of 93.18±
1.07% under the unrestricted with label-free outside data protocol.

2.3.18 Fisher Vector Faces in the Wild, 2013 [85]

In this paper, Simonyan et al. [85] adopt the Fisher vector (FV) for face verification.

The FV encoding had been shown to be effective for general object recognition.

This paper demonstrates that this encoding is also effective for face recognition. To

address the potential high computational expense due to the high dimensionality of

the Fisher vectors, the authors propose a discriminative dimensionality reduction to

project the vectors into a low dimensional subspace with a linear projection.

To encode a face image with FV, it is first processed into a set of densely extracted

local features. In this paper, the dense local feature of an image patch is the PCA-

SIFT descriptor augmented by the normalized image patch location in the image.

They train a Gaussian mixture model (GMM) with diagonal covariance over all

the training features. As shown in Figure 3, to encode a face image with FV, the

face image is first aligned with respect to the fiducial points. The Fisher vector is

then the stacked, average first and second order differences of the image features

over each GMM component center. To construct a compact and discriminative face

representation, the authors propose to adopt a large-margin dimensionality reduction

step after the Fisher vector encoding.

In their experiments, they report their best result as 93.03± 1.05% accuracy on

LFW under the unrestricted with label-free outside data protocol.
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Fig. 3 The Fisher vector face encoding work-flow [85].

2.3.19 Fusing Robust Face Region Descriptors via Multiple Metric Learning

for Face Recognition in the Wild, 2013 [32]

In this paper, the authors present a region-based face representation. They divide

each face image into spatial blocks and sample image patches from a fixed grid of

positions. The patches are then represented by nonnegative sparse codes and sum

pooled to construct the representation for the block. PCA whitening is then ap-

plied to reduce its dimensionality. After processing each image into a sequence of

block representations, the distance between two images are the fusion of pairwise

block-to-block distances. They further propose a metric learning method to jointly

learn the sequence of Mahalanobis matrices for discriminative block-wise distances.

Their best result on LFW is 89.35±0.50% (image-restricted with label-free outside

data ) fusing 8 distances from two different scales of face images and four different

spatial partitions of blocks.

2.3.20 Towards Pose Robust Face Recognition, 2013 [108]

This paper presents a pose adaptive framework to handle pose variations in face

recognition. Given an image with landmarks, they present a fitting algorithm to fit

a 3D shape of the given face. The 3D shape is used to project the pre-defined 3D

feature points to the 2D image to reliably locate facial feature points. They then ex-

tract descriptors around the feature points with Gabor filtering and concatenate local

descriptors to represent the face. In their method, an additional technique to address

self-occlusion is to use descriptors from the less-occluded half face for matching.

In their experiments, they show that this pose adaptive framework can handle pose

variations well in unconstrained face recognition. They obtain 87.77±0.51% accu-

racy on LFW (image-restricted with label-free outside data ).

2.3.21 Similarity Metric Learning for Face Recognition, 2013 [23]

This paper presents a framework to learn a similarity metric for unconstrained face

recognition. The learned metric is expected to be robust to the large intra-personal

variation and discriminative in order to differentiate similar image pairs from dis-
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similar image pairs. The robustness is introduced by projecting the face representa-

tions into the intra-personal subspace, which is spanned by the top eigenvectors of

the intra-personal covariance matrix after the whitening process. After mapping the

images to the intra-personal subspace, the discrimination is incorporated in learn-

ing the similarity metric. The similarity metric is defined as the difference of the

image pair similarity against the distance measure, parameterized by two matrices

respectively. The matrices are learned by minimizing the hinge loss and regulariz-

ing the two matrices to identity matrices. In their experiments, they use LBP and

TBLBP descriptors on the LFW-a data set and SIFT descriptors on the LFW fun-

neled data set computed at nine facial key points. Under the image-restricted with

label-free outside data protocol, combining six scores from the three descriptors

and their square roots variants they achieve 89.73±0.38% accuracy. Under the un-

restricted with label-free outside data protocol, they generate more training pairs

with the identity labels and improve the accuracy to 90.75±0.64%.

2.3.22 Fast High Dimensional Vector Multiplication Face Recognition, 2013

[12]

In this method, the authors propose the over-complete LBP (OCLBP) descriptor,

which is the concatenation of LBP descriptors extracted with different block and

radius sizes. The OCLBP based face descriptor is then processed by Whiten-PCA

and LDA. They further introduce a non-linear dimensionality reduction technique

Diffusion Maps (DM) with the proposed framework. Extensive experiments are con-

ducted with different local features and dimensionality reduction methods combina-

tions. They report 91.10± 0.59% accuracy under the image-restricted with label-

free outside data protocol and 92.05±0.45% under the unrestricted with label-free

outside data protocol.

2.3.23 Discriminative deep metric learning for face verification in the wild,

2014 [41]

In this method, referred to as DDML, a verification loss between pairs of faces is

directly incorporated into a deep neural network, resulting in a non-linear distance

metric that can be trained end-to-end using the back-propagation algorithm. The

rationale for the verification loss is that the squared Euclidean distance between

positive pairs is smaller than that between negative pairs, formulated as a large mar-

gin metric learning problem. The network is initialized randomly with three layers

and tanh as the nonlinear activation function. They use 80×150 crops of the LFW-a

(aligned) data set and extract Dense SIFT (45 SIFT descriptors from 16× 16 non-

overlapping patches, resulting in a 5760-dimensional vector), LBP features (10×10

non-overlapping blocks to get a 7080-dimensional vector) and Sparse SIFT (SIFT

computed on 9 fixed landmarks at 3 scales on the funneled LFW images, resulting in

a 3456-dimensional vector). These features are projected down to 500 dimensions
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using PCA Whitening. Multiple features are fused at the score level by averag-

ing. Their final accuracy is 90.68±1.41% (image-restricted with label-free outside

data ).

2.3.24 Large Margin Multi-Metric Learning for Face and Kinship

Verification in the Wild, 2014 [42]

In this paper, a large margin multi-metric learning (LM3L) method is proposed to

exploit discriminative information from multiple features of the same face image.

