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Abstract

Automatic behavior analysis from video is a major topic in many areas of research, including 

computer vision, multimedia, robotics, biology, cognitive science, social psychology, psychiatry, 

and linguistics. Two major problems are of interest when analyzing behavior. First, we wish to 

automatically categorize observed behaviors into a discrete set of classes (i.e., classification). For 

example, to determine word production from video sequences in sign language. Second, we wish 

to understand the relevance of each behavioral feature in achieving this classification (i.e., 

decoding). For instance, to know which behavior variables are used to discriminate between the 

words apple and onion in American Sign Language (ASL). The present paper proposes to model 

behavior using a labeled graph, where the nodes define behavioral features and the edges are labels 

specifying their order (e.g., before, overlaps, start). In this approach, classification reduces to a 

simple labeled graph matching. Unfortunately, the complexity of labeled graph matching grows 

exponentially with the number of categories we wish to represent. Here, we derive a graph kernel 

to quickly and accurately compute this graph similarity. This approach is very general and can be 

plugged into any kernel-based classifier. Specifically, we derive a Labeled Graph Support Vector 

Machine (LGSVM) and a Labeled Graph Logistic Regressor (LGLR) that can be readily 

employed to discriminate between many actions (e.g., sign language concepts). The derived 

approach can be readily used for decoding too, yielding invaluable information for the 

understanding of a problem (e.g., to know how to teach a sign language). The derived algorithms 

allow us to achieve higher accuracy results than those of state-of-the-art algorithms in a fraction of 

the time. We show experimental results on a variety of problems and datasets, including 

multimodal data.

Index Terms

Graph matching; kernel; classification; decoding; computational model; multimodal

 1 Introduction

Behavioral analysis is a topic of interest in many areas of science and engineering. For 

example, in multimedia one may want to annotate actions in a basketball game, actor 

behavior in a movie or hand and facial gestures associated to speech production [18, 44, 46, 

48, 54]. In robotics, behavior analysis is essential for a robot to interact with humans in a 

natural way [31]. In cognitive science, we wish to relate behavior with input variables, e.g., 

responses to observed facial expressions of emotion [14] or facial action coding [22]. In 
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psychiatry, we wish to understand how psychopathologies affect behavior [36]. In biology, 

one may be interested in studying animal behavior [13, 17]. And, in linguistics, one is 

interested in modeling sign languages [16]. In most of these applications, the number of 

video sequences that need to be analyzed is staggering. Thus the goal is to achieve robust 

and accurate automatic analysis of these behaviors using computer vision and machine 

learning algorithms.

The applications listed above define two inter-related problems of behavior analysis. The 

first one is classification. In classification, we are interested in categorizing behavior into a 

set of discrete elements (i.e., categories). For example, in sign language, we want to 

determine if a video of a sign corresponds to the word apple or onion. The second problem 

is decoding, where the goal is to understand the behavior variables that allow us to 

discriminate between these categories. For example, which part of the manual sign 

discriminates between apple and onion.

To better define these two problems, let us explore the sign language example in more detail. 

The manual signs in sign languages are a combination of handshapes, hand motions and 

places of articulation [6]. In general, the handshape, motion and place of articulation are 

discrete variable whose values must be selected from a set of known elements [43]. In 

computer vision, one uses algorithms to extract image features from a video of a sentence 

that can help discriminate between distinct handshapes, motions and places of articulation 

[12, 33]. Two points need to be addressed here: i) Each possible handshape, motion and 

place of articulation is a categorical element. This means that the computer vision system 

needs to learn to identify the variability in handshape, motion and place of articulation 

associated to each of these categories. ii) Each sign language concept (e.g., each word) can 

be signed using a slightly different combination of basic elements. The computer vision 

system must learn which combinations define the same category.

From the discussion above, we see that the manual sign can be modeled using a labeled 

graph [50]. In this model, the nodes of the graph represent the extracted features (e.g., right 

hand moves from point a to point b, middle finger and thumb touching), while the edges 

between nodes represent the temporal structure of these features (e.g., handshape “A” is 

used in both hands before right hand moves from a to b; left hand moves from point c to d at 
the same time as the right hand moves from e to f ). This is shown on the left-most part of 

Figure 1. This model can readily solve the two points defined in the preceding paragraph by 

learning from sample sequences [12]. These samples will include the distinct handshapes 

and signer variability needed to address these two classification problems. This is illustrated 

in the middle section in Figure 1.

The model just outlined solves the representation problem, i.e., each sign language concept 

is represented by a labelled graph. Classification of a sign in a test video sequence is directly 

obtained by finding the graph that best matches the observation in the test video. 

Unfortunately, the complexity of this matching process grows exponentially with the number 

of concepts (words) in the database. We derive a classification algorithm to resolve this 
problem.
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To resolve the complexity problem, we derive a labeled graph kernel. A graph kernel is a 

measure of similarity [47]. A measure of similarity between two labeled graphs should 

increase as their representations become more similar. This is the same as identifying the 

number of identical paths in both graphs for all possible paths (i.e., for all paths of every 

possible length in each graph). We use dynamic programming to derive an efficient, low-cost 

algorithm to measure this graph similarity. This measure of similarity is then used to derive a 

kernel-based classifier. For example, we can use Support Vector Machine (SVM) [49] of 

Regularized Kernel Logistic Regression (RKLR) [5] to learn all the possible variations of a 

behavior (i.e., variations in handshape, motion and place of articulation used to express the 

same concept or grammatical function). We call the resulting algorithm Labeled Graph 

Support Vector Machine (LGSVM), because it corresponds to a SVM for labeled graphs. 

This is shown on the right-most section in Figure 1.

Thus far we have addressed the classification problem. Let us now look into the decoding 

problem in more detail. Linear SVM and other linear classifiers learn a linear discriminant 

function that maximize the margin between the samples of two classes. Moreover, the 

coefficients (weight associated with each feature) represent the importance of the features 

defining the discriminant function [23, 45]. Thus, to inverse the problem (i.e., to go from 

classification to decoding), we need to identify the graph features associated with the largest 

coefficients. We derive an efficient algorithm to identify the graph features associated to the 

largest coefficient and illustrate how it can be used in the derived LGSVM.

