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Abstract We seek to build a large collection of images with

ground truth labels to be used for object detection and recog-

nition research. Such data is useful for supervised learning

and quantitative evaluation. To achieve this, we developed

a web-based tool that allows easy image annotation and in-

stant sharing of such annotations. Using this annotation tool,

we have collected a large dataset that spans many object cat-

egories, often containing multiple instances over a wide va-

riety of images. We quantify the contents of the dataset and

compare against existing state of the art datasets used for

object recognition and detection. Also, we show how to ex-

tend the dataset to automatically enhance object labels with

WordNet, discover object parts, recover a depth ordering of

objects in a scene, and increase the number of labels using

minimal user supervision and images from the web.
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1 Introduction

Thousands of objects occupy the visual world in which we

live. Biederman (1987) estimates that humans can recognize

about 30 000 entry-level object categories. Recent work in

computer vision has shown impressive results for the detec-

tion and recognition of a few different object categories (Vi-

ola and Jones 2001; Heisele et al. 2001; Leibe and Schiele

2003). However, the size and contents of existing datasets,

among other factors, limit current methods from scaling to

thousands of object categories. Research in object detection

and recognition would benefit from large image and video

collections with ground truth labels spanning many different

object categories in cluttered scenes. For each object present

in an image, the labels should provide information about

the object’s identity, shape, location, and possibly other at-

tributes such as pose.

By analogy with the speech and language communities,

history has shown that performance increases dramatically

when more labeled training data is made available. One can

argue that this is a limitation of current learning techniques,

resulting in the recent interest in Bayesian approaches to

learning (Fei-Fei et al. 2003; Sudderth et al. 2005b) and

multi-task learning (Torralba et al. 2004). Nevertheless, even

if we can learn each class from just a small number of ex-

amples, there are still many classes to learn.

Large image datasets with ground truth labels are use-

ful for supervised learning of object categories. Many al-

gorithms have been developed for image datasets where all

training examples have the object of interest well-aligned

with the other examples (Turk and Pentland 1991; Heisele

et al. 2001; Viola and Jones 2001). Algorithms that exploit

context for object recognition (Torralba 2003; Hoiem et al.

2006) would benefit from datasets with many labeled object

classes embedded in complex scenes. Such datasets should



158 Int J Comput Vis (2008) 77: 157–173

contain a wide variety of environments with annotated ob-

jects that co-occur in the same images.

When comparing different algorithms for object detec-

tion and recognition, labeled data is necessary to quanti-

tatively measure their performance (the issue of compar-

ing object detection algorithms is beyond the scope of

this paper; see Agarwal et al. (2004), Leibe (2005) for

relevant issues). Even algorithms requiring no supervision

(Sivic et al. 2005; Russell et al. 2006; Fei-Fei et al. 2003;

Sudderth et al. 2005b, 2005a; Quelhas et al. 2005) need this

quantitative framework.

Building a large dataset of annotated images with many

objects is a costly and lengthy enterprise. Traditionally,

datasets are built by a single research group and are tai-

lored to solve a specific problem. Therefore, many currently

available datasets only contain a small number of classes,

such as faces, pedestrians, and cars. Notable exceptions are

the Caltech 101 dataset (Fei-Fei et al. 2004), with 101 ob-

ject classes (this was recently extended to 256 object classes

Griffin et al. 2006), the PASCAL collection (Everingham

et al. 2005), and the CBCL-streetscenes database (Bileschi

2006).

We wish to collect a large dataset of annotated images. To

achieve this, we consider web-based data collection meth-

ods. Web-based annotation tools provide a way of building

large annotated datasets by relying on the collaborative ef-

fort of a large population of users (http://www.flickr.com,

von Ahn and Dabbish 2004; Russell et al. 2005; Stork 1999).

Recently, such efforts have had much success. The Open

Mind Initiative (Stork 1999) aims to collect large datasets

from web users so that intelligent algorithms can be devel-

oped. More specifically, common sense facts are recorded

(e.g. red is a primary color), with over 700K facts recorded

to date. This project is seeking to extend their dataset with

speech and handwriting data. Flickr (http://www.flickr.com)

is a commercial effort to provide an online image stor-

age and organization service. Users often provide textual

tags to provide a caption of depicted objects in an image.

Another way lots of data has been collected is through

an online game that is played by many users. The ESP

game (von Ahn and Dabbish 2004) pairs two random on-

line users who view the same target image. The goal is for

them to try to “read each other’s mind” and agree on an

appropriate name for the target image as quickly as pos-

sible. This effort has collected over 10 million image cap-

tions since 2003, with the images randomly drawn from

the web. While the amount of data collected is impres-

sive, only caption data is acquired. Another game, Peek-

aboom (von Ahn et al. 2006) has been created to provide

location information of objects. While location information

is provided for a large number of images, often only small

discriminant regions are labeled and not entire object out-

lines.

In this paper we describe LabelMe, a database and an on-

line annotation tool that allows the sharing of images and

annotations. The online tool provides functionalities such as

drawing polygons, querying images, and browsing the data-

base. In the first part of the paper we describe the annotation

tool and dataset and provide an evaluation of the quality of

the labeling. In the second part of the paper we present a

set of extensions and applications of the dataset. In this sec-

tion we see that a large collection of labeled data allows us

to extract interesting information that was not directly pro-

vided during the annotation process. In the third part we

compare the LabelMe dataset against other existing datasets

commonly used for object detection and recognition.

