
LabelRankT: Incremental Community Detection in
Dynamic Networks via Label Propagation

Jierui Xie
Rensselaer Polytechnic

Institute
Troy, New York 12180, USA
jierui.xie@gmail.com

Mingming Chen
Rensselaer Polytechnic

Institute
Troy, New York 12180, USA

chenm8@rpi.edu

Boleslaw K. Szymanski
Rensselaer Polytechnic

Institute
Troy, New York 12180, USA

szymab@rpi.edu

ABSTRACT
An increasingly important challenge in network analysis is
efficient detection and tracking of communities in dynamic
networks for which changes arrive as a stream. There is
a need for algorithms that can incrementally update and
monitor communities whose evolution generates huge real-
time data streams, such as the Internet or on-line social
networks. In this paper, we propose LabelRankT, an on-
line distributed algorithm for detection of communities in
large-scale dynamic networks through stabilized label prop-
agation. Results of tests on real-world networks demonstrate
that LabelRankT has much lower computational costs than
other algorithms. It also improves the quality of the detected
communities compared to dynamic detection methods and
matches the quality achieved by static detection approaches.
Unlike most of other algorithms which apply only to binary
networks, LabelRankT works on weighted and directed net-
works, which provides a flexible and promising solution for
real-world applications.

Keywords
social network, community detection, clustering, network
evolution, dynamic network, temporal

1. INTRODUCTION
Communities are the basic structures in sociology in general
and in social networks in particular. They have been inten-
sively researched for more than a half of the century [17]. In
sociology, community usually refers to a social unit whose
members share common values and the identity of the mem-
bers as well as their degree of cohesiveness depend on indi-
viduals’ social and cognitive factors such as beliefs, prefer-
ences, or needs. The ubiquity of the Internet and social me-
dia eliminated spatial limitations on community range, en-
abling on-line communities to link people regardless of their
physical location. The newly arising computational sociol-
ogy relies on computationally intensive methods to analyze
and model social phenomena [3], including communities and
their detection.

Analysis of social networks became one of the basic tools of
sociology [24] and has been used for linking micro and macro
levels of sociological theory. The classical example of the ap-
proach is presented in [10] that elaborated the macro impli-
cations of one aspect of small-scale interaction, the strength
of dyadic ties. Moreover, a lot of commercial applications,
such as digital marketing, behavioral targeting and user pref-
erence mining, rely heavily on community analysis.

With the rapid growth of large-scale on-line social networks,
e.g., Facebook connected a billion users in 2012, there is a
high demand for efficient community detection algorithms
that will be able to handle their evolution growth. Commu-
nities in on-line social networks are discovered by analyzing
the observed and often recorded on-line interactions between
people.

Numerous techniques have been developed for community
detection. However, most of them require a global and often
static view of the network and ignore temporal correlations
between different snapshots over time. Such algorithms are
not scalable enough to cope with dynamically evolving net-
works, especially when new data about them are generated
continuously. Another limitation shared by most of the ex-
isting algorithms is that they are applicable only to networks
with binary adjacency matrix, that is with undirected and
unweighted edges.

Label propagation based community detection algorithms
such as LPA [18, 26], COPRA [11] and SLPA1 [27] have
been shown to perform well in static networks. However,
due to random tie breaking strategy, they produce different
partitions in different runs. Such instability is highly un-
desirable when tracking the evolution of communities in a
dynamic network.

The contributions of this paper are two-fold. First, we gen-
eralized the LabelRank algorithm introduced in [28] to in-
corporate important network features such as edge weights
and directions. Second, built upon LabelRank, we introduce
LabelRankT algorithm that incrementally detects evolving
communities in dynamic networks. The new algorithm pre-
sented here delivers significant improvements over the exist-
ing solutions in both the quality of detected evolving com-
munities and the speed of program execution.

1Source codes: https://sites.google.com/site/
communitydetectionslpa/

Bolek
Typewritten Text
Proc. DyNetMM Workshop at the SIGMOD/PODS Conference, New York City, NY June 22-27, 2013, pp 25-32.