 1.1 Theoretical contribution

Despite the broad investigation of graph kernels in the literature, our graph kernel is different 

in that it is a path based graph kernel. Graphs can be decomposed into substructures in 

multiple ways. We employ paths to compute graph kernels while others use random walks 

[24, 27] or tree walks [24]. A major drawback of walk kernels is that a walk can repeatedly 

visit the same node, causing the “tottering” problem [29]. This means that a small amount of 

similar subgraphs can result in a very large kernel value. Path kernels do not have this 

problem because path nodes cannot be repeated. Unfortunately, this results in an NP-hard 

problem [21]. In the present paper, we note that, in the temporal domain, events can be 

ordered according to their starting time and that this ordering allows us to derive an efficient, 

low-cost algorithm. We show how a dynamic programming implementation of this approach 

yields polynomial time solutions.

The proposed behavior analysis approach is hierarchical [1] in that we decompose a 

complex behavior into components called events. Before performing the hierarchical fusion 

task, we detect the events defining the action. Such detection process is also an information 

compression process, since we can convert a sequence of images or time series into several 

events. This results in yet another advantage of our approach, allowing us to incorporate 

prior knowledge into the system.

Finally, it is well known that basic event detection and their temporal segmentation are very 

challenging problems. The emergence of novel sensors, including 3D cameras and Inertial 

Measurement Unit (IMU), facilitate this task. The use of multiple sensors results in a novel 

problem – the multimodal data fusion problem. This problem is naturally solved by the 
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proposed approach, yielding an elegant, efficient solution for the analysis of behavior from 

multimodal data. To see this note that events detected from multiple sensors can be modeled 

as separate nodes in our graph and that edges then describe relationships between them. We 

show experimental results to illustrate the uses of the derived algorithm in multimodal 

applications.

 1.2 Related work

Bag of Visual Words (BoVW) models [53] have been used in action recognition [25, 35, 51, 

52]. The major drawback of Bag of Visual Words models is that they are incapable of 

capturing spatio-temporal information. Probabilistic graphical models, including Bayesian 

Networks [41] and Hidden Markov Models [28, 30, 32], solve this problem by including 

some information about the temporal structure of the data. However, probabilistic graphical 

models cannot readily model concurrent temporal relations. The conditional probabilities 

can only model two predicates: before and meet. Other predicates, such as finish and 

overlap, cannot be properly modeled, limiting the applicability of these algorithms.

In [37], the authors exploit a data mining approach where each video is discretized into a 

sequence of temporal bins. In combination with the LPBoost classifier, they simultaneously 

learn the classification function and perform feature selection over the space of all possible 

sequences. Yet, while sequential temporal information is maintained in their representation, 

concurrent structures are not. One potential solution is given in [19] which attempts to 

identify hierarchical temporal structures. However, this method cannot work with large 

feature spaces and, hence, has to depend on several non-optimal thresholds to prune the 

feature space before classification is even attempted. This results in sub-optimal 

classifications.

Finally, the majority of the algorithms described above only address the classification 

problem. The decoding problem is however equally important. In the sign language example 

described above, we want to understand which behavior variables code for a word. For 

example, apple and onion use the same handshape and are distinguished only by their place-

of-articulation. Similarly, in biology, one may wish to understand the variables of aggressive 

behavior in flies [17]. We show how the derived algorithm can readily solve this decoding 

problem.

 1.3 Paper organization

The rest of the paper is organized as follows. Section 2 defines the labeled graph model. 

Section 3 derives the labeled graph kernel. Section 4 presents the LGSVM algorithm. 

Section 5 derives the decoding algorithm. Experimental results are in Section 6.7.

 2 Modeling Samples of an Action with Labeled Graphs

We decompose actions (e.g., a sign language concept) into events. For instance, the action of 

a person waving both his hands can be decomposed into four events: left hand moves up, 

hand moves left to right (which occurs several times), right hand moves up, and hand moves 

right to left (several times).
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In general, the term “action” is used to define what needs to be modeled, while the term 

“event” is employed to specify the concepts that can be readily detected by a computer 

vision algorithm. An event will in general be defined by a time interval, during which the 

event is true (e.g., the time during which the left hand is moving left to right). Then, an 

action is a combination of events that follow a specific temporal structure. This temporal 

structure is defined by the temporal relationships between the set of events defining the 

action. In our example above, handshape “A” happens before right hand moves from a to b; 

happens before is what we call a temporal relationship (i.e., predicate).

As shown in [2], we can define first-order temporal relationships between two events using 

seven predicates: before to specify that an event happens before another and that there is a 

non-empty time interval between these two events; meets to indicate that the time between 

these two events is zero; overlap when an event vki starts and finishes before another event 

vk j ends but vk j starts before vki ends; during to define when an event vki starts before 

another event vk j and finishes after vk j ; starts to indicate that both events start at the same 

time but end at different times; finishes to specify that both events end at the same time but 

start at different times; equal to indicate that the two events start and end at the same time; 

Figure 2.

To define the temporal structure of an action, we use a graph where the nodes specify the 

events and the edges the temporal relationships between events. This is thus a labeled graph 
[7]. Specifically we will use directed labeled graphs which are defined as follows.

 Definition 1—A Directed Labeled Graph is given by a 4-tuple Gk = (Vk, Ek, L, fk), 

where Vk = {vk1, …, vknk} is a set of nodes, Ek = {ek12, ek13, …, ek1nk, ek23, …, eknk−1nk} is 

the set of edges (eki j, with i < j ), L = {l1 …, lp } is a set of labels and fk : Vk ∪ Ek → L is a 

function that assigns labels to the nodes and edges of the graph Gk.

The possible labels assigned to an edge are the seven temporal predicates given in Figure 2. 

The label assigned to a node is the event category it belongs to. Event categories may be 

different in each application. For example, in sign language recognition, an event category 

can be right hand moves up or right hands moves down.

Note that we use a directed labeled graph because knowing the predicate describing the 

temporal relationship between events vki and vk j (i.e., L(eki j) for some i < j ) automatically 

defines the predicate between vk j and vki. E.g., if vki is before vk j, then vk j is after vki, 

predicates like after are called inverse predicates. Such predicates would however not add 

additional information to our model and are therefore omitted.