Extracting multiple features from the face images, the distance between two face

images is the weighted sum of Mahalanobis distances in each image feature. LM3L

jointly learn the distance metrics in different features and the weights of the features

by optimizing each distance metric to be discriminative while minimizing the dif-

ference of distances in different features of the same image pair. They evaluate the

method on the LFW-a data set with SIFT, LBP and Sparse SIFT features. With all

the features, they achieve an accuracy of 89.57±1.53% under the image-restricted

with label-free outside data protocol.

2.3.25 Effective Face Frontalization in Unconstrained Images, 2014 [40]

To show the importance of 3D frontalization to the task of face verification, in this

paper Hassner et al. [40] evaluate their alignment technique using an earlier face

recognition method [104], so that the impact of 3D alignment is not subsumed by

the representation power of a more powerful model like the deep network.

Prior work in 3D frontalization of faces [97] would try to reconstruct the 3D

surface of a face and then use this 3D model to general views, usually of a canoni-

cal pose. This paper explores the alternative of using a single 3D reference surface,

without trying to modify the 3D head model to fit every query face’s appearance.

Although the exact head shape of a query face would be containing discriminative

information regarding identity, the final 3D shape fitted to the query face would be

an approximation largely dependent upon the accuracy of facial landmark localiza-

tion. Solving the simpler problem by using an unmodified 3D shape model is shown

to give qualitatively equivalent frontalization results, and performance improvement

over 2D keypoint alignment methods is demonstrated on face verification and gen-

der estimation tasks.

The frontalized faces of LFW, termed “LFW3D”, provided a 3% boost over the

LFW-a aligned images. By combining multiple feature descriptors and models by

stacking linear SVM scores, they reach an accuracy of 91.65±1.04% on the image-

restricted with label-free outside data protocol of LFW.
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2.3.26 Multi-scale Multi-descriptor Local Binary Features and Exponential

Discriminant Analysis for Robust Face Authentication, 2014 [75]

In this paper, the authors represent an face image as the concatenation of region

based descriptors which are stacked histograms of local descriptors over multiple

scales. They further utilize the exponential discriminant analysis (EDA) to address

the small-sample-size problem in LDA to learn a discriminative subspace for the

face image feature. And they adopt the within class covariance normalization to

project the feature after EDA into a subspace, in which the directions contribute to

large intra-class distances have lower weights. They obtain their best result 93.03±
0.82% on LFW (image-restricted with label-free outside data ) by fusing scores

from three different local features.

2.4 No outside data protocols

The most restrictive LFW protocols are the “no outside data” protocols, including

image restricted with no outside data and unrestricted with no outside data. We

present these results together as well.

2.4.1 Face Recognition Using Eigenfaces, 1991 [99]

Turk et al. [99] introduce the eigenpicture method by Sirovich [86] to face recogni-

tion. The eigenfaces approach they developed is a very important face recognition

method in early years. The eigenfaces are the eigenvectors spanning the PCA sub-

space of a set of training faces. To recognize the unseen face, it is projected to a

low-dimensional subspace with the eigenfaces and compared to the average face of

each person.

As an early work on face recognition, it is mainly for recognizing frontal faces.

Because it assumes faces are well aligned, the PCA subspace keeps mostly varia-

tions related to the identity which spans a good “face space”. And after projecting

faces into the “face space”, the representations are all low-dimensional weight vec-

tors. As a result, they can build a near-real-time face recognition system with this

eigenface approach for both face detection and recognition. This is an impressive

progress considering the limited computational power in early years.

The eigenface approach is designed for well-aligned frontal faces. For the real-

world faces in LFW, it achieves 60.02± 0.79% verification accuracy in the image-

restricted with no outside data protocol.
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2.4.2 Learning visual similarity measures for comparing never seen objects,

2007 [74]

Nowak et al. [74] present a method to recognize general objects. Without having

the class labels in training stage, they present a method to learn to differentiate if

two images are for the same object from training image pairs with only “same” and

“different” labels. This is a typical setting for the image-restricted with no outside

data protocol on LFW.

In the proposed method, they first extract corresponded image patches from the

image pair. Then the differences between the corresponded image patches are quan-

tized with an ensemble of randomized binary trees to obtain a vectorized represen-

tation for the image pair. A binary linear SVM is applied to the vectorized represen-

tation to predict whether the image pair is the “same” or “different”.

This method achieves 72.45±0.40% accuracy on the original LFW data set and

73.93±0.49% with the funneled LFW data set.

2.4.3 Unsupervised joint alignment of complex images, 2007 [45]

This is the method that generated the funneled LFW data set. In this paper, Huang

et al. [45] present a method to align images unsupervisedly in the image-restricted

with no outside data setting of LFW. It is observed that the face recognition accu-

racy is improved when the recognition method is applied after an alignment stage.

The method extends the congealing-style [56] method to handle real-world images.

Compared with other domain specific alignment algorithms, congealing does not

require manual labeling of specific parts of the object in the training stage. In con-

gealing, a distribution field is defined as the sequence of feature values at a pixel

location across a sequence of images. The congealing process is to iteratively min-

imize the entropy of the distribution field by applying affine transformations to the

images. In this work, they use soft quantized SIFT features in congealing.

It shows that with the images aligned by this proposed method, the verifica-

tion accuracy is improved. For example, the method by Nowak et al. [74] achieves

72.45± 0.40% accuracy on the original LFW data set but is improved to 73.93±
0.49% after aligning images with the proposed method.

2.4.4 Descriptor Based Methods in the Wild, 2008 [104]

In this paper, Wolf et al. [104] evaluate the descriptor-based methods on LFW with

LBP descriptor, Gabor filter and two variants of LBP descriptor named Three-Patch

LBP (TPLBP) and Four-Patch LBP (FPLBP). The TPLBP and FPLBP are produced

by comparing the values of three or four patches to produce a bit value in the code

assigned to each pixel. For each descriptor, they use both the euclidean distance and

hellinger distance to evaluate the similarity of a face pair. Then they train a linear
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SVM to fuse the 8 kinds of prediction scores and achieve an improved performance

after fusion.