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Bolek
Typewritten Text

Algorithm 1 Generalized LabelRank

1: add self-loop to adjacency matrix W

2: initialize label distribution P using Eq. 3
3: repeat
4: P ′ = W × P

5: P ′ = ΓinP
′

6: P ′ = ΦrP
′

7: P = Θq(P
′, P)

8: until stop criterion satisfied
9: output communities

2. GENERALIZATION OF LABELRANK
To make the paper self-contained, this section first summa-
rizes and generalizes the LabelRank algorithm introduced in
[28] which is the basis for LabelRanlT. Both algorithms are
based on the idea of simulating the propagation of labels in
the network.

LabelRank relies on four operators applied to the labels: (i)
propagation, (ii) inflation, (iii) cutoff, and (iv) conditional
update. The data structure that lies in the core of this algo-
rithm is the sparse matrix of label distribution. Each node
maintains a label distribution locally during the propaga-
tion. At the end of the algorithm, LabelRank ranks labels
in each node. Nodes with the same highest probability label
form a community.

LabelRank, a stabilized LPA, was initially introduced in [28]
for binary networks. Here, we generalize the propagation
operation over edges in order to take both edge direction
and weight into account. Given a network G = (E, V),
where E is the set of edges and V is the set of nodes, this
operator can be expressed in matrix form as:

W × P, (1)

where W is the n× n weight matrix and n is the number of
nodes. For each wij , if there exist a directed edge eji ∈ E

from node j to i, wij takes on a positive value; otherwise it is
0. wij > 0 is the weight placed on the directed edge, which
bears important and application specific information. P is
the n × n label distribution matrix. Label is just a unique
identifier. For simplicity, it usually takes on the same value
as the node ID. P is composed of n 1 × n row vectors Pi,
one for each node i. Each element Pic or Pi(c) holds the
current estimation of probability of node i observing label
c ∈ C taken from a finite set of alphabet C (here |C| = n).

Each node broadcasts the distribution to its neighbors at

each iteration step and computes the new distribution P
′

i

simultaneously using the following equation:

Pic =

∑
j∈Nb(i) wijPjc∑
k∈Nb(i) wik

,∀c ∈ C, (2)

where Nb(i) is a set of neighbors of node i and the numer-
ator sums up weights of all edges incoming node i. That
is, a node sends out its information along outgoing edges
to its neighbors and at the same time receives information

along incoming edges from the neighborhood. Note that, P
′

i

is normalized to make proper probability distribution. One

can show that the new distribution vector P
′

i is the distribu-

tion that minimizes the KL divergence between any possible

P
′

i and Pi [22].

To initialize P , each node is assigned a distribution of prob-
abilities of all incoming edges by assigning to each incoming
edge the initial probability of seeing this neighbor’s label
proportional to the weight of this edge:

Pij =
wij∑

k∈Nb(i) wik

,∀j ∈ C s.t. wij > 0. (3)

We briefly characterize the three remaining operations of
LabelRank as follows.

(1) The inflation operator Γin on P [23] is used to contract
the propagation, where in is the parameter taking on real
values. It operates on the label distribution matrix P (rather
than to a stochastic matrix or adjacency matrix) to decouple
it from the network structure. After applying ΓinP , each Pic

is proportional to P in
ic , i.e., Pic rises to the inth power.

(2) The full label propagation distribution induces a cost for
memory. To alleviate this problem, the cutoff operator Φr on
P is introduced to remove labels that are below threshold
r ∈ [0, 1]. More importantly, Φr is shown empirically to
reduce the space complexity efficiently, from quadratic to
linear. The average number of labels in each node is typically
less than 3.0 for r = 0.1.

(3) The conditional update Θq operator is used to trap the
process in the quality space (e.g., modularity [14]) to avoid
trivial network state where each node holds the same dis-
tribution. The algorithm updates a node only when it is
significantly different from its neighbors in terms of labels.
This allows us to preserve detected communities and detect
termination based on scarcity of changes to the network. At
each iteration, the change is accepted only by nodes that
satisfy the following update condition:

∑

j∈Nb(i)

isSubset(C∗

i , C
∗

j) ≤ qki, (4)

where C∗

i is the set of maximum labels which includes la-
bels with the maximum probability at node i at the previous
time step. Function isSubset(s1, s2) returns 1 if s1 ⊆ s2, and
0 otherwise. ki is the degree of node i, and q is a real num-
ber parameter chosen from the interval [0, 1]. Intuitively,
isSubset can be viewed as a measure of similarity between
two nodes.

