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Summary

Dendritic spines are the major loci of synaptic plasticity and are considered as possible structural 

correlates of memory. Nonetheless, systematic manipulation of specific subsets of spines in the 

cortex has been unattainable, and thus, the link between spines and memory has been 

correlational. We developed a novel synaptic optoprobe, AS-PaRac1 (activated synapse targeting 

photoactivatable Rac1), which can label recently potentiated spines specifically, and induce the 

selective shrinkage of AS-PaRac1-containing spines. In vivo imaging of AS-PaRac1 revealed that 

a motor learning induced substantial synaptic remodelling in a small subset of neurons. The 

acquired motor learning was disrupted by the optical shrinkage of the potentiated spines, whereas 

it was not affected by the identical manipulation of spines evoked by a distinct motor task in the 

same cortical region. Taken together, our results demonstrate that a newly acquired motor skill 

depends on the formation of a task-specific dense synaptic ensemble.
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Optogenetics is a powerful tool for controlling neuronal action potentials1,2, and has been 

used to demonstrate the crucial role of cell assemblies in representing memory traces3. 

However, due to the limitations of spatial resolution of currently available probes, 

manipulation of individual dendritic spines, the major sites of excitatory synapses4–6, has 

been unfeasible, hindering the comprehensive understanding of synaptic reorganisation 

during learning. Thus, for the spine specific light controlling, we took advantage of the 

structural properties of spines: the tight correlation between spine volume and function4–7. 

Because the prolonged activation of the small GTPase Rac1 induces spine shrinkage8–11, we 

used a photoactivatable form of Rac1 (PaRac1)12 to induce spine shrinkage, which allowed 

us to control synaptic transmission with light. Moreover, since it has been suggested for a 

long time that the memory trace is allocated to specific neurons and spines of 

neurocircuits13,14, we here targeted PaRac1 to the activated synapses (activated synapse 

targeting PaRac1, AS-PaRac1) to establish a novel method, termed ‘synaptic optogenetics’, 

in order to visualize and manipulate the memory trace.

AS-PaRac1 labels the potentiated spines

We first re-engineered the original PaRac1 construct12 to optimise its properties for the 

synaptic manipulation. Introduction of L514K and L531E mutations into the original 

construct markedly reduced the undesirable Rac1 background activity in the dark, as shown 

by isothermal titration calorimetry (ITC), the neuronal morphology, and co-

immunoprecipitation ( Extended Data Fig. 1a–c). Next, PaRac1 was fused with a deletion 

mutant of PSD-95 (PSDΔ1.2)15, which is known to concentrate at the postsynaptic site, but 

cannot bind with the major PDZ binding proteins, thus minimizing the undesirable effects of 

PSD-95 overexpression. An enrichment index, quantitative ratio of synaptic localisation 

compared to that of the dendritic shaft (see Methods), supported the effective accumulation 

of PSD-PaRac1 to the synapse, especially at the tip of the spine (Fig. 1a, construct B), where 

it was highly co-localised with the endogenous PSD-95, but not with an axonal marker 

(Extended Data Fig. 1d). Finally, for neuronal input specificity, we exploited the dendritic 

targeting element (DTE) of Arc mRNA16, which is selectively targeted and translated in 

activated dendritic segment in response to synaptic activation in an NMDA receptor-

dependent manner17–19. Interestingly, PSD-PaRac1-DTE sparsely labelled spines (Fig. 1a, 

construct C, arrowheads). Quantification using a hot spot index (see Methods), which 

indicates how unevenly PaRac1 variants were distributed, suggested that both PSDΔ1.2 and 

DTE was necessary for this characteristic distribution (Fig. 1a, constructs C and E). 

Therefore, the combination of PSDΔ1.2 and DTE was termed as ‘AS (activated synapse 

targeting) cassette’, and the PaRac1 sequence flanked with the AS cassette was named AS-

PaRac1 (Fig. 1a, constructs C).

Next, we tried to unravel what this new synaptic probe labelled. Bicuculline, which 

increases neuronal excitation, robustly enhanced the number of AS-PaRac1-containing 

spines, and reduction of the hot spot index revealed that the distribution of AS-PaRac1 

became relatively uniform upon bicuculline treatment. In contrast, the blockage of action 

potential by tetrodotoxin (TTX) decreased the accumulation of the probe, resulting in the 

reduction in the spine enrichment index of the probe (Extended Data Fig. 2a–d). Because 
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these findings suggested that synaptic activation regulates the localisation of AS-PaRac1, we 

hypothesized that AS-Rac1 accumulates in recently potentiated spines. Indeed, when AS-

PaRac1 was co-transfected with SEP-GluA1, the synaptic incorporation marker for AMPA 

receptor subunits GluR1 (ref 20,21), the fluorescence signals of these two probes inside each 

spine were significantly correlated (Extended Data Fig. 2e, arrowheads). Furthermore, the 

protein synthesis-dependent potentiation during the single spine LTP protocol, which was 

elicited by glutamate uncaging and the adenylyl cyclase activator forskolin (FSK)22–24, 

induced the accumulation of AS-PaRac1 in the stimulated spines, while the protein 

synthesis-independent plasticity (glutamate uncaging alone) did not. Consistently, protein 

synthesis inhibitor anisomycin abolished the FSK-induced AS-PaRac1 accumulation (Fig. 

1b–d). No increase was observed in AS-PaRac1 fluorescence in the neighbouring spines, 

indicating that AS-PaRac1 accumulation was restricted to the stimulated spine (Fig. 1d). The 

DTE sequence was necessary for the activity-dependent AS-PaRac1 accumulation 

(Extended Data Fig. 2f, g), supporting that locally translated AS-PaRac1, unlike somatically 

translated AS-PaRac1, was preferentially recruited to enlarged spines. PaRac1 did not 

exhibit uneven distribution unless the construct contained the PSD-95 domain (Fig. 1a, 

construct D). Because PSD-95 is rapidly degraded by proteasomes25, we examined the 

effect of the proteasome inhibitor lactacystin and found that it completely disrupted the 

unique distribution of the probe (Fig. 1e). Taken together, we concluded that AS-PaRac1 is a 

probe that specifically labels the enlarged and newly generated spines (see Extended Data 

Fig. 3 for detailed cellular mechanisms), which are referred to as the ‘structurally potentiated 

spine’, and the potentiation labelled by AS-PaRac1 are described as ‘potentiated spine’ 

hereafter.

