Labels and Event Processes
in the Asbestos Operating System

Petros Efstathopoulos®
David Ziegler’ Eddie Kohler*
*UCLA

Cliff Frey'
FMIT

Maxwell Krohnt
David Maziérest

Steve VanDeBogart”
Frans Kaashoek'
fStanford/NYU

Robert Morris’

http://asbestos.cs.ucla.edu/

ABSTRACT

Asbestos, a new prototype operating system, provides ravel
beling and isolation mechanisms that help contain the t&ffec
of exploitable software flaws. Applications can express dewi
range of policies with Asbestos’s kernel-enforced labetinag@ism,
including controls on inter-process communication andesys
wide information flow. A new event process abstraction pesi
lightweight, isolated contexts within a single proceskeing the
same process to act on behalf of multiple users while prangnt
it from leaking any single user’'s data to any other user. A Web
server that uses Ashestos labels to isolate user data escbout
1.5 memory pages per user, demonstrating that additionatige
can come at an acceptable cost.

Categories and Subject Descriptors: D.4.6 [Operating Sys-
temg: Security and Protection+aformation flow controls, Access
controls D.4.1 [Operating System$: Process Management; D.4.7
[Operating System$: Organization and Design; C.5.8pmputer
System Implementatiorj: Servers

General Terms: Security, Design, Performance

Keywords: labels, mandatory access control, information flow,
event processes, secure Web servers

1 INTRODUCTION

Breaches of Web servers and other networked systems riyutine
divulge private information on a massive scale [23, 32]. Kimgls
of exploitable software flaws that enable these breachépeviist,
but all is not lost if we design systems that limit the possibipact
of most exploits. A powerful tool to contain exploits is théneiple
of least privilege [37], which directs that each system congmt
should have the minimum privilege required to accomplishask.
A corresponding policy would prevent a server acting for prie-
cipal from accessing data belonging to another principadubh
direct or indirect channels. A least privilege policy, ercfed by the
operating system at the behest of a small, trusted part ofyphe
plication, would defang classes of exploits from SQL inj@etto
buffer overruns, making servers much safer in practice.
Unfortunately, current operating systems cannot enfoeestl
privilege. Even the much weaker goal of isolating servicesfone
another (without isolating principal state inside eachvise) re-
quires fiddly and error-prone abuse of primitives desigredther

Permission to make digital or hard copies of all or part o thvwork for

personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyies prior specific
permission and/or a fee.

SOSP’050ctober 23-26, 2005, Brighton, United Kingdom.

Copyright 2005 ACM 1-59593-079-5/05/0010 ... $5.00.

purposes [20]. Most servers instead revert to the most imsedte-
sign, monolithic code running with many privileges. It sktbcome
as no surprise that high-impact breaches continue.

New operating system primitives are needed [21], and the bes
place to explore candidates is the unconstrained contextnafw
OS. Hence the Asbestos operating system, which can enfivicte s
application-defined security policies even on efficienprivileged
servers.

Asbestos’s contributions are twofold. First, all accesnticn
checks uséAsbestos labelsa primitive that combines advantages
of discretionary and nondiscretionary access controlelsatieter-
mine which services a process can invoke and with which other
processes it can interact. Like traditional discretioraapabilities,
they can be used to enumerate positive rights, such as thietoig
send to the network. Unlike traditional capability systermnew-
ever, Asbestos labels can also track and limit the flow ofrinfn
tion within system- and application-defined compartmehtese
complementary security models are linked by a key obsemvati
the ability to declassify data in a single compartment idagaus
to possession of a discretionary capability. The resultiypgtem
supports capability-like and traditional MLS [9] policiezs well as
application-specific isolation policies witlecentralized declassi-
fication, through a single unified mechanism.

Second, Asbestos&vent procesabstraction lets server applica-
tions efficiently support and isolate many concurrent udarson-
ventional label systems, server processes would quickiprbe
contaminated by data belonging to multiple users and lasalbfi-
ity to respond to anyone. One fix is a forked server model, iithvh
each active user has a forked copy of the server processitunfo
nately, this resource-heavy architecture burdens the @GSmany
thousands of processes that need memory allocated and @¥RU ti
scheduled. Event processes allow a single process to keegpepr
state for multiple users, but isolate that state so that pio@af-
fects only one user’s data. A group of event processes issilaso
efficient as a single ordinary process. The event procesgplire
encourages efficient server construction, and in our exystis,
servers can cache thousands of user sessions with low stooats.

Measurements on an x86 PC show that an Asbestos Web server
can support comprehensive user isolation at a cost of ahéut 1
memory pages per user. Furthermore, although our protdaspe
bel implementation impacts performance, an Asbestos Wefkise
storing isolated data for thousands of users is in some ways c
petitive with Apache on Unix. Asbestos shows that an OS cpn su
port flexible, yet stringent, security policies, includiimjormation
flow control, even within the challenging environment of gt
performance Web server.

2 APPLICATION GOAL

We evaluated Asbestos by implementing a secure applicttiamn
we could not build on current systems, hamely a dynamicezant
Web server that isolates user data. Our goal, in a nutshell:

Asbestos should support efficient, unprivileged, and
large-scale server applications whose application-

defined users are isolated from one another by the oper-
ating system, according to application policy.

The rest of this section expands and clarifies this goal .ol the
goal refers to server applications, Asbestos mechanismgdhid

in the construction of other types of software. For exameifaail

readers could use related policies to restrict the prieegf attach-
ments, reducing the damage inflicted by users who unwittingh

disguised malicious code.

A large-scale server applicatioresponds to network requests
from a dynamically changing population of thousands or duan
dreds of thousands of users. A single piece of hardware nmay ru
multiple separate or cooperating applications. Examphetuile

ok-demux f«—f Database

idd ok-dbproxy

L\

Worker 1 "H Declassifie

l—>| [—>|

Worker 2 Worker

- : —

Network Stack ifetd

Application

System

Figure 1: Processes of the Asbestos OK Web server. Grey boxes are
trusted. Worker processes contain one event process pgesagston.

Web commerce and bulletin-board systems, as well as many pre version of the original OKWS for Unix [20]. The server imple-

Web client/server systems. Such applications achieve geddr-
mance through aggressive caching, which minimizes stadage
delays. Byefficient then, we mean that an Asbestos server should
cache user data with low overhead. This would be simple if the
cache were trusted, but we additionally wantigolate different
users’ data from one another, so that any security breacheoa-
tained. The Asbestos event process mechanism aims to/satisf
requirement.

By unprivileged we mean that the system administrator has
granted the application the minimum privilege requiredamplete
its job, and this minimum privilege is much less than all pege.
Thus, the system follows the principle of least privilege.

Users ara@pplication-definedmeaning each application can de-
fine its own notion of principal and its own set of principaBne
application’s users can be distinct from another’s, or ther ypop-
ulations can overlap. An application’s users may or may natec
spond to human beings and typically won't correspond to ¢het
human beings allowed to log in to the system’s console.

By isolated we mean thaa process acting for one user cannot
gain inappropriate access to other users’ dafgpropriate access
is defined by ampplication policy the application defines which of
its parts should be isolated, and how. The policy shouldsipport
flexible sharingamong users for data that need not be isolated. All
users must trust some parts of the application, such as théhpa
assigns users to client connections; since bugs in thitetheode
can allow arbitrary inter-user exploits, we aim to minimitzesize.

The application defines the isolation policy, but theerating
systemenforces it. The OS should prevent even totally compro-
mised processes from violating the policy; for exampley gteould
be unable to launder data through non-compromised seraitgs
applications. Thus, isolation policies can restiidbrmation flow
among processes that may be ignorant of the policies. Unfort
nately, any system that controls information flow through-time
checks can inappropriately divulge information when thasecks
fail [31]; in effect, kernel data structures for trackingarmation
flow provide a covert storage channel. We aim to eliminateag®
channels that can be exploited without multiple processethat a
later, hardened version of Asbestos can improve securitinbi
ing process creation rates. Section 8 discusses this isslepth.

In summary, Asbestos must support a fornmafndatory access
control, which transitively isolates processes by tracking andgt{im
ing the flow of information. Unprivileged applications defitheir
own isolation policies and decide what information need ln®t
isolated. Furthermore, OS mechanisms for labeling presassist
support highly concurrent server applications.

These Asbestos ideas achieve full expression in the degigin a
implementation of the Asbestos OK Web server, a much imptove

ments a Web site with multiple dynamigorkers—one each for
logging in, retrieving data, and changing a password, famex
ple. Each worker is its own process; thk-demuxprocess ana-
lyzes incoming connection requests and forwards them toehe
evant worker. Each worker caches relevant user data; cdohes
different users are isolated from one another using labrelesent
processes. A production system would additionally havechea
shared by all workers, and Asbestos could without much teoub
support a shared cache that isolated users. We also impiednen
SQL database access (table rows are labeled as belongiagite p
ular users) and declassifiers (selected workers that cartexger
data to the public). The workers are untrusted, meaningaxtheter
compromise cannot violate the user isolation policy. Tedstom-
ponents include thek-demuyprocess, thek-dbproxydatabase in-
terface, and aidd process that checks user passwords, as well as
system components such as the network interface, IP sthcky$-
tem, and kernel. Declassifier workers are semi-trustedngpoo-
mised declassifier can inappropriately leak the compraimiser’s
data but cannot gain access to uncompromised users’ dgtaeHi
shows this server’s process architecture.

3 RELATED WORK

Mandatory access contrdMAC) systems provide end-to-end en-
forcement of security policies by transitively followingwsal links
between processes. Operating systems have long expressed-a
forced these policies usingbels[9]. Labels assign each subject
and object a security level, which traditionally consistadier-
archical sensitivity classification (such asclassifiedsecret top-
secrej and a set of categoriesclear, cryptg and so forth). To
observe an object, a subject’s security level must domitet@b-
ject’s. For example, a file with secret, nuclear data shoulg be
readable by processes whose clearance is at least secrehasel
category set includes nuclear. Security enhancement geslsup-
porting labels are available today for many popular opegaslys-
tems including Linux [25] and FreeBSD [44].