Since events are in the temporal domain, it is imperative that nodes in the graph be ordered 

based on their starting time. This can be readily accomplished with the following easy rules: 

1. If event vki starts before vk j (in time), then vki will be before vk j in a way that there is an 

edge from vki to vk j but not vice-versa, i.e., i < j. For example, in Figure 2, before, meets, 

overlaps, during and finish will have an edge from vki to vk j but not from vk j to vki. 2. If vki 

and vk j start at the same time, then we define an edge from the event that ends earlier to the 
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one that ends later. For example, in Figure 2, starts will only have an edge from vki to vk j. 3. 

When both events start and end at the same time, there are two edges, one from vki to vk j 

and another from vk j to vki. Note, however, that since both edges are identical (i.e., both are 

labeled equal), in reality we only need to store the information of one of these two edges, 

yielding a single directed edge. This edge can be selected at random and fixed for all the 

graphs.

Let the resulting model be called a Sample Action Graph, Gk, with k = 1, …, m, m the 

number of samples, and eki j defining a directed edge from event vki to event vk j in Gk. Let 

the adjacency matrix of this action graph be Mk, with entry mki j equal to one of the seven 

possible temporal predicates given in Figure 2. The resulting graph is fully connected and, 

thus, Mk is upper-triangular with  entries. The set of all sample graphs is defined as 

 = {G1, …, Gm}.

 3 Labeled Graph Kernel

In the previous section, we have shown how to define a sample of an action as a directed 

labeled graph. We call the resulting representation a sample action graph and assume there 

are m such sample graphs. We now wish to calculate the similarity between any two sample 

action graphs. This can be achieved with the use of a kernel matrix defining the similarity 

between every pair of sample graphs.

To do this, let a be the total number of possible paths in all m sample action graphs. A path 
is a non-empty graph P = v1e12v2e23 … e(q−1)qvq, with ei (i +1) defining the edge between vi 

and vi +1, and . We define a labeled path as P = f (v1) f (e12) f (v2) f (e23) … f 
(e(q−1)q) f (vq).

A sample graph Gk can now be defined as a feature vector xk ∈ ℝa, with each entry in xk 

specifying the number of times a path P occurs in Gk [11, 24, 27].

Specifically, let  be a path of length z ≥ 0, b = 1, …, rz, with rz the total number of paths 

of this length in the set of all sample graphs . Thus, xk = (xk11, …, xk1r0, …, xkw1, …, 

xkwrw)T, where xkzb is the number of times the path  occurs in Gk, w is the longest path in 

, b = 1, …, rz, z = 0, …, w, and .

The similarity of any two graphs, Gk1 and Gk2 in thus given by the inner-product of their 

feature vectors,

(1)
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In this equation, K (., .) measures the similarity of two graphs, while Kz(., .) specifies their 

similarity for a given path length z. K(., .) and Kz(., .) are of course the kernels defining the 

metric used to measure graph similarity.

Direct computation of Kz (., .) is however computationally demanding – the number of 

directed paths rz may grow exponentially with z. We instead employ a dynamic 

programming technique to only calculate Kz (., .) implicitly. We do this, by noting that xkzb 

can be calculated using a function that computes the number of times  starts at node vki, 1 

≤ i ≤ nk. Let this function be , then . We can thus write,

(2)

The function Λz(vk1i1, vk2i2) is computed recursively as follows. First, initialize the 

functions,

(3)

Then, for z = 1, …, w, when min(nk1 − i1 + 1, nk2 − i2 + 1) < z or f(vk1i1) ≠ f(vk2i2), 

Λz(vk1i1, vk2i2) = 0. Otherwise Λz(vk1i1, vk2i2) use the recursion described next.

The recursion of Λz(vk1i1, vk2i2) is due to the fact that . If a 

common path of Gk1 and Gk2 starts at vk1i1 and vk2i2, respectively, its second node can be at 

vk1j1, i1 + 1 ≤ j1 ≤ nk1 in Gk1 and vk2j2, i2 + 1 ≤ j2 ≤ nk2 in Gk2. Therefore, we can write

(4)

where Ii1,i2(j1, j2) is a function that indicates whether the label of the edge ek1i1j1 is equal to 

the label of the edge ek2i2j2,
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Since the number of nodes in Gk1 and Gk2 effect the value of this kernel, Kz(Gk1, Gk2), we 

need to normalize the resulting kernel by the size of the two graphs being compared. 

Formally,

(5)

where xkz = (xkz1, xkz2, …, xkzrz)
T,  and ||.|| denotes the 2–norm of a vector.

The computation complexity of the above derived kernel is polynomial; specifically, the 

complexity of Kz(Gk1, Gk2) is , because we need to compute all Γβ(i1, i2), 0 ≤ β 

≤ z, 1 ≤ i1 ≤ nk1, 1 ≤ i2 ≤ nk2 and each Γβ(i1, i2) needs at most O(nk1 nk2) operations.

 4 Classification

The approach derived above is general and can be directly plugged into any kernel-based 

classifier. In our experiments we use Support Vector Machines (SVM) [49] and Regularized 

Kernel Logistic Regression (RKLR) [5]. A binary Support Vector Machine [49] classifier 

learns a hyperplane (i.e., (w, o), its norm and bias) that maximizes the margin between two 

classes of training data. In the dual problem in SVM, we maximize the Lagrangian 

multipliers αk’s. After solving the dual problem with respect to αk’s, we can obtain w as a 

function of αk’s in the primal problem,

(6)

To make a prediction on a test sample labeled graph Gt representing an unknown action, we 

need to calculate 〈x̄t, w〉 + o. Replacing w using (6), we can rewrite this quantity as

(7)

Since only a few αk correspond to non-zero support vectors, classification is given by a 

simple inner product between x̄t and a few support vectors. Hence, this yields an efficient 

algorithm for the classification of actions. We call this algorithm Labeled Graph Support 
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Vector Machine or LGSVM for short. Equivalently, we can use Regularized Kernel Logistic 

Regression (RKLR) to yield a Labeled Graph Logistic Regression (LGLR).