Spine labelling by AS-PaRac1 in vivo

To characterize this probe in vivo, we utilized the rotarod training as the model of motor 

learning. Because the motor learning is impaired in Arc knockout mice26, we assumed that 

the induction of AS-PaRac1 by the Arc promoter27 would enhance the specific labelling 

during learning-induced potentiation. Arc::AS-PaRac1 was delivered to the cortical layer 

II/III of the primary motor cortex (M1), where a robust reorganisation of neuronal circuits is 

induced upon the motor learning28–31. Cranial window surgery for two-photon imaging was 

performed based on the stereotaxic coordinates of the previous functional mapping for the 

hind limb area32. Spine volume and AS-PaRac1 fluorescence was compared quantitatively 

before and after training (Fig. 2a–e). Consistent with previous findings33,34, even in the 

training-free period, a substantial number of spines ‘spontaneously’ underwent structural 

potentiation (formation or enlargement of spines; see the definition in Extended Data Fig. 

4a), but the trained mice exhibited significantly more structural potentiation compared with 

the non-trained mice (Fig. 2d). Notably, synaptic fluorescence of AS-PaRac1 just after 

training (0 day) strongly correlated with the change in spine size upon training (Fig. 2f). It is 

unlikely that the accumulation of AS-PaRac1 caused the potentiation or labelled the spines 

primed for potentiation such as for the ‘tagged synapse’35,36, because the initial quantity of 

AS-PaRac1 before learning (−1 day) did not correlate with the change in spine size after 

learning (Fig. 2g). Analysis of AS-PaRac1 puncta in the dendritic shaft suggested that the 

majority of AS-PaRac1 signal was located in the dendritic spines, and the labelling of shaft 
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synapses was negligible (Extended Data Fig. 5). When we set the threshold of AS-PaRac1 at 

1 a.u. (Fig. 2f, green shaded area, 0 day), AS-PaRac1 detected spine formation and 

enlargement with sensitivities of 83 ± 7.9% and 69 ± 3.0% (mean ± standard error of the 

mean), respectively (Fig. 2h), whereas labelling in other spine types was 2.3 ± 0.12%. Since 

Arc::AS-PaRac1 was induced only in the AS-PaRac1-positive neuron, the labelling 

properties in the AS-PaRac1-positive neuron was also calculated, which turned out that the 

sensitivities for formation and enlargement were 94 ± 2.7% and 95 ± 4.8%, respectively, 

while the false labelling in other spine types was 12.9 ± 4.2 % (306 spines, 6 AS-PaRac1-

positive neurons in 3 mice). Therefore, AS-PaRac1 is a reliable marker of the potentiated 

spines in vivo.

Next, we performed wide-view mapping of task-evoked potentiation using this probe (Fig. 

2i, learning period), and we found that the task-evoked potentiation was elicited in 2.3 ± 

0.13% of spines and 16.4 ± 2.8% of neurons in the imaged area. We tracked an almost 

whole image of neurons (Extended Data Fig. 4b) and confirmed that when a spine was 

labelled by AS-PaRac1, its parental soma also expressed AS-PaRac1 (6 AS-PaRac1-positive 

somata). Consistently, we could not find AS-PaRac1-positive spines in AS-PaRac1-negative 

soma (46 negative somata). Thus, the counting of AS-PaRac1 puncta per AS-PaRac1-

positive neurons could be approximated, which suggested that 14.7 ± 2.01% of spines 

contained AS-PaRac1 in the AS-PaRac1-positive neurons, implying that upon motor 

learning, substantial remodelling of spines (14.7%) was evoked in a small neuronal 

population (16.4 %) in the layer II/III (Extended Data Fig. 4d for detailed calculation). 

Similarly, the substantial remodelling was also observed in a small population of layer V 

neurons (Extended Data Fig. 4d).

To characterize the synaptic retention of AS-PaRac1 for photoactivation (PA) experiments 

in vivo, the individual spines that acquired AS-PaRac1 were tracked, and were separately 

iconized from the day of AS-PaRac1 appearance (Fig. 2c and i). We noticed that persistence 

of synaptic AS-PaRac1 and the structural potentiation markedly varied among spines: some 

were preserved beyond 1 day after training (Fig. 2c, dendrite #1), while others disappeared 

(Fig. 2c, dendrites #2 and #3). Importantly, the structural potentiation and AS-PaRac1 

labelling triggered during the ‘Learning’ period were more likely to be preserved than those 

triggered during the training-free period (Fig. 2j, ‘Before’ and ‘After-1’). Consistently, 

longitudinal imaging of the structurally potentiated spines revealed that the majority of those 

with the retention of AS-PaRac1 for 24 h maintained structural potentiation for at least 48 h 

(Fig. 2k, green trace), while the structurally potentiated spines lacking AS-PaRac1 retention 

returned to the pre-potentiated state (Fig. 2k, black trace). Such AS-PaRac1 retention might 

be maintained by reverberation of learning-activated neuronal circuits, because AS-PaRac1 

was only expressed in Arc-expressing neurons, in which the persistent activation helps to 

maintain plastic changes in the neocortex26,37.

Selective spine shrinkage by AS-PaRac1

Consistent with the previous findings that prolonged Rac1 activation induces spine 

shrinkage8–11, we found that low-frequency PA elicited spine shrinkage (Extended Data Fig. 

6). Intriguingly, the spine shrinkage was significantly more robust when the AS-PaRac1 
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construct was driven by the Arc promoter compared with the constitutive promoter CAG. As 

Arc expression is increased by persistent neuronal activity26, which induces the chronic 

activation of endogenous Rac1, possibly contributing to the robust spine shrinkage by 

Arc::AS-PaRac1. PA-induced spine shrinkage was Rac1-dependent, because deletion of 

Rac1 from AS-PaRac1, however keeping other domains intact within AS-PaRac1 

(Arc::PSDΔ1.2-LOV-DTE), completely disrupted the shrinkage effect (Extended Data Fig. 

6). To achieve spine shrinkage in a large cortical area in vivo, bilateral optical fibres were 

placed onto the cranial window (Fig. 3a; Extended Data Fig. 7). Low-frequency pulsed PA 

triggered shrinkage specifically in the AS-PaRac1-containing spines (Fig. 3b, c). The effect 

of PA was comparable at least within 100 μm from the dura, suggesting that spines in layer 

I, at least, were affected by PA (Fig. 3d). PA-induced spine shrinkage was accompanied 

with functional depotentiation, which was demonstrated by the excitatory postsynaptic 

calcium transients: extent of spine shrinkage correlated with the decrease in the amplitude, 

but not with the decrease of frequency (Fig. 3f–j). Spine shrinkage and the subsequent 

functional changes was spine-specific, but not branch- or cell-wide, because spine shrinkage 

was not triggered in neighbouring AS-PaRac1-negative spines, and the calcium transient 

was not affected either in the neighbouring spines or in the soma (Fig. 3f–j; Extended Data 

Figs. 6 and 7b).

Optical erasure of acquired skills

To demonstrate the effect of spine shrinkage for learning, mice were bilaterally injected with 

the adeno-associated virus (AAV) 5 that encompassed layers I to V (Extended Data Fig. 7f). 

