
1

LabelMe: online image annotation and applications
Antonio Torralba, Bryan C. Russell, and Jenny Yuen

Abstract—Central to the development of computer vision
systems is the collection and use of annotated images spanning
our visual world. Annotations may include information about
the identity, spatial extent, and viewpoint of the objects present
in a depicted scene. Such a database is useful for the training
and evaluation of computer vision systems. Motivated by the
availability of images on the internet, we introduced a web-based
annotation tool that allows online users to label objects and their
spatial extent in images. To date, we have collected over 400K
annotations that span a variety of different scene and object
classes. In this paper, we show the contents of the database, its
growth over time, and statistics of its usage. In addition, we
explore and survey applications of the database in the areas of
computer vision and computer graphics. Particularly, we show
how to extract the real-world 3D coordinates of images in a
variety of scenes using only the user-provided object annotations.
The output 3D information is comparable to the quality produced
by a laser range scanner. We also characterize the space of
the images in the database by analyzing (i) statistics of the co-
occurrence of large objects in the images and (ii) the spatial
layout of the labeled images.

Index Terms—online annotation tool, image database, object
recognition, object detection, 3D, video annotation, image statis-
tics

I. INTRODUCTION

IN the early days of artificial intelligence, the first challenge

a computer vision researcher would encounter would be

the difficult task of digitizing a photograph [27]. An excerpt

from [40] illustrates this difficulty: “This figure (-figure not

shown here-) provides a high quality reproduction of the six

images discussed in the text. a and b were taken with a

considerably modified Information International Incorporated

Vidissector, and the rest were taken with a Telenmation TMC-

2100 vidicon camera attached to a Spatial Data Systems

digitizer (Camera Eye 108).” Even once a picture was in digital

form, storing a large number of pictures (say six) consumed

most of the available computational resources. In addition to

the algorithmic advances required to solve object recognition,

a key component to progress is access to data in order to

train computational models for the different object classes.

This situation has dramatically changed in the last decade,

especially via the internet, which has given researchers access

to billions of images and videos.

While large volumes of pictures are available, building a

large dataset of annotated images with many objects still con-

stitutes a costly and lengthy endeavor. Traditionally, datasets

are built by individual research groups and are tailored to

A. Torralba and J. Yuen are with the Computer Science and Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
MA 02139 USA e-mail: torralba@csail.mit.edu, jenny@csail.mit.edu.

B.C. Russell is with INRIA, WILLOW project-team, Laboratoire
d’Informatique de l’École Normale Supérieure ENS/INRIA/CNRS UMR
8548, Paris, France e-mail: russell@di.ens.fr.

Fig. 1. Snapshot of the online application for image annotation.

solve specific problems. Therefore, many currently available

datasets used in computer vision only contain a small number

of object classes, and practical solutions exist for a few classes

(e.g. human faces and cars [78], [49], [56], [77]). Notable

recent exceptions are the Caltech 101 dataset [15], with 101

object classes (later extended to 256 object classes [20]),

the PASCAL collection [12] containing 20 object classes,

the CBCL-street scenes database [8], comprising 8 object

categories in street scenes, and the database of scenes from

the Lotus Hill Research Institute [85].

Creating a large number of annotations for thousands of

different object classes can become a time-consuming and

challenging process. Because of this, there have been several

works that study methods for optimizing labeling tasks. For

example, given enough annotations for a particular object

class, one can train an algorithm to assist the labeling process.

The algorithm would detect and segment additional instances

in new images and be followed by a user-assisted validation

stage [79]. An implementation of this idea is the Seville

project [4], where an incremental, boosting-based detector

was trained. The pipeline begins by training a coarse object

detector that is good enough to simplify the collection of

additional examples. Furthermore, the user provides feedback

to the system by indicating when an output bounding box is

a correct detection or a false alarm. Finally, the detector is

retrained with the enlarged dataset. This process is repeated

until reaching the desired number of labeled images. Another

work for optimizing label propagation is [80], where a learner

is trained to balance the relative costs for obtaining different

levels of annotation detail, along with the reduction of uncer-

tainty the annotation provides to the system. A complementary

line of research tries to avoid the need to annotate images by

developing unsupervised learning algorithms [14], [68], [84],

[83], [16], [62], [51], [71], [18]. These works are characterized

2

by creating learners to recognize and distinguish object classes

that can be trained with unlabeled and unsegmented scenes.

However, independent of the methods for creating classifiers,

ground truth data is always implicitly necessary to validate

inferred annotations and to assign names to discovered object

categories.

Web-based annotation tools provide a means of building

large annotated datasets by relying on the collaborative effort

of a large population of users [81], [58], [53], [65], [67].

Recently, such efforts have shown to be successful. The

Open Mind Initiative [67] aims to collect large datasets from

web users to develop intelligent algorithms. More specifically,

common sense facts are recorded (e.g. red is a primary color),

with over 700K facts recorded to date. This project seeks

to extend their dataset with speech and handwriting data.

Flickr [58] is a commercial effort to provide an online image

storage and organization service. Users often provide textual

tags as captions for depicted objects in an image. Another way

lots of data has been collected is through an online game that is

played by many users. The ESPgame [81] pairs two random

online users who view the same target image. The goal is

for them to try to “read each other’s mind” and agree on an

appropriate name for the target image as quickly as possible.

This effort has collected over 10 million image captions since

2003 for images randomly drawn from the web. While the

amount of collected data is impressive, only caption data is

acquired. Another game, Peekaboom [82], has been created to

provide location information of objects.

In 2005 we created LabelMe [53], an online annotation tool

that allows sharing and labeling of images for computer vision

research. The application exploits the capacity of the web to

concentrate the efforts of a large population of users. The

tool has been online since August 2005 and has accumulated

over 400,000 annotated objects. The online tool provides

functionalities for drawing polygons to outline the spatial

extent of object in images, querying for object annotations,

and browsing the database (see Fig. 1).

In this paper we describe the evolution of both LabelMe

and its annotation corpus. We demonstrate statistics validating

the ease of use and impact our system has had over the

course of time. With the aid of collaborative collection and

labeling of scenes at a large scale, we present an ordering

and visualization of scenes in the real world. Finally, we

demonstrate applications of our rich database. For example, we

developed a method to learn concepts not explicitly annotated

in scenes, such as support and part-of relationships, which

allows us to infer 3D information of scenes.

II. ONLINE ANNOTATION

Fig. 1 shows a snapshot of the LabelMe online annotation

tool. The tool provides a simple drawing interface that allows

users to outline the silhouetes of the objects present in each

image. When the user opens the application, a new image

is displayed. The image is randomly selected from a large

collection of images available in LabelMe. The user provides

an annotation by clicking along the boundary of an object

to form a polygon. The user closes the polygon by clicking

2006 2007 2008 2009

2

3

0

10
5.