 5 Decoding Algorithm

By decoding one generally means we are interested in finding out the most discriminant 

features from our model. This is explicitly given in the vector w defining the hyperplane of 

the LGSVM. To see this note that the ith element wi of w = (w1, …, wa )T defines the 

contribution of the ith feature (i.e., path) to the overall classification. Of course, one does not 

have w, since this is only computed implicitly. This means we need to compute the value of 

those elements of w (i.e., wi ) that may be discriminant before we select the largest value.

The key here is to note that we only need to compute a small number of wi. This is because 

most of the paths P are not consistently found in the sample graphs we have used to compute 

the LGSVM. Note that a path P could be discriminant if the sample graphs of class +1 

include it but the sample graphs of class −1 do not. This means that P is present in about 

50% of the sample graphs. Another option is for a combination of graphs to be discriminant. 

For example, ether P1, P2 or P3 are present in the samples of class +1, but none of these are 

found in the samples of class −1. In this case, these path are present in about 16% of the 

samples. More generally, a path can only be discriminant if it is present in a minimum 

number of sample graphs, λ%. For our purposes, we will select all paths that occur in at least 

5% of the graphs (λ= 5). Typically, this means that only a few dozen paths are selected.

The selection of these paths can be made really efficient by noting that if P is a non-frequent 

path (i.e., it is present in less than λ% of our sample graphs) and P is a subpath of path Q, 

then Q is not frequent [42]. For example, if P = vk1 is not frequent, then Q = vk1ek12 vk2 is 

not frequent either. This suggests a simple search algorithm of frequent paths as follows. 

Start with all possible options of a path having only one node. Eliminate all those that are 

not frequent. Then, iteratively add an edge and node to the remaining paths and prune those 

that are not frequent. This efficient procedure thus returns those paths that occur in at least λ

% of the sample graphs.

Once we have the frequent paths, we can compute the feature vectors xki, its normalized 

form xk̄i, and their discriminant factor as

(8)

Ordering the frequent paths from largest to smallest wi yields the list of most to least 

discriminant paths (features).

 6 Experimental Results

We provide experimental evaluation of the proposed classification and decoding algorithms 

on a variety of databases. First, we show experimental results on three different sign 
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language recognition problems. We then provide experimental results on two additional 

action recognition problems – one describing generic human behavior and one to 

demonstrate the use of the derived approach in multimodal modeling and classification. 

Comparative results with state of the art algorithms demonstrate the accuracy, robustness 

and low computational cost of the proposed approach. All of our experiments are performed 

on a 3.40 GHz Intel Core i7 CPU machine using Matlab.

 6.1 Graph model for sign language analysis

The three sign language databases used in the experiments below are multi-channel time 

series. Before computing our graph kernel, we need to extract events from each sample and 

represent them as an action graph. This is the model to be used in classification and 

decoding.

The events correspond to a set of three possible movements observed in each channel of a 

time series. Each tracked fiducial point defines a curve as it moves from one point to 

another. The three options we consider in each channel are: increasing, flat and decreasing. 

An interval between a minimum point and a maximum point increases while an interval 

between a maximum point and a minimum point decreases. Considering noise, if an interval 

has length less than a threshold and amplitude less than another threshold, its trend cannot 

be robustly determined; in such cases, the same category as its predecessor is assigned to the 

current section. A flat interval has amplitude less than the second threshold just mentioned.

Next, adjacent intervals that have the same curve trend are described as a single event. This 

means that the curve trends of every pair of neighboring intervals are distinct. Thus, each 

interval and its starting and ending time correspond to an event.

The action graph is given by the ordered events based on their starting time (Section 2). 

Finally, we compute pairwise temporal relationships of all the events (Figure 2). To handle 

uncertainty in temporal segmentation, we allow for soft interval, i.e., event A meets event B 

if and only if |(start of B) − (end of A)| < α, for a small α.

We use the two classification algorithms described in Section 4, LGSVM and LGLR. To 

determine the optimal length of path z as well as the penalization factor C, we use the leave-

one-sample-out cross-validation approach using only the samples in the training set. Grid 

search is applied in this process, with z = {1, 2, 3, 4, 5, 6} and C = {10, 100, 1000, 10000, 

10000}. The same z and C are used for all binary classifiers to avoid overfitting. A one-

versus-all approach is used for multi-class classification. Specifically, if there are n classes, 

we build n binary classifiers. The kth (k = 1, …, n) classifier is trained with data from the kth 

class (i.e., the positive class) and training data of all the other k − 1 classes correspond to the 

samples of the negative class. To make a prediction on a testing sample, we compute 〈x̄t, wk〉 

+ ok and use the label of the largest value as the predictor.

Furthermore, in RKLR, we provide results obtained with the l1 and l2 regularizers. Also, a 4-

fold cross-validation on the training data is done to compute the optimal regularization term 

from the set {10−6, 10−2.5, 101}. Additionally, we provide comparative results against the 

random walk kernel algorithm presented in [24] with SVM as the classifier. Statistical 
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significance is computed using a t-test and p values are given in all experiments. As shown 

below, the approach derived in the present paper yields statistically significantly better 

results than those reported in the literature.

 6.2 Australian Sign Language (Auslan) dataset

This dataset is included in the UCI Machine Learning repository [20]. Samples of 95 Auslan 

signs from a single signer (a native Auslan signer) were collected over a period of nine 

weeks using high-quality position trackers. Three samples of each sign were captured each 

day. Thus, in total, there are 2, 565 samples, with 27 samples per sign. Each sample is a 22-

channel time series representing the (X, Y, Z ) position as well as the roll, yaw and pitch of 

each hand, and bending measurements of all fingers. The average length of each sample 

video is 57 frames. We detect curve trends in all the 22 channels, yielding 66 event 

categories. Experimental results are done as follows.