Mice were divided into two groups: animals in the first group were transfected with mRFP 

alone as a control, and the second group was transfected with AS-PaRac1 and mRFP. Both 

groups exhibited significantly better motor performance after training, but only the 

performance of the AS-PaRac1 group was disturbed by PA (Protocol #1, Fig. 4a,b), and the 

extent of learning disruption induced by PA (PA effect) negatively correlated with the extent 

of training-evoked improvement (learning attainment) (Fig. 4f). In contrast, there was 

neither disruption of acquired learning nor a correlation between the effects of the training 

and PA in the control group. Since PA did not affect the running speed of the identical 

cohort used in the Fig. 4b, it is unlikely that PA disturbed the general motor performance 

(Extended Data Fig. 8).

PA disrupted the acquired learning even 1 day after learning (Protocol #2; Fig. 4c, g), when 

the majority of learning-evoked spines contained AS-PaRac1 (Fig. 2k). In contrast, PA 

treatment 2 days after learning (Protocol #3), when both the number of AS-PaRac1-

containing spines and intensity of AS-PaRac1 labelling were markedly decreased (Fig. 2k; 

Extended Data Fig. 4), it failed to disrupt acquired learning (Fig. 4d, h). Due to daily 

spontaneous potentiation, a comparable number of spines contained AS-PaRac1 both in 

protocol #2 and #3 (Extended Data Fig. 4c). Nonetheless, only protocol #2 disrupted the 

acquired skill, suggesting that the learning-evoked spine potentiation visualized by AS-

PaRac1 (at +1 day), but not spontaneous potentiation (at +2 day), accounted for the cortical 

memory traces.
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To demonstrate the task-specific role of synaptic ensembles, mice injected with AS-PaRac1-

expressing AAV into the bilateral M1 were subjected to a dual task protocol. Mice 

sequentially learned two distinct hind limb tasks: the rotarod and the beam tasks in the first 

and the latter 2 days, respectively (Fig. 4i). We performed the PA on day 4, because the 

majority of the rotarod-evoked AS-PaRac1 puncta diminished by this time point (Fig. 2k). 

We confirmed that these two tasks evoked a comparable number of spine potentiation 

(Extended Data Fig. 7c). While learning performance in the beam task was not disrupted by 

the sham PA treatment (fibre was inserted, but no illumination was performed), PA 

disrupted the acquired performance in the beam task, without affecting the rotarod 

performance (Fig. 4j). We found no correlation between the effect of PA in the rotarod and 

beam task, which implies that synaptic ensembles recruited by each task did not overlap 

(Fig. 4k).

Task-specific synaptic ensemble

To visualize the synaptic ensembles formed during the dual task learning, mice were 

sparsely labelled with AS-PaRac1, and they were also subjected to the dual task protocol 

described before (Fig. 5a, dual task). AS-PaRac1 puncta were classified based on the time of 

emergence (Fig. 5b), being iconized for the rotarod task potentiation (day 2 specific, blue), 

the beam task potentiation (day 4 specific, yellow), and the continuous potentiation for both 

periods (both day 2 and 4, green). Interestingly, more than half of the beam-evoked 

potentiation were new ones (Fig. 5n), which were not potentiated previously in the rotarod 

task (yellow, Fig. 5c–e). Taken together with the behavioural data (Fig. 4i–k), we have 

demonstrated that the two learning tasks induced the potentiation of distinct synaptic 

ensembles.

Finally, we examined whether the same spines are potentiated by the same task. Mice were 

divided into 2 groups (Fig. 5a). The first group was subjected to the rotarod task in the first 2 

days, which was followed by the shrinkage of the learning-evoked potentiation by PA, and 

then the identical rotarod task was re-trained (re-training condition). The second group was 

subjected to the rotarod task and subsequent PA, and mice were not trained for another 2 

days (home cage condition). We found that the majority of the optically shrunk spines 

returned to their previously potentiated size after re-training, while the degree of re-

potentiation was significantly lower in the home cage group, suggesting that re-training 

induced the re-potentiation of the same subset of spines (Extended Data Fig. 7d, e). Mice 

assigned to the dual task protocol were also compared, highlighting the difference in the 

potentiation patterns among the groups during the last 2 days (Fig. 5c–n). Contrary to the 

dual task group, spines potentiated during the 1st rotarod training were more likely to be re-

potentiated after the 2nd rotarod training in the re-training group (green, Fig. 5f–h, l, n), 

while re-potentiation was significantly less prominent in mice that did not perform the re-

training task (home cage group) (Fig. 5i–k, l, n; Extended Data Fig. 7d, e). Furthermore, 

newly potentiated spines, which were not potentiated in the first 2 days, were less abundant 

in the re-training and home cage groups compared with the dual task group (yellow, Fig. 

5m, n). These findings suggest that reorganisation of distinct synaptic ensembles is specific 

for each learning task.
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Discussion

Current models of learning and memory suggest that structural plasticity of spines is the 

underlying mechanism of information storage in the brain. Nonetheless, clear visualization 

of spine structure in vivo requires the sparse labelling of neurons, and analysis of structural 

changes in spines is considerably laborious. In contrast, the AS-PaRac1 signal appears as 

fluorescence puncta, which allows the detection of potentiated spines far more easily, even 

at high transfection condition. Moreover, the role of potentiated spines can be directly 

assessed with PA during behavioural examinations. In this study, we showed that 

photoactivation of the bilateral M1 cortex disrupted the acquired motor skill. We estimated 

the number of learning-evoked neurons affected by PA was approximately 4,700 neurons 

based on the following calculation: (a) × (b) × (c) × (d) × (e), in which (a) represents the 

density of neurons in the neocortex, 9.2 × 104/mm3 (ref 38); (b) the photoactivated area, 

fibre core diameter = 500 μm, 0.4 mm2/bilateral; (c) the thickness of cortical layers (II–V) 

that were infected with AAV, 0.8 mm; (d) AAV infection efficiency, 80% (Extended Data 

Fig. 7f); (e) the percentage of AS-PaRac1-positive neurons upon learning, 20% (Extended 

Data Fig. 4d). On the other hand, due to the limitations of light transmission, the majority of 

the shrunk spines resided in layer I (up to 100 μm from the dura). The minimal number of 

learning-evoked spines illuminated by the optical fibre was roughly 410,000 spines in the 

bilateral M1 cortex based on the following calculation: (d) × (f) × (g) × (h), in which (f) 

represents the density of excitatory synapses in the mouse neocortex, 6.4 × 108/mm3 (ref 

38); (g) learning-evoked potentiation, approximately 2% of the spines in this area (Extended 

Data Fig. 4); (h) brain volume that received PA: 0.4 mm2 of PA area × 0.1 mm of depth = 

0.04 mm3). In the layer I, corticocortical feedback projections mediating top-down 

influences are concentrated, which strongly excite a subpopulation of pyramidal neurons39. 

Learning-evoked changes in neuronal ensembles via the synaptic reorganisation of the M1 

cortex directly predict future task performance40. As nonlinear information integration 

primarily occurs in the tuft of dendrites in behaving animals41, and activation of several 

spines in the tuft is sufficient to initiate NMDA spikes for action potential generation42. 