These four operators together with a post-processing that
groups nodes whose highest probability labels are the same
into a community form our algorithm (see Alg. 1).

The running time of the generalized LabelRank is the same
as the original algorithm, as it is O(m), linear with the num-
ber of edges m. The space complexity is O(n) in practice
because the number of labels in each node monotonically
decreases and drops to a small constant in a few steps due
to both cutoff and inflation operators. The P matrix is re-
placed by sparse matrix representation of n variable-length
list of pairs (usually short) carried by each node; each pair
contains label and its probability (with labels whose proba-
bility reduced to 0 not listed).

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Figure 1: The example network G(0) with n = 15.
Colors represent communities discovered by Label-

RankT.

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Figure 2: The example network G(1) with n = 15
that change from G(0) by splitting and merging.
Nodes 10 and 14 moved from blue group into the
red group. Three edges were deleted from and three
were added. Colors represent communities discov-
ered by LabelRankT after these events.

1

2

3

4

5

7

8

9

10

11

12

13

14

15

16

Figure 3: The example network G(2) with n = 15 in
which node 6 was removed and node 16 was born.
The green group dissolved and its members merged
into blue and red groups. Colors represent commu-
nities discovered by LabelRankT.

Algorithm 2 LabelRankT

1: input: snapshots G([0, 1, · · · , T])
2: for t=1:T do
3: (a) Tracking the changed nodes in G(t) due to the

changes in edges they attach to since t− 1.
4: (b) Initialize P t. For node i that does not change

since t − 1, we copy its label distributions, i.e., P t
i =

P t−1
i . For changed nodes, we reinitialize their label

distributions as in LabelRank.
5: (c) Iteratively update only changed nodes’ label dis-

tribution and assign them to the corresponding commu-
nities as in LabelRank.

6: end for

Unlike in binary networks, there are various ways of adding a
self-loop to each node to stabilize the results. It is interesting
to see that the algorithm might perform slightly differently
with different ways of defining self-loop. The most common
ways include setting wii = 1, wii = max(wik) or wii =∑

k wik. In the experiments run for this paper, we use wii =
1. Yet, it is still an open question how to optimally select
the selfloop weight for each node.

3. LABELRANKT: AN EXTENSION FOR DY-
NAMIC NETWORKS

The extended algorithm called LabelRankT is based on the
generalized LabelRank introduced in Alg. 1. The description
of LabelRankT is contained in Alg. 2. The main idea is
to adjust our detection as the network structure changes.
We take advantage of what we already obtain in previous
snapshot for inferring the dynamics in the current time step.
Since local structure information is encoded in the node label
distributions, the evolving of communities is expected to be
caught and reflected in these distributions.

LabelRankT can be viewed as a LabelRank with one ex-
tra conditional update rule by which only nodes involved
any change accept the new distribution. Moreover, we only
need to update nodes that are changed between two con-
secutive snapshots, including cases where an existing node
adds or deletes links, or a node is removed from or newly
joins the network. An example that shows different evolu-
tion events in three consecutive snapshots, G(0), G(1) and
G(2) is shown in Figs. 1, 2 and 3. During the evolution,
nodes (edges) are added or removed, and communities split,
merge and dissolve, all of which is captured by LabelRankT.
To discover communities in these snapshots, we ran our al-
gorithm with the same parameters for all three snapshots.

In our algorithm, all these cases are handled by simply com-
paring neighbors of a node i at two consecutive steps, t− 1
and t, i.e., Nbt(i) and Nbt−1(i). If Nbt(i) and Nbt−1(i)
are not equal, then node i is called a changed node2. For
changed nodes, we reinitialize their label distributions (i.e.,
P t) and update until the simulation stops as in LabelRank.
However, since only changed nodes and their neighbors are
involved (some neighbors only propagate labels but not up-
date), LabelRankT is more efficient than LabelRank.

2Since it is often a case in practice, we assume here that all
nodes in all steps are uniquely and consistently named.