10
5.

10
5

0

10
4

3 10
4.

2 10
4.

2006 2007 2008 2009
a) b) c)

4 10
4.

6 10
3.

2 10
3.

8 10
3.

4 10
3.

2006 2007 2008 2009

N
u
m

b
e
r

o
f
p
o
ly

g
o
n
s

N
u
m

b
e
r

o
f
im

a
g
e
s

N
u
m

b
e
r

o
f
d
e
s
c
ri
p
ti
o
n
s

Fig. 2. Evolution of the dataset since the annotation tool came online in
August 2005 through 2009. The horizontal axis denotes time (each mark is
the beginning of the year), and the vertical axis represents: a) Number of
annotated objects, b) Number of images with at least one annotated object,
c) Number of unique object descriptions.

on the initial point or with a right click. After the polygon

is closed, a popup dialog box appears querying for the object

name. Once the name is introduced, the annotation is added to

the database and becomes available for immediate download

for research.

A. Dataset evolution and distribution of objects

Fig. 2 plots the evolution of the dataset since it went online

in 2005. Fig. 2.a shows how the number of annotated objects

(one annotated object is composed of the polygon outlining

the object boundary and the object name) has been growing;

notice the constant database growth over time. Fig. 2.b shows

the number of images with at least one object annotated. As

users are not required to fully annotate an image, different

images have varying numbers of annotated objects. As we

try to build a large dataset, it will be common to have many

images that are only partially annotated. Therefore, developing

algorithms and training strategies that can cope with this issue

will allow the use of large datasets without having to make

the labor-intensive effort of careful image annotation.

Fig. 2.c shows the evolution of the number of different

object descriptions present in the database. As users are not

restricted to only annotate a pre-defined set of classes, the

dataset contains a rich set of object classes that constantly

grows as new objects are annotated every day. This is an

important difference between the LabelMe dataset and other

databases used as benchmarks for computer vision algorithms.

Interestingly, the number does not seem to be saturating with

time. This observation was made in [66] and seems to indicate

that the number of visual object categories is large.

Fig. 3.b shows examples of the most frequently annotated

object classes in our database, along with their segmentation

masks. Fig. 3.a shows the distribution of annotated object

classes. The vertical axis denotes the number of polygons

assigned to a particular object class and the horizontal axis

corresponds to its rank in the list of sorted objects according

to the number of annotated instances. For instance, the most

frequent object class in our dataset is window, with 25741

annotated instances, followed by car, with 20304 instances.

The distribution of object counts is heavy-tailed. There are a

few dozen object classes with thousands of training samples

and thousands of object classes with just a handful of train-

ing samples (i.e. rare objects are frequent). The distribution

3

Window (25741) Car (20304) Tree (17526)

10
0

10
1

10
2

10
3

Frequency rank

C
o
u
n
ts

LabelMe

Streetscenes

Pascal 2008

Caltech 101

MSRC

10
0

10
1

10
2

10
3

10
4

a) b)

Building (16252) Person (13176) Head (8762) Sky (7080)

Leg (5724) Road (5243) Arm (4778) Sidewalk (4771) Wall (4590) Sign (4587)

Table (3970)Door (4041)

Chair (4065)Plant (4384)

Torso (3101) Mountain (2750) Streetlight (2414) Wheel (2314) Cabinet (2080)

Fig. 3. a) Distribution of annotated objects in the LabelMe collection and comparison with other datasets. b) Examples of the most frequent objects in
LabelMe. The number in parenthesis denotes the number of annotated instances. Those numbers continue to evolve as more objects are annotated every day.

follows Zipf’s law [87], which is a common distribution for

ranked data found also in the distribution of word counts in

language. The same distribution has also been found in other

image databases [66], [73].

The above observations suggest two interesting learning

problems that depend on the number of available training

samples N :

• Learning from few training samples (N → 1): this is the

limit when the number of training examples is small. In

this case, it is important to transfer knowledge from other,

more frequent, object categories. This is a fundamental

problem in learning theory and artificial intelligence, with

recent progress given by [15], [76], [7], [68], [47], [46],

[13], [31].

• Learning with millions of samples (N → ∞): this is the

extreme where the number of training samples is large.

An example of the power of a brute force method is the

text-based Google search tool. The user can formulate

questions to the query engine and get reasonable answers.

The engine, instead of understanding the question, is sim-

ply memorizing billions of web pages and indexing those

pages using the keywords from the query. In Section IV,

we discuss recent work in computer vision to exploit

millions of image examples.

Note, however, as illustrated in Fig. 3.a, that collected

benchmark datasets do not necessarily follow Zipf’s law.

When building a benchmark, it is common to have similar

amounts of training data for all object classes. This produces

somewhat artificial distributions that might not reflect the fre-

quency in which objects are encountered in the real world. The

presence of the heavy tailed distribution of object counts in the

LabelMe dataset is important to encourage the development of

algorithms that can learn from few training samples.

B. Study of online labelers

An important consideration is the source of the annotations.

For example, are few or many online users providing anno-

tations? Ideally, we would collect high quality contributions

from many different users since this would make the database

more robust to labeling bias. In this section, we study the

contributions made through the online annotation tool by

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

IP addresses

#
 o

f
c
re

a
te

d
 p

o
ly

g
o

n
s

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

Seconds

N
u

m
b

e
r

o
f
p

o
ly

g
o

n
s

Man hours for 85860 polygons: 458.40

(a) (b)

Fig. 4. (a) Number of new annotations provided by individual users of
the online annotation tool from July 7th, 2008 through March 19th, 2009
(sorted in descending order, plotted on log-log axes). In total, 11382 unique
IP addresses interacted with the labeling tool, with over 200 different IP
addresses providing over 100 object labels. Notice that we get a diverse set
of users who make significant contributions through the annotation tool. (b)
Distribution of the length of time it takes to label an object (in seconds). Notice
that most objects are labeled in 30 seconds or less, with the mode being 10
seconds. Excluding those annotations taking more than 100 seconds, a total
of 458.4 hours have been spent creating new annotations.

analyzing the online user activity from July 7th, 2008 through

March 19th, 2009.

Since the database grows when users provide new anno-

tations, one way of characterizing the online contributions is

by looking at the number of newly created polygons that each

user makes. To analyze the number of new polygons that users

created, we stored the actions of an online user at a particular

IP address. In Fig. 4(a), we plot the total number of objects

created by each IP address, sorted in descending order (plotted

on log-log axes). We removed from consideration polygons

that were deleted during the labeling session, which often

corresponded to mistakes or from testing of the annotation

tool. There were in total 11382 unique IP addresses that

interacted with the labeling tool. During this time, 86828

new objects were added to the database. Notice that over 200

different IP addresses provided over 100 object labels. This

suggests that a diverse set of users are making significant

contributions through the annotation tool.

