
Labeling Schemes for Vertex Connectivity

AMOS KORMAN

CNRS and Université Paris Diderot - Paris 7, France.

This paper studies labeling schemes for the vertex connectivity function on general graphs. We
consider the problem of assigning short labels to the nodes of any n-node graph is such a way that
given the labels of any two nodes u and v, one can decide whether u and v are k-vertex connected
in G, i.e., whether there exist k vertex disjoint paths connecting u and v. The paper establishes
an upper bound of k2 log n on the number of bits used in a label. The best previous upper bound
for the label size of such a labeling scheme is 2k log n.

Categories and Subject Descriptors: C.2.4 [Computer-communication networks]: Distributed
Systems; E.1 [Data Structures]: Distributed data structures, Graphs and networks; G.2.1 [Dis-
crete mathematics]: Combinatorics; G.2.2 [Discrete mathematics]: Graph theory

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Graph algorithms, vertex-connectivity, labeling schemes

1. INTRODUCTION

1.1 Problem and motivation

Network representations have played an extensive and often crucial role in many
domains of computer science, ranging from data structures, graph algorithms to
distributed computing and communication networks. Traditional network repre-
sentations are usually global in nature; in order to derive useful information, one
must access a global data structure representing the entire network, even if the
sought information is local, pertaining to only a few nodes.

In contrast, the notion of labeling schemes (introduced in [Breuer 1966; Breuer
and Folkman 1967; Kannan et al. 1992]) involves using a more localized representa-
tion of the network. The idea is to associate with each vertex a label, selected in a
such way, that will allow us to infer information about any two vertices directly from
their labels, without using any additional information sources. Hence in essence,
this method bases the entire representation on the set of labels alone.

Obviously, labels of unrestricted size can be used to encode any desired informa-
tion, including in particular the entire graph structure. Our focus is thus on infor-
mative labeling schemes using relatively short labels (say, of length polylogarithmic
in n). Labeling schemes of this type were recently developed for different graph
families and for a variety information types, including vertex adjacency [Alstrup

Author’s address: Amos Korman: CNRS and Université Paris Diderot - Paris 7, France. E-mail:
amos.korman@liafa.jussieu.fr. Supported in part by the project “GANG” of INRIA.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0111 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 111–0??.

112 · Amos Korman

and Rauhe 2002; Breuer 1966; Breuer and Folkman 1967; Gavoille and Labourel
2007; Kannan et al. 1992; Korman et al. 2006], distance [Alstrup et al. 2005; Cohen
et al. 2002; Gavoille et al. 2001; Gavoille and Labourel 2007; Gavoille et al. 2001;
Katz et al. 2000; Kaplan and Milo 2001; Korman et al. 2006; Peleg 1999; Thorup
2004], tree routing [Fraigniaud and Gavoille 2001; Fraigniaud and Gavoille 2002;
Thorup and Zwick 2001], vertex-connectivity [Alstrup and Rauhe 2002; Katz et al.
2004], flow [Korman and Kutten 2007; Katz et al. 2004], tree ancestry [Abiteboul
at al. 2001; Abiteboul at al. 2006; Kaplan et al. 2002], nearest common ancestor
in trees [Alstrup et al. 2004; Peleg 2000] and various other tree functions, such as
center and separation level [Peleg 2000]. See [Gavoille and Peleg 2003] for a survey
on static labeling schemes. The dynamic version was studied in [Cohen et al. 2002;
Korman 2007; Korman 2008; Korman and Kutten 2007; Korman and Peleg 2007;
Korman et al. 2004].

The current paper studies informative labeling schemes supporting the vertex
connectivity function of general graphs. This type of information may be useful
in the decision making process required for various reservation-based routing and
connection establishment mechanisms in communication networks, in which it is
desirable to have accurate information about the potential number of available
routes between any two given endpoints. In this paper, for any k > 3, we establish
a labeling scheme supporting the k-vertex connectivity function on general n-node
graphs using labels of size at most k2

2 log n. The best previous upper bound for the
label size of such a labeling scheme was shown in [Katz et al. 2004] to be 2k log n.