MAC systems generally aspire to achieve some variant of the
x-property [3]: whenever a procesB can observe objedd; and
modify objectO,, O.'s security level must dominat®,’s. In the
absence of the-property,P could leakO;'s contents by writing
it to O, leavingO1’s confidentiality atP’s discretionrather than
mandatorily enforcing it. Of course, real operating syseim pro-
vide some way to declassify or “downgrade” data—for example
as a special privilege afforded certain users if they pressécure
attention key [17]—but this lies outside the main securitydel.

Most MAC systems are geared towards military settings, Wwhic
require labels to specify at least 16 hierarchical sersitdlassi-
fications and 64 categories [9]. This label format detersiwbat

kinds of policies can be expressed. The fixed number of €leasi
tions and categories must be centrally allocated and assigy a
security administrator, preventing applications fromfting their
own policies with labels alone. Thus, MAC systems typicatbyn-
bine labels with a separate discretionary access contrcthamsm;
ordinary Unix users and groups might enforce access comitioin
the secret, nuclear level.

Asbestos labels differ significantly from those of previaper-
ating systems in that Asbestos lets any process dynamioaite
label categories, ocompartmentsMoreover, a process can par-
tially bypass thex-property by declassifying information or rais-
ing the security clearance of other processes—but only wth
spect to certain compartments, such as the ones it creatbess
tracks information flow by dynamically adjusting labelst bunew
event procesabstraction lets a single, unprivileged process sepa-
rately handle data from multiple compartments without avaiat-
ing restrictions. As described later, the Asbestos syswhirter-
face provides a number of other novel features that fawlitae
use of labels, including temporary voluntary restrictiamsl split
send/receive labels with different defaults.

The idea of dynamically adjusting labels to track potential
information flow dates back to the High-Water-Mark security
model [22] of the ADEPT-50 in the late 1960s. Numerous sys-
tems have incorporated such mechanisms, including IX [28] a
LOMAC [10]. The ORAC model [27] supported the idea of indi-
vidual originators placing accumulating restrictions @tal some-
what like creating compartments, except that data carosiiiyl be
declassified by users with the privileged Downgrader role.

Asbestos labels more closely resemble language-level fhow c
trol mechanisms. Jif [31], in particular, was an inspiratifor
Asbestos because of its support for decentralized defitagin
through separate ownership of different label compon&gsause
it is a programming language, Jif has the advantage of béilg a
to perform most of its label checks statically, at compitedi Run-
time checks can affect control flow on failure, thereby dregpim-
plicit information flows [8]. However, compared to Asbestdg
requires a centralized principal hierarchy and has no atpnv to
split label defaults, which Asbestos uses to support pedisuch as
preventing one process from talking to another.

Asbestos uses communication ports similar to those of pusvi
message-passing operating systems [6, 24, 30, 35, 36,014, sf
which can confine executable content [14], others of whickeha
had full-fledged mandatory access control implementati®hs
Asbestos uses the same namespauandles—for both ports and
compartments, allowing labels to emulate a wide range afriigc
mechanisms from discretionary capabilities to multi-lsezurity.

In theory, capabilities alone suffice to implement mandasar
cess control. For instance, KeyKOS [18] achieved militgraee
security by isolating processes into compartments andpose
ing reference monitors to control use of capabilities a&mEM-
partment boundaries. EROS [39] later successfully redlite
principles behind KeyKOS on modern hardware. Psycholdgjca
however, people have not accepted pure capability-baseihee
ment [29], perhaps from fear that if just one inappropriatpabil-
ity escapes, the security of the whole system may be compezni
As a result, a number of designs have combined capabilitigs w
authority checks [4], interposition [15], or even label§]1

Mandatory access control can also be achieved with unmddifie
traditional operating systems through virtual machinds 1¥]. For
example, the NetTop project [42] uses VMware for multi-lese-
curity. Virtual machines have two principal limitationspvaever:
performance [19, 46] and coarse granularity. One of thesgo#l
Asbestos is to allow fine-grained information flow contra,that

a single process can handle differently labeled data. Tdeiment
a similar structure with virtual machines would require pasate
instance of the operating system for each label.

4 ASBESTOSOVERVIEW

Asbestos IPC resembles that of microkernels such as Mach. Pr
cesses communicate using messages semorts A process can
create arbitrarily many ports. Messages sent to a port diree ok

to the single process witleceive rightdor that port; this is initially
the process that created the port, but receive rights arsfaiable.
The right tosendto a port, however, is determined through label
checks, as described below.

Asbestos messaging is asynchronous and, unusuafigiiable
the sendsystem call might return a success value even if the mes-
sage cannot be delivered. There are several reasons folFtris
one, the kernel cannot tell whether a message is deliveratiike
the instant that the receiving process tries to receivénitesin the
meantime the process’s labels can change to prevent delivar
to allow it. More seriously, given reliable delivery notditon, a
process could leak information using careful label chanfpesex-
ample causing successful delivery to correspond to 1 bidsuan
successful delivery to 0 bits. However, since only labec&sgand
resource exhaustion) will cause messages to be droppezfulcar
compartment management—such as our Web server's—can make
delivery reliable in practice.

Conventional mechanisms such as pipes and file descrip®rs a
emulated using messages sent to ports; to read a file, forptgam
the client sends a READ message to the file server’s port andsaw
the corresponding REAIR reply. The protocol messages were in-
spired by Plan 9's 9P [34].

When asked to create a port, the kernel returns a new port with
an unpredictable name. This is necessary because thg &biite-
ate a port with a specific name would be a covert channel. There
fore, communication is generally bootstrapped using envirent
variables that specify the port names services are cuyresithg.

Asbestos contains system calls for allocating, remapang|,
freeing memory at particular virtual addresses, for cnegdind de-
stroying processes, for creating and dissociating pastssénding
and receiving messages, for bootstrapping, and for debggai
addition to calls supporting label and event process fonetity.

5 ASBESTOSLABELS

Asbestos labels suppattecentralized compartmentisat any pro-
cess can dynamically create and manipulate. In order to/altm-
privileged programs to craft their own MAC security schefs
bestos labels combine both mandatory and discretionargsacc
controls. Asbestos gives a program that creates a new compar
ment adiscretionaryright to declassify data in that compartment:
the program can give that right away, making the right sintita
a capability. The program will typically launch other preses,
restricting their labels so that they can reveal data onlprm
cesses in the compartment. It may also give the right to deifja
to programs trusted to sanitize data; these programs canréhe
lease tainted data outside the compartment. Programs eatheis
same discretionary rights to establish identity and irtggand to
protect the right to send messages to a port—that is, to immghé

a send capability.

Three features of the Asbestos label design are partigtitarl
portant for decentralized compartments. First, a speeiasigivity
level, x, represents declassification privilege with respect toma-co
partment. Second, when sending a message, a process cén supp
additionally restrictivediscretionary labelson top of the process

labels maintained by the kernel; some of these labels ans-tra
mitted to the receiving application for possible analygimally,
Asbestos processes have separate send and receive lahedd-wi
ferent default$or future compartments, allowing policies that tran-
sitively prevent two processes from communicating withmduly
restricting either process’s ability to communicate wtie test of
the system.

5.1 Label basics

In general, information flow labels form lattice, a partial order
in which any finite set of labels has unique least upper andtgre
est lower bounds [7]. The partial order determines whether one
label is dominated by another. The least-upper-bound tgera
is used to combine security classes—when a process reagobj
with different classes, for instance. The greatest-loaarnd op-

U: Shell _| UT: Terminal
Useru UsC UTw Useru
FS Us = {UT 3, 1} UTs = {UT 3, 1}
File Server Ur = {ur32} UTr = {ur3,2}
Usersu andv 'A
\ V: Shell _X, -
Userv [~T7777
Vs IZ UTr
Vs ={w31} (w31} Z {ur3.2})
Vg = {VT 3, 2}

Figure 2: Simplified process communication with labels. The file
server is trusted.

5.2 Privacy

eratorrT, unusual in other label systems, is used in Asbestos for We now examine how Asbestos labels can provide privacy tirou

declassification.

In Asbestos, each proceBshas two labels, aend label B and
areceive label B (somewhat analogous to IX’s current and max-
imum labels). The send label represents the process’snturoe-
tamination, the receive label the maximum contaminatiégdble
to accept from others. To first ordét,may send t® if

Ps C Qr, ()

information flow control, using a simple four-process ex&np
trusted multi-user file server, user shells for use@ndv, and a
terminal to which useu is logged in. The system’s goal is to allow
useru’s information to pass freely over the terminal while praven

ing other users’ information from escaping. We first assuha t
process labels are assigned out of band; the next sectiors $towv

they are assigned in a decentralized fashion.

Each user needs a security compartment, so we assign each use

which means tha® is able to receive messages from processes at y ataint handle &. The next step is to differentiate processes that

P’s current contamination level, and also tkais willing to accept
contamination al’'s level. When the message is deliver€ send
label is contaminated bi?’s send label, since information flows
from P to Q. Again to first order,

Qs «+— Qs U Ps,

the least upper bound on the two send labels.
Asbestos compartments are namedhiaydles which are 61-

)

have seenu’s private data from those that have not. We will use
send labels for this purpose, since they track the flow of agess
by raising receivers’ levels withi. We mark the send label of any
process that seass private data by settingr’s level higher then
the default ofl. If we choose leveB for user taints, a process with
Ps(ur) = 1 (the default send level) hasn't seais data, while a
process wittPs(ur) = 3 has.

Now for receive labels. By default, processes hBu¢ur) =

bit numbers. Any process can create a compartment with the 3 Thjs is below the user taint level & so a process’s receive
newhandle system call, which returns a previously-unused handle |3pel must be explicitly raised, tor 3, to allow it to receiveu's

and, as explained below, grants the calling process pgiwifer that
handle. Handle values are unique since boot time. Thuskeuali
file descriptor value, a given handle value refers to the dzanelle
in all contexts. The 61-bit namespace is large enough thatadt
ing handles at a rate of 1 billion per second would requiregg'y
to exhaust all values. The kernel generates handles by mtivgy
a counter with a 61-bit block cipher (derived from BlowfisI8[B
resulting in an unpredictable but non-repeating sequehealaes;
the unpredictability closes certain covert channels byceating

data. Raising receive labels makes the system more peveissi
in Asbestos, it requires special privilege: processes arédree to
raise their receive labels arbitrarily.