Thus, the shrinkage of potentiated spines in our study (410,000 spines in the dendritic tufts 

of 4,700 neurons) would reasonably disrupt the learning-evoked substantial remodelling in a 

specific neuronal population. Formation of the dense connections in a small neuronal 

ensemble may be consistent with the formation of functional neuronal clusters in the motor 

cortex after learning43. Thus, synaptic optogenetics might be a powerful tool to uncover the 

mechanism of synaptic plasticity and its relationships with subsequent behavioural 

manifestations.

Methods

Ethical considerations

The use and care of animals in this study followed the guidelines of the Animal 

Experimental Committee of the Faculty of Medicine at the University of Tokyo.
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Plasmid construction and transfection

Mutagenesis and deletion of cDNA were conducted based on previously described 

methods10. Briefly, L514K and L531E mutations of the LOV2 domain were introduced with 

the following primers (mutations, underlined): 5′-ctt tat tgg ggt tca gaa gga tgg aac tga gca 

tg- 3′, 5′-gag aga ggg agt cat gga gat taa gaa aac tgc ag -3′, and with their corresponding 

complementary primers. PSD-95(ΔPDZ1.2) was generated by deleting the nucleotides (nts) 

250 to 993 based on the numbering of NM_019621. The DTE sequence of Arc mRNA was 

cloned from the 1st strand cDNA generated from the frontal cortex of postnatal day 50 (P50) 

Sprague Dawley (SD) rats with the following primers (HindIII, underlined): 5′-atg ata agc 

ttt cgg ctc cat gac tca gcc atg cc -3′ and 5′-atg ata agc tta gac acg agc agt tac caa cac g -3′. 

The generated amplicon, which corresponded to 2036–2699 nts based on the numbering of 

NM_019361, was subcloned immediately downstream of the stop codon of PaRac1.

Isothermal titration calorimetry (ITC)

ITC for examining the affinity of PaRac1 to the CRIB domain of PAK1 in the lit and dark 

states was carried out as described previously12.

PaRac1 pull-down assay

PaRac1 variants were transfected into HEK293 cells by lipofection (Lipofectamine™ 2000; 

Invitrogen, Carlsbad, CA), and the cells were divided into lit and dark groups. The cells in 

the lit group were illuminated with a white fluorescent lamp (1.5 W for a 10 cm dish, 19 ± 

1.0 mW/cm2) for 10 min before cell lysis, and the subsequent immunoprecipitation was 

performed in continuous light illumination until the final wash step of protein precipitants. 

Cells in the dark group were manipulated under a yellow fluorescence lamp, which excluded 

light at the wavelengths below 500 nm to avoid photoactivation. Cells were lysed in a lysis 

buffer (150 mM NaCl, 50 mM Tris·HCl [pH 7.5], 1% Triton-X [v/v], 10 mM NaF, 10% 

glycerol [v/v], 1 mM EDTA, and protein inhibitor cocktail [Complete; Roche Diagnostics, 

Indianapolis, IN]). Lysates were sonicated intermittently on the mixture of ice and water, 

and cell debris was cleared by centrifugation. The soluble fraction was incubated with an 

anti-GFP antibody (D253-3; MBL, Nagoya, Japan), followed by co-precipitation with 

Protein G Sepharose (GE Healthcare, Little Chalfont, UK). The precipitate was 

immunoblotted with an anti-PAK1 antibody (#2602; Cell Signaling, Beverly, MA). Signal 

intensity of each band (net signal after subtracting the background signal, which was 

obtained from the region adjacent to the band) was measured using the ImageJ software 

(National Institutes of Health, Bethesda, MD).

Immunofluorescence

Cell staining was performed as described previously10. Briefly, dissociated rat cortical 

neurons at 21 days in vitro (DIV) were fixed with 4% paraformaldehyde (PFA) for 30 min at 

room temperature (RT). Mice after the behavioural analyses were euthanized, and their 

brains were perfusion-fixed with 4% PFA and sectioned coronally to obtain 150-μm thick 

sections. Fixed samples were then permeabilised with Perm/Blocking buffer (2.5% normal 

goat serum [v/v] in phosphate-buffered saline [PBS] with 0.3% Triton X-100 [v/v]) for 1 h 

at RT. Samples were incubated for 24 h at 4°C with the following primary antibodies: anti-
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phospho-neurofilament (SMI-31; Merck KGaA, Darmstadt, Germany), axonal marker; anti-

PSD-95 (6G6; Abcam, Cambridge, UK); anti-Emx1 (sc-28220; Santa Cruz, CA) for the 

staining of pyramidal neurons. After rinsing with PBS (3 times, 5 min each), sections were 

stained with the corresponding secondary antibodies, followed by mounting. Cell labelling 

was examined with a confocal microscope (LSM510 META NLO; Carl Zeiss, Oberkochen, 

Germany).

Hippocampal slice culture and transfection

Hippocampal slices (350-μm thick) were dissected from SD rats at P7 by a vibratome 

(VT1200S; Leica, Wetzlar, Germany), mounted onto 0.4-μm Millicell™ culture inserts 

(EMD Millipore, Billerica, MA). At DIV 11, slices were transfected biolistically by a 

PDS1000/He Biolistic Gene Gun (Bio-Rad, Hercules, CA) with 1.6-μm gold microcarriers. 

At 2- to 4-days after transfection, cultures were transferred to the recording chambers and 

constantly perfused with oxygenated artificial cerebrospinal fluid (ACSF, 95% O2 and 5% 

CO2) containing 125 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 1.25 mM 

NaH2PO4, 26 mM NaHCO3, 20 mM glucose, and 200 μM Trolox (Sigma-Aldrich, St. 

Louis, MO) at 29–30°C. In some experiments, we added tetrodotoxin (Wako, Osaka, Japan, 

1 μM), bicuculline methiodide (Sigma-Aldrich, 12 μM), lactacystin (EMD Millipore, 10 

μM) to culture and the recording medium.

In utero electroporation

This procedure was performed according to the published protocol with minor 

modifications11. Briefly, pregnant C57BL/6 mice were anaesthetized at embryonic day 13 

(E13) or 14.5 (E14.5) with isoflurane, and AS-PaRac1-Venus and filler constructs (2 μg 

each) were injected unilaterally into the ventricle. Electrode pulses (electrodes: φ3 mm for 

E13 and φ5mm for E14.5, 33 V, 50 ms pulse length, 950 ms pulse interval, 4 pulses) were 

charged unilaterally for the targeting to the M1 cortex.