0 1 2 3 4 5 6 7 8
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

log(degree)

lo
g
(P

ro
b
)

time=1

time=410

time=732

0 200 400 600 800
3

3.5

4

4.5

5

time
a
v
e
ra

g
e
 d

e
g
re

e

Figure 4: AS-Internet Routers Graph. Degree dis-
tributions at the beginning, middle and the end of
evolution (main plot). Average degree over time
(inset).

0 100 200 300 400 500 600 700 800
0

1

2

3
x 10

4

e
d
g
e
s
 a

d
d
e
d
:
E

+

0 100 200 300 400 500 600 700 800
0

1

2

3
x 10

4

e
d
g
e
s
 d

e
le

te
d
:
E

-

0 100 200 300 400 500 600 700 800
0

2000

4000

6000

time t

n
o
d
e
s
 c

h
a
n
g
e
d
:
N

+
-

Figure 5: The structure changes in AS-Internet
Routers Graph, including the number of edges
added (E+) and deleted (E−), as well as the num-
ber of nodes involved in changes (N+−).

Such conditional update rule makes LabelRankT applicable
to dynamic networks for which changes arrive as a stream.
When a new edge arrives in the incoming stream, Label-
RankT only updates the nodes that are attached to this
edge. Thus, LabelRankT can efficiently update and monitor
communities whose evolution generates huge real-time data
streams, such as the Internet and on-line social networks.

The time complexity for LabelRankT can be derived as fol-
lows. It is easy to see for step (a) that we can track the num-
ber of changed nodes in O(1). For steps (b) and (c), since
at most n can be changed, we need to communicate across
each edge at most twice in each iteration. Since the num-
ber of iterations required is a constant T (usually less than
50 iterations), the overall complexity for detecting evolving
communities between two consecutive snapshots is O(Tm),
implying O(m) in general.

4. ALGORITHM PERFORMANCE EVALU-
ATION

We tested the detection quality of LabelRankT in terms of
modularity and the efficiency in two real-world datasets.

AS-Internet Routers Graph [12]. This is a communica-
tion network of who-talks-to-whom from the Border Gate-
way Protocol logs of routers in the Internet. The dataset
contains 733 daily snapshots for 785 days from November
8 1997 to January 2 2000. The number of nodes in the
largest snapshot is 6,477 (with 13,233 edges). The nodes
and edges are added or removed over time. The structure
at each snapshot could change dramatically as indicated by
fluctuations in the average degree in Fig. 4 and structure
change statistics in Fig. 5.

arXiv HEP-TH. High energy physics theory citation graph
is from the e-print arXiv and covers all the citations within
a dataset of 27,769 papers with 352,285 directed edges, each
indicating that a paper at its tail cites the paper at its head.
The data covers papers from January 1993 to April 2003
[12]. Unlike AS networks, it grows over time (i.e., edges and
nodes are added but not removed).

The dataset is separated into snapshots by week (a total of
359 snapshots). The number of nodes in snapshots ranges
from 12,917 to 27,769, while the number of edges ranges from
47,454 to 352,285. The structures over time are similar with
a monotonic increase in average degree varying from 8 to 26
(see Fig. 6). The statistics of structure change over time are
shown in Fig. 7.

We first compared the performance of LabelRankT with static
algorithms MCL, using for all snapshots parameters that
optimized performance for the first snapshot, and Infomap.
Both run through each snapshot independently. Since a dy-
namic (especially incremental) algorithm like LabelRankT
does not recompute the entire network, static algorithms
might perform better. In fact, on AS Graph, see Fig. 8,
three algorithms actually have close performance. Infomap
slightly outperforms LabelRankT by about 5.03% in modu-
larity on average, LabelRankT and MCL performance differs
just by 0.43%. On arXiv HEP-TH (which is of much larger
size than AS), as seen in Fig. 9, Infomap and LabelRankT
perform within 0.88% of each other. However, LabelRankT
outperforms MCL significantly by 15.37% (Note that the
behavior of MCL is partially caused by its sensitivity to pa-
rameters). On the other hand, LabelRankT has benefit of
efficiency. It runs 4 and 12 times faster than Infomap on
AS Graph and arXiv HEP-TH respectively. And it is faster
than MCL by a factor of 27 to 52 on AS Graph and arXiv
HEP-TH, respectively.