Figure 2 shows the resulting system. The shell procddsasd
V are tainted withur and vy (that is,Us(ur) = 3 andVgr(vr) =
3), and their receive labels allow them to receive the datdei t
respective users. Any processes they create or communidtite
will have the same characteristics. Usésx terminal,UT, has the
same labels ag. U can send messagesUd, sinceUs C UTg,

the number of handles that have been created at any given time ptv cannot, sinca/s(vr) > UTr(vr), and neither can any other

However, handles are not in any way self-authenticating—{41
simply knowing a handle’s value confers no additional feiye.

Handle privileges are representedlbyels which are members
of the ordered seftx, 0, 1, 2, 3]; in send labelsx is the lowest or
most privileged level, and is the highest or least privileged level.
The default levels lie in between; they atdfor send labels and
2 for receive labels. The reasons for this difference areatmetl
below.

A label, then, is just a function from handles to levels. We

process that has sees data.

Discretionary contamination Consider the file servetSin Fig-
ure 2. To maintain the system’s information flow propertits
file server must label files: a process that reads usefile must
become tainted witlir 3. (We worry about writes later.) The file
server must be able to taint different users’ processesffiereint
ways, so it cannot simply use Equation 2 to taint processes.

In Asbestos, the file server caelectivelytaint messages with

write them as functions, and also using set notation, such asthe appropriate handle by providing an optionahtamination la-
{h1 0, h 1, 2}; the default level, which appears without a handle at bel Gs when sending a message. This label raises the sender’s send

the end of the list, applies to all handles not mentionedieitiyl
To compare two labels, we compare each of their components:

L1 C Lo iff Ll(h) < Lz(h) for all h.

With this ordering, the least-upper-bound and greatesétdound
operators) | andrl, are (L1 U Lo)(h) = max(Li(h),L2(h)) and
(Ll 1 Lz)(h) = min(Ll(h), Lz(h))

label to a neweffective send label&£= Ps U Cs. The effective
label, not the true send label, is used to check informatmm énd
to contaminate the receiver's send label. Equations (1)Y2nthus
become

EsC Qr and
Qs < Qs LI Es.

@)
4)

Since contamination onlgestrictsinformation flow, it requires no
special privilege; processes can arbitrarily contamiriaée mes-
sages they send. The default contamination labgk}s which, as
the lowest possible label, adds no additional contaminatio

This is our first example of an optional, or discretionarye 0§
the label system. The idea is simple: when processes carotont
their interactions with the label system—in ways that deidtate
basic information flow properties, of course—the label systan
implement more security policies, potentially includinyaccess
control interactions needed in an operating system.

The four levels The label assignment above prevemts data
from reaching any processes except for an explicitly il set,
those withPr(vr) = 3. But Asbestos’s four level8-3, and its
different defaults for send and receive labels, allow ofj@icies
as well. Say, for example, we represent user taintipg, rather
thanur 3. ThenU andV could communicate with each other, as
well as with other processes in the system; and we couldoséH
vent privacy violations vidJT, by lowering its receive label, to
{vr 1,2}. UT could communicate with), but still not withV, since
Vs(vr) = 2; and if U received a message froW its send label
would rise tovr 2, preventing further communication withiT.

Thus, when user taint uses le<he system defaults to deny-
ing user-tainted messages, and the compartment manageexaus
plicitly raise the receive level of each process allowedeteive
user data. When user taint uses leethe system defaults to al-
lowing communication, and those processes shauldn’treceive
user data must have their receive labels expliddilyered (An ap-
plication of the latter might be allowing anyone to read a $ite
long as they don't send the contents to the network daemafi.) D
ferent send and receive defaults make it easy to select eiibeel,
whereas implementing the latter model in a traditionaliimfation
flow system would require changing every label in the system.

This also explains why Asbestos labels have le@e& We need
two levels for send and receive defaults, and levels aboddealow
each of these defaults. In send labélsisually corresponds to the
absence of tain@ to a “partial taint”, as in the latter model, where
most communication remains unimpeded; 8nd full taint, where
most communication is prevented. Similarly, in receiveelap3
indicates the right to be tainted arbitrarilg;is the default; and
1 prevents communication with any tainted procéss used for
integrity and capabilities, as we’ll see below.

Multi-level policies requiring hierarchical sensitivitfassifica-
tion can be emulated in Asbestos using multiple compartsa&ior
instance, to supporinclassified secref andtop-secretievels, the
security administrator can use two compartments: oneséaret
s, and one fortop-secrett. A process'’s receive label then reflects
its owner’s security clearancé2} for unclassified{s3, 2} for se-
cret, and{s3,t 3, 2} for top-secretSimilarly, send labels reflect the
highest level of data a process has actually s¢ehfor unclassi-
fied {s3, 1} for secret and{s3,t3, 1} for top-secret

Odd label values, such as a send labe{td, 1}, are also possi-
ble. Though this has no direct mapping to a security levelpagss
with such a send label will only be able to send to process#s wi
top-secretlearance, so the desired information flow properties are
preserved. In general, however, the Asbestos design enslireed
for large numbers of non-hierarchical compartments rétrer tra-
ditional, military-style sensitivity classifications. particular, we
believe that scalability to many compartments is a requarnior
MAC to protect user data in today’s Internet applications.

Receive labels and dynamic taint Asbestos receive labels limit
the taint that processes may receive, and thus the effedtsnf
accumulation. For example, the send labels in Figure 2 vatl n

change with respect tar and vy, absent intervention by some
privileged process. Asbestos labels can, however, supp@hge
of other policies. For exampléJg and Vg could both be set to
{ur 3,vy 3,2}, allowing either shell to read either user’s informa-
tion. OnceU readsv's data, it will lose the ability to send messages
to UT—but, unfortunately, might still be able to convey some in-
formation by exploiting covert channels. Following thengiple of
least privilege, it is better not to rai¢#s receive label if it doesn’t
need access tgs data, but this policy choice is up to the applica-
tion designer. Like Figure 2, our Web server sets receivel$ato
prevent dynamic taint except where specifically needed.

5.3 Declassification privileges

Asbestos decentralizes declassification using the spetéakl: a
process withPs(h) = x has declassification privilege with respect
to h, or equivalently, is said teontrol compartmenh. This priv-
ilege concretely means that other processes cannot corateRi
with respect tch. Even if P receives a message from a proc€ss
with Qs(h) = 3, Ps(h) remainsx, the lowest levelP can thus for-
ward data fromQ to less tainted processes, theratmclassifying
information with respect th. In notation, define

« _ Jx ifL(h) =«
|3 otherwise.
The contamination step from Equation (4) then becomes
Qs « Qs U (EsM Qg); (5)
theEsMQg term givesk levels inQs precedence over contamination
from Es. Only a process itself can remowelevels from its send
label, using a special variant of tiendsystem call.
In our example, the file server, which is trusted by both users
to store their files, and which should apply a minimal tainaty

file data it returns (rather than being tainted indefinitalyhf), has
privilege with respect to bothr andvr:

FS = {UT *, VT *, 1},
FS = {ur3,vr 3,2}.

The receive label allowESto receive messages tainted arbitrarily
with respect tasr or vr; but regardless of the taints it receives, its
send label will stay the same far andvr.

Decontamination A process initially has privilege for every han-
dle it creates: th@ew handle system call set®s(h) = « for ev-
ery handle it returns. Sindewas previously unused, all other pro-
cesses start wit@s(h) > 1 (the default send level). Normal mes-
sage exchange with will not change this situation. However, As-
bestos allows a process with privilege to explicitly distite priv-
ilege to other processes, either by forking or using a mashan
calleddecontaminationThis adds flexibility but, since a privileged
process could already decontaminate and forward datandfes
damentally change the system’s information flow properfléss
dynamic compartment creation and privilege manipulatitferds
from systems such as Jif, which has a fixed hierarchy of users c
trolling various 1/O channels and code.

A process with declassification privilege for handiean de-
contaminate other processes’ labels with respetthy lowering
their send labels and raising their receive labels. This wa®
more optional label arguments to teend system call, namely a
decontaminate-send labelsCand adecontaminate-receive label
Dr. The decontaminate-send label is used to lower the reciver
send label, and the decontaminate-receive labehise the re-
ceiver’s receivelabel. Both of these operations make the system
more permissive, and thus require special privilege witipeet to

the handle involved—the privilege representedxbyn notation,
Equations (3) and (5) become
Es C QR LU Dr and (6)
Qs — (QsMDs) U (EsMQs), Qr<— QrUDr. (7)
The system must also check that whenever a decontaminatienh |
might change the receiver’s labels, the sender controlseibgant

compartments: that is, th&és(h) = + wheneverDs(h) < 3 or
Dr(h) > *.

5.4 Integrity

The file server can thus accept requests from any user wifaaut
of contamination and can declassify user data as apprepfit
course, a useful file server must also implemeningegrity policy
to prevent arbitrary processes from overwriting usersadan in-
tegrity policy can either be mandatory—transitively bliak any
flow of low-integrity data into a user’s files—or discretiopalet
us first consider a discretionary policy, in which only preses that
speak foruseru can write tou’s files, but their writes are free to in-
corporate data from less trusted sources.

Speaking fou is a positive right, not a taint, and whether a pro-
cess speaks faris unrelated to whether or not it has read any’sf

writes to system files. Setting the network daemon’s senel kab
{s2,1} then ensures that no process contaminated with data from
the network can overwrite system files.

5.5 Capabilities and preventing contamination

The discretionary verification label can be used to implemeany
application-defined security policies, but it is limiteddne impor-
tant way: An application can choose to ignore a message &fter
aminingV, but since the message was already delivered (to allow
V to be examined), the application’s labels have already been
taminated with the message’s taint. In general this tainhoabe
undone. Thusy can flexibly verify integrity but cannot prevent in-
appropriate contamination. Imagine, for example, a mailez that
starts an untrusted program to read an attachment. The easiér
can, and should, accept contamination from other systeoepses,
such as the file system; but though it needs to communicaltet gt
attachment program, it doesn’t want to accept contamindtimm
it. A compromised attachment that develops a high taintlshose
the ability to send to the mail reader.

What is needed is a way to shift a simple form of message filter-
ing into the kernel. Asbestos supports this in a straightiod way
by integrating communication ports with the label systeime Te-

secret data. We thus need a new compartment to represekt spea sult not only prevents undesired contamination but alsc en

ing for u, represented by, useru’s grant handle A process can
speak foru only if Ps(ug) < 0. Hence, our file server must verify
Ps(ug) < 0 before accepting a write s file from P.