Besides the evaluation of these descriptor-based methods, they also adopt the

one-shot learning for face verification. In this method, a binary classifier is learned

online using one face in the given face pair as positive example with a set of negative

examples. The binary classifier then evaluates the other face image to obtain the one-

shot similarity (OSS). The same process is applied for each face in the pair to obtain

an average similarity score of the face pair. They evaluate this method on LFW with

the four descriptors and their element-wise square root variants. Combining the 8

scores also improve the accuracy.

Their best result on LFW is 78.47±0.51% by fusing all 16 scores with a linear

SVM, under the image-restricted with no outside data protocol.

2.4.5 Multi-Region Probabilistic Histograms for Robust and Scalable Identity

Inference, 2009 [81]

Sanderson et al. [81] present a region-based face representation. They divide each

face into several fixed regions. 2D DCT (Discrete Cosine Transform) features are

extract densely from each region. Then a soft quantized histogram is constructed

for each region with a Gaussian mixture model as the visual dictionary. The distance

between two faces are defined as the average L1 distances of the corresponded region

histograms.

They also propose a two-step method in constructing the soft histogram for ac-

celeration. The Gaussian components are clustered into K clusters. The K Gaussian

components nearest to the cluster center are evaluated first in the histogram con-

struction to obtain K likelihoods Then the Gaussian components are evaluated clus-

ter by cluster in the descending order with respect to the likelihoods until the total

number of evaluated Gaussian components exceeds the threshold.

The above distance between two faces is normalized by dividing the average pair-

wise distance of the two faces and a set of cohort faces. They observe this distance

normalization method is effective that it brings additional 2.57% average accuracy.

This work achieves 72.95±0.55% accuracy on LFW (image-restricted with no out-

side data ).

2.4.6 How far can you get with a modern face recognition test set using only

simple features?, 2009 [78]

Pinto et al. [78] present that it is possible to achieve a good recognition performance

on LFW by combining several low-level simple features. They extract 48 variants of

V1-like features by varying parameters such as the size of Gabor filters and spatial

frequencies. To combine the effectiveness of different features, they adopt the mul-

tiple kernel learning (MKL) to jointly learn a weighted linear combination of the 48
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kernels and the parameters of the kernel SVM for classification. Their best result on

LFW is 79.35±0.55% following the image-restricted with no outside data protocol.

2.4.7 Probabilistic Elastic Matching for Pose Variant Face Verification, 2013

[60]

Li et al. [60] present an elastic matching method to handle the pose variations in face

verification, reporting results under the image-restricted with no outside data proto-

col of LFW. Without relying on a sophisticated face alignment system, they resort

to identify the corresponded regions to compare with in matching two faces. As

long as the selected corresponded regions are from a semantically consistent face

part, the matching could be invariant to pose variations. In their method, a set of

face part models as a Gaussian mixture model (GMM) is learned over all training

features. The feature is densely extracted local descriptor augmented by the spa-

tial locations of the image patch in the image. Incorporating the spatial information

at the feature-level make each Gaussian component of the GMM capture the joint

spatial-appearance distribution of certain face structure. With this GMM, a face can

be represented as a sequence of features each of which induces the highest proba-

bility on a Gaussian component of the GMM.

In the experiments, they center crop the face images to 150× 150 and densely

extract local descriptors. Given an image, they concatenate the selected sequence

of features to be its face representation. An image pair is then represented as the

element-wise difference of the two face representations. A SVM is trained from

matched and mismatched face pairs for face verification. In their following-up work,

they name the GMM the Probabilistic Elastic Part (PEP) model and the face repre-

sentation is named PEP-representation. The work-flow is illustrated in Figure 4. The

best result reported in the paper is 84.08± 1.20% on the funneled LFW fusing the

prediction scores obtained with the SIFT and LBP features with a linear SVM.

Training Corpus 
Training Features 

(Showing Appearance) PEP-model Testing face pair PEP-representations Feature correspondences

A

B
A B

Fig. 4 The training and testing work-flow of the probabilistic elastic matching [60].
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2.4.8 Efficient Processing of MRFs for Unconstrained-Pose Face Recognition,

2013 [9]

Arashloo et al. [9] present a method to handle the pose variations via dense pixel

matching across face images with MRFs. They propose to reduce the processing

time of inference in MRF-based image matching by parallelizing the computation

on GPU cores. The major contribution of this paper is how it parallelizes the compu-

tation on GPU cores. After adopting the dual decomposition for the MRF optimiza-

tion, the original problem is decomposed into a set of subproblems. To efficiently

solve the subproblems, they further propose several techniques such as incremental

subgradient updates and multi-resolution analysis. After obtaining the image match-

ing, multi-scale LBP descriptors are extracted from matched image regions. They

stack the descriptors, apply PCA and use the cosine similarity score for face verifi-

cation. Their best result on LFW is 79.08±0.14% under the image-restricted with

no outside data protocol.

2.4.9 Fisher Vector Faces in the Wild, 2013 [85]

We discussed this paper under the unrestricted with label-free outside data proto-

col. They also report their result under the restricted protocol, in which they obtain

87.47±1.49% accuracy on LFW.

2.4.10 Eigen-PEP for Video Face Recognition, 2014 [61]

Li et al. [61] develop the Eigen-PEP method upon their early work [60]. With the

probabilistic elastic matching, a face image or a face track can be represented as a set

of face parts. Since the faces are implicitly aligned in a part-based representation, the

similar idea from the eigenfaces [99] is adopted here to build a low-dimensional face

representation. They use the joint Bayesian classifier [28] for verification. They con-

struct a two-frame face track for each image by adding the mirrored face and achieve

88.97± 1.32% accuracy on the funneled LFW in this paper (image-restricted with

no outside data ).