Another interesting question is the amount of effort online

labelers spend annotating objects. To answer this, we analyze

the length of time it takes a user to label an object. We count

4

Object Average labeling time Total labeling time (hours)
window 9.52 11.08
door 9.98 2.23
sign 10.35 2.16
lamp 11.47 6.93
bottle 14.42 2.02
head 14.79 8.40
plant 16.12 2.22
arm 17.04 14.92
car 17.99 5.49
wall 18.54 19.65
grass 18.54 2.99
floor 19.27 7.95
ceiling 20.57 6.43
table 20.88 3.14
sidewalk 21.09 4.26
shelves 22.57 2.41
leg 22.77 24.04
building 23.16 14.83
person 23.40 2.94
road 23.44 4.17
torso 23.80 14.14
chair 24.16 4.18
tree 25.94 11.85
sky 29.37 10.76
plate 34.42 3.69
fork 34.60 2.75
wineglass 41.52 2.00

TABLE I
AVERAGE TIME TO LABEL A GIVEN OBJECT CLASS, ALONG WITH THE

TOTAL NUMBER OF HOURS SPENT LABELING THE CLASS. NOTICE THAT

CERTAIN OBJECT CLASSES ARE EASIER TO LABEL (E.G. WINDOWS),
WHICH REQUIRE FEWER CONTROL POINTS. OTHERS ARE HARDER (E.G.

ROAD, SKY), WHICH ARE REGIONS AND REQUIRE MORE CONTROL POINTS.

the time starting from when the user clicks the first control

point until the user closes the polygon and finishes entering the

object name. Fig. 4(b) shows the distribution of the amount of

time (in seconds) to create an object. Notice that most objects

are labeled in under 30 seconds, with a mode of 10 seconds.

Considering only annotations taking less than 100 seconds

to produce, the database contains 458.4 hours (19.1 days) of

annotation time across all users during this time period. We

wish to note that this analysis does not include the amount of

time spent looking at the image or editing other annotations.

We further look at the difficulty of labeling particular object

classes. In Table I, we show the average time (in seconds) to

label an object for a particular class, along with the total man

hours devoted to labeling that object. We exclude annotation

times exceeding 100 seconds from our analysis. Windows,

which often require only four control points, are easiest to

label. Region-based objects, such as sky and ground, are more

difficult.

C. Video annotation

The introduction of annotated image databases like LabelMe

has contributed to the advancement of various areas in com-

puter vision, such as object, scene, and category recognition. In

the video domain, there have been efforts to collect datasets

for benchmark and training purposes. Most of the currently

available video datasets fall into one of two categories: (i)

moderately annotated small datasets containing a rich, yet

small set of actions [33], [32], [36], [57], and (ii) very

specialized or minimally annotated, large databases mostly

Fig. 5. A snapshot of our video annotation tool exemplifying a fully labeled
example and some select key frames. Static objects are annotated in the same
way as in LabelMe and moving objects require some minimal user intervention
(manually edited frames are denoted by the red squares in the video track).

containing many hours of television or surveillance data [63],

[2], [3], [17], [59].

Inspired by the concept of an online annotation tool, we

created an openly accessible annotation tool for video, which

creates a medium for researchers and volunteers to easily up-

load and/or annotate moving objects and events, with potential

applications in research areas like motion estimation, object,

event, and action recognition, amongst others. We have begun

by contributing an initial database of over 1500 videos and

annotated over 1903 objects, spanning over 238 object and

70 action classes. Fig. 5 shows a screenshot of our labeling

tool and a sample annotation for a video. With an evolved

dataset, we expect to help develop new algorithms for video

understanding similar to the contribution of LabelMe in the

static image domain.

III. FROM ANNOTATIONS TO 3D

In the previous section we described the annotation tool and

analyzed the content of the database. In the online annotation

tool we ask users to only provide outlines and names for the

objects present in each picture. However, there are many other

different types of information that could be requested. In this

section we will show that object outlines and names from a

large number of images are sufficient to infer many other types

of information, such as object-part hierarchies or reasoning

about occlusions, despite not being explicitly provided by the

user. Furthermore, we will discuss how to recover a full 3D

description of the scene, as shown in Fig. 6. Our system can

5

1m

10m

100m

1km

Fig. 6. We can recover 3D information from the user annotations. We show outputs for two input images. Top-left: Input image. Top-right: User annotations
provided for the image. Middle-left: Recovered polygon and edge types. Polygons are either ground (green), standing (red), or attached (yellow). Edges are
contact (white), occluded black, or attached (gray). Middle-right: Recovered depth map in real-world coordinates (a color key, in log scale, appears on the
right). Bottom: A visualization of the scene from a different viewpoint.

reconstruct the 3D structure of the scene, as well as estimate

the real-world distances between the different depicted objects.

As an added benefit, the quality of the reconstruction tends to

improve as the user improves the annotation of the image.

Previous work has explored ways of associating 3D infor-

mation to images. For example, there are existing databases

captured with range scanners or stereo cameras [55], [54].

However, these databases tend to be small and constrained to

specific locations due to the lack of widespread use of such

apparatuses. Recent efforts have attempted to overcome this

by manually collecting data from around the globe [1].

Instead of manually gathering data with specialized equip-

ment, other approaches have looked at harnessing the vast

amount of images available on the internet. For example,

recent work has looked at learning directly the dependency of

image brightness on depth from photographs registered with

range data [55] or the orientation of major scene components,

such as walls or ground surfaces, from a variety of image

features [24], [25], [26]. Since only low and mid level visual

cues are used, these techniques tend to have limited accuracy

across a large number of scenes. Other work has looked at

using large collections of images from the same location to

produce 3D reconstructions [64]. While this line of research is

promising, at present, producing 3D reconstructions is limited

to a small number of sites in the world. Finally, there are other

recent relevant methods to recover geometric information for

images [23], [61], [11], [48], [70], [35], [21], [41], [86].

An alternative approach is to ask humans to explicitly label

3D information [28], [10], [42]. However, this information can

be difficult and unintuitive to provide. Instead, we develop a

method that does not require from the user any knowledge

about geometry, as all of the 3D information is automatically

inferred from the annotations. For instance, the method will

know that a road is a horizontal surface and that a car is

supported by the road. All of this information is learned by

analyzing all the other labels already present in the database.

At first glance, it may seem impossible to recover the ab-

solute 3D coordinates of an imaged scene simply from object

labels alone. However, the object tags and polygons provided

by online labelers contain much implicit information about

the 3D layout of the scene. For example, information about

which objects tend to be attached to each other or support one

another can be extracted by analyzing the overlap between

object boundaries across the entire database of annotations.

These object relationships are important for recovering 3D

information and, more generally, may be useful for a generic

scene understanding system.