1.2 Labeling schemes

Let f be a function on pairs of vertices. An f -labeling scheme π = 〈M,D〉 for the
graph family G is composed of the following components:

(1) A marker algorithm M that given a graph in G, assigns labels to its vertices.
(2) A polynomial time decoder algorithm D that given the labels L(u) and L(v) of

two vertices u and v in some graph in G, outputs f(u, v).

It is important to note that the decoder D, responsible of the f -computation, is
independent of the graph G. Thus D can be viewed as a method for computing
f -values in a “distributed” fashion, given any pair of labels and knowing that the
graph belongs to some specific family G. In contrast, the labels contain some
information that can be precomputed by considering the whole graph structure.
Therefore, in a sense, the area of labeling schemes can be viewed as “intermediate”
between the sequential and distributed fields.

The common complexity measure used to evaluate a labeling scheme π = 〈M,D〉
is the Label Size, LM(G): the maximum number of bits in a label assigned by the
marker algorithm M to any vertex in any graph in G. Finally, given a function f
and a graph family G, let

L(f,G) = min{LM(G) | ∃D, 〈M,D〉 is an f labeling scheme for G}.
1.3 Vertex connectivity

Let G = 〈V, E〉 be an unweighted undirected graph. A set of paths P connecting
the vertices u and w in G is vertex-disjoint if each vertex except u and w appears
ACM Journal Name, Vol. V, No. N, Month 20YY.

Labeling Schemes for Vertex Connectivity · 113

in at most one path p ∈ P . The vertex-connectivity v-conn(u,w) of two vertices
u and w in G equals the cardinality of the largest set P of vertex-disjoint paths
connecting them. By Menger’s theorem (cf. [Even 1979]), for non-adjacent u and
w, v-conn(u,w) equals the minimum number of vertices in G\{u,w} whose removal
from G disconnects u from w. (When a vertex is removed, all its incident edges
are removed as well.) The k-vertex connectivity function between nodes u and w,
denoted k− v-conn(u,w), is a boolean (TRUE/FALSE) function that is TRUE iff
v-conn(u,w) ≥ k, i.e., iff there exist at least k vertex-disjoint paths connecting u
and w.

1.4 Related work and our contribution

Labeling schemes supporting the k-vertex connectivity function on general n-node
graphs were previously studied in [Katz et al. 2004]. The label sizes achieved
therein are dlog ne for k = 1, 3dlog ne for k = 2, 5dlog ne for k = 3 and 2kdlog ne
for k > 3. Based on a counting argument, the authors also present a lower bound
of Ω(k log n

k3) for the required label size of such a labeling scheme.
In [Alstrup and Rauhe 2002] the authors establish an adjacency labeling scheme

on the class of n-node graphs with arboricity1 k using kdlog ne + O(log∗ n)-bit
labels. Using their adjacency labeling scheme, the label sizes of the schemes in
[Katz et al. 2004] for k = 2 and k = 3 can be reduced to 2 log n + O(log∗ n) and
4 log n + O(log∗ n), respectively.

In this paper, for any k > 3, we establish a k-vertex connectivity labeling scheme
on general n-node graphs with label size at most k2

2 dlog ne.
Our labeling scheme is based on a novel decomposition of graphs closed under

k-connectivity, i.e, graphs G which satisfy the property that any two k-vertex con-
nected vertices in G, are neighbors. Specifically, we show that the edge set of any
graph closed under k-connectivity can be partitioned into a collection of cliques and
k(k−1)

2 forests.

2. PRELIMINARIES

In an undirected graph G, two vertices u and v are called k-connected if there exist
at least k vertex-disjoint paths between them, i.e., if v-conn(u, v) ≥ k. Given a
graph G = 〈V, E〉 and two vertices u from v in V , a set S ⊆ V separates u from v
if u and v are not connected in the vertex induced subgraph G \ S.

Theorem 2.1. [Menger] (cf. [Even 1979]) In an undirected graph G, two
non-adjacent vertices u and v are k-connected iff no set S ⊂ G \ {u, v} of k − 1
vertices separates u from v in G.

The k-connectivity graph of G = 〈V, E〉 is Ck(G) = 〈V, E′〉, where (u, v) ∈ E′ iff
u and v are k-connected in G. A graph G is closed under k-connectivity if any two
k-connected vertices in G are also neighbors in G. Let C(k) be the family of all
graphs which are closed under k-connectivity.