2.4.11 Class-Specific Kernel Fusion of Multiple Descriptors for Face

Verification Using Multiscale Binarised Statistical Image Features,

2014 [79]

In this paper, Arashloo et al. [79] address the pose variations via dense pixel match-

ing with their prior work [9]. They then extract three kinds of descriptors, the multi-

scale binarized statistical image feature, the multi-scale LBP and the multi-scale

local phase quantization feature from the matched image regions. The image repre-

sentations are embedded into a discriminative subspace with a class-specific kernel
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discriminant analysis approach. Their best result on the funneled LFW data set is

95.89±1.94% achieved by combining the results of the three image representations

(image-restricted with no outside data ).

2.4.12 Hierarchical-PEP Model for Real-world Face Recognition, 2015 [59]

In this paper, Li et al. [59] present a Hierarchical-PEP model to hierarchically apply

the probabilistic elastic part (PEP) model combined with a PCANet [27] to achieve

an improved face verification accuracy. They point out that the parts selected af-

ter the elastic matching could still present significant visual appearance variations

due to the pose variations of the faces. Applying the PEP model to the parts could

further introduce pose-invariance in the part representations. After that, the dimen-

sionality of the part representation is discriminatively reduced by a net of PCA and

Linear Discriminant Embedding (LDE). They achieve 91.10± 1.47% accuracy in

this paper on the funneled LFW data set under the image-restricted with no outside

data protocol.

2.5 Other methods

Here we include those methods for which details are too brief to merit a separate

section. These are usually proprietary methods from commercial systems where in-

depth detail is not available.

2.5.1 Colour & Imaging Technology (TCIT), 2014 [4]

TCIT calculates the average position of the facial area and judges the identical per-

son or other person by face recognition using the facial area. Face Feature Position-

ing is applied to get the face data template which is used to verify different faces.

They report an accuracy of 93.33±1.24% (unrestricted with labeled outside data).

2.5.2 betaface.com, 2014 [1]

They have used original LFW images, converted to grayscale, auto-aligned with

their alignment system and followed unrestricted protocol with labeled outside

data. LFW data was not used for training or fine-tuning. Their reported accuracy

is 98.08±0.16% (unrestricted with labeled outside data).
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2.5.3 insky.so, 2015 [2]

They used original LFW images to run the test procedure, without doing any training

on the LFW images. They report 95.51±0.13% accuracy (unrestricted with labeled

outside data).

2.5.4 Uni-Ubi, 2015 [5]

They used original LFW images, converted to grayscale, auto-aligned with their

face detector and alignment system. LFW was not used for training or fine-tuning.

They report 99.00±0.32% accuracy (unrestricted with labeled outside data).

2.5.5 VisionLabs ver. 1.0, 2013 [6]

The method makes use of metric learning and dense local image descriptors. Exter-

nal data is only used implicitly for face alignment. They report 92.90±0.31% ac-

curacy for the unrestricted training setup (unrestricted with label-free outside data),

using LFW-a aligned images.

2.5.6 Aurora Computer Services Ltd: Aurora-c-2014-1, 2014 [7]

The face recognition technology is comprised of Aurora’s proprietary algorithms,

machine learning and computer vision techniques. They report results using the

unrestricted with label-free outside data training protocol , achieving 93.24±0.44%.

The aligned and funneled sets and some external data were used solely for alignment

purposes.

3 Pose and Alignment

One of the most significant issues in face verification is how to address variations in

pose. For instance, consider the restricted case in which both faces are guaranteed

to be from the same pose, but the pose may vary. The most informative features for

comparison will likely change if presented with two profile faces versus two frontal

faces. An ideal verification system would presumably account for these differences.

Even more vexing than the above case of how to select features conditioned on

pose, however, is the more general problem of how to compare two images that

exhibit significantly different poses. Many of the errors seen in the top systems

show that these situations are among the most difficult to address (see Figure 5

and Figure 6). Because pose is a cross-cutting issue that virtually every verification

system must address in some fashion, we treat it as a separate topic in this section.
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LFW was designed to fit into what we call the Detection-Alignment-Recognition

pipeline. In particular, by including in LFW only images from the OpenCV Viola-

Jones face detector, the designers facilitated the building of end-to-end face recog-

nition systems. Given a recognizer that works well on LFW, the practitioner can pair

this with the Viola-Jones face detector to produce an end-to-end system with more

predictable performance.

A consequence of the decision to use only faces detected by this specific detector,

however, is that most LFW faces are within 20 degrees of frontal, and just a small

percentage show some greater degree of yaw angle. This makes addressing pose

in LFW a bit easier than it might be for databases with even greater pose variation,

such as the recent IJB-A database [52]. Still, the techniques used on LFW to address

pose encompass a wide range of strategies and can be expected to be incorporated

into systems designed for new and more difficult benchmarks.

There are many approaches to addressing pose in verification problems. These

include

1. aligning the input images, either by transforming both to a canonical pose, or by

transforming one of them to the other;

2. building mappings that allow inference of what one view looks like given another

view;

3. conditioning on pose, such as building separate classifiers for each category of

pose pairs;

4. having no explicit mechanism for addressing pose, but rather providing a learning

algorithm, and enough training data, so that a model can learn to compare images

across pose.

In this section, we review some of the mechanisms that authors have used to

address pose variation in LFW, and their relative successes and drawbacks. Tables

3 and 4 enumerate all of the alignment methods used in the papers reviewed in this

survey. They are grouped by strategy of alignment (alignment type). The papers

using a specific method are given in the rightmost column of the tables.

3.1 Alignment, transformation, and part localization

Probably the most common way of addressing pose changes is to attempt to trans-

form images to a canonical pose or position as a pre-processing step. Because LFW

images are the results of detections of the Viola-Jones face detector [101], they are

already roughly centered and scaled. However, it seems intuitive that improving the

consistency of the head position in preprocessing should improve verification per-

formance. Huang et al. [45] were the first authors to show that alignment improves

verification performance on LFW, for at least two different alignment methods.