Each time we randomly select the data of three weeks and use it for training while using the 

rest (six weeks) for testing. We repeat this process 10 times. This is a more challenging setup 

than those previously used in [10, 34], since, in these works, the authors use some of the 

data of each week for training and some for testing. With the LGSVM approach, the mean 

accuracy and standard deviation are 91.60% and 1.50%. When we use the same experiment 

setting as [10], our algorithm achieves mean accuracy of 93.44% and standard deviation of 

0.30%. The average time of our algorithm for classifying a testing sample from raw data 

using Matlab is 1.62 seconds. We also run the Matlab implementation of two state-of-the-art 

algorithms [10, 34] using the same computer. The results, which are in Table 1, show 

favorable results for our approach in accuracy as well as computational time. Our method is 

not only more accurate, but also much faster than alternative algorithms.

Next, we compute the results using the LGLR algorithm, Table 1. The results are 

comparable to those obtained with the SVM classifier, demonstrating the effectiveness of the 

proposed path kernel approach, i.e., the proposed algorithm yields superior results 

independently of our choice of classifier. A paired-sample t-test to compare our path kernel 

with the walk kernel algorithm shows our results are significantly better, with a p-value 

smaller or equal than 0.018.

We can now use the decoding algorithm of Section 5 to identify the most discriminant 

features in Auslan signing. For example, this process identifies moving the right hand down 
without any side movement as the most discriminant feature to express and visually 

recognize the concept (word) “alive.” Additional results are given in Table 2. This is useful, 

for example, to study grammatical function of behavior in linguistics [4].

 6.3 DGS Kinect dataset

This dataset is a collection of 40 German Sign Language signs. Each of the 14 subjects 

performed each of the signs 5 times. The dataset is captured with a Kinect™ camera. Each 

sample in the dataset is a 33-channel time series representing how the 3D coordinates of 11 

joints in the upper part of the body change across time. This dataset is challenging due to 

large variations of inter- and intra-subject signing styles.
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We divide the subject’s torso and head into multiple regions, Figure 3. This is used to define 

discrete categories specifying the place-of-articulation [12]. Events are defined as the 3D 

movement of each hand, the region that each hand is located at, the joint that each hand is 

closest to, the 3D relative movement of the two hands plus the relative location of the two 

hands in 3D space (e.g. right hand is above left hand).

Experiments are performed using the more challenging leave-one-signer-out cross-validation 

approach as in [40]. This means we train the classifier with the samples of all subjects but 

one and use the samples of the left-out subject for testing. This process is repeated for each 

of the subjects we can leave out. Our path kernel combined with SVM classifier yields a 

mean classification accuracy of 70.17% with standard deviation 8.3%. The average time for 

classifying a testing sign is 4.33 seconds. We report comparative results with state-of-the-art 

algorithms in Table 3. A t-test shows our improvement is statistically significant, with p < 
10−10.

As in our previous experiment, we can now use the decoding algorithm presented in Section 

5 to find the most discriminate paths in our model. Table 4 shows a few examples.

 6.4 ASLLVD dataset

The ASL Lexicon Video Dataset [3] is an extensive database of many glosses signed by 

several native ASL signers. The videos are captured using four cameras providing two 

frontal views, one side view and a face view. This is a comprehensive database with samples 

belonging to many different glosses. Each gloss has at most 15 samples. We select glosses 

with at least 5 samples, resulting in 1, 612 samples corresponding to 231 classes. These 

videos include data from 7 signers with signs collected over 24 different sessions. Each of 

these sessions was filmed on a different month and includes a single signer. No hand 

tracking is available in this database. To be able to use our algorithm, we manually annotate 

the positions of both hands in the first and last frame of each sample video and use the 

tracking algorithm of [9] to determine the movement of the hands in the other frames. We 

also use the annotated handshapes of the first and last frame which are included in the 

database.

This database is extremely challenging because of the large number of classes (concepts) 

and the small number of samples per class.

Events in ASLLVD are defined as the 2D movement of each hand, the region that each hand 

is located at, the joint that each hand is closest to, the 2D relative movement of the two 

hands and the relative location of the two hands in 2D space. We also use the handshapes in 

the first and last frames of each sample video. Place of articulation is defined as above, 

Figure 3.

We use the leave-one-sample out procedure in each class; i.e., one sample from each class is 

left out and used for testing. We repeat this procedure 6 times. The mean classification 

accuracy of the derived approach using SVM is 81.31% with standard deviation 1.53%. The 

average time for classifying a testing sample is 0.96 seconds.
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As with the other sign language datasets, we can now use the derived decoding algorithm to 

identify the most discriminant paths in our model. A few example results are shown in Table 

6. These results are highly interpretable. For instance, “afraid” is signed with handshape 5 

(i.e., spread out fingers as if indicating the number 5) with hands in regains 10 (right hand) 

and 11 (left hand) and a shaking movement. As seen in the table, the discriminant paths 

define these actions quite accurately.

 6.5 UCF Kinect dataset

Next, we provide comparative results with a database of generic human actions. This 

experiment is to demonstrate the versatility and generalization of the derived approach. We 

used the UCF Kinect database of [15].

This database includes 16 distinct actions as performed by 16 subjects. Each subject 

performs each action 5 times, resulting in 1, 280 samples. The dataset is collected using a 

Microsoft Kinect™ camera to capture 3D videos and the OpenNI platform to estimate 

skeleton joints. Subjects are defined by the 3D position of 15 joints in each frame. A 45-

channel time series represents how the 3D coordinates change with time.

The events in the UCF dataset are also defined as curve trends in each channel. We use a 4-

fold cross-validation test to determine the effectiveness of the proposed algorithm. We repeat 

the experiment 10 times. Average classification accuracies for the derived approach as well 

as other state-of-the-art algorithms are given in Table 7. When using Support Vector 

Machine classifier our method achieves 98.70% ± 0.16% accuracy with a mean time of 1.76 

seconds. A t-test yields a p-value < 10−10.

One may wonder how the behaviors in this database were discriminated by the derived 

algorithm. A couple of examples are provided in Table 8.

 6.6 Multimodal Motion Gesture Dataset

The 6D Motion Gesture dataset (6DMG) [8] contains motion data, including the position, 

orientation, acceleration, and angular speed information of a set of common motion gestures 

performed by different users. It combines optical sensing and inertial sensing. The former 

measures the 3D position of the optical tracker, and the latter estimates the orientation of the 

tracking device in yaw, pitch and roll. WorldViz PPT-X4 is used as the optical tracking 

system and MEMS accelerometers and gyroscope embedded in Wii Remote Plus (Wiimote) 

are used as the inertial sensors. The dataset includes people handwriting by moving their 

hands in space. Twenty-five (25) people handwrote the uppercase letters, A to Z.