2 LabelMe

In this section we describe the details of the annotation tool

and the results of the online collection effort.

2.1 Goals of the LabelMe Project

There are a large number of publically available databases

of visual objects (Torralba et al. 2004; Agarwal et al. 2004;

Leibe et al. 2004; Opelt et al. 2006b; Everingham et al. 2006;

Fei-Fei et al. 2004, 2007; Griffin et al. 2006; Carmichael

and Hebert 2004; Li and Shapiro 2002; LeCun et al. 2004;

Burianek et al. 2000). We do not have space to review them

all here. However, we give a brief summary of the main

features that distinguishes the LabelMe dataset from other

datasets.

• Designed for object class recognition as opposed to in-

stance recognition. To recognize an object class, one

needs multiple images of different instances of the same

class, as well as different viewing conditions. Many data-

bases, however, only contain different instances in a

canonical pose.

• Designed for learning about objects embedded in a scene.

Many databases consist of small cropped images of ob-

ject instances. These are suitable for training patch-based

object detectors (such as sliding window classifiers), but

cannot be used for training detectors that exploit contex-

tual cues.

• High quality labeling. Many databases just provide cap-

tions, which specify that the object is present somewhere

in the image. However, more detailed information, such

as bounding boxes, polygons or segmentation masks, is

tremendously helpful.

• Many diverse object classes. Many databases only con-

tain a small number of classes, such as faces, pedestrians

and cars (a notable exception is the Caltech 101 database,

which we compare against in Sect. 4).
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Fig. 1 A screenshot of the

labeling tool in use. The user is

shown an image along with

possibly one or more existing

annotations, which are drawn on

the image. The user has the

option of annotating a new

object by clicking along the

boundary of the desired object

and indicating its identity, or

editing an existing annotation.

The user may annotate as many

objects in the image as they

wish

• Many diverse images. For many applications, it is use-

ful to vary the scene type (e.g. nature, street, and office

scenes), distances (e.g. landscape and close-up shots), de-

gree of clutter, etc.

• Many non-copyrighted images. For the LabelMe database

most of the images were taken by the authors of this paper

using a variety of hand-held digital cameras. We also have

many video sequences taken with a head-mounted web

camera.

• Open and dynamic. The LabelMe database is designed to

allow collected labels to be instantly shared via the web

and to grow over time.

2.2 The LabelMe Web-Based Annotation Tool

The goal of the annotation tool is to provide a drawing inter-

face that works on many platforms, is easy to use, and allows

instant sharing of the collected data. To achieve this, we de-

signed a Javascript drawing tool, as shown in Fig. 1. When

the user enters the page, an image is displayed. The image

comes from a large image database covering a wide range

of environments and several hundred object categories. The

user may label a new object by clicking control points along

the object’s boundary. The user finishes by clicking on the

starting control point. Upon completion, a popup dialog bub-

ble will appear querying for the object name. The user freely

types in the object name and presses enter to close the bub-

ble. This label is recorded on the LabelMe server and is

displayed on the presented image. The label is immediately

available for download and is viewable by subsequent users

who visit the same image.

The user is free to label as many objects depicted in the

image as they choose. When they are satisfied with the num-

ber of objects labeled in an image, they may proceed to label

another image from a desired set or press the Show Next Im-

age button to see a randomly chosen image. Often, when a

user enters the page, labels will already appear on the im-

age. These are previously entered labels by other users. If

there is a mistake in the labeling (either the outline or text

label is not correct), the user may either edit the label by

renaming the object or delete and redraw along the object’s

boundary. Users may get credit for the objects that they label

by entering a username during their labeling session. This

is recorded with the labels that they provide. The resulting

labels are stored in the XML file format, which makes the

annotations portable and easy to extend.

The annotation tool design choices emphasizes simplic-

ity and ease of use. However, there are many concerns with

this annotation collection scheme. One important concern

is quality control. Currently quality control is provided by

the users themselves, as outlined above. Another issue is the

complexity of the polygons provided by the users (i.e. do

users provide simple or complex polygon boundaries?). An-

other issue is what to label. For example, should one label

the entire body, just the head, or just the face of a pedestrian?

What if it is a crowd of people? Should all of the people be

labeled? We leave these decisions up to each user. In this

way, we hope the annotations will reflect what various peo-

ple think are natural ways of segmenting an image. Finally,

there is the text label itself. For example, should the object

be labeled as a “person”, “pedestrian”, or “man/woman”?

An obvious solution is to provide a drop-down menu of stan-

dard object category names. However, we prefer to let peo-

ple use their own descriptions since these may capture some

nuances that will be useful in the future. In Sect. 3.1, we de-
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Fig. 2 Summary of the database content. a Sorted histogram of the

number of instances of each object description. Notice that there is

a large degree of consensus with respect to the entered descriptions.

b Histogram of the number of annotated images as a function of the

area labeled. The first bin shows that 11 571 images have less than

10% of the pixels labeled. The last bin shows that there are 2690 pic-

tures with more than 90% of the pixels labeled. c Histogram of the

number of labeled objects per image

scribe how to cope with the text label variability via Word-

Net (Fellbaum 1998). All of the above issues are revisited,

addressed, and quantified in the remaining sections.