Landmark-based methods. One common way to align face images is to find

landmarks, such as the corners of the eyes and the mouth. Once the landmarks have

been detected, one can either transform the image such that the landmarks are placed
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Alignment

type

Common

name

Brief Description Method reference Method usage in LFW

None - No pre-processing. Use of raw

LFW images.

- Eigenfaces, 1991 [99],

Nowak, 2007 [74],

Multi-Region histograms, 2009 [81],

Learning-based descriptor, 2010 [26]

(no global alignment, but parts aligned),

Associate-predict, 2011 [110],

FaceNet, 2015 [82]

Manual align-

ment

- Used Machine Perception

Toolbox from MPLab, UCSD

to detect eye location, manually

corrected eye coordinates for

worst 2000 detections, used

coordinates to rotate and scale

images.

Nair et al.,

2010 [70]

NReLU, 2010 [70]

Congeal1 Funneling or

SIFT-

congealing

1) GMM on SIFT features.

2) Jointly align images to

minimize entropy of SIFT

cluster IDs.

Huang et al.,

2007 [45]

Nowak, 2007 [74],

Funneling, 2007 [45],

Hybrid descriptor-based, 2008 [104],

HT Brain-inspired, 2009 [78],

LDML-MkNN, 2009 [39],

PEP, 2013 [60],

Eigen-PEP, 2014 [61],

POP-PEP, 2015 [59].

Congeal2 Deep

funneling or

deep

congealing

1) Boltzmann machine model

of unaligned face images.

2) Adjust image to maximize

its likelihood under model.

Huang et al.,

2012 [44]

-

MRF based MRF-based

alignment

MRF for matching is done

using Daisy features and

multi-scale LBP histograms. It

starts by using images from

LFW-a or LFW-funneled

(Congeal1).

Arashloo et al.,

2013 [9].

MRF-MLBP, 2013 [9],

MRF-Fusion-CSKDA, 2014 [79].

Landmark1 Buffy 1) Build classifiers for each of

K different landmarks.

2) Similarity transform of

detected landmarks.

Everingham et al.,

2006 [33].

SFRD + Multiple-metric, 2013 [32],

Fisher Vector Faces, 2013 [85].

Landmark2 MERL Align-

ment

1) Nine landmarks located

using Viola-Jones detector.

2) Similarity transform puts

landmarks in standard position.

Nowak-MERL,

2008 [46].

Nowak-MERL, 2008 [46].

Landmark3 LFW-a This is a slightly modified

version of “Buffy” used by

face.com

Wolf et al.,

2011 [106]

Wolf et al., 2011 [106]

(Journal verson of [96] and [105]),

Cosine, 2011 [72],

Large scale feature search, 2011 [31],

LARK, 2011 [84],

DML-eigen, 2012 [111],

Conv-DBN, 2012 [48],

CMD (Ensemble metric), 2012 [43],

LBP PLDA, 2012 [62],

MRF-MLBP, 2013 [9],

Pose-robust, 2013 [108],

Similarity metric, 2013 [23],

DFD, 2014 [58],

VisionLabs [6],

DDML, 2014 [41],

Face and Kinship, 2014 [42],

Multi-scale LBP, 2014 [75].

Landmark4 Component-

based

discriminative

search

1) Detect possible modes or

positions of face components.

2) “Direction classifiers” used

to find best alignment direction

between image patch and face

component.

Liang et al.,

2008 [63]

Learning-based, 2010 [26],

Joint-Bayesian, 2012 [28].

Landmark5 Explicit shape

regression (5

landmark

rectification)

Coarse to fine regression.

Note: the primary benefit of

this method is not really to

“align” the image but rather to

find landmarks which are used

as conditional feature locations.

Cao et al.,

2014 [24]

“Blessing” of dimensionality, 2013 [29],

TL-Joint Bayesian, 2013 [25].

Table 3 Alignment techniques: Part 1. This table and the one on the following page summarize

the various alignment techniques used in conjunction with LFW.



Labeled Faces in the Wild: A Survey 41

Alignment

type

Common

name

Brief Description Method reference Method usage in LFW

Landmark6 Associate-

Predict face

alignment

Four landmarks are detected us-

ing a standard facial point detec-

tor and used to determine twelve

facial components.

Yin et al.,

2011 [110].

Associate-Predict Model, 2011 [110].

Landmark7 Consensus of

exemplars

Performs the alignment based

not on the part locations in the

image itself, but on “generic”

parts - where the parts would

be for an average person (us-

ing 120 reference faces) with

the same pose and expression

as the test image. Avoids over-

alignment which could distort

identity information.

Belhumeur et al.,

2013 [14].

Tom-vs-Pete, 2012 [16],

POOF, 2013 [17].

Landmark8 CNN for

facial

landmark

3-level cascaded CNN, with the

input as the face region from

a face detector, and each level

regressing to the 5 output key-

points.

Sun et al.,

2013 [90].

Hybrid CNN-RBM, 2013 [91],

DeepID, 2014 [92].

Landmark9 SDM

(Intraface)

At training, SDM learns the

sequence of descent directions

that minimizes the mean of

sampled NLS (non-linear least

squares) functions. At test time,

these learned directions are used

instead of the Jacobean or Hes-

sian, which makes it much faster

computationally.

Xiong et al.,

2013 [107].

DeepID2, 2014 [88],

DeepID2+, 2014 [93],

DeepID3, 2015 [89]

Landmark10 TCIT Commercial system for face

alignment

TCIT, 2014 [4] TCIT, 2014 [4]

Landmark11 betaface ” betaface.com,

2014 [1]

betaface.com, 2014 [1]

Landmark12 Uni-Ubi ” Uni-Ubi, 2015 [5] Uni-Ubi, 2015 [5]

Landmark13 Tencent-

BestImage

” Tencent-BestImage,

2015 [8]

Tencent-BestImage, 2015 [8]

Landmark14 OKAO Vision ” OMRON, 2009 [3] OMRON, 2009 [3]

3D-1 3D pose nor-

malization.