Asbestos supports such integrity checks with a fourth (and fi
nal) optional label argument &end the verification label \V The
verification label temporarilyowers—restricts—the receiver’s ef-
fective receive label. Thus, the sender proves Witthat its labels
are below a constraint independent of the receive labelc@tely,
the label check from Equation (6) becomes

EsC (QrUDR)MV. (8)

SinceEs = Ps U Cs, this implies thatPs C V, and for the check

to succeed, the verification label must be an upper bound ®n th
sender’s send label. Unlike the other optional laligis Ds, and

Dg, the verification label is also passed up to the receivindiemp
tion when the message is received. Thus, the applicatiowkian
upper bound on the sender’s send label. In our file server gbeam

a process writings's file must supplyV = {us 0,3} to prove it
speaks fou. The file server, in turn, verifies the process speaks for
u by checkingV(ug) < 0 before accepting a write tds file.

An alternative design might eliminatéand just supply message
recipients with a copy of the sender’s send label—in effeoh-
veying all of a process’s credentials with every messageritls.
However, such designs lead to security problems in whichtan a
tacker can trick a process into exercising unintended lpges, a
pitfall known as theconfused deputgroblem [12]. In our example,

a process that speaks for multiple users must explicitlyenéme
credentials it intends to exercise for each write.

Level 0 and mandatory integrity The O level permits the con-
struction of mandatory integrity policies. For exampleragessP
with Ps(ug) = 0 can speak fon, but since0 is less than the de-
fault send level ofl, it cannot further disseminate the privilege: the
minute P receives a message from a proc@sthat does not speak
for u (Qs(ug) > 1), Ps will become tainted an& will lose its abil-
ity to speak foru. Thus,P cannot act foQ and relay low-integrity
data intou's files.

As with secrecy, different defaults in send and receiveltaae
low targeted exclusion of particular processes. An exangee-
venting system files from being corrupted from the networke T
file server can allocate a compartmesitand require/(s) < 1 for

providing the semantics of capability-based send rights.

First, the port namespace is the same as the handle value, spac
SO port names can be used as label compartments. Seconyg, ever
portp is associated with port receive labebr port label . This
label is used to lower, or restrict, the process’s receibellabut
only for messages delivered to that port. It thus acts likerdfiv
cation label imposed by theceiver rather than the sender. For a
message sent to pgst the label check from Equation (8) becomes

Es C (QR LJ DR) mAYAR PR. (9)

The port label furthermore restricts how much a receivellabe
can be decontaminated. A process that controls a compartaen
grant another process the right to receive tainted messédtieBg,
and simultaneously taint its send label w@b. This idiom is com-
mon in practice; our Web server uses it, for example, to enirtate
worker processes with the relevant user taintSome processes,
such as long-running system servers, may want to avoid uredes
taint, however. They do so by setting their port labels to\@aues
(which prevent contamination). The kernel will reject angssage
that attempts to decontaminate a receive label beyond \stedt i
lowed by the port label; specifically, it checks tiiat C pg.

Port labels, like verification labels, are entirely disieary.
Each process solely controls the port labels for all pontsviich it
has receive rights, and neither lowering nor raising a el re-
quires special privilege. Processes supply an initial jate| when
creating a port; most often this {8}, which adds no restrictions
relative to the process's receive label, but it ca{ Bg or anything
else. As a convenience, the kernel modifies this port labekkiyng
pr(p) < O before returning the new port. Since all other processes
in the system initially hav®s(p) > 1 (the default send level), no
other process can send pauntil P explicitly grants access. How-
ever, thesetport_label system call, which changes a port’s label,
doesn’t modify its input. By resetting the port labeKt®} (with no
exception forp itself), the process can allow anyone in the system
to send messages [subject only to the process receive label's
restrictions.

Capabilities The resulting port label system supports capability-
like send rights. When processfirst creates porp, no one else
can send t@. P can grant the right to send poby decontaminating
another process’s send label with respeap;tthat is, it can send

P,Q Processes
p, h Ports, handles
%0,1,2,3 Label levels, in increasing order
L,C,D,V,E Labels (functions from handles to levels)
Ps Process$’s send label
Pr Proces$'s receive label
pr Portp’s receive label
LiC Ly Label comparison:

true iff Vh, L1(h) < La(h)
LiuL, Least-upper-bound label:

(L1 U L2)(h) = max(Li(h), L2(h))
LimLs Greatest-lower-bound label:

(Ll 1 Lz)(h) = min(Ll(h), Lz(h))
L* Stars-only label:

e) x i L(h) = ¥,
L*(h) = {3 otherwise

Figure 3: Notation.

sendp, dataCs, Ds,V,Dr) // Send message to part
Let Q be the process with receive rights for
LetEs = Psl Cs
Requirements:
(1)Es C (QrUDR) MV Mpr
(2) If Ds(h) < 3, thenPs(h) =
(3) If Dr(h) > %, thenPs(h) = «
(4)Dr C pr
Effects:
GrantDg and contaminate witksg,
but preserves’s x handles

Qs « (QsMDs) U (Es M Qg)

Qr « Qr UDr
newport (L) setport_label(p, L)
Let p be an unused port Requirement:
Effects: P has receive rights fqo
pr < L Effect:
Pr(p) < 0 Pr L
Ps(p) — *
Returnp

Figure 4: Label operations associated with three Asbestos systhsn ca
P is the calling process.

Q a message witlds = {px, 3}. Q can then further redistribute
that send right. Note that it is primarily the port receivbdh pr,
rather than the process labBk, that prevents arbitrary processes
from sending tq. A process can create many ports with different
receive labels and, just like capabilities, separatelyritiste the
right to send to each port.

5.6 Summary and implementation

Figure 3 summarizes the notation developed in earlier@extand
Figure 4 gives the final versions of the label operations ciaterd
with thesend new port, andsetport_label system calls.

In user space, a label is represented as an array of handksval
plus a default level. A 64-bit number can represent a labglyen
the upper 61 bits are the handle value, the lower 3 bits enitede
level in that label.

In kernel space, each active handle corresponds to a 64iaige
structure called enode For port handles, this structure includes the
port label and a reference to the process with receive rightsish
table maps handle values to vnodes. Vnodes are referenntgedou

when all kernel references to a vnode disappear, the keragl m
reuse its memory.

Since a series of label operations accompanies every IRC, th

kernel label implementation has major impact on perforreaard
memory usage. In our current design, a label points to adarte
ray of chunks each of which is a sorted array of up to 64 vnode
pointers. Since these pointers are 8-byte aligned, theied@ bits
are again available for the corresponding levels. Labasefer-
ence counted and updated copy-on-write, so multiple estitan
share label memory when appropriate. Additionally, chuarkesref-
erence counted and updated copy-on-write, and multipkddatan
share chunks. Each chunk is marked with the minimum and max-
imum of its vnodes’ levels, as is each label. This helps ogém
certain common operations; for examplel_ifs maximum level is
no larger thari.1’s minimum level, ther, UL, = L1 by definition.
In the worst case, of course, operations liker, andL are linear
in the size of their input labels. Optimization opportusdétremain,
for example when most of label’'s handle levels arand we plan
to improve the label implementation for future work. The Hps
label is about 300 bytes long, including space for one chunk.

6 EVENT PROCESSES

Labels alone don't work well for processes that handle rpidti
users’ private data. To avoid accumulating contaminasanh pro-
cesses would have to be trusted with declassification pgeilby
each relevant user, leaving them over-trusted and vultergkist-
ing OS abstractions are no help. On the one hand, user-feealds
are efficient but share an address space, and therefore goaiot
vide isolation. On the other, forking a separate processuper
provides isolation, but may have low performance due to atper
ing system overheads, such as memory. What's needed is a new
abstraction that combines the performance benefits of catipe
user threads with the isolation benefits of forking new psses.
Many efficient servers [20, 33, 43, 45] use an implementation
pattern that suggests a solution to this problem. All sewak is
driven by a simple event-driven dispatch loop:

while (1) {
event = getextevent();
user = lookupuser(event);
if (user not yet seen)
user.state = creafgtate();
processevent(event, user);

}

This arrangement is efficient, since only one process ishied

and there is little space overhead beyond the minimum memory
required to hold each user’s state. The missing piece is atway
isolate the state of different users, and to ensure thatribeeps’s
labels are set correctly while executing on behalf of eaeh. us

6.1 The event process abstraction

An Asbestosvent procesabstracts the notion of a subset of pro-
cess state belonging to a single user. As with processekethe
nel restricts an event process’s privileges while it hamitieoming
messages for a user, and isolates different event protesats

but as with user-level threads, event processes limit qoeccy
and impose low space and scheduling overheads. Each ewent pr
cess is associated with one conventidoage processrom which

its initial state is drawn. The event process'’s kernel statgsists
only of a send label, a receive label, receive rights forgand

a set of private memory pages, plus some bookkeeping informa
tion, altogether occupying 44 bytes of Asbestos kernel ngrkor
comparison, Asbestos’s minimal process structure takeéHges.