A Matlab toolbox has been developed to manipulate the

dataset and view its contents. Example functionalities that

are implemented in the toolbox allow dataset queries, com-

munication with the online tool (this communication can

in fact allow one to only download desired parts of the

dataset), image manipulations, and other dataset extensions

(see Sect. 3).

The images and annotations are organized online into

folders, with the folder names providing information about

the image contents and location of the depicted scenes/

objects. The folders are grouped into two main categories:

static pictures and sequences extracted from video. Note

that the frames from the video sequences are treated as in-

dependent static pictures and that ensuring temporally con-

sistent labeling of video sequences is beyond the scope of

this paper. Most of the images have been taken by the au-

thors using a variety of digital cameras. A small proportion

of the images are contributions from users of the database or

come from the web. The annotations come from two differ-

ent sources: the LabelMe online annotation tool and annota-

tion tools developed by other research groups. We indicate

the sources of the images and annotations in the folder name

and in the XML annotation files. For all statistical analyses

that appear in the remaining sections, we will specify which

subset of the database subset was used.

2.3 Content and Evolution of the LabelMe Database

We summarize the content of the LabelMe database as of

December 21, 2006. The database consists of 111 490 poly-

gons, with 44 059 polygons annotated using the online tool

and 67 431 polygons annotated offline. There are 11 845 sta-

tic pictures and 18 524 sequence frames with at least one

object labeled.

As outlined above, a LabelMe description corresponds

to the raw string entered by the user to define each object.

Despite the lack of constraint on the descriptions, there is a

large degree of consensus. Online labelers entered 2888 dif-

ferent descriptions for the 44 059 polygons (there are a total

of 4210 different descriptions when considering the entire

dataset). Figure 2a shows a sorted histogram of the num-

ber of instances of each object description for all 111 490

polygons.1 Notice that there are many object descriptions

with a large number of instances. While there is much agree-

ment among the entered descriptions, object categories are

nonetheless fragmented due to plurals, synonyms, and de-

scription resolution (e.g. “car”, “car occluded”, and “car

side” all refer to the same category). In Sect. 3.1 we will

address the issue of unifying the terminology to properly in-

dex the dataset according to real object categories.

Figure 2b shows a histogram of the number of annotated

images as a function of the percentage of pixels labeled per

image. The graph shows that 11 571 pictures have less than

10% of the pixels labeled and around 2690 pictures have

more than 90% of labeled pixels. There are 4258 images

with at least 50% of the pixels labeled. Figure 2c shows

a histogram of the number of images as a function of the

number of objects in the image. There are, on average, 3.3

annotated objects per image over the entire dataset. There

1A partial list of the most common descriptions for all 111 490 poly-

gons in the LabelMe dataset, with counts in parenthesis: person walk-

ing (25 330), car (6548), head (5599), tree (4909), window (3823),

building (2516), sky (2403), chair (1499), road (1399), bookshelf

(1338), trees (1260), sidewalk (1217), cabinet (1183), sign (964), key-

board (949), table (899), mountain (823), car occluded (804), door

(741), tree trunk (718), desk (656).
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Fig. 3 Examples of annotated

scenes. These images have more

than 80% of their pixels labeled

and span multiple scene

categories. Notice that many

different object classes are

labeled per image

Fig. 4 Evolution of the online annotation collection over time. Left:

total number of polygons (blue, solid line) and descriptions (green,

dashed line) in the LabelMe dataset as a function of time. Right: the

probability of a new description being entered into the dataset as a

function of time. Note that the graph plots the evolution through March

23rd, 2007 but the analysis in this paper corresponds to the state of the

dataset as of December 21, 2006, as indicated by the star. Notice that

the dataset has steadily increased while the rate of new descriptions

entered has decreased

are 6876 images with at least 5 objects annotated. Figure 3

shows images depicting a range of scene categories, with the

labeled objects colored to match the extent of the recorded

polygon. For many images, a large number of objects are

labeled, often spanning the entire image.

The web-tool allows the dataset to continuously grow

over time. Figure 4 depicts the evolution of the dataset since

the annotation tool went online. We show the number of new

polygons and text descriptions entered as a function of time.

For this analysis, we only consider the 44 059 polygons en-

tered using the web-based tool. The number of new poly-

gons increased steadily while the number of new descrip-

tions grew at a slower rate. To make the latter observation

more explicit, we also show the probability of a new descrip-

tion appearing as a function of time (we analyze the raw text

descriptions).

2.4 Quality of the Polygonal Boundaries

Figure 5 illustrates the range of variability in the quality of

the polygons provided by different users for a few object

categories. For the analysis in this section, we only use the

44 059 polygons provided online. For each object category,

we sort the polygons according to the number of control

points. Figure 5 shows polygons corresponding to the 25th,

50th, and 75th percentile with respect to the range of control

points clicked for each category. Many objects can already

be recognized from their silhouette using a small number of

control points. Note that objects can vary with respect to the

number of control points to indicate its boundary. For in-

stance, a computer monitor can be perfectly described, in

most cases, with just four control points. However, a de-

tailed segmentation of a pedestrian might require 20 control

points.
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Fig. 5 Illustration of the quality of the annotations in the dataset. For

each object we show three polygons depicting annotations correspond-

ing to the 25th, 50th, and 75th percentile of the number of control

points recorded for the object category. Therefore, the middle polygon

corresponds to the average complexity of a segmented object class.