Our reconstructions are approximations to the real 3D struc-

ture as we make a number of strong simplifying assumptions

about the object geometries. Here we summarize all the

information that is needed by our system in order to provide a

3D reconstruction of the scene. Our reconstructions are based

on the following components, which are inspired from early

work in line-drawing analysis [5], [9], [6], [29], [69].

• Object types. We simplify the 3D recovery problem by

considering three simple geometric models for the objects

that compose each scene:

– Ground objects: we assume that ground objects are

horizontal surfaces (e.g. road, sidewalk, grass, sea).

– Standing objects: we assume that standing objects

are modeled as a set of piecewise-connected planes

6

13.97 met13.97 met13.97 me t13.97 me t13.97 me t13.97 met13.97 me t13.97 me t13.97 meters

1.46 meters1.46 meters1.46 meters1.46 meters1.46 meters1.46 meters1.46 meters1.46 meters1.46 meters

2.36 meters2.36 meters2.36 meters2.36 meters2.36 meters2.36 meters2.36 meters2.36 meters2.36 meters

Fig. 7. Snapshot of the 3D measuring tool. Once we compute the 3D
coordinates for a depicted scene, we can make measurements of scene
components. Here, we show the height and width of the car, which is 13.68
meters away from the camera center. We can also compute the distance
between any two points in the scene, such as the selected points on the building
and the truck.

oriented orthogonally to the ground plane (e.g. per-

son, car, boat, table).

– Attached objects: we assume that attached objects are

part-of other objects (e.g. hand, window, road mark-

ing), with their 3D position completely determined

by their parent object.

• Relations between objects: in addition to the object

types described above, we also consider two types of

relationships between pairs of objects:

– Supported-by relationship: we assume that standing

objects in the scene are supported by a ground

object, with the relationship extracted at the category

level. For instance, we expect that sidewalks support

people, fire hydrants, and parking meters.

– Part-of relationship: attached objects are part-of other

objects, with the relationship extracted at the cate-

gory level. For instance, heads are attached to people,

windows are attached to buildings, and manhole

covers are attached to roads.

In our model, we assume that a scene consists of a number

of objects that stand on the ground. This assumption holds

true for many different imaged scenes (e.g. streets, natural

landscapes, lakes, indoors). In addition, we assume that the

horizon line is parallel to the horizontal axis of the camera

(this is true for most normal pictures).

There are two steps for obtaining the 3D information: (i) the

learning stage, where the system learns from all the annotated

objects in the database the relationships that hold between

all the object classes (part-of and supported-by) and (ii) the

reconstruction stage, where, given an annotated image and all

the learned relationships, the system builds a 3D model for

the input image.

We start by describing the learning stage to recover the part-

of and supported-by relationships that hold between object

classes. To decide when an object category is part-of another,

we evaluate the frequency of overlap between polygons of

the two categories. For instance, as windows are part of

a) input image b) building and road

c) building, road, cars d) wrong labeling

Fig. 8. As we the user adds more annotations, the quality of the reconstruction
improves. a) input image, b) 3D model after the user annotated the road and
the building, c) model obtained after adding the car to the list of annotated
objects. d) Reconstructed model when the labels are incorrectly introduced so
that the building is labeled as a road and vice versa.

buildings, whenever windows and buildings co-occur in a

scene, it is quite likely that the polygon defining a window will

completely overlap with the polygon defining the building. On

the other hand, street lamps are not part of buildings, so one

would expect that the polygons do not systematically overlap.

In a similar manner, we can reason about the supported-by

relationships. Objects that are supported by another tend to

have the bottom part of its polygon live inside the supporting

object. For instance, we can make a list of all the object

categories that overlap with the bottom part of the polygon

defined by all the street lamps in the database. If the object is

a supported object, we will see that this list is relatively short.

Once the learning is done and we have collected all the

co-occurrence statistics between object category pairs, we can

use the discovered relationships to recover 3D models of new

images. Given an annotated image, we will use the polygons

and object names, along with the discovered relationships, to

decide the object types (standing, ground, attached) for all of

the annotations in the image. For this, we extract the cues for

the supported-by and part-of relationships (polygon overlap

and distance to ground objects) and use the recovered co-

occurrence statistics to infer the object types. We show the

inferred polygon types in Fig. 6, where standing objects are

colored red, ground objects are green, and attached objects are

yellow. Notice that the recovered object types agree well with

the objects present in the scene.

In addition to knowing the support relationship between

different object categories, it is also important to know which

part of the object makes contact with the ground. For example,

the contact points with the ground plane for standing objects

will provide information about the relative distance of the

object to the camera. For this, we label edges into three types:

contact, attached, occlusion. We assume that attached and

ground objects have all of their edges labeled as attached.

7

Standing objects can have contact or occlusion edges. Cues

that are important for finding contact edges are edge length,

orientation, and distance to a support object. Fig. 6 show

the edges labeled into the different types, with white lines

corresponding to contact edges, black lines corresponding to

occlusion edges, and gray lines corresponding to attached

edges. By recovering the polygon and edge types, we can

already pop-up the scene by placing standing objects on the

ground objects and letting attached objects remain on the

objects they are attached to, as illustrated in Fig. 6.

We wish to also extract absolute 3D coordinates. Important

for this is to (i) produce 3D coordinates such that objects

keep consistent heights across the database and (ii) enforce

constraints on the image imposed by the camera through

perspective projection. More specifically, as in [30], we learn

the distribution of object heights across the database and

the camera parameters corresponding to each image in the

database. This is achieved in an iterative fashion by first

estimating the camera parameters given the current guesses of

the heights of the objects in the image. Then, the object heights

are updated using the estimated camera parameters. The entire

process is seeded by providing the mean and variance of the

height of people. For the camera, we assume that it is held

level with the ground, with the parameters being the horizon

line (the image location of where the ground plane vanishes

to infinity), camera height from the ground, and focal length.

Once we recover the camera parameters for an image, it is

straightforward to obtain the 3D information of the scene.

Please see [30], [50] for more details.

We show output depth maps of our system in Fig. 6. The

distance (in meters) is given by the color key, which is plotted

in log scale. In addition, we can interact with the scene by

taking measurements of the scene components. In Fig. 7, we

show the height and width of a depicted car. We also show

the distance between two points in the scene. Notice that the

measured points appear to be consistent with the perceived

distances.

We measured the accuracy of our system output depth maps

on a dataset that simultaneously utilized both camera and laser

range scanner apparatuses [55]. The dataset was gathered on

the Stanford University campus and primarily depicts outdoor

scenes. We provided dense object labels for 62 images in

the dataset, with each image having 256x192 pixel resolution.