The code for a typical event process-based server resethiles though this cannot store state between messages, it doelsaavo
event-driven dispatch loop above: cumulating taint.
An event process has all the power of an ordinary process to

% (iafp(‘!g?aetgfi%%'igtl(ifg&s)?)’ restrict_i_ts labels, fo_r example to reflect th_e fact that firiecessing
3. initialize state(state); .aspec[flc user’s prlyate data. In the multi-user file .ser\.xarrmle
4. state.reply ewport(): in Section 5.2, the file server would end up contamlnatlngmle
5 } proc_ess’s send label with the useus har_1d|e, correctly reflecting
6. processnsg(msg, state); that just the event process was contaminated.
7. ep.yield(); The base process does not explicitly create event processes
does it know of their existence. In fact, once it cafscheckpoint,
each with its own isolated state. The tep. system calls manage ay to change its memory. Different event processes areuaiso
control flow transfer between events. The single “stateiaise aware of each other’s existence except possibly througisages
refers to a different user in each event process. based communication, preserving the independence aratigsol
When the base process first calls épecheckpointsystemcall, represented by per-event process labels. We plan for fuiori

it enters the event process realm, and the base processwiiel o jnvestigate mechanisms for event processes to sellgcsiare
never run again. The process is de-scheduled until a message memory, subject to label checks.

rives on a port for which the base processany of its event pro-)
cessegholds receive rights. The kernel then schedules an event pr 6.2 Implementation

cess to receive that message. If a particular event prootss fe- Event processes are efficient for two reasons. First, thaeker

ceive rights for the relevant port_, thgp_ch_eckpointretu_rns i_n that scheduling cost is little higher than that of a single precesen
event process’s context, restoring its private labelsivecrights, with many event processes. Second, the memory overhead of an
and memory. If, on the other hand, thaseprocess holds the port's o ent process can be as low as a single page of memory—to hold

receive rights, the kernelreates a new event proceasd returns the event process’s user-level state—plus a few hundress wft
in that event process’s context. The event process staitissend kernel state.
and receive labels copied from the base process's labetscrive While event process memory acts like a copy-on-write copy of
rights, and no private memory pages. _ the base process’s memory, the implementation is optimiaed
When ep_checkpoint returns a message in an event process’s gyent processes that modify very little memory. The memtates
context, the label contamination and declassificationsrale ap- of each dormant event process includes just a list of modifiegks
plied to that event process’s labels. The kernel makes @reness and the modified pages themselves. That is, event processes d
memory writes private by marking all shared pages Copy-GfeW yeep their own page tables. A running event process borrbers t
and an event process gets receive rights for any ports itegea base process’s page table data structure in the kernelicigainin
After it finishes processing its message, the event procks ¢ exactly those places that differ.
the ep_yield system call. This call saves any changes to the event Typically, programs scatter users’ data across the staakldi
process’s labels, receive rights, and memory and then sdspe tign'to various places on the heap. This would lead to a velti
the whole process, just as when the base process first called|arge number of pages that are unnecessarily specific toesact
gp_chgckpoint NO. event process will run until another message process. Some of these pages merely hold temporary vasjaithe
is available for delivery. o ers must persist across the processing of several mes&igeag
Event processes often make temporary modifications to mem- i, non-temporary data in a contained data structure ondhp h
ory that are useful only for the current event. To keep thedder can minimize the number of persistent pages required. Tt d
from saving such memory modifications acregsyields, an event management technique is much more natural in event-driven p
process can cakp_clean to revert a specified memory range to gramming, which the event process system calls symbibtieat
the base process’s state. An event process frees all itaroeso courage. Thus, event processes tend to use minimal priveie m

including its kernel-maintained state, with tbp.exit system call. ory, and the optimization of only storing page table differes is
Event processes can execute most system calls, including se profitable in practice.

ing and receiving messages, allocating memory, and sa févémt
processes’ execution states, unlike their memory statesiad iso- 7 WEB SERVER DESIGN
lated: an event process may block indefinitelyanv, blocking the

entire process, or even exit via the process-veixi¢ system call. The Asbestos Web server is based on the OKWS system for

UNIX [20]. In the original OKWS design, alemultiplexey ok-
Usage Messages delivered to a base process handle typically cor-demux accepts each incoming TCP connection and parses its
respond to the advent of new client processes or new clignt ne HTTP headers to determine what service the remote clierg-is r
work connections, exactly the situations in which it is ayprate questing. It then hands the connection off twarker processpe-

to create a new event process. An event process can tellés n cialized for providing that service. OKWS’s goal is to iselser-

by checking and setting a memory location that the base gsoce Vvices, so that one compromised service cannot affect othies

initializes to zero; a new event process inherits the zetulewa its UNIX predecessor, OKWS on Asbestos also isolates ssvic
re-activation of an existing event process will see its joes non- in different worker processes, but it additionally enfareser iso-
zero write to that location. A new event process will typigalllo- lation within workers via event processes: a compromised worker

cate itself a new port on which to receive messages, as idtlivfe cannot leak one user’s information to other users.
the above code sample. The system ensures that messages to th

port will be delivered to the current event process, whiah ttaus 7.1 Startup

send queries to file or database servers on behalf of thentuiser OKWS is started by a launcher process. The launcher spaltns
and later receive any replies. For some applications, newgted demux site-specific workers requested by the site operator,vaod t
event processes might exit immediately without creatingradie; other processes seen in Figurédtl andok-dbproxy The processes

1. u's TCP connection
netd

2. Grantuc x| |5. Grantuy x

6. Grantuc *, Ug *,
Contaminateir 3

3. Lookup UN/PW

idd ok-demux WorkerW

4. Grantug *, Ut *
7. CreateW[u]

Figure 5: OKWS message flow for handling usés Web request.

exchange and inherit handles to establish the communicptiths
seen in the diagram.

The ok-demuxmust be certain that it is communicating with the
worker processes that the launcher started and wants to tust-
ing workers to identify themselves correctly. Thus, thentzher
grants a process-specifierification handleto each process it
starts. Thek-demuscollects these handle values from the launcher.
When a worker identifies itself to thek-demuxit must provide a
verification labelV containing its verification handle at leve| al-
lowing theok-demusto verify that it speaks for the relevant process.
Other designs, such as having the launcher mediate inttrahwu-
nication with the workers, would also be possible.

In the current prototype, a process crash would necessitate
restart of the whole process suite, though a more maturéovers
of launcher could restart dead processes (as in OKWS on Unix)

7.2 Basic connection handling

We now describe the data path of a simple Web request to OKWS
running on Asbestos; Figure 5 shows the steps. When auwser
makes an HTTP connection:

1. The user-level network serveetdaccepts incoming TCP pack-
ets from the network. Onasetdhas accepted's connection, it
allocates a new poric to act as a “socket” to which processes
can send READ and WRITE messages. The port lakgl, is
set to{uc 0, 2}, so that no process can initially send to it. Sec-
tion 7.7 describesetdfurther.

. As it started uppk-demuxegistered witmetdto listen for in-
coming TCP connections on the machine’s Web port. Therefore
netd notifiesok-demuyof the new connection by grantingug
at levelx.

. ok-demuxreads network data from over portuc until it can
authenticatau. Currently, OKWS uses a simple username and
password pair, though more sophisticated handshakes afe po
sible. It sendsrs username and password to OKWS'’s identity
server,idd, which is described in Section 7.4.

. If u provided a valid loginjdd grantsok-demuxtwo handles
corresponding tay, ataint handle 4 and agrant handle u,
both at level. These handles function like the similarly-named
handles in Section 5.

. ok-demuwgrantsur x to netd which then raises its receive label
to containur 3 and raisesicr to {uc O, ur 3,2}. These changes
allow ur-tainted data to escape over the network, but only via
uc. From now onnetdwill respond to all messages o (such
as READSs) with replies contaminated with 3.

. Whenok-demuxread TCP payload bytes frometdin Step 3,
it also noted which servica is requesting. If this service ex-
ists, ok-demuxforwardsuc to the workerW that provides the
service, simultaneously contaminatiigs send label withur 3
and granting iug *.

. WorkerW returns fromep_checkpointinto a new event process
WI[u], receivinguc *, Ug *, and the contaminatiour 3.

8. Event proces®V[u] makes a new por and grants it tanetd
at levelx. It then readss's request by sending read requests to
netds port uc, yielding, and readingetds replies touw upon
wakeup. After reading and parsings entire request, the event
process formulates a reply and writes itkg

9. W[u] callsep_exit.

We briefly argue that the workét[u] can communicate with
as intendedW/[u]’s send label is contaminated with 3 in Step 6,
butnetds receive label was changed in Step 5 to accommodate that
contamination. Consequently, the kernel will allé¥ju] to send
data overuc to netdand across the network to

The security of the protocol comes because any process or eve
process that accesse's data either is trusted and hagx in its
send label, or is not trusted and has3. In this examplenetd idd
andok-demuhaveur *, but we assume them uncompromised (see
Section 7.8 for further discussion). The event prod&§s and its
descendents have had the opportunity to see wisqrivate data,
and therefore haver 3 in their send labels. All other processes,
such as those working on behalf of a different ugecannot re-
ceive messages frokiV[u] or its descendents, and therefore cannot
receiveu's data. Even if such data theft were possiloletd would
not allow its traffic over the network: any process wjtl 3, vr 3}
in its send label cannot send datatodue to that port’s port label
restrictions.

Note that while the kernel enforces security policies tisat i
late user data flows from one another, OKWS's concept of sser i
opaque to the operating system. Having declassificationlgge
for an OKWS user’s handle, such as implies nothing about ac-
cess to sensitive system resources, such as the kerneidigl ior
the system password file. An Asbestos application like OK\W&S h
no need for “superuser” access, with all of its attendangdes

7.3 Web sessions

Since HTTP is stateless, many Web servers support storagsof
sion datathat persists over multiple HTTP connections. OKWS can
securely store per-user server-side state with simpldiaddito the
above protocol. When supporting sessions, dkaemuxprocess
stores a table of all recently active user-worker pairs.tBpS, if
useru requests service from work, ok-demuxooks in this table
for a port to the event proced¥[u]. If it finds such a port, it for-
wardsuc directly toW[u]. If it does not, it forwardsrs connection
as normal, causing a new event process to be forked. Whemihe n
event process allocates paoii; in Step 7, it grants it tmk-demux
which then inserts it into its session table for future use.

The worker event process writes session data to memory as nor
mal. To preserve this state across connections, it must¢pafield
instead ofep_exit in Step 9. Becausek-demuxsendsu's requests
for W directly toW[u], those requests will see any previous changes
to session state. At the end of the event loop, event proeshseld
typically call ep_clean before yielding to discard all pages mod-
ified since the checkpoint that do not hold session data;wfiis
typically include the stack. When a usés session times out or
u explicitly logs off, u's worker event processes cap_exit and
ok-demuxcleansu’s user-worker pairs out of its session table.

7.4 Managing identities

In Steps 3 and 4, thek-demuxverifies use’s login credentials

by querying an identity servédd. This server associates persistent
user identification data, such as username, user ID, ancassf
word, with the more temporary grant and taint handiegnduc.
Whenidd answers a successful login query in Step 4, it either gen-
erates newsr andug handles (ifu has not logged in recently), or

returns cachedr andug handles if available. In the current imple-
mentation,dd stores user information in a relational database (see
Section 7.5) and never cleans its cache. The identity shasspe-

cial access througbk-dbproxyto this password database, which
other processes such as workers cannot access directly, ffigu
lookup in Step 3 will result in a database query per first-tioggn.