We first do experiments on the position and orientation modality separately. Then, we 

conduct a third experiment to combine the two modalities. For the position modality we only 

use the X and Y coordinates, because the Z dimension provides no discriminative 

information. We detect curve trends in the X and Y coordinates, the relative location of the 

optical tracker as compared to the initial frame (below or above for X coordinate, left or 

right for Y coordinate), the optical tracker is close to the top, close to the bottom, between 

the top and the bottom, the optical tracker is close to the leftmost or rightmost point or 

between the two. In the orientation modality, we detect curve trends in the orientation of the 
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tracking device in yaw, pitch and roll. Similar to the position modality, events are defined as 

the orientation of the tracking device relative to its position in the first frame (angle increase/

decrease).

We use leave-one-subject-out cross-validation for testing. The average classification 

accuracy and standard deviation is 99.08% and 0.90% for the position modality, 95.32% and 

3.85% for the orientation modality, and 99.22% and 0.82% when using both modalities. This 

suggests that combing information from different modalities can lead to better classification 

accuracies. Comparative classification results are in Table 9. Note that [8] uses leave-one-

sample-out cross-validation for testing, which is a much easier experiment than the one used 

herein. The p-values of the corresponding t-tests are 0.014, 10−10 and 0.005, respectively.

 6.7 Noisy features

To demonstrate the robustness of our algorithm with respect to noise, we test the derived 

algorithm with additive zero-mean Gaussian noise and standard deviation σ (with σ = 10−4, 

…, 1). We test our algorithms on the Auslan, DGS, UCF Kinect and 6DMG dataset 

described above. Figure 4 shows the classification accuracy of our algorithm on these four 

datasets under additive Gaussian noise. As can be seen in the figure, realistic levels of data 

noise typically found in real-world applications do not deteriorate the performance of the 

proposed algorithm.

We also test Uniform noise to simulate the complete failure of a detector. To do this, for each 

sample we randomly select 10% of the fiducial points and add zero-mean Uniform noise U 
(a, b) (with b − a = 10−4, …, 1). The results are in Figure 5. As above, we see that realistic 

levels of data noise (typically found in real-world applications) do not deteriorate the 

performance of the proposed algorithm.

 7 Conclusions

Automatically classifying and decoding behavior is a challenging problem. Major 

difficulties include being able to represent the spatio-temporal structure of the data using a 

model that leads to efficient classification and decoding algorithms, allowing for multiple 

descriptions of each behavior category, and working with multimodal data.

The present paper derived an algorithm to resolve these problems. This was done by 

describing behavior categories using a labeled graph. Each graph can represent the multiple 

ways each category is performed by multiple subjects. Classification is then as simple as 

graph matching. Unfortunately, graph matching generally comes with a very high 

computational cost. To resolve this issue, we derived a graph kernel algorithm to only 

implicitly compute graph similarity. A dynamic programing implementation of this approach 

is shown to have a low, polynomial-time complexity. This kernel can then be readily plugged 

into any kernel-based classifier. We have applied it to SVM and RKLR and shown that the 

results are superior to those reported in the literature regardless of our choice of classifier. 

Furthermore, the resulting model and classifier are readily interpretable, yielding an efficient 

decoding algorithm. Experimental results on several databases demonstrated the uses and 

superior classification abilities of the derived algorithm. Experimental results have also 
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illustrated how the proposed approach can be naturally used to model and classify 

multimodal data.
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Fig. 1. 
From left to right: A sign language concept can be described as a labeled graph, which 

specifies handshapes, motions and/or places-of-articulation. Each video of a sign language 

concept is a labeled graph. The labeled graphs corresponding to all sample videos form the 

training set. Our approach is very general and can be plugged into any kernel-based 

classification method. When using Support Vector Machines, for instance, we obtained a 

Labeled Graph Support Vector Machine (LGSVM) algorithm which is used to discriminate 

between samples of different concepts in this set as shown in the image above. The 

classification of a test graph is readily given by this LGSVM algorithm or the kernel-based 

classifier of our choosing.
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Fig. 2. 
Shown here are the seven possible temporal relationships between two events. Here, k 
specifies the action and i and j specify the event.
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Fig. 3. 
To determine place-of-articulation of a sign, we discretize the image space into twenty 

regions. The limits of these regions are defined by the skeleton points of the signer. For 

example, as seen in the figure above, the skeleton point representing the head of the signer 

divides the space into left and right columns, the average shoulder position separates the top 

two rows from the bottom three as well as the left- and right-most columns, and the bottom-

most points of the torso separate the bottom row from the top four.
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Fig. 4. 
The classification accuracies shown above are obtained using the same classification 

algorithm used in previous sections, but the data (features) now include additive Gaussian 

noise. The x-axis specifies the variance of the Gaussian used in the noise model. The y-axis 

shows the classification accuracy. We see that realistic levels of noise do not have much of 

an effect on the derived algorithm. Note that in the 6DMG dataset the noise is added to both 

modalities and, hence, this corresponds to twice the amount of noise tested in other datasets.
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Fig. 5. 
The classification accuracies shown above are obtained using the same classification 

algorithm used in previous sections, but the data (features) now include additive Uniform 

noise. The x-axis specifies the length of support of the Uniform Distribution used in the 

noise model. The y-axis shows the classification accuracy. We see that realistic levels of 

noise do not have much of an effect on the derived algorithm. Note that in the 6DMG dataset 

the noise is added to both modalities and, hence, this corresponds to twice the amount of 

noise tested in other datasets.
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TABLE 1

Classification accuracies on the Auslan database for the proposed approach as well as several state-of-the-art 

methods. OSCM: Order-preserving Sparse Coding Method. TGAK: Triangular Global Alignment Kernels. 

RW: Random Walk. RKLR: Regularized Kernel Logistic Regression. Also shown are the computational times 

of three of the algorithms for which the code is available.