The number of points recorded for a particular polygon appears near

the top-left corner of each polygon. Notice that, in many cases, the ob-

ject’s identity can be deduced from its silhouette, often using a small

number of control points

Fig. 6 Image crops of labeled

objects and their corresponding

silhouette, as given by the

recorded polygonal annotation.

Notice that, in many cases, the

polygons closely follow the

object boundary. Also, many

diverse object categories are

contained in the dataset

Figure 6 shows some examples of cropped images con-

taining a labeled object and the corresponding recorded

polygon.

2.5 Distributions of Object Location and Size

At first, one would expect objects to be uniformly distrib-

uted with respect to size and image location. For this to be

true, the images should come from a photographer who ran-

domly points their camera and ignores the scene. However,

most of the images in the LabelMe dataset were taken by

a human standing on the ground and pointing their camera

towards interesting parts of a scene. This causes the location

and size of the objects to not be uniformly distributed in the

images. Figure 7 depicts, for a few object categories, a den-

sity plot showing where in the image each instance occurs

and a histogram of object sizes, relative to the image size.

Given how most pictures were taken, many of the cars can

be found in the lower half region of the images. Note that for

applications where it is important to have uniform prior dis-

tributions of object locations and sizes, we suggest cropping

and rescaling each image randomly.

3 Extending the Dataset

We have shown that the LabelMe dataset contains a large

number of annotated images, with many objects labeled per

image. The objects are often carefully outlined using poly-

gons instead of bounding boxes. These properties allow us to

extract from the dataset additional information that was not

provided directly during the labeling process. In this section

we provide some examples of interesting extensions of the

dataset that can be achieved with minimal user intervention.

Code for these applications is available as part of the Matlab

toolbox.

3.1 Enhancing Object Labels with WordNet

Since the annotation tool does not restrict the text labels for

describing an object or region, there can be a large variance
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Fig. 7 Distributions of object location and size for a number of ob-

ject categories in the LabelMe dataset. The distribution of locations

are shown as a 2D histogram of the object centroid location in the dif-

ferent images (coordinates are normalized with respect to the image

size). The size histogram illustrates what is the typical size that the ob-

ject has in the LabelMe dataset. The horizontal axis is in logarithmic

units and represents the percentage of the image area occupied by the

object

of terms that describe the same object category. For exam-

ple, a user may type any of the following to indicate the

“car” object category: “car”, “cars”, “red car”, “car frontal”,

“automobile”, “suv”, “taxi”, etc. This makes analysis and

retrieval of the labeled object categories more difficult since

we have to know about synonyms and distinguish between

object identity and its attributes. A second related problem

is the level of description provided by the users. Users tend

to provide basic-level labels for objects (e.g. “car”, “per-

son”, “tree”, “pizza”). While basic-level labels are useful,

we would also like to extend the annotations to incorporate

superordinate categories, such as “animal”, “vehicle”, and

“furniture”.

We use WordNet (Fellbaum 1998), an electronic dictio-

nary, to extend the LabelMe descriptions. WordNet orga-

nizes semantic categories into a tree such that nodes appear-

ing along a branch are ordered, with superordinate and sub-

ordinate categories appearing near the root and leaf nodes,

respectively. The tree representation allows disambiguation

of different senses of a word (polysemy) and relates dif-

ferent words with similar meanings (synonyms). For each

word, WordNet returns multiple possible senses, depending

on the location of the word in the tree. For instance, the word

“mouse” returns four senses in WordNet, two of which are

“computer mouse” and “rodent”.2 This raises the problem

2The WordNet parents of these terms are (i) computer mouse: elec-

tronic device; device; instrumentality, instrumentation; artifact, arti-

fact; whole, unit; object, physical object; physical entity; entity and

of sense disambiguation. Given a LabelMe description and

multiple senses, we need to decide what the correct sense is.

WordNet can be used to automatically select the appro-

priate sense that should be assigned to each description (Ide

and Vronis 1998). However, polysemy can prove challeng-

ing for automatic sense assignment. Polysemy can be re-

solved by analyzing the context (i.e. which other objects are

present in the same image). To date, we have not found in-

stances of polysemy in the LabelMe dataset (i.e. each de-

scription maps to a single sense). However, we found that

automatic sense assignment produced too many errors. To

avoid this, we allow for offline manual intervention to decide

which senses correspond to each description. Since there are

fewer descriptions than polygons (c.f. Fig. 4), the manual

sense disambiguation can be done in a few hours for the en-

tire dataset.