AAV viral production

AAV viral production was performed with the AAV helper-free system (Agilent 

Technologies, Santa Clara, CA). The pRep-Cap (AAV5; Applied Viromics, Fremont, CA) 

and the pHelper plasmid were co-transfected into the AAV-293 cells with polyethylenimine 

‘Max’ (Polysciences, Warrington, PA). After 72-h-long incubation, cells were harvested and 

lysed with five freeze-thaw cycles. The resultant supernatants were overlaid on 40% sucrose 

solution containing 100 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 0.01% BSA (v/v), and 

were centrifuged at 100,000 g for 16 h at 4°C. The pellet (crude viral particles) was treated 

with 1000 U benzonase nuclease (Novagen, Madison, WI) for 1 h at 37°C. After filtering 

through a 5-μm syringe filter to remove debris, the filtered material was subjected to CsCl 

gradient centrifugation (1.25 g/ml and 1.50 g/ml) at 257,300 g for 48 h at 15°C. The virus-

rich fraction was restored, and the solvent was replaced with ASCF (1 mM MgCl2, 10 mM 

HEPES, CaCl2-free). Virus titre was determined with quantitative real-time PCR analysis 

(SYBR Green; Takara Bio Inc., Shiga, Japan).
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Virus injection and open-skull cranial window surgery

Adult male C57BL/6 mice were anaesthetized with isoflurane, and mannitol (4 μg/g of body 

weight) and dexamethasone (7 μg/g of body weight) was administered intraperitoneally to 

prevent brain swelling. Subcutaneous injections of ketoprofen (40 μg/g body weight) and 

penicillin/streptomycin (4 U/g body weight) were administered for 4 consecutive days 

beginning 1 day before the operation to prevent inflammation. The skull was exposed over 

the M1 cortex based on stereotactic coordinates. Then, 1 μl of AAV (0.5 to 4.0 × 1013 

genome copies/ml) was injected in the M1 cortex using a glass pipette (tip diameter 30 μm, 

bevelled at an angle of 45°) at a rate of 150 nl/min using a syringe pump (Legato130; 

Muromachi Kikai, Tokyo, Japan). The location of the injection site was standardized among 

animals by using stereotaxic coordinates (AP = −0.8; ML = +1.0; DV = +0.5) from the skull. 

At the end of the injection, we waited 5 min before retracting the pipette. Stainless steel 

trephines (φ 2.7 mm; Fine Science Tools, Foster City, CA) were used to generate a circular 

open skull window. To avoid brain damage, intermittent drilling was performed at a speed 

of 10,000 rpm with a continuous gentle perfusion of oxygenated ACSF, and we tried to 

avoid applying excessive drilling pressure on the skull as much as possible. If we detected 

no bleeding, the drilled hole was covered with a circular coverslip (φ 2.7 mm, < 0.1 mm 

thickness, Matsunami Glass, Kishiwada, Japan) and sealed with dental cement (Fuji Lute 

BC; GC, Tokyo, Japan), which was followed by the attachment of the headgear for in vivo 

imaging.

Two-photon imaging, glutamate uncaging, and PA

Two-photon imaging was performed with an upright microscope (BX61WI; Olympus, 

Tokyo, Japan) equipped with an FV1000 laser scanning microscope system (FV1000, 

Olympus) and water-immersion objective lenses (LUMPlanFL N, 60×, 1.0 N.A.; 

XLPLN25XWMP2, 25×, 1.05 N.A.). Two mode-locked, femtosecond-pulse Ti:sapphire 

lasers (MaiTai DeepSee and HP; Spectra Physics, Mountain View, CA) were used at 1000 

nm for dual-colour imaging (Venus and mRFP) and at 720 nm for glutamate uncaging. For 

three-colour imaging of mTurquoise/GCaMP6/mRFP, the two independently captured 

images at 780 nm (mTurquoise and mRFP) and 970 nm (GCaMP6 and mRFP) were merged 

based on the identical fluorescence signal of mRFP. For in vitro imaging, 10–40 xy images 

(5× digital zoom, 512 × 512 pixels) with a z-axis step size of 0.5 μm were captured. For in 

vivo imaging, mice were anaesthetized with isoflurane, and images (2× digital zoom, 1024 × 

1024 pixels) were captured starting at the dura and progressing into the brain tissue for up to 

650 μm in total with a step size of 1.0 μm. For glutamate uncaging, 8 mM MNI-glutamate 

(Tocris Bioscience, Bristol, UK) was dissolved in Mg2+-free ACSF containing 1 μM 

tetrodotoxin, and using a glass pipette, this solution was applied locally onto the dendrites in 

the presence or absence of 10 μM forskolin (Wako) and 5 μM anisomycin (Sigma). 

Repetitive (5 Hz, 80×) photolysis of MNI-glutamate in the spine heads was performed at 

720 nm with a pulse duration of 0.6 ms, and intensity of the uncaging laser was 6 mW under 

the objective lens.
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Data quantification

XY images were stacked by the summation of fluorescence values at each pixel. For spine 

size estimation, individual spines on the dendrites were traced manually, and fluorescence 

intensity of the filler (mRFP, DsRed Ex2, or mTurquoise) was measured in the spine-head. 

For each channel, background intensity was subtracted from the fluorescence intensity (a.u.) 

of each spine. During time-lapse imaging, daily variations in the recording conditions 

caused slight alterations in the fluorescence intensity, which was corrected with the 

fluorescence intensity changes of the filler along the parental dendritic shaft within a 

distance of 10 μm from the spine. The ‘Spine enrichment index’ was estimated based on the 

previous report20. To assess the uneven distribution of PaRac1 variants in the dendrite, the 

‘Hot spot index’ was calculated using the following equations:

where ‘Spine enrichment indexi’ and ‘Spine enrichment indexi+1’ represent the enrichment 

indices of a given spine and of its nearest neighbouring spine, respectively, and ‘n’ 

represents the number of spines in the measured dendritic branch (20 μm long). Hot spot 

index was obtained from the most intensively labelled dendritic segments, and estimated by 

repetitive measurements of sequential nearest neighbouring spines. Quantification of 

fluorescence was performed with the ImageJ software.

In vivo PA in freely moving animals

Mice transduced by either AAV injection or in utero gene transfer were subjected to open-

skull cranial window surgery, and the cranial holes were covered with bilateral glass 

windows. An outer cylinder (a non-bevelled 15 mm long 18G needle with an inner diameter 

of 0.9 mm) was implanted on the glass window for PA. Before PA, the optical fibre was 

inserted into the outer cylinder, and the tip of the fibre was placed directly onto the glass 

coverslip. The fibre and the outer cylinder were tightly locked together with Blu-Tack, 

which was easily removed after the PA. Photostimulation was carried out using the 

COME-2 series (Lucir, Osaka, Japan), which consist of 457-nm laser diodes, an optical 

swivel, and bilateral optical fibres (COME2-αDF1; core diameter of 500 μm, 0.5 N.A.). The 

laser diode was adjusted to an output of 20 mW at the tip of each fibre. The light pulse was 

delivered for 150 ms at 1 Hz for 1 h, and the process was controlled by customised LabView 

programs (National Instruments, Austin, TX).