Method Accuracy Time/Sample

OSCM [34] 70.46% ± 1.73% 9.43 s

TGAK [10] 88% ± 0.5% 14.35 s

RW Kernel + SVM [24] 89.70% ± 1.78% 2.27 s

Path Kernel + RKLR (l1) 89.69% ± 1.73% –

Path Kernel + RKLR (l2) 90.42% ± 0.67% –

Path Kernel + SVM 91.60% ± 1.50% 1.62 s
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TABLE 2

Most discriminant paths for three Auslan signs. The decoding algorithm of Section 5 returns the most 

discriminant paths which are readily interpretable and can thus be used to understand a problem or, in this 

case, teach sign language to novice.

Sign Most discriminant paths

Cold
(right hand moves up) meets (right pitch increases) before (right roll does not change)
(right hand moves up) meets (right pitch increases) before (right yaw does not change)
(right hand moves to right) meets (right hand moves up) meets (right pitch decreases)

Different
(left hand roll still) during (right hand roll increases) meets (right hand does not move in depth)

(left hand roll still) equals (left little finger bend does not change) meets (right hand roll increases)
(left hand yaw still) during (left little finger bend does not change) meets (right hand roll increases)

Danger
(right hand moves up) meets (right pitch increases) before (right hand still about y)
(right hand moves down) meets (right pitch decreases) before (right hand still in y)

(right hand moves up) meets (right pitch increases) before (right thumb bend does not change)

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2017 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhao and Martinez Page 25

TABLE 3

Classification accuracies on the DGS dataset for the proposed approach as well as several state-of-the-art 

methods. SPBoost/Tree: Sequential Pattern Boosting/Tree. RW: Random Walk.

Method Accuracy Time/Sample

Markov Chain [40] 50.6% ± 7.1% –

SPBoost [39] 54.6% ± 8.2% –

SPTree [40] 55.4% ± 8.4% –

RW Kernel + SVM [24] 68.87% ± 8.60% 3.86 s

Path Kernel + RKLR (l1) 63.72% ± 10.26% –

Path Kernel + RKLR (l2) 66.97% ± 9.35% –

Path Kernel + SVM 70.17% ± 8.3% 2.68 s
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TABLE 4

Discriminant paths for a few sample concepts in the DGS dataset.

Sign Most discriminant paths

Armchair (right hand in region 17) during (right hand moves up)
(right hand moves down) meets (right hand moves up) meets (left hand moves down)

Always (left hand moves forward) meets (both hands moves away horizontally) before (right hand moves below left hand)
(left hand moves forward) before (both hands move away from each other about z) before (right hand below left hand)

Swim (both hands move away about x) meets (right hand moves to the center of the torso) before (right elbow moves left)
(right hand moves left) meets (right hand moves to the center of the torso) before (right elbow moves left)
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TABLE 5

Classification accuracies on the ASLLVD dataset for the proposed approach as well as the Random Walk 

Kernel. RW: Random Walk. Computational time needed to classify a sample using our algorithm is given in 

seconds. The results of the RW kernel and the path kernel are statistically identical.

Method Accuracy Time/Sample

RW Kernel + SVM [24] 83.55% ± 2.03% 1.44

Path Kernel + RKLR (l1) 73.09% ± 2.23% –

Path Kernel + RKLR (l2) 76.19% ± 2.21% –

Path Kernel + SVM 81.31%± 1.53% .96
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TABLE 6

Discriminant paths in the ASSLVD dataset. Shape 5 means all fingers spread out if indicating the number 5. 

Shape 10 is hand as in a fist. Shape B-L is hand open [3].

Sign Most discriminant paths

Afraid
(right hand with shape 5) meets (left hand with shape 5)

(right hand right of left hand) during (right hand in region 10) meets (right hand moves down)
(both hands move away from each in y) starts (right hand right of left hand) starts (both hands in similar y position)

A lot (both hands move in sync about x) starts (right hand shape 10)
(both hands keep distance about x) starts (left hand shape 10) before (left hand shape B-L)
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TABLE 7

Results on the UCF human action database. Comparative results with state-of-the-art methods are obtained 

using a subset of 10 joints, which can be computed extremely fast. The derived approach outperforms state-of-

the-art algorithms when using the full set 15 joints. CRF: Conditional Random Fields. TS: Temporal Segment. 

JAS: Joint Angle Similarity. RW: Random Walk.

Method Accuracy Time/Sample

CRF [15] 94.29% –

BoW [15] 94.06% –

TS [15] 95.94% –

JAS [38] 97.37% –

RW + SVM [24] 97.16% ± 0.26% 2.18 s

Path Kernel + RKLR (l1) 97.99% ± 0.16% –

Path Kernel + RKLR (l2) 97.78% ± 0.22% –

Path Kernel + SVM 98.70% ± 0.16% 1.76 s
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TABLE 8

Most discriminant paths for a couple of the actions in the UCF dataset.

Actions Most discriminant paths

Duck
(right shoulder moves down) equals (left shoulder moves down)

(left butt moves down) meets (left shoulder moves back)
(right hand moves down) equals (left shoulder moves down)

Step front (right foot moves up) meets (right foot does not move in y)
(left foot moves up) meets (left foot does not move in y)
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TABLE 9

Classification accuracies for the 6DMG dataset. P: modality to detect position. O: modality to estimate 

orientation. P+O are the results of modeling the two modalities together using the proposed approach. 

Comparative results are not available for both modalities in the literature. KSS is the kernel structured sparse 

algorithm of [26]. RW: Random Walk. Computational time is given in seconds.

Method P O P+O Time/Sample (P+O)

HMM [8] 96.28 96.19 – –

SVM [26] 96.32 92.18 – –

KSS [26] 96.57 86.85 – –

RW Kernel + SVM 98.74 ± 1.17 93.49 ± 4.90 99.00 ± 0.88 4.33 s

Path Kernel + RKLR (l1) 97.97% ± 1.80% 92.88% ± 4.74% 98.34% ± 1.49% –

Path Kernel + RKLR (l2) 97.98% ± 1.90% 91.99% ± 5.68% 98.08% ± 1.58% –

Path Kernel + SVM 99.08 ± 0.90 95.32 ± 3.85 99.22 ± 0.82 2.93 s

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2017 February 01.