We extended the LabelMe annotations by manually cre-

ating associations between the different text descriptions

and WordNet tree nodes. For each possible description, we

queried WordNet to retrieve a set of senses, as described

above. We then chose among the returned senses the one

that best matched the description. Despite users entering text

without any quality control, 3916 out of the 4210 (93%)

(ii) rodent: rodent, gnawer, gnawing animal; placental, placental mam-

mal, eutherian, eutherian mammal; mammal, mammalian; vertebrate,

craniate; chordate; animal, animate being, beast, brute, creature, fauna;

organism, being; living thing, animate thing; object, physical object;

physical entity; entity.
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Table 1 Examples of LabelMe descriptions returned when querying

for the objects “person” and “car” after extending the labels with Word-

Net (not all of the descriptions are shown). For each description, the

counts represents the number of returned objects that have the corre-

sponding description. Note that some of the descriptions do not contain

the query words

Person (27 719 polygons) Car (10 137 polygons)

Label Polygon count Label Polygon count

Person walking 25 330 Car 6548

Person 942 Car occluded 804

Person standing 267 Car rear 584

Person occluded 207 Car side 514

Person sitting 120 Car crop 442

Pedestrian 121 Car frontal 169

Man 117 Taxi 8

Woman 75 Suv 4

Child 11 Cab 3

Girl 9 Automobile 2

unique LabelMe descriptions found a WordNet mapping,

which corresponds to 104 740 out of the 111 490 polygon

descriptions. The cost of manually specifying the associa-

tions is negligible compared to the cost of entering the poly-

gons and must be updated periodically to include the newest

descriptions. Note that it may not be necessary to frequently

update these associations since the rate of new descriptions

entered into LabelMe decreases over time (c.f. Fig. 4).

We show the benefit of adding WordNet to LabelMe to

unify the descriptions provided by the different users. Ta-

ble 1 shows examples of LabelMe descriptions that were

returned when querying for “person” and “car” in the

WordNet-enhanced framework. Notice that many of the

original descriptions did not contain the queried word. Fig-

ure 8 shows how the number of polygons returned by one

query (after extending the annotations with WordNet) are

distributed across different LabelMe descriptions. It is in-

teresting to observe that all of the queries seem to follow a

similar law (linear in a log-log plot).

Table 2 shows the number of returned labels for several

object queries before and after applying WordNet. In gen-

eral, the number of returned labels increases after applying

WordNet. For many specific object categories this increase

is small, indicating the consistency with which that label is

used. For superordinate categories, the number of returned

matches increases dramatically. The object labels shown in

Table 2 are representative of the most frequently occurring

labels in the dataset.

One important benefit of including the WordNet hier-

archy into LabelMe is that we can now query for objects

at various levels of the WordNet tree. Figure 9 shows ex-

amples of queries for superordinate object categories. Very

few of these examples were labeled with a description that

Table 2 Number of returned labels when querying the original de-

scriptions entered into the labeling tool and the WordNet-enhanced

descriptions. In general, the number of returned labels increases after

applying WordNet. For entry-level object categories this increase is rel-

atively small, indicating the consistency with which the corresponding

description was used. In contrast, the increase is quite large for super-

ordinate object categories. These descriptions are representative of the

most frequently occurring descriptions in the dataset

Category Original description WordNet description

Person 27 019 27 719

Car 10 087 10 137

Tree 5997 7355

Chair 1572 2480

Building 2723 3573

Road 1687 2156

Bookshelf 1588 1763

Animal 44 887

Plant 339 8892

Food 11 277

Tool 0 90

Furniture 7 6957

Fig. 8 How the polygons returned by one query (in the Word-

Net-enhanced framework) are distributed across different descriptions.

The distributions seem to follow a similar law: a linear decay in a

log-log plot with the number of polygons for each different description

on the vertical axis and the descriptions (sorted by number of poly-

gons) on the horizontal axis. Table 1 shows the actual descriptions for

the queries “person” and “car”

matches the superordinate category, but nonetheless we can

find them.

While WordNet handles most ambiguities in the dataset,

errors may still occur when querying for object categories.
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Fig. 9 Queries for superordinate object categories after incorporating WordNet. Very few of these examples were labeled with a description that

matches the superordinate category (the original LabelMe descriptions are shown below each image). Nonetheless, we are able to retrieve these

examples

The main source of error arises when text descriptions get

mapped to an incorrect tree node. While this is not very com-

mon, it can be easily remedied by changing the text label to

be more descriptive. This can also be used to clarify cases

of polysemy, which our system does not yet account for.

3.2 Object-Parts Hierarchies

When two polygons have a high degree of overlap, this pro-

vides evidence of either (i) an object-part hierarchy or (ii) an

occlusion. We investigate the former in this section and the

latter in Sect. 3.3.

We propose the following heuristic to discover seman-

tically meaningful object-part relationships. Let IO denote

the set of images containing a query object (e.g. car) and

IP ⊆ IO denote the set of images containing part P (e.g.

wheel). Intuitively, for a label to be considered as a part,

the label’s polygons must consistently have a high degree of

overlap with the polygons corresponding to the object of in-

terest when they appear together in the same image. Let the

overlap score between an object and part polygons be the

ratio of the intersection area to the area of the part polygon.

Ratios exceeding a threshold of 0.5 get classified as having

high overlap. Let IO,P ⊆ IP denote the images where object

and part polygons have high overlap. The object-part score

for a candidate label is NO,P /(NP + α) where NO,P and

NP are the number of images in IO,P and IP respectively

and α is a concentration parameter, set to 5. We can think of

α as providing pseudocounts and allowing us to be robust to

small sample sizes.

The above heuristic provides a list of candidate part la-

bels and scores indicating how well they co-occur with a

given object label. In general, the scores give good candi-

date parts and can easily be manually pruned for errors. Fig-

ure 10 shows examples of objects and proposed parts using

the above heuristic. We can also take into account viewpoint

information and find parts, as demonstrated for the car ob-

ject category. Notice that the object-parts are semantically

meaningful.