The system output was then compared with the output of the

laser range scanner using mean per-pixel relative error (i.e.

absolute difference between the two depth maps normalized

by the output of the laser range scanner). Due to noise in the

range data, we only considered ground truth and system output

depths in the 5-70 meter range. To overcome bias in the data,

we performed cross-validation, with training sets consisting

of 20 images and validation sets consisting of 42 images,

and found linear regressors that minimized the mean per-pixel

relative error over the training sets.

Our system has relative error of 0.29±0.02, with 40%±2%

of the pixels used in the evaluation. As a baseline, we

compared against the harmonic mean of the depth maps corre-

sponding to the training images. The baseline has relative error

of 0.33±0.04. Overall, we obtained less noisy outputs than the

a)

b)

Fig. 9. Automatically generated instructions for a ”do-it-yourself pop-up
book” that can be constructed with paper, glue, and scissors.

laser range scanner and were able to produce visually plausible

output depths beyond the 5-70 meter range. Furthermore,

we were able to overcome errors resulting from the range

scanner that were caused by object reflection (e.g. mirrors,

shiny surfaces) and transparency (windows, tree leaves).

Because our system uses only user annotations, the quality

of the output is heavily dependant on the quality of the labels.

For example, consider Fig. 8, which shows outputs for dif-

ferent labelings of the same scene. If few objects are labeled,

the output is less reliable since there are few constraints for

8

building, road, sky, tree (351)

building, road, sidewalk, tree (111)

building, grass, sky, tree (49)

mountain, sand, sea, sky (35)

chair, floor, table, wall (34)ground, path, sky, tree (30)

bed, floor, wall, window (29)

ceiling, door, floor, wall (19)building, river, sky, tree (16)

unigram

bigram

4-gram

8-gram

1 10 100 1000
1

10

100

1000

Frequency rank

C
o

u
n

ts

a) b)

Fig. 10. a) Distribution of n-grams in LabelMe. Each n-gram corresponds to the list of n largest objects on each scene. b) Examples of scenes and 4-grams.

estimating the camera parameters. As more objects are labeled,

the estimates improve. If a user enters incorrect object tags,

then this may result in poor outputs. Moreover, the estimated

3D coordinates can be greatly affected by the placement of

the control points. This can have a noticeable effect on distant

objects since they occupy fewer pixels in the image and the

change in depth increases as one moves closer to the horizon

line in the image.

Another output of our system is a set of instructions for

building a ”do-it-yourself pop-up book”, shown in Fig. 9. This

is automatically generated and allows the user to cut and glue

the picture (with all the objects’ perspective corrected) in order

to build a physical model of their picture.

IV. THE SPACE OF LABELME IMAGES

A number of recent papers have used large datasets of

images in conjunction with non-parametric methods for com-

puter vision [75], [38], [37], [39], [11] and graphics applica-

tions [64], [22], [61]. The main observation is that when large

amounts of images are available, image indexing techniques

can be used to retrieve images with similar object arrange-

ments as the query image. This observation suggests a non-

parametric approach for scene understanding. With a large

enough database, we can find some images in the database

that are close to a query image, such as similar scenes with

similar objects arranged in similar spatial configurations. If the

images in the retrieval set are partially labeled, then we can

transfer the knowledge of the labeling to the query image.

In section II we studied the number of different object cate-

gories available in the LabelMe dataset and the distribution of

annotated examples for each category. Here, we are interested

in how many different scenes there are. In this section, we

study the space of different scenes in the database. Through

our studies, an important question arises: does the dataset span

a large number of different scene configurations?

A. Distribution of scenes

Here, we require a definition of what a scene is and when

two scenes are considered similar. Without any constraints,

there are as many scenes as pictures we can take. In cog-

nitive psychology, studies on scene perception suggests that

a representation of the scene might be composed of the

scene category and 4 or 5 objects. In [72], it was shown

that observers can recognize images at low resolution. In the

extreme case where images have just 32x32 pixels, observers

are able to recognize the scene category, together with 4-5

objects, with an accuracy of 80%. Therefore, we will define

two images as being the same scene if the 4 largest objects

depicted in an image belong to the same object categories

(we will provide a more precise definition of image similarity

later). Our goal now is to study how many configurations of 4

objects are present in the LabelMe database. This is similar to

studies in language that build probabilistic models of groups

of n words.

Fig. 10 shows the distribution of n-grams obtained as the

n words that describe the n largest objects in each image.

These statistics are derived from the analysis of 12201 scenes

containing a total of 180391 annotated objects. For each

image, we sort all the objects according to the percentage of

the image covered by each polygon. We only consider the n

largest objects. The figure shows the distribution of scenes (n-

grams) for n = 1, 2, 4, 8. For all the tested values of n, the

distribution appears to follow a power law [60]. As n increases,

the number of different scene configurations increases and only

a small percentage of scenes seem to co-occur often. In the

case of n = 4, Fig. 10.b shows some of the most frequent 4-

grams, along with an example image for each 4-gram. There

are more than 100 4-grams that appear 10 times or more in

the database. Therefore, one can expect that, as the database

increases in size, the most common scenes will have many

instances. The heavy tail of the distribution also points to the

fact that, independent of how large the database is, there will

always be a large number of scene configurations for which

we will have only a handful of training examples.

B. The space of images

In the previous section we discretized the space of scenes

by defining a scene as being a collection of 4 large objects

and ignoring their spatial organization. However, the space

9

Indoor

Highway

Forest
Street

Plants

Portraits

Landscape

Mountain

Fig. 11. The images are arranged according to semantic similarity between images (nearby images will contain similar objects in similar spatial configurations).
Each thumbnail shows the object segments of each image color coded. Although there are some easily identifiable clusters in the space, most of the images
are organized across a continuous space in which transitions across images are smooth.

of images is a continuous surface. Here, we will use a

representation that will incorporate spatial information, along

with all the objects present in the scene, in order to get

a continuous organization of scenes. What we need first is

to define the semantic distance between two images using

the annotations. Ideally, two images are semantically similar

if their segmentations and object labels are interchangeable

across the two images.

Our definition of semantic distance between two images

is based on the histogram of object labels in the two images

[74]. For this, we use spatial pyramid matching [34], [19] over

object labels. This results in a simple similarity measure that

takes into account the objects present in the image, in addition

to their spatial organization. Two images that have the same

object labels in similar spatial locations are rated as closer

than two images with the same objects but in different spatial

locations. Furthermore, this is rated closer than two images

with different object classes.

Fig. 11 shows a visualization of 12201 images that are

fully annotated from the LabelMe dataset. The images are

organized according to semantic similarity: two nearby images

are likely to contain the same object categories in similar

spatial configurations. Each tile shows the segmentation of an

image. Each object class has a unique color1.

There are a number of methods that can be used to obtain

a 2D visualization of the space of images from the matrix of

semantic similarities defined above. For the visualization of

Fig. 11 we used kernelized sorting [44]. The advantage of this

technique is that it allows specifying the form of the output

space (in this case a rectangular grid). Kernelized sorting will

try to find the best correspondence between the images and

the locations in the rectangular grid, while trying to preserve

the same neighborhood structure.