Behavioural analysis

Mice were housed under standard laboratory conditions (12-h light/dark cycle with food and 

water available ad libitum) and were randomly allocated to experimental groups. All 

behavioural analyses were performed during the light phase. For motor learning (Extended 

Data Fig. 9), we used the Rotarod training system (Rota-Rod Treadmills ENV-576; Med 

Associates, St. Albans, VT). Before the training sessions, mice were habituated to stay on 

the stationary rod for 2 min. During the training period, the fixed-speed protocol was applied 

at a slow speed (8 rpm), so mice rarely fell off the rod. After the mice were able to remain 
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on the rod reliably, the speed was increased in a stepwise fashion to 40 rpm. We applied air 

puffs to the hind limbs as aversive stimuli to teach mice to face forward on the rod 

(Extended Data Fig. 9c), which helped them to hold on at higher speeds. After falling, the 

mice were immediately placed back on the rod, and latency of falling was recorded 

automatically. Three training sessions were performed for 2 days (2 h for 1 session, 6 h of 

training in total). To assess learning, three trials of the rotarod test were carried out using an 

accelerating protocol (4 to 40 rpm) without air puffs with 5 min inter-trial intervals.

For balance beam training, a hand-made beam apparatus was used (Extended Data Fig. 9d). 

Time to cross was scored using a stopwatch. The timer was started when the mouse was 

placed on the beam and ends when the first forepaw was placed in the goal cage. Air puffs to 

the hind limbs were also used to facilitate learning. Three training sessions were performed 

during 2 days (2 h for 1 session, 6 h of training in total). To evaluate the acquired 

performance, three trails of the beam test were carried out without air puffs with 5 min inter-

trial intervals. Task performances were calculated as the averages of the three trials for both 

the rotarod and beam tasks. Mice with an improvement of < 20% compared to the pre-

training performance were excluded from the analyses. The running speed of mice was 

measured by a video tracking system (Limelight3; Actimetrics, Wilmette, IL). The 

investigator was not blinded to the group allocation during the experiments because all 

behavioural outcomes were unambiguously determined: e.g. RotaRod performance and 

locomotion were scored automatically with infrared or video tracking, and the manual 

scoring of the cross time for the beam test was unambiguous.

Statistics

A series of experiments were performed as two, mostly three separate cohorts, and sample 

size was chosen based on the effect size shown in the first cohort in order to minimize the 

number of animals used in compliance with ethical guidelines. Combined data for all three 

cohorts data are shown as means ± s.e.m. Detailed information of statistical methods/results 

are described in the Extended Data Table. In brief, Mann-Whitney U tests were used to 

identify significant differences between two groups. Multiple comparisons were made by 

one-way analysis of variance (ANOVA, normal distribution and equal variances), 

nonparametric one-way ANOVA (Kruskal-Wallis test, for unequal variances), or one-way 

repeated measures ANOVA followed by post-hoc Bonferroni test (to compare task 

performance at different time points for within-subjects groups). Spearman rank correlation 

was used to test the strength of correlation between two variables. For all statistical tests *P 

< 0.05, **P < 0.01, ***P < 0.001 were considered significant.
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Extended Data

Extended Data Figure 1. Optimisation of the PaRac1 for the synaptic application

a, Isothermal titration calorimetry (ITC) experiments showing that the introduction of 

L514K and L531E mutations into the original PaRac1 construct12 reduced binding with the 

CRIB domain of PAK1 in the dark. The light-insensitive form of LOV2 (C450A) and the 

I539E mutant, which mimics the unfolded ‘lit state’, were used as negative and positive 

controls, respectively. b, Leaky activity of PaRac1 in the dark. In hippocampal neuronal 

cultures transfected with the original PaRac1, we observed a bearded appearance of the 

soma with a numerous ectopic dendrites, while neurons transfected with PaRac1 (L514K/

L531E) were indistinguishable from normal neurons. c, Assessment of the affinity of 

PaRac1 to the endogenous PAK1 using a pull-down assay. HEK293 cells, which were 

transfected with PaRac1-Venus, were divided into two groups: lit and dark. The cells in the 

lit group were radiated with light with a white fluorescent lamp before cell lysis, and 

continuous light illumination was present during subsequent immunoprecipitation until the 

final wash step of protein precipitants. Conversely, cells in the dark group were lit with a 

yellow fluorescence lamp, which excludes light wavelengths below 500 nm. Co-

immunoprecipitation with PAK1 revealed that PaRac1 (L514K/L531E) barely bound with 

PAK1 in the dark (The number of trial is depicted in the bar graph, **P < 0.01 using the 

Mann-Whitney U test). d, Targeting of PaRac1 to the postsynaptic density. PSDΔ1.2-

PaRac1 [DTE (−)] was transfected into dissociated cortical neurons at 21 days in vitro 

(DIV). Two days after transfection, cells were fixed with 4% PFA, followed by 
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permeabilization for the subsequent immunostaining procedure. Axons and endogenous 

PSD-95 were visualized using the anti-phospho-neurofilament and anti-PSD-95 antibodies, 

respectively, revealing that PSDΔ1.2-PaRac1 co-localised with the endogenous PSD-95. 

Note that PSDΔ1.2-PaRac1 did not co-localise with the axonal marker.

Extended Data Figure 2. The distribution of AS-PaRac1 is regulated by neuronal activity, and is 
dependent on the dendritic targeting element (DTE)

a, Experimental design. b, Representative image of a cultured hippocampal neuron. c, 

Bicuculline (BIC) or tetrodotoxin (TTX) was added to the culture media at the designated 

time points. Images were captured at a high magnification and were tiled to visualize the 

entire cell. Green circles represent the AS-PaRac1 puncta. d, Quantification of AS-PaRac1 

distribution (n = 6/each, *P < 0.05, **P < 0.01 using Kruskal-Wallis test followed by post-

hoc Dennett’s test). e, Concomitant accumulation of AS-PaRac1 and SEP-GluA1 in spines. 

Neurons were co-transfected with mTq (mTurquoise, filler), SEP-GluA1, and AS-PaRac1-

mRFP, and the constructs were expressed for 36 h. Potentiated spines during 36 h were 

shown by SEP-GluA1 fluorescence (arrowheads). Spearman rank correlation revealed a 

significant correlation between the spine enrichment indices of SEP-GluA1 and AS-PaRac1 

(each circle represents one spine, 235 spines, 29 dendrites). f, Schematic of the constructs 

and representative images of single spine potentiations by glutamate uncaging in the 

presence of FSK (arrowheads). Rat hippocampal slice cultures were biolistically transfected 
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with either AS-PaRac1 or PSD-PaRac1 [DTE (−)] followed by the uncaging experiments at 

DIV 13 (equivalent to postnatal day 20). g, Time course of the spine head volume (V) and 

accumulation of Venus upon uncaging. The mean changes in spine size and Venus 

accumulation in the stimulated or neighbouring spines are depicted 60 min after uncaging. 