Two subgraphs H,F ∈ G are vertex-disjoint subgraphs if they share no common
vertex. For graphs G = 〈V, E〉 and Gi = 〈V, Ei〉, i > 1, we say that G can be
edge-partitioned into the Gi’s if

⋃
i Ei = E.

1A graph G has arboricity k if its edge set can be partitioned to at most k forests.

ACM Journal Name, Vol. V, No. N, Month 20YY.

114 · Amos Korman

Observation 2.2. A graph in C(1) is a collection of vertex-disjoint cliques.

Observation 2.3. (1) If G ∈ C(k) then each connected component of G belongs
to C(k).

(2) If G = H t F where H, F ∈ C(k) are vertex-disjoint subgraphs of G, then
G ∈ C(k).

The following two lemmas are taken from [Katz et al. 2004].

Lemma 2.4. For every graph G, if u and v are k-connected in Ck(G) then they
are neighbors in Ck(G), i.e., Ck(G) ∈ C(k).

Lemma 2.5. Let G′ = 〈V, E′〉 where E′ = E ∪ {(u, v)} for some pair of k-
connected vertices u and v. Then G and G′ have the same k-connectivity graph,
i.e., Ck(G) = Ck(G′).

A graph G has arboricity k if the edges from the graph can be partitioned to
at most k forests. Note that in particular the edges of a graph with arboricity k
can be oriented such that the out-degree of each vertex is bounded from above by
k. The class of graphs with arboricity k is denoted A(k), and the class on n-node
graphs in A(k) is denoted An(k).

Observation 2.6. If G = H t F where H, F ∈ A(k) are vertex-disjoint sub-
graphs of G, then G ∈ A(k).

A simple adjacency labeling scheme can be constructed for the graph family
An(k), using (k + 1)dlog ne-bit labels. This can be done as follows. Given an n-
node graph K ∈ An(k), first assign a unique identity id(v) to each vertex v, in
the range {1, 2, · · ·n}, and then orient the edges in K so that the out-degree of
each vertex is at most k. Now, label each vertex v by k + 1 fields, such that the
first field contains id(v) and the remaining fields contain the identities of the nodes
pointed by v. Given the labels of two vertices, in order to check adjacency, one
simply checks whether the identity of one vertex appears in the list of identities in
the label of the other vertex.

Let ψ(k, n) denote the minimum number of bits needed for encoding adjacency
in An(k), i.e., ψ(k, n) = L(adjacency,An(k)). Clearly, the above scheme indicates
that ψ(k, n) ≤ (k + 1)dlog ne. Alstrup and Rauhe showed how to further reduce
this bound.

Theorem 2.7 cf. [Alstrup and Rauhe 2002]. ψ(k, n) = kdlog ne+O(log∗ n).

3. VERTEX-CONNECTIVITY LABELING SCHEMES FOR GENERAL GRAPHS

Let Gn denote the family of all undirected graphs with at most n vertices. In this
section we present a k-vertex connectivity labeling scheme for the graph family Gn

using less than k2 log n-bit labels. Let Cn(k) = C(k)∩Gn, i.e, Cn(k) is the family of
all graphs with at most n vertices, which are closed under k-connectivity.

As in [Katz et al. 2004], we rely on the basic observation that labeling k-
connectivity for some graph G is equivalent to labeling adjacency for Ck(G). By
Lemma 2.4, Ck(G) ∈ Cn(k) for every graph G ∈ Gn. Therefore, instead of pre-
senting a k-connectivity labeling scheme for Gn, we present an adjacency labeling
scheme for the graph family Cn(k).
ACM Journal Name, Vol. V, No. N, Month 20YY.

Labeling Schemes for Vertex Connectivity · 115

The general idea used in [Katz et al. 2004] for labeling adjacency for some
G ∈ Cn(k), is to partition the edges of G into a ‘simple’ graph in An(k) and two
other graphs belonging to Cn(k − 1). The labeling algorithm of [Katz et al. 2004]
recursively labels subgraphs of G that belong to Cn(t) for t < k. Since adjacency for
a graph in An(k) can be encoded using roughly k log n-bit labels, the resulted labels
in the recursive labeling use at most 2k log n bits. Our main technical contribution
in this paper is to show that the edge set of any graph G ∈ Cn(k) can be partitioned
into a ‘simple’ graph in An(k−1) and (only) one other graph belonging to Cn(k−1).
Thus, using recursion, it follows that the edges of any graph G ∈ Cn(k) can be
partitioned into a collection of cliques and k(k−1)

2 forests, i.e., into one graph in
Cn(1) and one graph which has arboricity k(k−1)

2 .
The labeling scheme of size ψ(k(k−1)

2 , n) + dlog ne (which is at most k2

2 dlog ne
if k > 3) follows by separately labeling adjacency for each of the two decomposed
graphs.