Although there are some easily identifiable clusters in the

space, most of the images are organized across a continuous

space in which transitions across images are smooth. The

clusters that are visible in the figure correspond to regions

of the image space that are not appropriately sampled in

the LabelMe dataset (e.g. a collection of flower photographs,

pictures of specific monuments, or a collection of pictures of

silverware). However, there is a large portion of the space that

has no clearly defined boundaries. For instance, we can start

on a picture of a busy downtown center and continue moving

in the space by reducing the size of the buildings and adding

1An interactive version of the tool is available at:
http://people.csail.mit.edu/torralba/research/LabelMe/labelmeMap/

10

Fig. 12. Examples of input images and their nearest neighbors in the dataset using the GIST descriptor. For each panel: mosaic showing the query image
(red box) and its 8 nearest neighbors. The objects within each image and the LabelMe map showing the location of the 1,000 closest images among the
12,201 images that compose this test set.

more sky until we get a highway scene. Furthermore, we can

reduce the size of the road until the picture becomes a field.

Finally, we can add mountains in the background until the

scene becomes a mountainous landscape. This transformation

can take place by traversing the space of images, as shown in

the bottom of Fig. 11.

C. Recognition by scene alignment

As illustrated in Fig. 11, some regions of the scene space

seem to be covered by a large number of examples. The goal

now is, given a new image, to extract a set of image features

to locate the region of the space that is the closest, at the

semantic level, to the input image [22], [74], [73].

In the examples used here, we use the GIST descriptor [43]

to estimate the similarity between two images. To compute the

GIST descriptor, the image is first decomposed by a bank of

multiscale-oriented filters (tuned to six orientations and four

scales). Then, the output magnitude of each filter is averaged

over 16 nonoverlapping windows arranged on a 4 × 4 spatial

grid. The resulting image representation is a 512 dimensional

feature vector. The distance between two images is computed

as the euclidian distance between GIST descriptors.

Fig. 12 shows examples of 8 input images and their nearest

neighbors in the dataset using the GIST descriptor. For each

panel, we show the query image (red box), the 8 nearest

neighbors, the annotations of the neighbors and the location

of the 1,000 closest images among the 12,201 images that

compose this test set, as shown in Fig. 11. When searching

for pictures of specific places, such as a picture of Notre

Dame, if the database contains many exemplars of that place,

it is possible to get very tight matches. However, in general,

we will work at the category level. We want to find images

corresponding to visually similar places (i.e. containing similar

objects roughly with the same spatial configuration) but that

do not necessarily correspond to the same world location or

even the same city. As shown in Fig. 12, for several of the

input images, the images in the database that have close visual

similarity (as captured by the GIST descriptor) also fall within

a localized region of the map organized by semantic distance

(Fig. 11).

This property provides the basis for several approaches for

recognition that use the retrieved images to make proposals

about possible object categories that can be present in the

input image [22], [74], [73], [38], [37]. To illustrate the power

of large scale databases, we evaluate the following simple

algorithm: given an image and an annotated database, search

for the image in the database that is closest to the input image

(using GIST to measure image similarity). Then, output the

annotation of the nearest neighbor as a labeling of the input

image. As a performance metric, we use the percentage of

pixels that are correctly labeled. To test the algorithm, we will

use as input the set of 12,201 images used in Fig. 12. For

this algorithm, we can also provide an upper bound for the

recognition rate. Since the input image is also annotated, we

can search for the image in the database that has the largest

number of pixels with the same label as the input. As our goal

is to predict the labels of all the pixels of the input image using

a single nearest neighbor, this measure will give us an upper

bound to the performance. Notice how the bound increases

proportionally to the size of the database.

11

0

50

100

10
1

0

10

20

30

40

50

60

70

80

90

100

Upper bound

GIST matching

10
2

10
3

10
4

10
6

10
5

10
7

P
re

d
ic

te
d
 p

ix
e
l
la

b
e
ls

Database sizea)

b)

c)

12 122 1220 12201

G
IS

T
U

p
p
e
r

b
o
u
n
d

Fig. 13. a) Recognition performance as a function of dataset size. b) Distribution of the recognition performance in the different regions of the image space
defined in Fig. 11.

In fig. 13 we demonstrate how the performance of nearest

neighbors improves as we enlarge the dataset. We also show

how errors are distributed in the map of Fig. 11.

In order to test the dependency of the database size, we

randomly sampled our database of 12,201 images to create 4

image databases of different sizes: 12, 122, 1220, and 12201.

For testing, we exclude the query image from the database to

avoid overfitting. Despite the simplicity of the nearest neighbor

algorithm, we observe performance increases proportional to

the database size, as shown in Fig 13.a.

The perfomance of this algorithm depends on the sampling

density of the space images. Therefore, one can expect that

the perfomance will vary depending on the regions of the

space. In this study we can use the organization of scenes

from Fig. 11 to visualize the distribution of errors. Fig 13.b

shows how the performance is distributed in the map of scenes

as we change the size of the database. As we can see, the

performance appears to smoothly vary across different regions

of the image space. This suggests that different regions of the

space are harder to recognize and require higher density of

image samples. Moreover, the distribution of performance is

very similar between the algorithm using GIST descriptors and

the upper bound for each image.

The region with highest performance corresponds to a

region of the space that contains many pictures of specific

monuments under similar viewpoints. In such a case, it is

possible to find very close matches, with the annotations

between the input and retrieved images being almost identical.

The worst perfomances are found in the indoor scenes region.

Indoor scenes remain challenging for many algorithms, with

performance being low in general [45].

Fig. 13.a also gives a hint to an important question: How

many more images do we need to label? The figure shows the

upper bound of the extrapolated performance as we increase

the database size (here we assume that, by increasing the

database size we do not introduce new kinds of scenes). As

shown in the graph, performance reaches 90% for a database of

8×106 images. If we had 8×106 images, then, on average, for

an image we can find another image that has 90% of the pixels

labeled with the same object category. Although increasing

LabelMe will require a significative labeling effort, this target

database size is feasible.

V. CONCLUSION

In this work, we developed a web-based annotation tool

that allows the labeling of objects and their location in images.

Through the tool, we have collected a large annotated database

of images spanning many different scenes and object classes.

We have observed constant growth of the database over

time and, recently, significant contributions from a variety of

online users. The database is intended as a resource for the

computer vision and computer graphics communities, with the

images and annotations immediately available for download.

In addition, search tools have been developed to interact with

the database online.