7.5 Database interaction

Asbestos offers preliminary database support to workecgeges
through a port of the Unix package SQLite [40]. A separate pro
cess calleak-dbproxyinterposes on all OKWS database accesses,
converting Ashestos labels and security policies to dgiasyand
functions native to standard SQLite. With database ac€as®yS

can extend its label-based security policy to one that gisracross
system reboots. In our current implementatioksdbproxyis both
privileged and trusted: it is trusted to contaminate andkhabels

to ensure secrecy and integrity respectively, and is paetl in that

idd grants it all user taint handles at lewel

ok-dbproxyadds a “user ID” column to the table definition of
every table accessed by OKWS workers. The workers thensselve
cannot access or change this column. Wbkrdbproxyreceives
INSERTs, UPDATES, or other SQL queries that write to the
database, it first checks that the request came with a vadichame
u and a verify labeV bounded above byur 3, ug 0, 2}. This ver-
ify label conveys two important facts. First, the sendegsdslabel
does not contain handles other thanat level3, and therefore the
sender has not been contaminated by any data aside from his ow
Second, because the verify label contaigsat levelO, the sender
was granted the ability to write data fay either byidd or one of
its proxies (i.e.pk-demu After approving the given verify label,
ok-dbproxyqueriesdd to affirm the binding between useiand the
two handlearr andug. If all checks passpk-dbproxyrewritesu’s
request so that every row written will hauis user ID in the private
“user ID” column.

Whenever a worker process fetches data from the database vi
SELECT, theok-dbproxyprocess reapplies the appropriate con-
tamination to returned rows. If a row’s user ID column congai
u's ID, then ok-dbproxyreturns the row’s data contaminated with
ur 3; it queriesidd for uy if it does not have this mapping in cache.
Each row is returned as a separate message with a sepanate tai
and to finish the requesbk-dbproxysends an untainted message
indicating that all data has been returned. Since each wenie
ceive label is limited to receiving at most one user’s taantjorker
will receive only rows meant for its user, and cannot tell hnany
other rows were sent. A more relaxed policy could allow weske
to be tainted with multiple users’ data; but like any dynataict-
ing mechanism, this would open a storage channel to the alsab
through worker process labels.

Our current prototype retrofits a standard database witthsesu
of Asbestos’s security features; for instance, rows cap belcon-
taminated with one handle. We envision future databasemgst
built specifically for Asbestos that incorporate labels anent pro-
cesses in a deeper way.

7.6 Decentralized declassification

Finally, the OKWS prototype supportiecentralized declassifica-
tion. As stated above, if any process, such as usewxorker event
process, wishes to read usés data from the database, the database
will contaminate the response with 3. Userv's event process
will fail to receive this message, since its receive labelas high
enough. Even if it were to receive the message, its sendaned

be too contaminated to send data back twer the connectionc.

10

But useru may wantto share some data with such as his pub-
lic profile. That is, useu sometimes needs tteclassifyhis private
data for public access.

OKWS supports semi-trusted declassifiers for this purpfse.
declassifierD within OKWS is a worker like any other, except
that the launcher tellsk-demuwof its declassifier status. Whexk-
demuxhands a connection off to a declassifier worRen Step 6, it
grants Dthe handlaur x instead of contaminating it withr 3. With
ur at+, the workerD has the privilege to declassify data marked
with useru's taint. Thus, whe contacts the database to SELECT
u's private datapk-dbproxys response does not affdots send la-
bel. The declassifier can now write declassified data to ttabdae,
providing a verification label afir x to prove it has this right. Inter-
nally, ok-dbproxyflags a data row as declassified by setting its user
ID entry to zero. Whewk-dbproxyreads data with zeroed user IDs
back out of the database, it does not apply any contaminadith
userv's worker process can safely read declassified data out of
the database without affecting its send label. This deifieason
is decentralized, since it does not directly involdd, the creator
of handleur. Furthermore, th®[u] event process is trusted only by
u; it cannot declassify any other user’s data, sinokedemuxonly
granted itur x. An attack on a declassifier worker can expose more
of u's data than intended, but cannot otherwise affect the syste
information flow.

7.7 Network server

All access to the network in Asbestos is through one procexd,
which implements the TCP/IP stack (using a port of LWIP [26])
manages network devices (using a version of Intel’s Linuxedr
for the E1000 gigabit card), and creates connections fargilo-
cesses. As the single interface to the netwaogtdhas a privileged
role and must properly apply restrictions to connectionsahages.
An application can send a messagen&idto request a outgoing
connection to a remote host or to listen for incoming corinast

In either casenetdwraps a new connection with an Asbestos port,

&vhich it grants at levek to the requesting application. Once a pro-

cess has a port to an open connection, it may perform READ and
WRITE operations to transfer data, CONTROL operations dsel
the connection or change the low-water mark, and SELECT-oper
ations to determine available buffer space. On a listenouet,

a process may perform READ operations to accept incoming con
nections and CONTROL operations to close the socket. Irraode
apply labeling to network connectionsetdoptionally maintains a
taint handle for each connection. When a process tefldto add

a taint handle to a connection, later messages sent in rgsgon
operations on that connection will be contaminated withttiet
handle at leveB. In OKWS, for examplenetd contaminates all
data read from users connection withur 3 at ok-demu’s behest.

7.8 Trust and privilege in OKWS

Currently, all OKWS components are trusted and/or prietbgx-
cept for the worker processes. We claim that for typical Wedss

the worker processes correspond to the most vulnerableraord e
prone parts of the computing base. They are vulnerable becau
they read, write, store and manipulate sensitive data oth the
network and from the database. They are error-prone foraleve
software engineering reasons. First, worker code typickies not
face external code audit, both because it varies greathy fite to

site and because many sites’ intellectual property conttiscour-
age this practice. Second, load on Web sites can fluctuatiywil
with unexpected load spikes come emergency performance fixe
that can accidentally circumvent security mechanismsdT karge
Web sites can run hundreds of thousands of lines of Web code,

and since writing Web service code that functions corretp-
duces the correct result for honest users) seems simptepfitan
assigned to junior programmers without stringent ovetsifx-
perience has shown, however, that writsgcureWeb services is
challenging indeed. We believe securing Web applicatiaitts au-
tomatic, kernel-enforced mechanisms to be a significamt &ie
Web security.

In the future, we plan to move more OKWS components out of
the trusted or privileged computing base. For instanegd could
be decomposed into a simple trusted and privileged componen
and an event-process-based workhorse. The trusted fromt@und
classify incoming packets and firewall outgoing packetetam
discretionary label rules; it would therefore be privildgeith re-
spect to all handlesy, asnetdis now. It would forward packets,
once classified, to the appropriate event processes of amsted
netdback end, which would manage the specifics of TCP buffering
and flow control. Each back-end event process would be centam
inated with respect to the user on whose behalf it speakshmuc
like worker processes in the current system. Similarlydéabase
might be decomposed into a trusted, privileged indexer, @amd
event-process-based back end that would manage cachirgjaand
ble storage.

8 COVERT CHANNELS

Asbestos labels prevent processes from explicitly tratigmgi
sensitive information to unauthorized parties. Howevepp®s-
edly isolated processes can still communicate informatioough
covert channels. Our goal is not to eliminate covert chaeain
impossible task—but rather to make it significantly haraeleak
information than on systems used as Internet servers tudaye
high-grade military systems are required to quantify thegaf all
covert channels, for Asbestos we content ourselves wittenai-
ing the channels.

Broadly speaking, covert channels can be categorized lzer eit
timing or storage channels. A proceSsonveys information t@
with a timing channel if it modulates its use of system resesr
in a way that observably affecBs response time. For instanog,
might flush the processor cache or cause the disk arm to bedmove
farther from a subsequent request. We are less concerniedinvit
ing channels than with storage channels, as to some exteinti
channels can be mitigated by limiting processes’ abilitpneasure
time precisely [13]. (Asbestos offers no such feature, vaneand
the problem admittedly becomes harder in the presence wbrlet
communication.)

construct two untainted process&g, and B;, both of which re-
peatedly send heartbeat messages.tBy sending a message that
contaminates proce8s, A can communicate the valu¢o C. Such
storage channels are inherent to any system with run-tiraekitg

of dynamic labels [31].

Both of the above channels require at least two processéshwh
means they can be mitigated by restricting the ability tdfor
This illustrates one advantage of the event process ahbietraas
compared to a more traditional one-label-per-processtanthre.
Event processes reduce concurrency, thereby also redtiving
number of send labels and program counters available asgstor
channels at any given time.

Other Asbestos kernel data structures have been carefedly d
signed to avoid exploitable storage channels. Handles emerg
ated by incrementing a 61-bit counter, which is a storagamsla
However, since the kernel encrypts the counter value toymed
handles, the user-visible sequence of handles does no¢yxenv
ploitable information.

The current implementation still has several other stordge-
nels we intend to close or limit, but we believe these can ke mi
igated without affecting the claims of the paper. In patdcuAs-
bestos does not yet deal gracefully with certain forms ofuese
exhaustion.

9 EVALUATION

The goal of this section is to show that OKWS on Asbestos pro-
vides a useful level of performance. First, we show the amofin
additional memory required to support user isolation in OKW
small. We then compare OKWS'’s throughput and latency to that
of Apache running on Linux. A prototype OS like Asbestos can
hardly be expected to compete with mature, well-tuned syste
like these. Our experiments nevertheless show OKWS on Asbes
can already compete with these systems for some scenarnab—a
indicate fertile ground for future performance improvensen

The performance measurements were conducted on a gigabit lo
cal network with a Linux HTTP client generating requestseTh
Asbestos server is a 2.8GHz Pentium 4 with 1GB of RAM, but As-
bestos currently only uses 256MB of RAM. Our experiments enad
as few file system accesses as possible; we disabled all Websac
logging and ran all databases in memory.

9.1 Memory use

In Section 6, we argued the merits of event processes oves mor

Storage channels are caused by any state that can be modifiedraditional fork-accept designs. Our hypothesis was thaheddi-

by proces#\ and observed bB whenA is not supposed to transmit
information toB. It was a goal to avoid storage channels that could
be exploited within a single process, so that at least twperiing
processes are required to communicate information in tiaolaf

a label policy.