3.1 The decomposition

We now show that any graph G ∈ Cn(k) can be edge-partitioned into one ‘simple’
graph in An(k − 1) and (only) one other graph belonging to Cn(k − 1). Consider
a graph G ∈ Cn(k), and let C1, ..., Cm be its connected components. Fix i and let
C = Ci be one of these connected components. By the first part in Observation
2.3, C ∈ C(k).
Let T ≡ T (C) denote a shortest path tree spanning C rooted at some vertex r.
For a vertex v ∈ C, let depth(v) denote its depth in T , i.e, its (hop) distance in T
to the root r. An uncle of a vertex v ∈ C is a neighbor of v (in the graph C) at
depth depth(v)− 1 (in particular, the parent of v in T is an uncle of v). For every
vertex v ∈ C, let Degup(v) denote the number of v’s uncles. For a vertex v ∈ C,
let Deg∗up(v) = min(Degup(v), k − 1).

We now define a subgraph of C called K which has arboricity k − 1. For each
vertex v ∈ C, let U(v) be some set containing Deg∗up(v) uncles of v. The graph K
is the graph obtained by the set of edges {(v, u) | v ∈ C and u ∈ U(v)}. Clearly, K
has arboricity k − 1. Let H be the graph obtained from C by removing the edges
of K, i.e., H = C \K. Note that H may not be connected. See Figure 1.

At this point, we note that a desired decomposition of C would have been ob-
tained had H been in C(k − 1). However, this may not necessarily be the case.
Instead, we proceed as follows. We show that there exists a graph H ′ such that
H ⊆ H ′ ⊆ C and H ′ is in C(k − 1). Therefore, in particular, K ′ = C \ H ′ is a
subgraph of K and therefore also has arboricity k − 1. The desired decomposition
of C is thus given by K ′ and H ′.

Before we proceed, we need the following definition. The closure of H, de-
noted Close(H), is the graph obtained by adding the edges of Ck−1(H) to H
(i.e., Close(H) = H ∪ Ck−1(H)).

Lemma 3.1. Close(H) ∈ Cn(k − 1).

Proof: Consider the process of constructing Close(H) by adding the edges of
Ck−1(H) to H, one by one. The lemma follows by induction on the steps of this
process using Lemma 2.5.

ACM Journal Name, Vol. V, No. N, Month 20YY.

116 · Amos Korman

The case where k=4

deg
up
* (v)=3deg

up

vu

The subgraphs K and H

rootroot

The tree T and the non−tree edges

* (u)=2

1.a 1.b

Fig. 1. Both figures represent the graph C. Consider the case were k = 4. In the left figure, 1.a, the
thick lines represented the edges of the shortest path tree T , and the thin lines represent the non-tree
edges of C. Note that degup(u) = deg∗up(u) = 2, degup(v) = 4 and deg∗up(v) = 3. In figure 1.b, the
thick lines represented the edges of K, and the thin lines represent the edges of H = C \K.

2

Lemma 3.2. Close(H) is a subgraph of C.

Proof: In order to show that Close(H) ⊆ C, it is enough to show that Ck−1(H) ⊆
C, i.e., for any pair of vertices u and v, if u and v are k − 1 connected in H then
they are neighbors in C.

Let u and v be two vertices which are k− 1 connected in H. Assume, by contra-
diction, that u and v are not neighbors in C. Since C is closed under k-connectivity,
then u and v are also not k-connected in C. Therefore, by Menger’s theorem, since
u and v are non-adjacent in C, there exist a set S ⊂ C \ {u, v} of k − 1 vertices
which separates u from v in C. In particular, S separates u from v in H. Let s ∈ S
be a vertex of lowest depth among the vertices in S, and let S′ = S \ {s}. See
Figure 2.a.