Uses a 3D head model for nor-

malizing pose. Very similar to

the DeepFace approach.

3D pose

normalization,

2011 [11].

-

3D-2 DeepFace 1) Landmark-based 2d align-

ment (6 landmarks)

2) Dense landmark identifica-

tion (67 landmarks)

3) Iterative projection from 3-D

mask to estimate pose.

4) Reproject landmarks and im-

age from frontal pose.

Taigman et al.,

2014 [97]

Billion Faces, 2011 [95],

DeepFace, 2014 [97],

Effective face frontalization, 2014 [40].

3D-3 Fast 3D

Model Fitting

1) Detects landmarks using a

three-view Active Shape Model.

2) Solves for pose and shape by

matching 34 landmarks to 3D

vertex index on a deformable

face model

Yi et al., 2013 [108]. Towards Pose Robust FR, 2013 [108].

3D-4 3D

Morphable

Model

1) Detects landmarks using

SDM (Landmark11) on image.

2) Does pose-adaptive filtering

of the 3DMM to handle non-

correspondences between 2D

and 3D landmarks

Zhu et al.,

2015 [114].

High-Fidelity Pose Normalization,

2015 [114].

view Recover

Canonical-

view

face

Recovers the canonical view of

a face using a deep neural net-

work (commercial system).

Zhu et al,

2014. [115].

CNN view-recovery, 2014 [115]

Table 4 Alignment techniques: Part 2. This table and the one on the previous page summarize the

various alignment techniques used in conjunction with LFW.
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into a standard position, or simply sample patches or features at the landmark loca-

tions. This approach has been taken by many authors. These methods are shown in

Tables 3 and 4 under the alignment type of Landmark [33, 46, 106, 63, 26, 110, 14,

90, 107, 4, 1, 5, 8, 3].

In particular, the LFW-a alignment [106] was widely used by many verification

systems. These images were produced by aligning seven fiducial points to fixed

locations with a similarity transform. Subsequent methods explored improving the

accuracy of the landmark detectors. For instance, Sun et al. [90] performed detec-

tion using a deep convolutional network cascade, which allowed for using larger

context and implicit geometric constraints, leading to better performance in difficult

conditions due to factors such as occlusion and extreme pose angles. Other methods

have explored fitting a larger number of landmarks (generally more than 50) to face

images, using techniques such as boosted regression in Cao et al. [24], or through

approximate second order optimization in Xiong et al. [107].

As one moves from similarity transforms to more complex classes of transforma-

tions for producing alignments, a natural question is whether discriminative verifi-

cation information may be lost in the alignment process. For instance, if an individ-

ual’s face has a narrow nose, and landmarks are placed at the extremes of the width

of the nose, then positioning these landmarks into a canonical position will remove

this information.

Berg and Belhumeur [16] addressed this issue in the context of their piecewise

affine alignment using 95 landmarks. In order to preserve identity information, they

warped the image not based on the detected landmarks themselves, but rather by

the inferred landmarks of a generic face in the same pose and expression as the test

image to be aligned. This is accomplished by using a reference data set contain-

ing 120 individuals. For each individual, the image whose landmark positions most

closely match the test image is found, and these landmark positions are then aver-

aged across all the subjects to yield the generic face landmarks. By switching from a

global affine alignment to a piecewise alignment, they increase the accuracy of their

system from 90.47% to 91.20%, and by additionally using their identity-preserving

generic warp, they achieve a further increase in accuracy to 93.10%.

Note that since all of these landmark-based methods rely on the training of land-

mark detectors, they require additional labeling beyond that provided by LFW, and

hence require any verification methods which use them to abandon the category of

no outside data. The unsupervised methods, discussed next, do not have this prop-

erty.

Two-dimensional unsupervised joint alignment methods (congealing). In

contrast to methods that rely on trained part localizers, other methods are unsu-

pervised and attempt to align methods using image similarity. One group of such

methods is known as congealing [68, 45, 44]. In congealing, a set of images are

jointly aligned by transforming each image to maximize a measure of similarity to

the other images. This can be viewed as maximizing the likelihood of each image

with respect to all of the others, or alternatively, as minimizing the entropy of the

full image set. Once a set of images has been aligned, it can be used to produce a

“machine” that aligns new image samples efficiently. This new machine is called
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a funnel. Thus, images aligned with congealing are referred to as funneled images.

Since congealing can be done using only the training set images for a particular test

set, it relies on no additional annotations, and is compatible with the no outside data

protocols.

The LFW web site provides a two additional versions of the original LFW images

that have been aligned using congealing. The first is referred to as funneled. In this

version of the database, each image was processed with the congealing method of

Huang et al. [45]. This method was shown to improve classification rates over some

of the early landmark-based alignment methods, but was not as effective as some of

the later landmark methods, such as the one used in LFW-a.

An improved version of congealing was developed [44], and was used to pro-

duce another version of LFW, known as the deep-funneled version. This method

used a feature representation learned from a multi-layer Boltzmann machine to align

images under the congealing framework. This unsupervised method appears to be

comparable to most of the landmark-based methods with respect to the final classi-

fication accuracy, and has the advantage of being unsupervised.

One other notable unsupervised method was presented by Arashloo et al. [79, 9]

in two separate papers. They start from the funneled LFW images and use a Markov

random field to further warp the images so that they are more similar.

Frontalization and other methods using 3D information. Another idea to han-

dle differences in views is to attempt to transform views to a canonical frontal pose,

sometimes known as frontalization. This is clearly beyond the abilities of methods

which only perform affine or landmark-based alignment, since the process of trans-

forming a profile face view to a frontal view requires an implicit understanding of

the geometry of the head, occluded areas, and the way other features, such as hair,

appear from different perspectives.

Early work along these lines was done at Mitsubishi [11, 10], although this did

not result in state-of-the-art results on LFW. More recently, Taigman et al. [97] de-

veloped a frontalization method that contributed a modest improvement to accuracy

on LFW, although most of their gains are attributable to their CNN architecture and

the large training sets. Finally, two other methods are essentially landmark-based,

but used 3D models to fit 3D landmark coordinates to 2D images [108, 114].