The Asbestos design contains two inherent storage chatinels
program counter and labels. Tleg_yield system call potentially
affects the program counter of a differently tainted evewicpss
by causing it to run. Two colluding, identically-labeledeet pro-
cesses can transmit a bit of information by the order in wiiely

tional protection domain might consume only one additiqgrede
of memory. Our measurements roughly support this claim.

Web sites often cache dynamic data to lighten database load
and to avoid latency. As discussed in Section 7.3, OKWS uses
event processes to cache dynamic data while maintainitefizo
among users. An event process persists over the lifetimé/éla
session, which typically spans multiple HTTP connectigkisthe
end of an HTTP connection, the worker usgsclean to release
all memory allocated, except for the session data. A cleanedt
process, with just session data, is callethahed sessio\n event

call ep_yield if the next scheduled event processes have lesser taint. process that is processing an HTTP request uses more memaary t

This channel is roughly equivalent to the covert channerition-
ally included by the drop-on-exec feature of IX [28].

The send system call potentially raises the value of the recip-
ient's send label to an unanticipated value. This is alsmeage
channel, as labels can be observed through lack of comntiarica
Consider a tainted procegsattempting to communicate a bit of
sensitive information to an untainted proc€ssAn attacker might

11

a cached session, since it stores temporary variables dfetsyu
such an event process is called agtive sessionA typical Web
server has many more cached sessions than active ones.

Our experiments measured the amount of allocated memory af-
ter creating different numbers of Web sessions, includpags for
kernel data structures. In all of our memory measuremergsaw
OKWS with one toy Web service, which stores data from a user’s

30000 T T T T
Active sessions —+—

Q 25000 |+ Cached sessions — x—- |
g

< 20000 i
Q —
) -

> 15000 T i
e -

§ 10000 | 4
£

S 5000 [Looxx T .
°

1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of sessions

3000 T T T T T T T T T
2500
2000
1500
1000

500

Average connections/second

1 100 1000 3000 5000 7500 10000 Apache Mod-

Cached OKWS sessions Apache

Figure 6: Memory used by active and cached Web sessions as a func-Figure 7: Throughput for various numbers of cached sessions in

tion of the number of sessions. Includes all memory allatateboth
kernel and user programs.

HTTP request and returns it to the user in the subsequenésequ
The size of the response is about 1K.

The system uses approximately 1.5 4KB pages per cached ses-
sion, as seen in Figure 6. One complete page is due to state

maintained in the worker’s event process. The remaindehef t
memory is for kernel data structures—event processeds|adred
handles—as well as potentially memory in other user presess
such asnetd The memory required for kernel data structures is

around twice as much as we expected, probably due to internal

fragmentation or a small memory leak.

To determine the memory cost of active sessions, we repeated

the previous experiment but modified the worker so that isdus
ever unmap memory, caélp_clean or call ep_exit. This method
produces worst-case behavior, capturing the maximum anafun

OKWS, compared with Apache and Mod-Apache.

Latency (us)
Server Median | 90th Percentile
Mod-Apache 999 1,015
Apache 3,374 5,262
OKWS, 1 session 1,875 2,384
OKWS, 1000 sessions 3,414 6,767

Figure 8: The median and 90th percentile latencies of requests to var
ous server configurations.

performance; for Mod-Apache 16 concurrent connectionsthas
sweet spot. Asbestos’s network stack is based on LWIP [2@w

was chiefly designed to conserve resources and does not offer
good performance under load; sixteen concurrent conmectave
maximum throughput. For OKWS, we then varied the number of
cached sessions in the system. In all tests, the serverndsgo
with 144 bytes of HTTP data, 133 bytes of which were in headers

memory consumed by our simple worker. The experiment shows Larger responses only exercise the network stack.

that an additional eight pages of memory are used by eackeacti
session. Two of those pages are stack and exception staek,pag

Since OKWS isolates users, they were authenticated andhrun i
different event processes as usual. We measured perfoematic

one is for the event process’s message queue, and the regaini hq session support described in Section 7.3: once authéedito
five comprise the modified heap and pages with modified global 4, system, future requests were serviced by the eventgzace-

variables.

9.2 Web server performance

ated in the authentication step. The OKWS throughput resoilts
contain data both for forwarding messages to existing epent
cesses and for creating new event processes, which is sldawer

We examined two aspects of Web server performance: through-involves communication with the database and some kerrezt ov

put and latency. In these experiments, we tested an everesimp
Web application, which simply responds with a string of ettar
ters whose length depends on the client’'s parameters. Wpareuah

head. In our benchmark, for 1000 user sessions and more, each
user connected to its session exactly four times; a workioitd
a different ratio of new sessions to existing sessions woeld

OKWS on Asbestos to the Apache Web Server, version 1.3.33 [2] form somewhat differently. Because the number of sessifiests

(which outperformed version 2.0.54 in our tests). We immlatad
our test application both as a standard CGI process, wiiitt€?)

the size of labels on some components, we expect perforntance
change with the number of cached sessions. Neither Apache no

and as an Apache module written in C [1]. In both cases, Apache Mod-Apache isolates users, so no attempt to authenticata th

keeps a pool of pre-forked processes to answer requestshépa
with CGI processes additionally forks and executes the G&rl
for each request. Apache with the module version of the seyvi
which we call “Mod-Apache”, does not fork for each requestdv
Apache is efficient but provides no isolation. Apache withl G-
cesses does provide some isolation, but at a significantduest
compared to Mod-Apache, since each request is handled rkedfo
process. However, at least in its default configuration,ohgadoes
not run CGI processes in a chroot jail, so if the CGl is explali¢,
any vulnerabilities exploitable by a UNIX user on the systama
accessible. In contrast, as discussed previously, OKW$&iqe®
isolation both between services and between users witteénvics.

9.2.1 Throughput

To test throughput for OKWS relative to Apache and Mod-Apgch
we first varied concurrency to maximize completed connestio
per second. For Apache, 400 concurrent connections maadmiz

12

made in this test.

Figure 7 shows that, with one session, OKWS performs better
than Apache, and a bit over half as well as Mod-Apache. OKWS
performs better than Apache until somewhere over one timousa
sessions are cached in the system, but even with 10,000asepar
event processes, each holding isolated memory state, fdrper
approximately half as well as Apache. Section 9.3 furthecutises
the factors that reduce OKWS's performance as sessiorsaser

9.2.2 Latency

This section compares the per-request latency of OKWS on As-
bestos with Apache and Mod-Apache. Stuck with low-conawaye
Asbestos, we measured the latency of all three servers with a
concurrency of only four simultaneous connections. Mogéte,
which processes each request within a single process,néspo
most requests with very low latency. This is to be expected of
server that can handle Web requests with simple librarg cllih-

like Mod-Apache, Apache with CGI pays performance pensltie 4000

T T T T T T T T T 1
for forking and IPC, responding to most requests with theefive C%,'\D,g T 7
times the latency. As shown in Figure 8, OKWS with one uselshas 3500 I Kernel IPC —x— PR
smaller median latency than Apache, as well as a smalleancei 5 3000 N e — a j/‘/]
Scheduling affects OKWS to a lesser extent because there isn § g
parallelism for requests to choose from. All requests megtien- S 2500
tially traversenetd ok-demuxworker, and themetd again, which §
doesn't give the option for any request to be temporarilyvet g 2000
OKWS with 1000 cached sessions has latencies which are st a % 1500
worse then those of Apache. g

S 1000} .

9.3 Label costs < ’
Ideally, varying the number of sessions should have no effec 500
throughput or latency. However, the size of various labelthe 0 R-
system will increase with the number of sessions. Figureo®vsh 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
the costs of various components in the system in thousar@p of Cached OKWS sessions

cycles per connection as the number of cached sessionssesie rigure 9: The average cost in Kcycles/connection of various Astsesto
The OKWS and Network lines represent the time spent in OKWS components, as the number of cached sessions increases.

andnetdcode, respectively. The Kernel IPC line includes all time
spent in processingendandrecv, which includes most of the sys-
tem’s label operations; time spent in other label operatignin-
cluded as well. The OKDB line represents time spent in thei&QL

database looking up usernames and passwords, and any irggnain - -
g up P y regn cesses impose less overhead on the operating system ttked for

processing time is accounted for in the Other line. .
With one session in the system, most of the processing time is gddress spaces, so many thousands of them can theoretinedy

in OKWS and the network stack. As the number of sessions in- Eégg%ﬁ;fg?ﬁ;isgg'&f? par;)etot:ypg wiﬁesﬁ.rvﬁfgsmﬁg
creases, database overhead incurred by user authemtigatikly v W ugs | IgN-TiSK Wi

becomes significant. This may simply represent anotheradfast- tC:rgnroet i?rléieo?]Te 1uzer ;0 gscé'vrie?gﬁher; F::e'lﬁ]tz dd\?\t/:zyg;ession
ing unoptimized system components, in this case SQL.ite.@vew q y 1.5 pag y P

label and other kernel IPC operations also take signifigantire and exhibits performance comparable to Unix systems tioafce

time as sessions increase. Since OKWS uses two handledateiso weaker isolation.
a user, 10,000 cached sessions impiiesand ok-dbproxys send
labels will contain more than 20,000 handlestds receive label ACKNOWLEDGMENTS

will have accumulated 10,000 declassifications with resge@int The authors thank the following people for their commentd an
handles; anadk-demuxwill hold at least 10,000 handles for open technical contributions: Lee Badger; Chris Frost and Mikanh
worker sessions. Furthermore, some of these large labedslmeu marella for network stack integration; Michelle Osbornevi@rk

Asbestos also introduces a new process abstraction, ex@nt p
cesses, which allow a server process to inhabit disjointrggc
compartments without either privilege or contaminatioveiit pro-

updated to include a capability for each new TCP connectiad, on an earlier version of the system; the contributors to &R
then to release that capability when the connection is passan project, including Adam Dunkels and Leon Woestenberg; the
event process or closed. Around 3,000 sessions, time sp@ d anonymous reviewers; and our shepherd Emin Giin Sirer.