	Abstract
	1 Introduction
	1.1 Theoretical contribution
	1.2 Related work
	1.3 Paper organization

	2 Modeling Samples of an Action with Labeled Graphs
	Definition 1—A Directed Labeled Graph is given by a 4-tuple Gk = (Vk, Ek, L, fk), where Vk = {vk1, …, vknk} is a set of nodes, Ek = {ek12, ek13, …, ek1nk, ek23, …, eknk−1nk} is the set of edges (eki j, with i < j ), L = {l1 …, lp } is a set of labels and fk : Vk ∪ Ek → L is a function that assigns labels to the nodes and edges of the graph Gk.The possible labels assigned to an edge are the seven temporal predicates given in Figure 2. The label assigned to a node is the event category it belongs to. Event categories may be different in each application. For example, in sign language recognition, an event category can be right hand moves up or right hands moves down.Note that we use a directed labeled graph because knowing the predicate describing the temporal relationship between events vki and vk j (i.e., L(eki j) for some i < j ) automatically defines the predicate between vk j and vki. E.g., if vki is before vk j, then vk j is after vki, predicates like after are called inverse predicates. Such predicates would however not add additional information to our model and are therefore omitted.Since events are in the temporal domain, it is imperative that nodes in the graph be ordered based on their starting time. This can be readily accomplished with the following easy rules: 1. If event vki starts before vk j (in time), then vki will be before vk j in a way that there is an edge from vki to vk j but not vice-versa, i.e., i < j. For example, in Figure 2, before, meets, overlaps, during and finish will have an edge from vki to vk j but not from vk j to vki. 2. If vki and vk j start at the same time, then we define an edge from the event that ends earlier to the one that ends later. For example, in Figure 2, starts will only have an edge from vki to vk j. 3. When both events start and end at the same time, there are two edges, one from vki to vk j and another from vk j to vki. Note, however, that since both edges are identical (i.e., both are labeled equal), in reality we only need to store the information of one of these two edges, yielding a single directed edge. This edge can be selected at random and fixed for all the graphs.Let the resulting model be called a Sample Action Graph, Gk, with k = 1, …, m, m the number of samples, and eki j defining a directed edge from event vki to event vk j in Gk. Let the adjacency matrix of this action graph be Mk, with entry mki j equal to one of the seven possible temporal predicates given in Figure 2. The resulting graph is fully connected and, thus, Mk is upper-triangular with  entries. The set of all sample graphs is defined as 
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="8.326px" height="9.657px" viewBox="7.528 -1.461 8.326 9.657" enable-background="new 7.528 -1.461 8.326 9.657"
xml:space="preserve">
<path d="M15.854-0.88c0,0.297-0.121,0.637-0.361,1.02c-0.77,1.208-2.317,2.391-4.645,3.547c-0.175,0.401-0.262,0.691-0.262,0.871
c0,0.307,0.132,0.46,0.396,0.46c0.736,0,1.756-0.734,3.059-2.202c0.443-0.505,0.84-0.925,1.189-1.26l0.155,0.206
c-0.113,0.118-0.278,0.299-0.495,0.545c-0.288,0.354-0.558,0.925-0.808,1.713c-0.255,0.802-0.465,1.352-0.63,1.65
c-0.241,0.434-0.626,0.875-1.154,1.324c-0.949,0.802-1.857,1.203-2.726,1.203c-0.373,0-0.687-0.073-0.942-0.22
C8.321,7.793,8.164,7.529,8.164,7.184c0-0.25,0.063-0.465,0.191-0.644c0.137-0.199,0.325-0.298,0.566-0.298
c0.325,0,0.488,0.14,0.488,0.418c0,0.118-0.041,0.224-0.124,0.318C9.204,7.073,9.106,7.12,8.992,7.12
c-0.065,0-0.147-0.026-0.244-0.078S8.599,6.964,8.589,6.964c-0.071,0-0.106,0.069-0.106,0.206c0,0.49,0.35,0.736,1.048,0.736
c0.609,0,1.152-0.198,1.629-0.595c0.335-0.278,0.71-0.736,1.126-1.374c0.34-0.528,0.722-1.229,1.146-2.103
c-0.996,0.935-1.803,1.402-2.422,1.402c-0.604,0-0.903-0.425-0.898-1.275C9.71,4.057,9.406,4.104,9.198,4.104
c-0.5,0-0.898-0.123-1.196-0.368c-0.316-0.269-0.474-0.649-0.474-1.14c0-1.586,1.383-2.915,4.148-3.986l0.07,0.206
c-0.642,0.292-1.12,0.538-1.437,0.736C9.715-0.066,9.184,0.399,8.717,0.947c-0.581,0.68-0.871,1.303-0.871,1.869
c0,0.354,0.13,0.628,0.389,0.821c0.231,0.17,0.531,0.255,0.899,0.255c0.278,0,0.618-0.059,1.02-0.177
c0.104-0.893,0.748-1.969,1.933-3.229c1.223-1.298,2.266-1.947,3.13-1.947C15.641-1.461,15.854-1.267,15.854-0.88z M15.506-0.894
c0-0.203-0.122-0.305-0.368-0.305c-0.943,0-2.301,1.489-4.071,4.468c0.378-0.142,0.902-0.434,1.572-0.878
c0.618-0.416,1.095-0.781,1.43-1.098c0.316-0.292,0.611-0.627,0.886-1.005C15.323-0.212,15.506-0.606,15.506-0.894z"/>
</svg>
 = {G1, …, Gm}.
	Definition 1


	3 Labeled Graph Kernel
	4 Classification
	5 Decoding Algorithm
	6 Experimental Results
	6.1 Graph model for sign language analysis
	6.2 Australian Sign Language (Auslan) dataset
	6.3 DGS Kinect dataset
	6.4 ASLLVD dataset
	6.5 UCF Kinect dataset
	6.6 Multimodal Motion Gesture Dataset
	6.7 Noisy features

	7 Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5
	TABLE 6
	TABLE 7
	TABLE 8
	TABLE 9