Once we have discovered candidate parts for a set of ob-

jects, we can assign specific part instances to their corre-

sponding object. We do this using the intersection overlap

heuristic, as above, and assign parts to objects where the

intersection ratio exceeds the 0.5 threshold. For some ro-

bustness to occlusion, we compute a depth ordering of the

polygons in the image (see Sect. 3.3) and assign the part to

the polygon with smallest depth that exceeds the intersec-

tion ratio threshold. Figure 11 gives some quantitative re-
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Fig. 10 Objects and their parts. Using polygon information alone, we automatically discover object-part relationships. We show example parts

for the building, person, mountain, sky, and car object classes, arranged as constellations, with the object appearing in the center of its parts. For

the car object class, we also show parts when viewpoint is considered

sults on the number of parts per object and the probability

with which a particular object-part is labeled.

3.3 Depth Ordering

Frequently, an image will contain many partially overlap-

ping polygons. This situation arises when users complete an

occluded boundary or when labeling large regions contain-

ing small occluding objects. In these situations we need to

know which polygon is on top in order to assign the image

pixels to the correct object label. One solution is to request

depth ordering information while an object is being labeled.

Instead, we wish to reliably infer the relative depth ordering

and avoid user input.

The problem of inferring depth ordering for overlapping

regions is a simpler problem than segmentation. In this case

we only need to infer who owns the region of intersection.

We summarize a set of simple rules to decide the relative

ordering of two overlapping polygons:
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Fig. 11 Quantitative results

showing a how many parts an

object has and b the likelihood

that a particular part is labeled

when an object is labeled. Note

that there are 29 objects with at

least one discovered part (only

15 are shown here). We are able

to discover a number of objects

having parts in the dataset. Also,

a part will often be labeled when

an object is labeled

Fig. 12 Each image pair shows an example of two overlapping poly-

gons and the final depth-ordered segmentation masks. Here, white and

black regions indicate near and far layers, respectively. A set of rules

(see text) were used to automatically discover the depth ordering of the

overlapping polygon pairs. These rules provided correct assignments

for 97% of 1000 polygon pairs tested. The bottom right example shows

an instance where the heuristic fails. The heuristic sometimes fails for

wiry or transparent objects

• Some objects are always on the bottom layer since they

cannot occlude any objects. For instance, objects that do

not own any boundaries (e.g. sky) and objects that are on

the lowest layer (e.g. sidewalk and road).

• An object that is completely contained in another one

is on top. Otherwise, the object would be invisible and,

therefore, not labeled. Exceptions to this rule are trans-

parent or wiry objects.

• If two polygons overlap, the polygon that has more con-

trol points in the region of intersection is more likely to be

on top. To test this rule we hand-labeled 1000 overlapping

polygon pairs randomly drawn from the dataset. This rule

produced only 25 errors, with 31 polygon pairs having the

same number of points within the region of intersection.

• We can also decide who owns the region of intersection by

using image features. For instance, we can compute color

histograms for each polygon and the region of intersec-

tion. Then, we can use histogram intersection (Swain and

Ballard 1991) to assign the region of intersection to the

polygon with the closest color histogram. This strategy

achieved 76% correct assignments over the 1000 hand-

labeled overlapping polygon pairs. We use this approach

only when the previous rule could not be applied (i.e. both

polygons have the same number of control points in the

region of intersection).

Combining these heuristics resulted in 29 total errors out

of the 1000 overlapping polygon pairs. Figure 12 shows

some examples of overlapping polygons and the final as-

signments. The example at the bottom right corresponds

to an error. In cases in which objects are wiry or transpar-

ent, the rule might fail. Figure 13 shows the final layers for

scenes with multiple overlapping objects.

3.4 Semi-Automatic Labeling

Once there are enough annotations of a particular object

class, one could train an algorithm to assist with the label-

ing. The algorithm would detect and segment additional in-

stances in new images. Now, the user task would be to vali-

date the detection (Vetter et al. 1997). A successful instance

of this idea is the Seville project (Abramson and Freund

2005) where an incremental, boosting-based detector was

trained. They started by training a coarse detector that was
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Fig. 13 Decomposition of a scene into layers given the automatic depth ordering recovery of polygon pairs. Since we only resolve the ambiguity

between overlapping polygon pairs, the resulting ordering may not correspond to the real depth ordering of all the objects in the scene

good enough to simplify the collection of additional exam-

ples. The user provides feedback to the system by indicat-

ing when a bounding box was a correct detection or a false

alarm. Then, the detector was trained again with the enlarged

dataset. This process was repeated until a satisfactory num-

ber of images were labeled.

We can apply a similar procedure to LabelMe to train a

coarse detector to be used to label images obtained from on-

line image indexing tools. For instance, if we want more an-

notated samples of sailboats, we can query both LabelMe

(18 segmented examples of sailboats were returned) and

online image search engines (e.g. Google, Flickr, and Al-

tavista). The online image search engines will return thou-

sands of unlabeled images that are very likely to contain a

sailboat as a prominent object. We can use LabelMe to train

a detector and then run the detector on the retrieved unla-

beled images. The user task will be to select the correct de-

tections in order to expand the amount of labeled data.