In creating this database, we also intended that its use

go well beyond simply as a benchmark for computer vision

algorithms. In this work, we presented recent results on

directions that move toward this goal. Namely, we investigated

the nature of the space of the images in the database and

looked at how to recover additional information not directly

provided by the online users. We demonstrated how to recover

the 3D description of an image depicting a variety of scenes.

Moreover, we showed that the output quality is similar to the

output produced by a laser range scanner. We also analyzed the

space of the images and observed properties of the distribution

of the objects (e.g. Zipf’s and power laws for the distribution

of object labels present and scene n-grams, respectively).

In addition, there has been other recent work in computer

vision and computer graphics that have utilized the database

in creative ways. A recent trend has been to find, given a

query image, other images with objects in a similar spatial

configuration and to transfer the information associated with

the retrieved images onto the query image. This has been used

for texture in-painting [22], intelligent insertion of objects into

a scene [30] or object recognition in scenes [52], [73], [37].

We believe that further creative uses of this database, along

with the extension into video, offer promising directions for

computer vision and computer graphics.

ACKNOWLEDGMENT

Funding for this research was provided by National Science

Foundation Career award (IIS 0747120).

12

REFERENCES

[1] http://www.maps.google.com.
[2] PETS 2001 Benchmark Data. Online, 2001.
[3] PETS 2006 Benchmark Data. Online, 2006.
[4] Y. Abramson and Y. Freund. Semi-automatic visual learning (seville): a

tutorial on active learning for visual object recognition. In Intl. Conf. on
Computer Vision and Pattern Recognition (CVPR05), San Diego, 2005.

[5] D. Ballard and C. Brown. Computer Vision. Prentice-Hall, Englewood
Cliffs, NJ, 1982.

[6] H. Barrow and J. Tenenbaum. Recovering intrinsic scene characteristics
from images. In Computer Vision Systems, pages 3–26. Academic Press,
N.Y., 1978.

[7] E. Bart and S. Ullman. Cross-generalization: learning novel classes from
a single example by feature replacement. In CVPR, 2005.

[8] CBCL. Streetscenes. Technical report.
[9] M. Clowes. On seeing things. Artificial Intelligence Journal, 2(1):79–

116, 1971.
[10] A. Criminisi, I. Reid, and A. Zisserman. Single view metrology. Intl.

J. Computer Vision, 40(2):123–148, 2000.
[11] S. K. Divvala, A. A. Efros, and M. Hebert. Can similar scenes help

surface layout estimation? In IEEE Workshop on Internet Vision,

associated with CVPR, 2008.
[12] M. Everingham, A. Zisserman, C. Williams, L. V. Gool, M. Allan,

C. Bishop, O. Chapelle, N. Dalal, T. Deselaers, G. Dorko, S. Duffner,
J. Eichhorn, J. Farquhar, M. Fritz, C. Garcia, T. Griffiths, F. Jurie,
D. Keysers, M. Koskela, J. Laaksonen, D. Larlus, B. Leibe, H. Meng,
H. Ney, B. Schiele, C. Schmid, E. Seemann, J. Shawe-Taylor, A. Storkey,
S. Szedmak, B. Triggs, I. Ulusoy, V. Viitaniemi, and J. Zhang. The 2005
pascal visual object classes challenge. In First PASCAL Challenges

Workshop. Springer-Verlag, 2005.
[13] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by

their attributes. In CVPR, 2009.
[14] L. Fei-Fei, R. Fergus, and P. Perona. A bayesian approach to unsu-

pervised one-shot learning of object categories. In IEEE Intl. Conf. on

Computer Vision, 2003.
[15] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models

from few training examples: an incremental bayesian approach tested on
101 object categories. In IEEE. CVPR 2004, Workshop on Generative-

Model Based Vision, 2004.
[16] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by

unsupervised scale-invariant learning. In CVPR, 2003.
[17] R. Fisher. CAVIAR Test Case Scenarios. Online Book, October 2004.
[18] K. Grauman and T. Darrell. Unsupervised learning of categories from

sets of partially matching image features. In CVPR, 2006.
[19] K. Grauman and T. Darrell. Pyramid match hashing: Sub-linear time

indexing over partial correspondences. In CVPR, 2007.
[20] G. Griffin, A. Holub, and P. Perona. The Caltech-256. Technical report,

California Institute of Technology, 2006.
[21] A. Gupta and L. S. Davis. Beyond nouns: Exploiting prepositions and

comparative adjectives for learning visual classifiers. In ECCV, 2008.
[22] J. Hays and A. A. Efros. Scene completion using millions of pho-

tographs. ACM Transactions on Graphics, 26, 2007.
[23] J. Hays and A. A. Efros. IM2GPS: estimating geographic information

from a single image. In CVPR, 2008.
[24] D. Hoiem, A. Efros, and M. Hebert. Automatic photo pop-up. In

SIGGRAPH, 2005.
[25] D. Hoiem, A. Efros, and M. Hebert. Geometric context from a single

image. In IEEE Intl. Conf. on Computer Vision, 2005.
[26] D. Hoiem, A. Stein, A. Efros, and M. Hebert. Recovering occlusion

boundaries from a single image. In IEEE Intl. Conf. on Computer Vision,
2007.

[27] B. Horn. The image dissector eyes. Technical report, Massachusetts In-
stitute of Technology, 1971. Project MAC, Vision Flash 16, Cambridge.

[28] Y. Horry, K.-I. Anjyo, and K. Arai. Tour into the picture: using a spidery
mesh interface to make animation from a single image. SIGGRAPH,
pages 225–232, 1997.

[29] D. Huffman. Realizable configurations of lines in pictures of polyhedra.
Machine Intelligence, 8:493–509, 1977.

[30] J. F. Lalonde, D. Hoiem, A. Efros, J. Winn, C. Rother, and A. Criminisi.
Photo clip art. In SIGGRAPH, 2007.

[31] C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen
object classes by between-class attribute transfer. In CVPR, 2009.

[32] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic
human actions from movies. In CVPR, 2008.

[33] I. Laptev and P. Perez. Retrieving actions in movies. In IEEE Intl. Conf.
on Computer Vision, 2007.

[34] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In cvpr,
pages 2169–2178, 2006.

[35] B. Leibe, N. Cornelis, K. Cornelis, and L. V. Gool. Dynamic 3d scene
analysis from a moving vehicle. In CVPR, 2007.

[36] C. Liu, W. Freeman, E. Adelson, and Y. Weiss. Human-assisted motion
annotation. In CVPR, pages 1–8, 2008.

[37] C. Liu, J. Yuen, and A. Torralba. Dense scene alignment using sift flow
for object recognition. In CVPR, 2009.

[38] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman. Sift flow:
dense correspondence across different scenes. In ECCV, 2008.

[39] T. Malisiewicz and A. A. Efros. Recognition by association via learning
per-exemplar distances. In CVPR, 2008.