For quantification, we used pooled data from independent identically designed experiments. 

The data set for AS-PaRac1 was identical with the FSK-treated group of Fig. 1c–e. Scale 

bar, 1 μm. *P < 0.05 using the Mann-Whitney U test (n = 6 or 11 dendrites for PSD-PaRac1 

or AS-PaRac1, respectively).

Extended Data Figure 3. Putative cellular mechanisms of the specific concentration of AS-
PaRac1 in potentiated spines

a, Uniform labelling of spines with the PSD-PaRac1 construct that lacks DTE of Arc 3′ UTR 

(Fig. 1a, construct B). PSD-PaRac1 is translated in the soma that is abundantly equipped 

with translational machineries. Therefore, the somatic protein expression of the probe is 

high (data not shown), which would outnumber the degradation, and the resulting proteins 

are transported throughout dendrites. The overflowing probes integrate into the postsynaptic 

density (PSD) during the constitutive turnover of PSD molecules. Therefore, probe 

expression is proportional to the spine size.

b, Selective labelling of potentiated spines with AS-PaRac1 (Fig. 1a, construct C). The 

following six mechanisms endow the potentiation-specific labelling with AS-PaRac1. (1) A 

little somatic translation: the moderate gene expression of AS-PaRac1, by which the 
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translation of AS-PaRac1 protein is limited in the soma (see Extended Data Fig. 2b), and 

therefore, the non-specific overflow of this probe from the soma into the dendrites is 

minimal. (2) Dendritic targeting element (DTE): the essential domains of AS-PaRac1 are the 

N-terminal PSD-95 (PSDΔ1.2) and the 3′ UTR of Arc mRNA (DTE). DTE has a pivotal role 

in the dendritic targeting of mRNAs44,45. One of the most well-known DTE is present in the 

Arc mRNA16, which is targeted to stimulated dendritic segments in an activity-dependent 

manner18. The transport of mRNA out of soma also contributes to the limited translation of 

the probe in the soma described in (1). In the absence of activation, the limited amount of 

translational machineries and presence of degradation components in the dendrites maintains 

the locally translated probe at a low level, which results in a low rate of AS-PaRac1 

integration into the PSD during the constitutive turnover of PSD proteins. (3) Local protein 

synthesis: persistent structural plasticity of the spine depends on the activity-dependent 

dendritic synthesis of proteins46, and the translation of Arc mRNA is controlled by activity 

levels19. (4) Effective capturing of PSD proteins in the structurally potentiated spines: the 

potentiated spine, which rapidly requires new copies of PSD proteins, captures diffusing 

PSD proteins more efficiently47,48. (5) Increased stability of AS-PaRac1 in the PSD: it is 

likely that the stability of the PSD-integrated AS-PaRac1 increase, as does the typical PSD 

scaffold proteins47. The ubiquitination might be underling mechanism of the increased 

stability, because the ubiquitination site of AS-PaRac1 resides in the N-terminal domain of 

PSD-95, the domain of which is aggregated to form head-to-head multimerization in the 

postsynaptic scaffold49. Thus, once AS-PaRac1 is integrated into the PSD, the ubiquitination 

site may be concealed, and AS-PaRac1 becomes relatively stable. (6) Sensitivity of unbound 

AS-PaRac1 against the proteasomal degradation: contrary to the PSD-integrated AS-

PaRac1, unbound AS-PaRac1 is sensitive to degradation because the ubiquitination site is 

not concealed. This scenario is supported by the administration of lactacystin (right panel), 

which inhibits proteasomes and thus completely disrupts the uneven distribution of AS-

PaRac1. Similar mechanisms are relevant for newly formed spines, because spine formation 

is associated with spine enlargement50.
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Extended Data Figure 4. Raw data of the quantification and synaptic mapping shown in Fig. 2

a, Quantification of spine size (based on DsRed fluorescence) and AS-PaRac1 fluorescence 

after learning are depicted separately based on the classification of spines. The definitions of 

‘New spine’, ‘Enlarged spine’ and others are described on the right. Each arrow indicates 

the trajectory of a spine; beginning and end points represent the absolute values before and 

after the rotarod task, respectively. b, XY images were captured from the dura to a depth of 

300 μm with a step-size of 1.0 μm, and were stacked by the summation of fluorescence 

values at each pixel. Z-stacked images of 10 overlapping fields were aligned to generate the 

combined images. AS-PaRac1 and AS-PaRac1/DsRed merged images are shown. AS-

PaRac1 that was present before learning (−1 day, yellow), appeared shortly after learning 

(learning period, 0 day, green), 1 day (after −1, +1 day, blue), or 2 days after learning (after 

−2, +2 day, purple) are depicted to show the spatiotemporal distribution of AS-PaRac1 

triggered in each period. c, Time course of the number and fraction of AS-PaRac1-positive 

spines in each period. d, Calculation of the learning-evoked spine/neuron ratio (%). Example 

of the calculation is based on the raw data shown in b and c. The table indicates the 

comparison between neurons in layer II/III (in utero EP at E14.5) and layer V (in utero EP 

at E13).
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Extended Data Figure 5. Assessment of AS-PaRac1 puncta on the dendritic shaft

a, The two possible synapse types that AS-PaRac1 puncta may represent on the dendritic 

shaft. XY images were captured to encompass the entire Z-range of the dendrite of interest 

with a step-size of 0.5 μm, and images were stacked by the summation of fluorescence 

values at each pixel. The fluorescence of both the filler and AS-PaRac1 would increase, if 

the AS-PaRac1 punctum emerged on the dendritic spine that undergoes structural 

potentiation. In contrast, fluorescence of the filler would not increase, if AS-PaRac1 was in 

the shaft synapse. b, Example of the dendrites before and after the emergence of AS-

PaRac1. AS-PaRac1 puncta on the shaft and on the dendritic spine are indicated with (i) and 

(ii), respectively. The ROI used for the calculation of fluorescence in each punctum is 

shown. c, Quantification of the fluorescence of the filler and AS-PaRac1 upon the 

emergence of AS-PaRac1 puncta. Each arrow indicates the trajectory of each ROI; 

beginning and end points represent the absolute values before and after the emergence of 

AS-PaRac1, respectively. The ROI at (i) exhibited a concomitant fluorescence increase in 

both the filler and AS-PaRac1, similar to AS-PaRac1 in a typical dendritic spine (ii). All 

examined AS-PaRac1 puncta on the dendritic shaft exhibited positive correlations, 

suggesting that the majority of AS-PaRac1 puncta emerge on the dendritic spine during the 

structural changes of the spine.
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Extended Data Figure 6. Rac1-dependent shrinkage of dendritic spines induced by low-
frequency PA

a, The protocol of PA. PA was performed in the region that encompasses the branch of 

interest. b, Neurons in the hippocampal slice culture (DIV 11) were biolistically transfected 

with DNA constructs shown in the schematic image on the left. Representative dendritic 

images upon PA are shown on the right. Robust shrinkage (arrowheads) was observed in the 

spines transfected with AS-PaRac1 driven by the SARE-Arc promoter. Despite their 

adjacent location to the AS-PaRac1-positive spines, AS-PaRac1-negative spines were not 

affected by the PA. c, Time course of the spine head volume (V) of Venus-positive (upper 

panel) and negative spines (lower panel). White, red, and blue circles represent CAG::AS-