Here, we propose a simple object detector. Although ob-

jects labeled with bounding boxes have proven to be very

useful in computer vision, we would like the output of the

automatic object detection procedure to provide polygonal

boundaries following the object outline whenever possible.

• Find candidate regions: instead of running the standard

sliding window, we propose creating candidate bounding

boxes for objects by first segmenting the image to produce

10–20 regions. Bounding boxes are proposed by creating

all the bounding boxes that correspond to combinations

of these regions. Only the combinations that produce con-

tiguous regions are considered. We also remove all candi-

date bounding boxes with aspect ratios outside the range

defined by the training set. This results in a small set of

candidates for each image (around 30 candidates).

• Compute features: resize each candidate region to a nor-

malized size (96 × 96 pixels). Then, represent each can-

didate region with a set of features (e.g. bag of words

Russell et al. 2006, edge fragments Opelt et al. 2006a,

multiscale-oriented filters Oliva and Torralba 2001). For

the experiments presented here, we used the Gist fea-

tures (Oliva and Torralba 2001) (code available online)

to represent each region.

• Perform classification: train a support vector machine

classifier (Vapnik 1999) with a Gaussian kernel using the

available LabelMe data and apply the classifier to each

of the candidate bounding boxes extracted from each im-

age. The output of the classifier will be a score for the

bounding boxes. We then choose the bounding box with

the maximum score and the segmentation corresponding

to the segments that are inside the selected bounding box.

For the experiments presented here, we queried four object

categories: sailboats, dogs, bottles, and motorbikes. Using

LabelMe, we collected 18 sailboat, 41 dog, 154 bottle, and

49 motorbike images. We used these images to train four

classifiers. Then, we downloaded 4000 images for each class

from the web using Google, Flickr and Altavista. Not all

of the images contained instances of the queried objects. It

has been shown that image features can be used to improve

the quality of the ranking returned by online queries (Fergus

et al. 2005; Berg and Forsyth 2006). We used the detector

trained with LabelMe to sort the images returned by the on-

line query tools.

Figure 15 shows the results and compares the images

sorted according to the ranking given by the output of the on-
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Fig. 14 Using LabelMe to automatically detect and segment objects

depicted in images returned from a web search. a Sailboats in the La-

belMe dataset. These examples are used to train a classifier. b Detec-

tion and segmentation of a sailboat in an image download from the

web using Google. First, we segment the image (upper left), which pro-

duces around 10 segmented regions (upper right). Then we create a list

of candidate bounding boxes by combining all of the adjacent regions.

Note that we discard bounding boxes whose aspect ratios lie outside

the range of the LabelMe sailboat crops. Then we apply a classifier

to each bounding box. We depict the bounding boxes with the highest

scores (lower left), with the best scoring as a thick bounding box col-

ored in red. The candidate segmentation is the outline of the regions

inside the selected bounding box (lower right). After this process, a

user may then select the correct detections to augment the dataset

Fig. 15 Enhancing web-based image retrieval using labeled image

data. Each pair of rows depict sets of sorted images for a desired ob-

ject category. The first row in the pair is the ordering produced from an

online image search using Google, Flickr and Altavista (the results of

the three search engines are combined respecting the ranking of each

image). The second row shows the images sorted according to the con-

fidence score of the object detector trained with LabelMe. To better

show how the performance decreases with rank, each row displays one

out of every ten images. Notice that the trained classifier returns better

candidate images for the object class. This is quantified in the graphs

on the right, which show the precision (percentage correct) as a func-

tion of image rank

line search engines and the ranking provided by the score of

the classifier. For each image we have two measures: (i) the

rank in which the image was returned and (ii) the score of

the classifier corresponding to the maximum score of all the

candidate bounding boxes in the image. In order to measure

performance, we provided ground truth for the first 1000 im-

ages downloaded from the web (for sailboats and dogs). The

precision-recall graphs show that the score provided by the
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Fig. 16 Examples of automatically generated segmentations and bounding boxes for sailboats, motorbikes, bottles, and dogs

Table 3 Summary of datasets

used for object detection and

recognition research. For the

LabelMe dataset, we provide the

number of object classes with at

least 30 annotated examples. All

the other numbers provide the

total counts

Dataset # categories # images # annotations Annotation type

LabelMe 183 30 369 111 490 Polygons

Caltech-101 (Fei-Fei et al. 2007) 101 8765 8765 Polygons

MSRC (Winn et al. 2005) 23 591 1751 Region masks

CBCL-Streetscenes (Bileschi 2006) 9 3547 27 666 Polygons

Pascal2006 (Everingham et al. 2006) 10 5304 5455 Bounding boxes

classifier provides a better measure of probability of pres-

ence of the queried object than the ranking in which the im-

ages are returned by the online tools. However, for the au-

tomatic labeling application, good quality labeling demands

very good performance on the object localization task. For

instance, in current object detection evaluations (Evering-

ham et al. 2006), an object is considered correctly detected

when the area of overlap between the ground truth bound-

ing box and the detected bounding box is above 50% of the

object size. However, this degree of overlap will not be con-

sidered satisfactory for labeling. Correct labeling requires

above 90% overlap to be satisfactory.