We also compared LabelRankT with two publicly available
dynamic algorithms that employ incremental detection meth-
ods : facetNet 3 [13] and iLCD 4 [7]. On AS Graph, see
Fig. 10, facetNet and LabelRankT achieve performance within

3Since facetNet requires the number of communities as in-
put, we assign it the value produced by LabelRankT.
4After detection, if a node belongs to more than one com-
munity, we assign it to the the one with maximum size to
be able to output only unique and disjoint partitions.

0 1 2 3 4 5 6 7

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

log(degree)

lo
g
(P

ro
b
)

time=1

time=180

time=350

0 100 200 300 400
0

10

20

30

time

a
v
e
ra

g
e
 d

e
g
re

e

Figure 6: arXiv HEP-TH. Degree distributions
at the beginning, middle and the end of evolution
(main). Average degree over time (inset).

0 50 100 150 200 250 300 350 400
0

1

2

3
x 10

4

e
d
g
e
s
 a

d
d
e
d
:
E

+

0 50 100 150 200 250 300 350 400
-1

0

1

e
d
g
e
s
 d

e
le

te
d
:
E

-

0 50 100 150 200 250 300 350 400
0

2000

4000

6000

time t

n
o
d
e
s
 c

h
a
n
g
e
d
:
N

+
-

Figure 7: The structure changes in arXiv HEP-
TH, including the number of edges added (E+)
and deleted (E−), as well as the number of nodes
involved in changes (N+−).

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4x faster than Infomap

27x faster than MCL

snapshot at time t: G(t)

m
o
d
u
la

ri
ty

 a
t
ti
m

e
 t
:
Q

(t
)

LabelRankT

Infomap

MCL

Figure 8: Comparison of modularity over time
Q(t) with static detection algorithms on AS-
Internet Routers Graph.

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

12x faster than Infomap

52x faster than MCL

snapshot at time t: G(t)

m
o
d
u
la

ri
ty

 a
t
ti
m

e
 t
:
Q

(t
)

LabelRankT

Infomap

MCL

Figure 9: Comparison of modularity over time
Q(t) with static detection algorithms on arXiv
HEP-TH.

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

178x faster than facetNet

110x faster than iLCD

snapshot at time t: G(t)

m
o
d
u
la

ri
ty

 a
t
ti
m

e
 t
:
Q

(t
)

LabelRankT

facetNet

iLCD

Figure 10: Comparison of modularity over time
Q(t) with dynamic detection algorithms on AS-
Internet Routers Graph.

0 50 100 150 200 250 300 350

0.1

0.2

0.3

0.4

0.5

0.6

0.7

262x faster than iLCD

snapshot at time t: G(t)

m
o
d
u
la

ri
ty

 a
t
ti
m

e
 t
:
Q

(t
)

LabelRankT

iLCD

Figure 11: Comparison of modularity over time
Q(t) with dynamic detection algorithms on arXiv
HEP-TH. We ran iLCD on only the first 130
snapshots due to the time complexity.

10
-3

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

Community Size

P
ro

b

time=1

time=410

0 200 400 600 800
0

100

200

300

400

time t

N
u
m

b
e
r

o
f
c
o
m

m
u
n
it
ie

s

Figure 12: The community size distribution of
AS-Internet Routers Graph tracked by Label-

RankT (loglog plot). Results at time 1 and 410
(dramatic changes occur) are shown in the main
plot. The inset shows the number of communities
over time.

10
-4

10
-3

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

Community Size

P
ro

b

time=1

time=350

0.0150.0250.0350.0450.055 0.0950.105 0.135
0

1

2

3

4
x 10

-4

Community Size

B
in

n
e
d
 P

ro
b

time=1

time=350

Figure 13: The community size distribution of
arXiv HEP-TH tracked by LabelRankT (loglog
plot). Results at time 1 and 350 (near the end
of evolution) are shown. In the inset, the tails of
the distributions in main plot are binned with a
width 0.01 to show the shift in large size commu-
nities.

just 0.07% of each other, while iLCD fails to find strong com-
munity structure at all. As shown in Fig. 11, on arXiv HEP-
TH, facetNet does not work due to the overflow in memory,
while LabelRankT performs at least twice better than iLCD.
Moreover, LabelRankT is more than 100 times faster than
both facetNet and iLCD on the two datasets used here.