3.2 Conditioning on pose explicitly

Rather than transforming images so that they are all approximately frontal, another

approach to dealing with pose variability is to apply strategies separately to different

types of image pairs. For example, if one classifies each input image as left-facing

(A), frontal (B), or right-facing (C), then we can define nine types of input pairs: AA,

AB, AC, BA, BB, BC, CA, CB, CC. One approach is to train separate classifiers

for each group of these images, focusing on the peculiarities of each group. By

reflecting right-facing images (C), to be left-facing (B), we can reduce the total

number of pair categories to just four: AA, AB, BA, BB, although doing this may
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eliminate information about asymmetric faces. As mentioned in Section 2.2.2, this

approach was used by Cao et al. [26].

The associate-predict model proposed by Yin et al. [110] uses the above strategy

to separate pairs of test images into those pairs that have similar pose (AA, BB, and

CC), which the authors refer to as comparable images, and those that do not have

similar pose. For the comparable images, the authors run a straightforward compu-

tation of an image distance. For the non-comparable images, the authors “associate”

features of a face with the features of a set of reference faces, and “predict” the ap-

pearance of the feature from a new viewpoint by using the feature appearance from

the closest matching reference person, in the desired view.

3.3 Learning our way out of the pose problem

As discussed in Section 2, almost all of the current dominant methods use some

CNN architecture and massive training sets. One of the original motivations for

using convolutional neural networks was to introduce a certain amount of invariance

to the position of the inputs. In addition, max-pooling operators, which take the

maximum feature response over a neighborhood of filter responses, also introduce

some invariance to position.

However, the invariance introduced by CNNs and max-pooling can also elimi-

nate important positional information in many cases, and it may be difficult to an-

alyze whether the subtle geometrical information required to discriminate among

faces is preserved through these types of operations. While many deep learning ap-

proaches have shown excellent robustness to small misalignments, all that we are

aware of continue to show modest improvements by starting with aligned images.

Even the highest performing system (FaceNet [82]) improves from 98.87% without

explicit alignment to 99.63% by using a trained alignment system. This seems to

suggest that a system dedicated to alignment may relieve a significant burder on

the discriminative system. Of course, given enough training data, such an advantage

may dissolve, but at this point it still seems worthwhile to produce alignments as a

separate step in the process.

4 The Future of Face Recognition

As this article is being written, the highest reported accuracy on LFW described by

a peer-reviewed publication stands at 99.63± 0.09%, by Schroff et al. [82]. This

method reported only 22 errors on the entire test set of 6000 image pairs. These

errors are shown in Figure 5 and Figure 6. Furthermore, five of these 22 errors cor-

respond to labeling errors in LFW, meaning that only 17 pairs represent real errors.

Accounting for the five ground-truth errors in LFW, the highest accuracy should

not go above 5995
6000

≈ 99.9%, so the results for the protocol unrestricted with labeled



Labeled Faces in the Wild: A Survey 45

outside data are very close to the maximum achievable by a perfect classifier.8 With

accuracy rates this high, it is time to ask the question “What next?” High accuracy

on verification protocols does not necessarily imply high accuracy on other com-

mon face recognition protocols such as identification. In addition, some real-world

applications of face recognition involve imaging that is significantly more challeng-

ing than LFW. Next, we explore some aspects of face recognition that still need to

be addressed.

4.1 Verification versus identification

As discussed in Section 1, the LFW protocols are defined for the face verification

problem. Even for such realistic images, the problem of verification, for some image

pairs, can often be quite easy. It is not uncommon that two random individuals have

large differences in appearance. In addition, given two images of the same person

taken randomly from some distribution of “same” pairs, it is quite common that

such images are highly similar. Thus, verification is, by its nature a problem in

which many examples are easy.

For identification, on the other hand, the difficulty of identifying a person is di-

rectly related to the number of people in the gallery. With a small gallery, identi-

fication can be relatively easy. On the other hand, with a gallery of thousands or

millions of people, identifying a probe image can be extremely difficult. The reason

for this is simple and intuitive–the more people in a gallery, the greater the chance

that there are two individuals that are highly similar in appearance.

It is for this reason that many standard biometric benchmarks use evaluation cri-

teria that are independent of the gallery size, using a combination of the true accept

rate (TAR) and false accept rate (FAR) for open set recognition. The true accept

rate is defined to be the percentage of probes which, when compared to the match-

ing gallery identity, are identified as matches. The false accept rate is the percentage

of incorrect identities to which a probe is matched. Because it is defined as a per-

centage, it is independent of the gallery size. It is common to fix the FAR and report

the TAR at this fixed FAR, as in “a TAR of 85% at a FAR of 0.1%”.

To understand the relationship between accuracies on verification and identifi-

cation, it is instructive to consider how a high-accuracy verification system might

perform in a realistic identification scenario. In particular, consider a verification

system that operates at 99.0% accuracy. On average, for 100 matched pairs, and 100

mismatched pairs, we would expect it to make only two errors. Now consider such

8 For a classifier to get more than 5,995 of the 6,000 test examples correct according to the bench-

mark, it must actually report the wrong answer on at least one of the five incorrectly labeled exam-

ples in LFW. Of course it is always possible that a classifier could get extremely lucky and “miss”

just the right five examples that correspond to labeling errors in the database while getting all of

the other examples, corresponding to correctly labeled test data, correct. However, a method that

has a very low error rate overall, and at the same time “accidentally” reports the correct answers

for the labeled errors, is likely to be fitting to the test data in some manner.
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Fig. 5 All of the errors produced by the FaceNet verification algorithm [82] on matched pairs. The

pairs surrounded in red are labeling errors in LFW. Thus, while these were flagged as errors, the

FaceNet system actually gave the correct answer (correctly identifying these pairs as mismatches).