After running the detectors on the 4000 images of each

class collected from the web, we were able to select 162 sail-

boats, 64 dogs, 40 bottles, and 40 motorbikes that produced

good annotations. This is shown in Fig. 16. The user had

the choice to validate the segmentation or just the bound-

ing box. The selection process is very efficient. Therefore,

semi-automatic labeling may offer an interesting way of ef-

ficiently labeling images.

However, there are several drawbacks to this approach.

First, we are interested in labeling full scenes with many ob-

jects, making the selection process less efficient. Second, in

order for detection to work with a reasonable level of ac-

curacy with current methods, the object needs to occupy a

large portion of the image or be salient. Third, the annotated

objects will be biased toward being easy to segment or de-

tected. Note that despite semi-automatic labeling not being

desirable for creating challenging benchmarks for evaluat-

ing object recognition algorithms, it can still be useful for

training. There are also a number of applications that will

benefit from having access to large amounts of labeled data,

including image indexing tools (e.g. Flickr) and photorealis-

tic computer graphics (Snavely et al. 2006). Therefore, cre-

ating semi-automatic algorithms to assist image labeling at

the object level is an interesting area of application on its

own.

4 Comparison with Existing Datasets for Object

Detection and Recognition

We compare the LabelMe dataset against four annotated

datasets currently used for object detection and recogni-

tion: Caltech-101 (Fei-Fei et al. 2007), MSRC (Winn et

al. 2005), CBCL-Streetscenes (Bileschi 2006), and PAS-

CAL2006 (Everingham et al. 2006). Table 3 summarizes

these datasets. The Caltech-101 and CBCL-streetscenes pro-

vide location information for each object via polygonal

boundaries. PASCAL2006 provides bounding boxes and

MSRC provides segmentation masks.

For the following analysis with the LabelMe dataset, we

only include images that have at least one object annotated

and object classes with at least 30 annotated examples, re-

sulting in a total of 183 object categories. We have also ex-

cluded, for the analysis of the LabelMe dataset, contributed

annotations and sequences.

Figure 17a shows, for each dataset, the number of object

categories and, on average, how many objects appear in an

image. Notice that currently the LabelMe dataset contains

more object categories than the existing datasets. Also, ob-

serve that the CBCL-Streetscenes and LabelMe datasets of-

ten have multiple annotations per image, indicating that the

images correspond to scenes and contain multiple objects.
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Fig. 17 Comparison of five datasets used for object detection and

recognition: Caltech-101 (Fei-Fei et al. 2003), MSRC (Winn et al.

2005), CBCL-Streetscenes (Torralba et al. 2004), PASCAL2006 (Ever-

ingham et al. 2006), and LabelMe. a Number of object categories ver-

sus number of annotated objects per image. b Scatter plot of number

of object category instances versus average annotation size relative to

the image size, with each point corresponding to an object category.

c Number of labeled instances per object category, sorted in decreas-

ing order based on the number of labeled instances. Notice that the La-

belMe dataset contains a large number of object categories, often with

many instances per category, and has annotations that vary in size and

number per image. This is in contrast to datasets prominently featur-

ing one object category per image, making LabelMe a rich dataset and

useful for tasks involving scene understanding. d Depiction of annota-

tion quality, where the number of polygonal annotations are plotted as

a function of the number of control points (we do not show the PAS-

CAL2006 and MSRC datasets since their annotations correspond to

bounding boxes and region masks, respectively)

This is in contrast with the other datasets, which promi-

nently feature a small number of objects per image.

Figure 17b is a scatter plot where each point corresponds

to an object category and shows the number of instances

of each category and the average size, relative to the im-

age. Notice that the LabelMe dataset has a large number

of points, which are scattered across the entire plot while

the other datasets have points clustered in a small region.

This indicates the range of the LabelMe dataset: some ob-

ject categories have a large number of examples (close to

10K examples) and occupy a small percentage of the im-

age size. Contrast this with the other datasets where there

are not as many examples per category and the objects tend

to occupy a large portion of the image. Figure 17c shows

the number of labeled instances per object category for the

five datasets, sorted in decreasing order by the number of

labeled instances. Notice that the line corresponding to the

LabelMe dataset is higher than the other datasets, indicating

the breadth and depth of the dataset.

We also wish to quantify the quality of the polygonal an-

notations. Figure 17d shows the number of polygonal anno-

tations as a function of the number of control points. The

LabelMe dataset has a wide range of control points and the

number of annotations with many control points is large, in-

dicating the quality of the dataset. The PASCAL2006 and

MSRC datasets are not included in this analysis since their

annotations consist of bounding boxes and region masks, re-

spectively.
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5 Conclusion

We described a web-based image annotation tool that was

used to label the identity of objects and where they oc-

cur in images. We collected a large number of high qual-

ity annotations, spanning many different object categories,

for a large set of images, many of which are high resolu-

tion. We presented quantitative results of the dataset con-

tents showing the quality, breadth, and depth of the dataset.

We showed how to enhance and improve the quality of the

dataset through the application of WordNet, heuristics to re-

cover object parts and depth ordering, and training of an ob-

ject detector using the collected labels to increase the dataset

size from images returned by online search engines. We fi-

nally compared against other existing state of the art datasets

used for object detection and recognition.

Our goal is not to provide a new benchmark for com-

puter vision. The goal of the LabelMe project is to provide

a dynamic dataset that will lead to new research in the areas

of object recognition and computer graphics, such as object

recognition in context and photorealistic rendering.
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