Since u and v are k − 1 connected in H, it follows by Menger’s theorem that
there is no strict subset of S which separates u from v in H. In particular, there
exists a path P in H \ S′ which connects u with v. Note that s must belong to P .
See Figure 2.b.

We now show that in C, the set S does not separate u from the root r of C. First
note, that in the case where depth(s) ≥ depth(u), then clearly, S does not separate
u from r even in T . Consider now the case where depth(s) < depth(u). Let w be the
last vertex on the subpath of P connecting u and s such that depth(w) = depth(s)+1
(possibly w is u itself). Note that after w, the next vertex w′ on the subpath of
ACM Journal Name, Vol. V, No. N, Month 20YY.

Labeling Schemes for Vertex Connectivity · 117

P connecting u and s, has depth depth(w′) = depth(s) (possibly w′ is s itself).
Observe that if w′ 6= s then both the subpath of P connecting u and w′ and the
shortest path on T connecting w′ and r belong to C \S. Thus, we get that if w′ 6= s
then S does not separate u from r in C. The more interesting case is when w′ = s.
See Figure 2.b. In this case, since the edge (w, w′) belongs to H, it follows that the
out-degree of w in K is k − 1. Thus, w has at least k uncles in C. See Figure 2.c.
In particular, w has an uncle not in S. Moreover, since there is no vertex in S of
smaller depth than s, we obtain that there is a path connecting w and r in C \ S.
Since the subpath of P connecting u and w also belongs to C \ S, we obtain that
in C, the set S does not separate u from r. Similarly, v is connected to r in C \ S.
See Figure 2.d. It therefore follows that in C, the set S does not separate u from
v. Contradiction.

2

Lemma 3.3. C can be edge-partitioned into a graph in C(k − 1) and a graph in
A(k − 1).

Proof: By Lemma 3.2, the subgraph K ′ = C \ Close(H) is well defined. Since
H ⊆ Close(H), we obtain that K ′ ⊆ K. Therefore, since K has arboricity k − 1,
then so does K ′. By Lemma 3.1, Close(H) ∈ C(k − 1). It therefore follows that
C can be edge-partitioned into the graph Close(H) ∈ C(k − 1) and the graph
K ′ ∈ A(k − 1).

2

Using Observations 2.3 and 2.6, we obtain the following corollary.

Corollary 3.4. Each G ∈ Cn(k) can be edge-partitioned into a graph in Cn(k−
1) and a graph in An(k − 1).

Using induction, we get the following.

Theorem 3.5. Each G ∈ Cn(k) can be edge-partitioned into a graph G1 ∈ Cn(1)
(which is a collection of cliques) and one graph G2 ∈ An(k(k−1)

2).

3.2 The labeling scheme

Theorem 3.6. For any k > 1, we have L(adjacency, Cn(k)) ≤ ψ(k(k−1)
2 , n)+

dlog ne.
Proof: We describe an adjacency labeling scheme π = 〈M,D〉 for Cn(k). Given a
graph G ∈ Cn(k), we partition the edges of G according to Theorem 3.5. Note first,
that since a graph in Cn(1) is simply a collection of cliques, L(adjacency, Cn(1)) ≤
dlog ne (in fact, since disjoint labels are not necessary here, dlog te bits suffice, where
t is the number of connected components). In other words, there exists an adjacency
labeling scheme π1 = 〈M1,D1〉 for Cn(1) of size dlog ne. By padding enough zeros
to the left of these labels, we may assume that each label in π1 is composed of
precisely dlog ne bits. For a vertex u ∈ G1, let L1(u) denote the label given to u by
π1. Let π2 = 〈M2,D2〉 be an adjacency labeling scheme for An(k(k−1)

2) with label
size ψ(k(k−1)

2 , n). For each vertex u ∈ G2, let L2(u) denote the label given to u by
π2.

ACM Journal Name, Vol. V, No. N, Month 20YY.