PaRac1, SARE::AS-PaRac1, and SARE::PSDΔ1.2-LOV-DTE, respectively (n = 12 cells/

each). d, The mean relative change in spine head size in Venus-positive and negative spines 

60 min after PA. Scale bar, 2 μm. *P < 0.05 and ***P < 0.001 according to the Kruskal-

Wallis test followed by the post-hoc Scheffé’s test.
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Extended Data Figure 7. Spine shrinkage in broad areas of the bilateral motor cortices induced 
by blue laser illumination

a, Schematic of the bilateral cranial windows, optical fibres, and the PA protocol. b, 

Representative images of spine shrinkage in the M1 cortex upon PA in vivo. AS-PaRac1-

positive spines (green arrowheads) shrank, while the AS-PaRac1-negative ones (white 

arrowheads) did not. Quantification of spine size is shown on the right. c, The mean number 

of AS-PaRac1 puncta per fields was calculated in mice shown in the Fig. 4i. d, e, Spine 

structure and AS-PaRac1 were imaged in mice, which were subjected to the re-training and 

homecage protocols shown in Fig. 5. The majority of AS-PaRac1-positive spines displayed 

PA-induced shrinkage and subsequent recovery. *P < 0.05 according to the Mann-Whitney 

U test. f, The success of AAV5 vector injection into the bilateral M1 cortex was confirmed 

by the presence of mRFP fluorescence after behavioural tests. High efficacy of virus 

infection in layer II/III and V pyramidal neurons was demonstrated with Emx1 

immunostaining, which labels pyramidal neurons. The mice without bilateral mRFP signal 

in the M1 cortex were excluded from the data analysis.
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Extended Data Figure 8. No effect of PA on the locomotor activity of mice

a, Experimental schedule. The running speed of AS-PaRac1-injected mice in protocol #1 

(Fig. 4a) was measured with a video-tracking system. To minimize the effect of circadian 

rhythm on locomotion, mice were tested at the same time of the day before and after PA. b, 

Representative traces of locomotion and temporal sequences of running speed are depicted. 

c, Statistical analysis shows that PA has only a negligible effect on running speed.
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Extended Data Figure 9. Detailed illustration of the rotarod and beam tasks in the Fig. 4

a, Experimental flowchart. b, Detailed schedule of the rotarod training/test, locomotion test, 

and PA. c, To shorten the training time, air puffs were applied to the hind limbs as aversive 

stimuli to maintain the forward-looking position of mice on the rod, which improved the 

performance, especially at higher speeds. d, Schematic illustration of the beam test. The test 

was preceded by a 6-h-long training session that lasted for 2 days.
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Figure 1. Potentiation-dependent accumulation of AS-PaRac1 to the dendritic spines in 
hippocampal slice cultures

a, Mapping for essential domains for the discrete distribution of the probe (arrowheads). b, 

Representative images of single spine potentiations by glutamate uncaging (arrowheads) in 

the presence or absence of forskolin (FSK) and anisomycin. c, d, Time courses of spine head 

volume (c) and AS-PaRac1 accumulation (d). The mean change 60 min after uncaging in the 

stimulated or neighbouring spines. e, The effect of lactacystin on the discrete accumulation 

of AS-PaRac1 (arrowheads). Scale bar, 2 μm. Detailed information of statistical methods/

results are described in the Extended Data Table.
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Figure 2. Spatiotemporal dynamics of AS-PaRac1 labelling in vivo during the rotarod task

a, Schematic of the Arc promoter27-driven AS-PaRac1. b, Experimental design. c, Images 

of spine formation (arrows) and spine enlargement (arrowheads). Green circles, AS-PaRac1; 

magenta circles, spines that initially acquired AP-PaRac1, but lost it afterward, but the 

structural change were persistent. d, Fraction of structural change of spines. e–g, 

Quantification of spine size and AS-PaRac1 (e). Relationship between AS-PaRac1 and ΔV 

after (0 day, f) and before (−1 day, g) learning. h, Percentage of AS-PaRac1-containing 

spines (AS-PaRac1 ≥ 1 [a.u.], green shaded area in f). i, Mapping of AS-PaRac1. j, 

Retention of AS-PaRac1 (green) or structural potentiation (magenta). k, Trajectory of spine 

size and AS-PaRac1 intensities of the structurally potentiated spines. Scale bar, 2 μm for c; 

200 μm for b and i..
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Figure 3. Selective shrinkage of AS-PaRac1-containing spines upon photoactivation (PA)

a, Illustration of PA. b, Images of the hind limb regions of cortices. c, Spine size following 

PA. Dark green circles are eliminated spines. d, The effect of the cortical depth on PA-

induced spine shrinkage. e–j, Neurons were co-transfected with GCaMP6s, AS-PaRac1-

mTurquoise, and mRFP. Changes in the GCaMP/mRFP ratio (ΔR) in synapse (g) and soma 

(h) were traced. i,j, Relationships between ΔV and ΔAmplitude (i), or ΔFrequency (j) upon 

PA. Circles 1, 2, and S correspond to spine #1, #2, and the soma in g and h. Scale bar, 5 μm 

for b; 50 μm for e, 2 μm for f.
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Figure 4. Erasure of acquired learning by the PA of spines labelled with AS-PaRac1

a, Experimental design (see Extended Data Figure 9). b,c,d, Mice were allocated to 

protocols #1 (b), #2 (c), or #3 (d). An average of three trials of each mouse was used as the 

task performance (grey line). e, The critical period of PA to erase acquired skills. f–h, 

Relationship between the effect of PA and learning attainments. i, Experimental design. j, 

Performance trajectory of each skill. k, No correlation between PA effect on acquired 

rotarod performance and that of beam task..
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Figure 5. Visualization of synaptic ensembles for distinct learning tasks

a, Experimental design. Arc::AS-PaRac1 and CAG::mRFP (filler) was transduced by in 

utero electroporation. b, Images of dendrites upon learning. AS-PaRac1 puncta are colour-

coded based on its appearance and duration. Identical colour-codes are used in c–n. c,f,i, 

Wide view mapping of AS-PaRac1. d,g,j, The fraction of each spine type. e,h,k, The 

trajectory of spine size (V). l,m, Differential spine potentiation in each condition. n, The 

proportions of newly potentiated spines. Scale bar, 2 μm for b; 50 μm for c, f and i..
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