We also analyzed the number of communities and the distri-
bution of community sizes relative to n (i.e., the probability
of seeing a community with certain size), produced by La-
belRankT. As shown in Fig. 12, AS Graph does not evolve
smoothly all the time. The abrupt drop in the number of
communities at time 410 signals a dramatic change in struc-
ture, which is verified by a completely different distribu-
tion of community sizes in comparison with the beginning
one. Although this violates our assumption, LabelRankT
still worked well as evidenced by consistency of its results
with the results of static algorithm Infomap. In contrast,
arXiv HEP-TH exhibits a fairly smooth pattern shown in
Fig. 13. The distributions of community sizes at time 1 and
350 (near the end of evolution) obey power laws with es-
sentially identical exponents. Small size communities grow
faster as more and more papers are published as indicated
by the downward shift in these distributions. Some commu-
nities grow relatively faster than the others and the largest
communities expand as indicated by the shift to the right
(see the inset).

5. EFFECT OF EDGE WEIGHT AND DI-
RECTION

In this section, we demonstrate that incorporating the edge
weight and direction into the network description allows La-
belRankT to identify communities better. The experiments
were conducted on a dataset including weighted and directed
networks.

Reality Mining Bluetooth Scan Data [8]. This dataset
was created from the records of Bluetooth Scans generated
among the 94 subjects in Reality Mining study conducted

from 2004-2005 at the MIT Media Laboratory. In the net-
work, nodes represent the subjects and the directed edges
correspond to the Bluetooth Scan records and the weight
of each edge represent the number of directed Bluetooth
scans between the two subjects. In the comparison de-
scribed below, we only adopted the records from August 02,
2004 (Monday) to May 29, 2005 (Sunday) and we divided
them weekly snapshots, so each snapshot represents scans
collected during the corresponding week. There are total of
43 snapshots.

We compared the community detection results produced by
LabelRankT on the Reality Mining Bluetooth Scan network
with and without edge weight and direction. By varying the
parameter q (from 0.05 to 0.95) of the conditional update Θq

operator, we calculated the average modularity differences,
shown in Table 1, between the weighted and directed version
and the unweighted and undirected version of LabelRankT.
All the average modularity differences in Table 1 are posi-
tive. This demonstrates that including the edge weight and
direction improves the performance of our algorithm. Fur-
ther, Fig. 14 presents the modularity of LabelRankT with
and without edge weight and direction on all the 43 snap-
shots with the conditional update parameter q = 0.6 when
the average modularity difference is the largest. In conclu-
sion, these results demonstrate that inclusion of edge weight
and direction of the network improves the quality of com-
munities detected by LabelRankT.

6. RELATED WORK
Label propagation and random walk based algorithms are
most relevant to our work. LPA [18, 26] identifies disjoint
groups as nodes with the same label. COPRA [11] and SLPA
[27] extend LPA to detection of overlapping communities by
allowing multiple labels. However, none of these algorithm
resolves the LPA randomness issue, where different commu-
nities may be detected in different runs over the same net-
work. Markov Cluster Algorithm (MCL) proposed in [23]
is based on simulations of flow (random walk). MCL exe-

Table 1: The average modularity differences between the weighted and directed version and the unweighted
and undirected version of LabelRankT with different values of the conditional update parameter q on all the
43 snapshots of the Reality Mining Bluetooth Scan data.

Conditional update parameter q 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
Average modularity difference 0.101 0.13 0.169 0.174 0.181 0.197 0.206 0.201 0.199 0.193 0.19

1 5 10 15 20 25 30 35 40 43
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Snapshot

M
o

d
u

la
ri

ty

Edge with weight and direction

Edge without weight and direction

Figure 14: The modularity of LabelRankT with and
without edge weight and direction on Reality Min-
ing Bluetooth Scan data with the conditional update
parameter q = 0.6.

cutes repeatedly matrix multiplication followed by inflation
operator.