118 · Amos Korman

w has at least k uncles

�
�
�

�
�
�

��
��
��
�� ��

��
��
��

w

2.a 2.b

The path P in H

2.c 2.d

root

root root

root

v
u

v
u

u

w

s

s

s=w’

u
v

S does not deparate u from v

The set S separates u from v

k=7

Fig. 2. The figures consider the case k = 7. In Figure 2.a, the black circles represent the vertices of
S, where s is the vertex of lowest depth among them. In Figure 2.b, the path represents the path P in
H which connects u and v and passes through s. Vertex w is the last vertex on the subpath of P from
u to s with depth depth(w) = depth(s) + 1, and we examine the case where w′ = s. In Figure 2.c,
the thick lines represent the outgoing edges of w in K, connecting w with k− 1 uncles. Therefore, w
has at least k uncles in C. In Figure 2.d, the paths connect u and v with the root, without passing
through any vertex in S.

For each vertex u ∈ G, the label given to u by the marker M is L(u) =
〈L1(u), L2(u)〉. We therefore get that the label size of π is ψ(k(k−1)

2 , n) + dlog ne.
We would like to point out that if the labeling scheme π2 assigns disjoint labels then
clearly M also assigns disjoint label. The previously mentioned adjacency schemes
for An(k(k−1)

2) assign disjoint labels. Thus, if we use one of these schemes instead
of π2 then the marker M will assign disjoint labels as well.

Given the labels L(u) and L(v) of two vertices u and v in some G ∈ C(k), the
decoder D outputs 1 iff either D1(L1(u), L1(v)) = 1 or D2(L2(u), L2(v)) = 1. Note
that the decoder D can distinguish between the two fields in a label, since the
ACM Journal Name, Vol. V, No. N, Month 20YY.

Labeling Schemes for Vertex Connectivity · 119

number of bits in the first field is fixed in advance. Recall also that in the definition
of a labeling scheme we require the decoder to be polynomial in the size of the
labels. The decoder D is indeed polynomial since D1 operates in constant time and
D2 is polynomial as π2 is a labeling scheme.

The fact that the labeling scheme π is a correct adjacency labeling scheme for
Cn(k) follows from Theorem 3.5 and from the correctness of the adjacency labeling
schemes π1 and π2.

2

The following corollary matches the best known bound for labeling k-vertex con-
nectivity on n-nodes graphs, in the cases k = 2 and k = 3, and significantly improves
the bound for general k > 3.

Corollary 3.7. (1) For any k > 1, L(k−v-conn,Gn) ≤ ψ(k(k−1)
2 , n)+dlog ne.

(2) For any k > 3, L(k − v-conn,Gn) ≤ k2

2 dlog ne.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· Amos Korman

REFERENCES

ABITEBOUL, S., AND KAPLAN, H., AND MILO, T. 2001. Compact labeling schemes for
ancestor queries. In Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, 547–556.

ABITEBOUL, S., AND ALSTRUP, S., AND KAPLAN, H., AND MILO, T., AND RAUHE,
T. 2006. Compact Labeling Scheme for Ancestor Queries. SIAM Journal on Computing 35,
1295–1309.

ALSTRUP, S., AND BILLE, P., AND RAUHE, T. 2005. Labeling schemes for small distances in
trees. SIAM Journal of Discrete Math 19, 448–462.

ALSTRUP, S., AND GAVOILLE, C., AND KAPLAN, H., AND RAUHE, T. 2004. Nearest Com-
mon Ancestors: A Survey and a new Distributed Algorithm. Theory of Computing Systems 37,
441–456.

ALSTRUP, S., AND RAUHE, T. 2002. Small induced-universal graphs and compact implicit
graph representations. In Proc. 43’rd annual IEEE Symp. on Foundations of Computer Science,
53–62.

BREUER, M., A. 1966. Coding the vertexes of a graph. IEEE Transactions on Information
Theory, IT-12:148–153, 1966.

BREUER, M., A., AND FOLKMAN, J. 1967. An unexpected result on coding the vertices of a
graph. Journal of Mathematical Analysis and Applications 20, 583–600.

COHEN, E., AND HALPERIN, E., AND KAPLAN, H., AND ZWICK, U. 2002. Reachability and
Distance Queries via 2-hop Labels. In Proc. 13th ACM-SIAM Symp. on Discrete Algorithms,
937–946.

COHEN, E., AND KAPLAN, H., AND MILO, T. 2002. Labeling dynamic XML trees. In Proc.
21st ACM Symp. on Principles of Database Systems, 271–281.