The remainder of the pairs (without red boxes) were identified incorrectly as mismatches. They are

in fact matches. It is interesting to note that the rightmost pair in the third row shows the actress

Nicole Kidman, but in the rightmost image of this pair, she is wearing an artificial nose, in order to

appear more like Virginia Woolf in the film The Hours [103]. Thus, this case represents an extreme

variation of an individual that would not normally be encountered in everyday life, and it is not

clear that one should train a system until this example is evaluated correctly.

a system used in a closed set identification scenario with 901 gallery subjects. For

example, this might represent a security system in a large office building.

In a typical case of identification under these parameters, in addition to matching

the correct subject, we would expect 1% of the 900 mismatched gallery identities to

be rated as a “match” with the probe image by the verification classifier. That is, we

would expect to have one correct identity and nine incorrect identities to be above

the match threshold of our verification system. The job of the identification system

would then be to sort these in the correct order by selecting the one true match as the

“best match” from among the 10 that were above threshold. This is quite difficult

since by definition the 10 selected images look like the probe identity. If we are

successful at selecting the correct match from this set of 10 similar identities 50%
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Fig. 6 All of the errors produced by the FaceNet verification algorithm [82] on mismatched pairs.

These are the only pairs of mismatched images that were incorrectly reported as matched pairs

by [82].

of the time, which is already quite impressive, then the total identification rate is

merely 50%.

In larger galleries, the problem of course becomes even more difficult. In a pool

of 9901 gallery subjects, achieving 50% identification with a 99% accurate identifi-

cation system would require finding the correct identity from among 100 examples

that looked similar to the probe. This informal analysis demonstrates why identifi-

cation can be so much harder than verification. In addition, these examples describe

closed set identification. Open set identification is even more difficult, as one must

try to determine whether the probe is in the gallery at all.

4.2 New databases and benchmarks

In order to study the identification problem with a gallery and probe images, one

needs a data set established for this purpose. Some authors have developed proto-

cols from the images in LFW for this purpose, e.g. [20], sometimes by augmenting

LFW images with other image sets [64]. Other authors have augmented the images

in LFW to study image retrieval with large numbers of distractors [22]. However,

the time is ripe for new databases and benchmarks designed specifically for new

problems, especially identification problems. Several new databases aim to address

these needs.

In this section, we discuss several new face recognition databases and bench-

marks, and the new issues they allow researchers to address. We only include dis-

cussions of publicly available databases. These include the CASIA database of
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faces, the FaceScrub database, IJB-A database and benchmark from IARPA, and

the MegaFace database from the University of Washington.

4.2.1 IJB-A database and benchmark

The recently announced IJB-A database [52] is designed to study the problems of

open set identification, verification, and face detection. It includes both images and

videos of each subject and establishes standard protocols.

The database includes images and videos from 500 subjects in unconstrained

environments, and all media have creative commons licensing. In order to get a

wider range of poses and other conditions than LFW, the images were identified

and localized by hand, rather than using an automatic face detector (as with LFW)

which is likely to be biased towards easier-to-detect faces.

One interesting element of the protocols provided with this database is that a dis-

tinction is made (for identification protocols) about whether a classifier was trained

on gallery images or not. Another interesting aspect of this database is that probes

are presented as media collections rather than single images. Thus, a probe may

consist of a combination of individual images and video. Thus, this encourages ex-

ploration of how to best use multiple probe images at the same time to increase

accuracy.

4.2.2 The FaceScrub and CASIA data sets

This section describes two distinct databases known as FaceScrub and CASIA. The

FaceScrub data set [71] contains 107,818 images of celebrities automatically col-

lected from the web, and verified using a semi-automated process. It contains 530

different individuals, with an average of approximately 200 images per person. As

such it is an important example of a deep data set, rather than a broad data set,

meaning that it has a large number of images per individual. The data set is released

under a creative commons license, and the URLs, rather than the images themselves

are released.

The CASIA-WebFace data set, or simply CASIA, consists of 494,414 images,

and is similar in spirit to the FaceScrub data set. It is described here [109].

The automatic processing of the images in these databases has two important

implications:

• First, because images that are outliers are automatically rejected, there is a limit

to the degree of variability seen in the images. For example, heavily occluded

images may be marked as outliers, even if they contain the appropriate subject.

• Second, it is difficult to know the percentage of correct labels in the database.

While the authors could presumably estimate this fairly easily, they have not

reported these numbers in either FaceScrub or CASIA.
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Despite these drawbacks, these large and deep databases are two that are cur-

rently available to researchers to train large face recognition systems with large

numbers of parameters, and because of that, they are valuable resources.

4.2.3 MegaFace

Another new database designed to study large scale face recognition is MegaFace [67],

a database of one million face images derived from the Yahoo 100 Million Flickr

creative commons data set [98]. This database, which contains one image each of

one million different individuals, is designed to be used with other databases to allow

the addition of large numbers of distractors.

In particular, the authors describe protocols that are used in conjunction with

FaceScrub, described in the previous section. All of the images in MegaFace are first

registered in a gallery, with one image each. Then, for each individual in FaceScrub,

a single image of that person is also registered in the gallery, and the remaining

images are used as test examples in an identification paradigm. That is, the goal is

to identify the single matching individual from among the 1,000,001 identities in

the gallery.

The paradigms discussed in this work are important in addressing the ability

to identify individuals in very large galleries, or in the open set recognition prob-

lem. The authors show that several methods that perform well on the standard LFW

benchmark quickly deteriorate as distractors are added. A notable exception is the

FaceNet system [82], which shows remarkable robustness to distractors.

5 Conclusions

In this article, we have reviewed the progress on the Labeled Faces in the Wild

database from the time it was released until the current slew of contributions, which

are now coming close to the maximum possible performance on the database. We

analyzed the role of alignment and noted that current algorithms can perform al-

most as well without any alignment after the initial face detection, although most

algorithms do get a small benefit from alignment preprocessing. Finally, we exam-

ined new emerging databases that promise to take face recognition, including face

detection and multimedia paradigms, to the next level.
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