LabelRankT, like its predecessor LabelRank (see [28]) differs
from MCL in at least two aspects. First, LabelRankT applies
the inflation to the label distributions and not to the matrix
M . Second, the update of label distributions on each node in
LabelRankT requires only local information. Thus it can be
computed in a decentralized way. Regularized-MCL [19] also
employs a local update rule of label propagation operator.
Despite that, the authors observed that it still suffers from
the scalability issue of the original MCL. To remedy, they in-
troduced Multi-level Regularized MCL, making it complex.
In contrast, we address the scalability by introducing new
operator, conditional update, and the novel stopping crite-
rion, preserving the speed and simplicity of the LPA based
algorithms. Moreover, neither MCL nor Regularized-MCL
is suitable for dynamic networks.

For dynamic networks, there has been work that focus on ex-
ploring the properties of evolving communities that could be
used to guide the detection algorithms. Palla et al. [16] de-
veloped an algorithm based on the clique percolation method
and investigated the time dependence of overlapping com-
munities to uncover basic relationships characterizing com-
munity evolution. Tantipathananandh and Berger-Wolf [21]
extended their previous social cost model to arbitrary dy-
namic networks and approximately solved the optimization
problem using semidefinite programming relaxation and a
rounding heuristic. Bassett et al. [5] proposed an approach

to construct representative partitions. This approach adopts
a null model to correct for statistical noise in sets of parti-
tions to improve robustness of community detection result
in time-dependent networks.

Typically, an incremental detection [2] considers the stream
of changes between snapshots explicitly as opposed to ap-
plying static algorithms to each static snapshot [6, 1]. Ning
et al. [15] proposed an incremental spectral clustering that
continuously updates the eigenvalues and eigenvectors by
computing approximations of the generalized eigenvalue sys-
tem of the normalized cut. facetNet [13] extends the non-
negative matrix factorization algorithm. Its drawback is
that it requires the number of communities to be provided
as an input. GraphScope [20] is a parameter-free algorithm
where the minimum description length principle is used to
extract communities and to detect the changes. It does not
consider the deletion of nodes. Bansal et al. [4] extended
CNM algorithm. However, their approach is limited to net-
works that change very little from snapshot to snapshot.
Similarly, Gorke et al. [9] modified both global and local
modularity optimization based CNM algorithm and Lou-
vain algorithm, but this modification can handle only small
changes between snapshots. iLCD [7] updates the existing
community by adding a new node to it if the node’s number
of second neighbors and number of robust second neighbors
are greater than expected values. A limitation is that it can
not add two new nodes and a link in-between them at the
same time.

7. CONCLUSIONS
Aiming at a highly efficient and general on-line detection al-
gorithm, we introduce LabelRankT for incremental detection
of evolving communities in large-scale dynamic networks
through label propagation. LabelRankT is based on the in-
troduced generalized LabelRank, in which each node requires
only local information during label propagation processing.
LabelRankT is also able to detect communities in various
network types including networks with directed/undirected
and weighted/unweighted edges in linear time.

In future work, we plan to apply LabelRankT to self-organizing
applications such as ad-hoc mobile networks and P2P net-
works, where each node corresponds to a physical platform.
By taking into account temporal and spatial (communities)
correlations, we will attempt to construct efficient distributed
social-based message routing algorithm on top of LabelRankT.
We also plan to extend LabelRankT to overlapping commu-
nity detection [25].

Acknowledgment
This work was supported in part by the Army Research Lab-
oratory under Cooperative Agreement Number W911NF-
09-2-0053 and by the Office of Naval Research Grant No.
N00014-09-1-0607. The views and conclusions contained in

this document are those of the authors and should not be in-
terpreted as representing the official policies either expressed
or implied of the Army Research Laboratory, the Office of
Naval Research, or the U.S. Government.

8. REFERENCES
[1] S. Asur, S. Parthasarathy, and D. Ucar. An

event-based framework for characterizing the
evolutionary behavior of interaction graphs. TKDD,
3(4):16:1–16:36, 2009.