FRAIGNIAUD, P., AND GAVOILLE, C. 2001. Routing in trees. In Proc. 28th Int. Colloq. on
Automata, Languages & Prog., 757–772.

FRAIGNIAUD, P., AND GAVOILLE, C. 2002. A space lower bound for routing in trees. In Proc.
19th Symp. on Theoretical Aspects of Computer Science, 65–75.

GAVOILLE, C., AND KATZ, M., AND KATZ, N., A., AND PAUL, C., AND PELEG, D. 2001.
Approximate Distance Labeling Schemes. In 9th Ann. European Symp. on Algorithms, 476–488.

GAVOILLE, C., AND LABOUREL, A. 2007. Shorter Implicit Representation for Planar Graphs
and Bounded Treewidth Graphs. In 15th Ann. European Symp. on Algorithms, 582–593.

GAVOILLE, C., AND LABOUREL, A. 2007. On local representation of distances in trees. In
Proc. 26th Ann. ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing, 352–
353.

GAVOILLE, C., AND PELEG, D. 2003. Compact and Localized Distributed Data Structures.
Journal of Distributed Computing 16, 111–120.

GAVOILLE, C., AND PELEG, D. AND PÉRENNES S., AND RAZ, R. 2001. Distance labeling
in graphs. In Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, 210–219.

KATZ, M., AND KATZ, N., A., AND PELEG, D. 2000. Distance labeling schemes for well-
separated graph classes. In Proc. 17th Symp. on Theoretical Aspects of Computer Science,
516–528.

KATZ, M., AND KATZ, N., A., AND KORMAN, A., AND PELEG, D. 2004. Labeling schemes
for flow and connectivity. SIAM Journal on Computing 34, 23–40.

KAPLAN, H., AND MILO, T. 2001. Short and simple labels for small distances and other
functions. In Workshop on Algorithms and Data Structures, 246–257.

KAPLAN, H., AND MILO, T. AND SHABO, R. 2002. A Comparison of Labeling Schemes for
Ancestor Queries. In Proc. 19th ACM-SIAM Symp. on Discrete Algorithms, 954–963.

KANNAN, S., AND NAOR, M., AND RUDICH S. 1992. Implicit representation of graphs. SIAM
Journal on Descrete Math 5, 596–603.

KORMAN, A. 2007. General Compact Labeling Schemes for Dynamic Trees. Journal of Dis-
tributed Computing 20(3), 179–193.

KORMAN, A. 2008. Improved compact routing schemes for dynamic trees. In Proc. 27th Ann.
ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing, 185–194.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Labeling Schemes for Vertex Connectivity ·
KORMAN, A., AND KUTTEN, S. 2007. Distributed Verification of Minimum Spanning Trees.

Journal of Distributed Computing 20(4), 253–266.

KORMAN, A., AND KUTTEN, S. 2007. Controller and Estimator for Dynamic Networks. In
Proc. 26th Ann. ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing, 175–
184.

KORMAN, A., AND PELEG, D. 2007. Labeling Schemes for Weighted Dynamic Trees. Journal
of Information and Computation. 205(12), 1721–1740.

KORMAN, A., AND PELEG, D., AND RODEH, Y. 2004. Labeling schemes for dynamic tree
networks. Theory of Computing Systems 37, 49–75.

KORMAN, A., AND PELEG, D., AND RODEH, Y. 2006. Constructing Labeling Schemes
through Universal Matrices. Proc. 17th Int. Symposium on Algorithms and Computation.,
409–418.

PELEG, D. 1999. Proximity-preserving labeling schemes and their applications. In Proc. 25th
Int. Workshop on Graph-Theoretic Concepts in Computer Science, 30–41.

PELEG, D. 2000. Informative labeling schemes for graphs. In Proc. 25th Symp. on Mathematical
Foundations of Computer Science, 579–588.

THORUP, M. 2004. Compact oracles for reachability and approximate distances in planar di-
graphs. Journal of the ACM 51, 993–1024.

THORUP, M. AND ZWICK, U. 2001. Compact routing schemes. In Proc. 13th ACM Symp. on
Parallel Algorithms and Architecture, 1–10.

EVEN, S. 1979. Graph Algorithms. Computer Science Press.

ACM Journal Name, Vol. V, No. N, Month 20YY.