IPC and label operations surpasses time spent in the nestaxk. This work was supported by DARPA grants MDA972-03-P-

By 7,500 sessions, it equals the work being done in all of OKWS 9015 and FA8750-04-1-0090, and by joint NSF Cybertrust/BAR

As expected, linear scaling factors in our label implememtdead grant CNS-0430425. David Maziéres and Robert Morris ape su
to linear performance degradation as labels increaseenBizther ported by Sloan fellowships.

optimization opportunities are under investigation, aslégrly re-

quired. However, we are pleased that the degradation itvedia REFERENCES
mild, with no obviously quadratic or exponential factorss we
hypothesized, Asbestos labels and event processes maleetit p
cal to isolate user state even on a server storing data fasémals

[1] Apache API notes.htt p:// htt pd. apache. or g/ docs/
1.3/ msc/APl.htm .

of users. [2] Apache HTTP server projedat t p: / / ht t pd. apache. or g.
[3] David E. Bell and Leonard La Padula. Secure computeresyst
10 CONCLUSION Unified exposition and Multics interpretation. Technicafrt
The Asbestos operating system makes nondiscretionargsacoa- MTR-2997, Rev. 1, MITRE Corp., Bedford, MA, March 1976.
trol mechanisms available to unprivileged users, givirgitine- [4] Viktors Berstis. Security and protection of data in tigM Sys-
grained, end-to-end control over the dissemination of riné> tem/38. InProc. 7th Annual Symposium on Computer Architec-
tion. Asbestos provides protection through a new labelafgme, ture (ISCA '80) pp. 245-252, May 1980.
which, unlike schemes in previous operating systems, alldata [5] M. Branstad, Homayoon Tajalli, Frank Mayer, and David\2a
to be sanitized odeclassifiedby individual users within categories Access mediation in a message passing kernelProt. 1989
they control. The categories, called handles, use the samesias IEEE Symposium on Security and Privapp. 6672, Oakland,
communication endpoints, making them a kind of generatinaif CA, May 1989.
capabilities. As in a capability system, processes canmdigadly [6] David R. Cheriton. The V distributed systemlournal of the
generate new handles and distribute them independentlypran ACM, 31(3):314-33, March 1988.
cesses can specify temporary label restrictions on sergages to [7] Dorothy E. Denning. A lattice model of secure informatitow.
avoid the unintentional use of privilege. Communications of the ACM9(5):236-243, May 1976.

13

(8]

Bl

(10]

[11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Dorothy E. Denning and Peter J. Denning. Certificatiorpiad-
grams for secure information flol€ommunications of the ACM
20(7):504-513, July 1977.

Department of Defense.Trusted Computer System Evaluation
Criteria (Orange Book)December 1985. DoD 5200.28-STD.

Timothy Fraser. LOMAC: Low water-mark integrity pratéon
for COTS environments. IRroc. 2000 IEEE Symposium on Se-
curity and Privacy pp. 230-245, Oakland, CA, May 2000.

R. P. Goldberg. Architecture of virtual machines.FAroc. AFIPS
National Computer Conferenc¥ol. 42, pp. 309-318, June 1973.

Norman Hardy. The confused deputy (or why capabilitiéght
have been invented)Operating Systems Revig@2(4):36-38,
October 1988.

Wei-Ming Hu. Reducing timing channels with fuzzy timén
Proc. 1991 IEEE Symposium on Security and Privagy 8-20,
Oakland, CA, May 1991.

Trent Jaeger, Atul Prakash, Jochen Liedtke, and Nayls&m.

Flexible control of downloaded executable conteh€M Trans-
actions on Information and System Secyri{2):177-228, May
1999.

Paul A. Karger. Limiting the damage potential of dig@eary
Trojan horses. IProc. 1987 IEEE Symposium on Security and
Privacy, pp. 32-37, Oakland, CA, April 1987.

Paul A. Karger and Andrew J. Herbert. An augmented ciéipab
architecture to support lattice security and traceabdftgccess.
In Proc. 1984 IEEE Symposium on Security and Privagy 2—
12, Oakland, CA, April 1984.

Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Awrsir H.
Mason, and Clifford E. Kahn. A VMM security kernel for the
VAX architecture. InProc. 1990 IEEE Symposium on Security
and Privacy pp. 2-19, Oakland, CA, May 1990.

Key Logic. The KeyKOS/KeySAFE System Desidarch 1989.
SECO009-01. http://ww:. agorics. com Li brary/
KeyKos/ keysaf e/ Keysafe. htm .

Samuel T. King and Peter M. Chen. Operating system stippo
for virtual machines. IrProc. 2003 USENIX Annual Technical
ConferenceSan Antonio, TX, June 2003.

Maxwell Krohn. Building secure high-performance wainsces
with OKWS. InProc. 2004 USENIX Annual Technical Confer-
ence pp. 185-198, Boston, MA, June 2004.

Maxwell Krohn, Petros Efstathopoulos, CIiff Frey, Rea
Kaashoek, Eddie Kohler, David Mazieres, Robert Morris,
Michelle Osborne, Steve VanDeBogart, and David Zieglerkéla
least privilege a right (not a privilege). Proc. 10th Hot Topics
in Operating Systems Symposium (HotOSSénta Fe, NM, June
2005.

Carl E. Landwehr. Formal models for computer securiyCM
Computing Survey4.3(3):247-278, September 1981.

Robert Lemos. Payroll site closes on security worries,
February 2005. http://news.com conl 2102- 1029_
3-5587859. htm .

Jochen Liedtke. On microkernel constructionPioc. 15th ACM
Symposium on Operating Systems Princip&spper Mountain
Resort, CO, December 1995.

Peter Loscocco and Stephen Smalley. Integrating flesibpport

for security policies into the Linux operating system. Rroc.
2001 USENIX Annual Technical Conference—FREENIX Track
pp. 29-40, June 2001.

LWIP. htt p: // savannah. nongnu. or g/ proj ect s/
I wip/.
Catherine Jensen McCollum, Judith R. Messing, and LgA

Notargiacomo. Beyond the pale of MAC and DAC—defining
new forms of access control. Proc. 1990 IEEE Symposium on
Security and Privacypp. 190-200, Oakland, CA, May 1990.

14

(28]

[29]

(30]

(31]

[32]

[33]

(34]

(35]

(36]

[37]

(38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

M. Douglas Mcllroy and James A. Reeds. Multilevel secu-
rity in the UNIX tradition. Software—Practice and Experience
22(8):673—-694, August 1992.

Mark S. Miller, Ka-Ping Yee, and Jonathan Shapiro. QGulfist
myths demolished. Technical Report SRL2003-02, Johns Hop-
kins University Systems Research Laboratory, 200 t p:
/Iww. erights.org/elib/capability/duals/.

James G. Mitchell, Jonathan Gibbons, Graham Hamilter,
ter B. Kessler, Yousef Y. A. Khalidi, Panos Kougiouris, Rete
Madany, Michael N. Nelson, Michael L. Powell, and Sanjay R.
Radia. An overview of the Spring system. Pnoc. COMPCON
1994 pp. 122-131, February 1994.

Andrew C. Myers and Barbara Liskov. Protecting privasing
the decentralized label modeRCM Transactions on Computer
Systems9(4):410-442, October 2000.

News10. Hacker accesses thousands of personal dasa file
at CSU Chico, March 2005.ht t p: // www. news10. net /
storyful |l 1. asp?i d=9784.

Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. shtaAn
efficient and portable Web server. Proc. 1999 USENIX Annual
Technical Conferengep. 199-212, Monterey, CA, June 1999.

Rob Pike, Dave Presotto, Sean Dorward, Bob Flandremam K
Thompson, Howard Trickey, and Phil Winterbottom. Plan @rfro
Bell Labs. Computing System8(3):221-254, Summer 1995.

Richard F. Rashid and George G. Robertson. Accent: Angom
nication oriented network operating system kernel Ptac. 8th
ACM Symposium on Operating Systems Princippgs 64—75,
Pacific Grove, CA, December 1981.

Marc Rozier, Vadim Abrossimov, Francois Armand, |. s,
Michel Gien, M. Guillemont, F. Herrmann, Claude Kaiser,
S. Langlois, P. Leonard, and W. Neuhauser. CHORUS disatbut
operating systemComputing System&:305-370, Fall 1988.

Jerome H. Saltzer and Michael D. Schroeder. The priotecif
information in computer systemBroc. of the IEEE63(9):1278—
1308, September 1975.

Bruce Schneier. Description of a new variable-lengtlg, I64-bit
block cipher (Blowfish). IProc. Fast Software Encryption, Cam-
bridge Security Workshopp. 191-204. Springer-Verlag, De-
cember 1993. LNCS 809.

Jonathan S. Shapiro, Jonathan Smith, and David J. E&BROS:

A fast capability system. IRroc. 17th ACM Symposium on Op-
erating Systems Principlepp. 170-185, Kiawah Island, SC, De-
cember 1999.

SQLite.http://ww. sqglite.org.

Andrew S. Tanenbaum, Robbert van Renesse, Hans vaer8iav
Gregory J. Sharp, Sape J. Mullender, Jack Jansen, and Guido
van Rossum. Experiences with the Amoeba distributed apgrat
system. Communications of the ACN83(12):46—63, December
1990.

VMware. VMware and the National Security Agency team to
build advanced secure computer systems, January 20Q1p:
[I ww. viwar e. coml pdf / TechTr endNot es. pdf .

Rob von Behren, Jeremy Condit, Feng Zhou, George C. ldgcu
and Eric Brewer. Capriccio: Scalable threads for Interastises.

In Proc. 19th ACM Symposium on Operating Systems Pringiples
pp. 268-281, Bolton Landing, Lake George, NY, October 2003.

Robert Watson, Wayne Morrison, Chris Vance, and Briafdf
man. The TrustedBSD MAC framework: Extensible kernel ac-
cess control for FreeBSD 5.0. Hkroc. 2003 USENIX Annual
Technical Conferenggp. 285-296, San Antonio, TX, June 2003.
Matt Welsh, David Culler, and Eric Brewer. SEDA: An aitelt-
ture for well-conditioned, scalable Internet servicesPioc. 18th
ACM Symposium on Operating Systems Principbes 230-243,
Chateau Lake Louise, Alberta, Canada, October 2001.

Andrew Whitaker, Marianne Shaw, and Steven D. GribBleale
and performance in the Denali isolation kernel Pioc. 5th Sym-
posium on Operating Systems Design and Implementation (OSD
'02), pp. 195-210, Boston, MA, December 2002.