[2] T. Aynaud, J.-L. Guillaume, Q. Wang, and E. Fleury.
Communities in evolving networks: definitions,
detections and analysis techniques. 2011.

[3] W. S. Bainbridge. Computational sociology. In
Blackwell Encyclopedia of Sociology, 2007.

[4] S. Bansal, S. Bhowmick, and P. Paymal. Fast
community detection for dynamic complex networks.
In Proc. of the Second Workshop on Complex
Networks, 2010.

[5] D. S. Bassett, M. A. Porter, N. F. Wymbs, S. T.
Grafton, J. M. Carlson, and P. J. Mucha. Robust
detection of dynamic community structure in
networks. Chaos, 23, 2013.

[6] T. Y. Berger-Wolf and J. Saia. A framework for
analysis of dynamic social networks. In SIGKDD,
pages 523–528, 2006.

[7] R. Cazabet, F. Amblard, and C. Hanachi. Detection of
overlapping communities in dynamical social
networks. In SOCIALCOM, pages 309–314, 2010.

[8] N. Eagle, A. Pentland, and D. Lazer. Inferring social
network structure using mobile phone data.
Proceedings of the National Academy of Sciences
(PNAS), 106(36):15274–15278, 2009.

[9] R. Görke, P. Maillard, C. Staudt, and D. Wagner.
Modularity-Driven Clustering of Dynamic Graphs. In
SEA, volume 6049, pages 436–448, 2010.

[10] M. S. Granovetter. The strength of weak ties.
American journal of sociology, pages 1360–1380, 1973.

[11] S. Gregory. Finding overlapping communities in
networks by label propagation. New J. Phys.,
12:103018, 2010.

[12] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs
over time: densification laws, shrinking diameters and
possible explanations. In SIGKDD, pages 177–187,
2005.

[13] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L.
Tseng. Analyzing communities and their evolutions in
dynamic social networks. TKDD, 3(2):8:1–8:31, 2009.

[14] M. E. J. Newman. Fast algorithm for detecting
community structure in networks. Phys. Rev. E,
69:066133, 2004.

[15] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. Huang.
Incremental spectral clustering with application to
monitoring of evolving blog communities. In SIAM,
2007.

[16] G. Palla, A.-L. Barabasi, and T. Vicsek. Quantifying
social group evolution. Nature, 446(7136):664–667,
2007.

[17] R. E. Park. Human communities: The city and human
ecology. Free Press, New York, NY, 1952.

[18] U. N. Raghavan, R. Albert, and S. Kumara. Near
linear time algorithm to detect community structures
in large-scale networks. Phys. Rev. E, 76:036106, 2007.

[19] V. Satuluri and S. Parthasarathy. Scalable graph
clustering using stochastic flows: applications to
community discovery. In ACM SIGKDD, pages
737–746, 2009.

[20] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu.
Graphscope: parameter-free mining of large
time-evolving graphs. In SIGKDD, pages 687–696,
2007.

[21] C. Tantipathananandh and T. Y. Berger-Wolf.
Finding communities in dynamic social networks. In
Proceedings of IEEE International Conference on
Data Mining (ICDM), 2011.

[22] K. Tsuda. Propagating distributions on a hypergraph
by dual information regularization. ICML ’05, pages
920–927, 2005.

[23] S. van Dongen. A cluster algorithm for graphs.
Technical Report INS-R0010, National Research
Institute for Mathematics and Computer Science,
2000.

[24] S. Wasserman and K. Faust. Social network analysis:
Methods and applications. Cambridge University
Press, Cambridge, U.K., 1994.

[25] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping
community detection in networks: the state of the art
and comparative study. ACM Computing Surveys,
45(4), 2013.

[26] J. Xie and B. K. Szymanski. Community detection
using a neighborhood strength driven label
propagation algorithm. In IEEE NSW 2011, pages
188–195, 2011.

[27] J. Xie and B. K. Szymanski. Towards linear time
overlapping community detection in social networks.
In PAKDD, pages 25–36, 2012.

[28] J. Xie and B. K. Szymanski. Labelrank: A stabilized
label propagation algorithm for community detection
in networks. In Proc. IEEE Network Science
Workshop, West Point, NY, pages 138–143, April
2013.