[40] D. Marr. Early processing of visual information. In Philosophical

Transactions of the Royal Society of London, pages 483–519, 1976.
[41] V. Nedovic, A. Smeulders, A. Redert, and J.-M. Geusebroek. Depth

information by stage classification. In IEEE Intl. Conf. on Computer

Vision, 2007.
[42] B. M. Oh, M. Chen, J. Dorsey, and F. Durand. Image-based modeling

and photo editing. SIGGRAPH 01, 2001.
[43] A. Oliva and A. Torralba. Modeling the shape of the scene: a

holistic representation of the spatial envelope. Intl. J. Computer Vision,
42(3):145–175, 2001.

[44] N. Quadrianto, L. Song, and A. J. Smola. Kernelized sorting. In NIPS,
2008.

[45] A. Quattoni and A.Torralba. Recognizing indoor scenes. In CVPR, 2009.
[46] A. Quattoni, M. Collins, and T. Darrell. Transfer learning for image

classification with sparse prototype representations. pages 1–8, 2008.
[47] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learn-

ing: transfer learning from unlabeled data. In ICML ’07: Proceedings of
the 24th international conference on Machine learning, pages 759–766,
New York, NY, USA, 2007. ACM.

[48] X. Ren, C. C. Fowlkes, and J. Malik. Figure/ground assignment in
natural images. In ECCV, 2006.

[49] H. A. Rowley, S. Baluja, and T. Kanade. Human face detection in visual
scenes. In Advances in Neural Info. Proc. Systems, volume 8, 1995.

[50] B. Russell and A. Torralba. Building a database of 3d scenes from user
annotations. In CVPR, 2009.

[51] B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman.
Using multiple segmentations to discover objects and their extent in
image collections. In CVPR, 2006.

[52] B. C. Russell, A. Torralba, C. Liu, R. Fergus, and W. T. Freeman.
Object recognition by scene alignment. In Advances in Neural Info.

Proc. Systems, 2007.
[53] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. LabelMe:

a database and web-based tool for image annotation. Intl. J. Computer

Vision, 77(1-3):157–173, 2008.
[54] A. Saxena, M. Sun, and A. Ng. Learning 3-d scene structure from

a single still image. In ICCV workshop on 3D Representation for

Recognition, 2007.
[55] A. Saxenaa, S. H. Chung, and A. Y. Ng. Learning depth from

single monocular images. In Advances in Neural Info. Proc. Systems,
volume 18, 2005.

[56] H. Schneiderman and T. Kanade. A statistical model for 3D object
detection applied to faces and cars. In CVPR, 2000.

[57] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A
local SVM approach. In ICPR, 2004.

[58] F. P. S. Service. http://www.flickr.com.
[59] L. Sigal and M. Black. Humaneva: Synchronized video and motion

capture dataset for evaluation of articulated human motion. 2006.
[60] H. Simon. On a class of skew distribution functions. Biometrika,

42:425–440, 1955.
[61] J. Sivic, B. Kaneva, A. Torralba, S. Avidan, and W. T. Freeman.

Creating and exploring a large photorealistic virtual space. In First
IEEE Workshop on Internet Vision, associated with CVPR, 2008.

[62] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman.
Discovering objects and their location in images. In IEEE Intl. Conf.
on Computer Vision, 2005.

[63] A. F. Smeaton, P. Over, and W. Kraaij. Evaluation campaigns and
trecvid. In MIR ’06: Proceedings of the 8th ACM International Workshop

on Multimedia Information Retrieval, 2006.
[64] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Exploring photo

collections in 3d. ACM Transactions on Graphics, 25(3):137–154, 2006.
[65] A. Sorokin and D. Forsyth. Utility data annotation with amazon

mechanical turk. In First IEEE Workshop on Internet Vision at CVPR

08, 2008.
[66] M. Spain and P. Perona. Measuring and predicting importance of objects

in our visual world. Technical report, California Institute of Technology,
2007.

[67] D. G. Stork. The open mind initiative. IEEE Intelligent Systems and

Their Applications, 14(3):19–20, 1999.
[68] E. Sudderth, A. Torralba, W. T. Freeman, and W. Willsky. Learning

hierarchical models of scenes, objects, and parts. In IEEE Intl. Conf.

13

on Computer Vision, 2005.
[69] K. Sugihara. An algebraic approach to the shape-from-image-problem.

Artificial Intelligence Journal, 23:59–95, 1984.
[70] A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, and L. V. Gool. Depth-

from-recognition: Inferring meta-data by cognitive feedback. In ICCV
Workshop on 3d Representation for Recognition, 2007.

[71] S. Todorovic and N. Ahuja. Extracting subimages of an unknown
category from a set of images. In CVPR, 2006.

[72] A. Torralba. How many pixels make an image? Visual Neuroscience,
26:123–131, 2009.

[73] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: a
large database for non-parametric object and scene recognition. IEEE

PAMI, 30(11):1958–1970, November 2008.
[74] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image

databases for recognition. In CVPR, 2008.
[75] A. Torralba and W. Fergus, R. Freeman. Tiny images, 2007.
[76] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing visual features

for multiclass and multiview object detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 29(5):854–869, 2007.
[77] A. Torralba and P. Sinha. Detecting faces in impoverished images.

Technical Report 028, MIT AI Lab, 2001.
[78] M. Turk and A. Pentland. Eigenfaces for recognition. J. of Cognitive

Neuroscience, 3(1):71–86, 1991.
[79] T. Vetter, M. Jones, and T. Poggio. A bootstrapping algorithm for

learning linear models of object classes. In CVPR, 1997.
[80] S. Vijayanarasimhan and K. Grauman. Multi-level active prediction of

useful image annotations for recognition. In Advances in Neural Info.
Proc. Systems, 2008.

[81] L. von Ahn and L. Dabbish. Labeling images with a computer game.
In Proc. SIGCHI conference on Human factors in computing systems,
2004.

[82] L. von Ahn, R. Liu, and M. Blum. Peekaboom: A game for locating
objects in images. In In ACM CHI, 2006.

[83] M. Weber, M. Welling, and P. Perona. Towards automatic discovery of
object categories. In CVPR, pages 101–109, 2000.

[84] J. Winn and N. Jojic. Locus: Learning object classes with unsupervised
segmentation. In IEEE Intl. Conf. on Computer Vision, 2005.

[85] Z. Yao, X. Yang, and S. Zhu. Introduction to a large scale gen-
eral purpose groundtruth database: methodology, annotation tools, and
benchmarks. In 6th Int’l Conf on EMMCVPR, Ezhou, China, 2007.

[86] L. Zhang, G. Dugas-Phocion, J.-S. Samson, and S. M. Seitz. Single
view modeling of free-form scenes. In CVPR, 2001.

[87] G. K. Zipf. The Psychobiology of Language. Houghton Mifflin, 1935.

