
Labels and Event Processes
in the Asbestos Operating System

Petros Efstathopoulos∗ Maxwell Krohn† Steve VanDeBogart∗

Cliff Frey† David Ziegler† Eddie Kohler∗ David Mazières‡ Frans Kaashoek† Robert Morris†

∗UCLA †MIT ‡Stanford/NYU
http://asbestos.cs.ucla.edu/

ABSTRACT

Asbestos, a new prototype operating system, provides novella-
beling and isolation mechanisms that help contain the effects
of exploitable software flaws. Applications can express a wide
range of policies with Asbestos’s kernel-enforced label mechanism,
including controls on inter-process communication and system-
wide information flow. A new event process abstraction provides
lightweight, isolated contexts within a single process, allowing the
same process to act on behalf of multiple users while preventing
it from leaking any single user’s data to any other user. A Web
server that uses Asbestos labels to isolate user data requires about
1.5 memory pages per user, demonstrating that additional security
can come at an acceptable cost.

Categories and Subject Descriptors: D.4.6 [Operating Sys-
tems]: Security and Protection—Information flow controls, Access
controls; D.4.1 [Operating Systems]: Process Management; D.4.7
[Operating Systems]: Organization and Design; C.5.5 [Computer
System Implementation]: Servers

General Terms: Security, Design, Performance

Keywords: labels, mandatory access control, information flow,
event processes, secure Web servers

1 INTRODUCTION

Breaches of Web servers and other networked systems routinely
divulge private information on a massive scale [23, 32]. Thekinds
of exploitable software flaws that enable these breaches will persist,
but all is not lost if we design systems that limit the possible impact
of most exploits. A powerful tool to contain exploits is the principle
of least privilege [37], which directs that each system component
should have the minimum privilege required to accomplish its task.
A corresponding policy would prevent a server acting for oneprin-
cipal from accessing data belonging to another principal through
direct or indirect channels. A least privilege policy, enforced by the
operating system at the behest of a small, trusted part of theap-
plication, would defang classes of exploits from SQL injection to
buffer overruns, making servers much safer in practice.

Unfortunately, current operating systems cannot enforce least
privilege. Even the much weaker goal of isolating services from one
another (without isolating principal state inside each service) re-
quires fiddly and error-prone abuse of primitives designed for other

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’05,October 23–26, 2005, Brighton, United Kingdom.
Copyright 2005 ACM 1-59593-079-5/05/0010 . . . $5.00.

purposes [20]. Most servers instead revert to the most insecure de-
sign, monolithic code running with many privileges. It should come
as no surprise that high-impact breaches continue.

New operating system primitives are needed [21], and the best
place to explore candidates is the unconstrained context ofa new
OS. Hence the Asbestos operating system, which can enforce strict
application-defined security policies even on efficient, unprivileged
servers.

Asbestos’s contributions are twofold. First, all access control
checks useAsbestos labels, a primitive that combines advantages
of discretionary and nondiscretionary access control. Labels deter-
mine which services a process can invoke and with which other
processes it can interact. Like traditional discretionarycapabilities,
they can be used to enumerate positive rights, such as the right to
send to the network. Unlike traditional capability systems, how-
ever, Asbestos labels can also track and limit the flow of informa-
tion within system- and application-defined compartments.These
complementary security models are linked by a key observation:
the ability to declassify data in a single compartment is analogous
to possession of a discretionary capability. The resultingsystem
supports capability-like and traditional MLS [9] policies, as well as
application-specific isolation policies withdecentralized declassi-
fication, through a single unified mechanism.

Second, Asbestos’sevent processabstraction lets server applica-
tions efficiently support and isolate many concurrent users. In con-
ventional label systems, server processes would quickly become
contaminated by data belonging to multiple users and lose the abil-
ity to respond to anyone. One fix is a forked server model, in which
each active user has a forked copy of the server process; unfortu-
nately, this resource-heavy architecture burdens the OS with many
thousands of processes that need memory allocated and CPU time
scheduled. Event processes allow a single process to keep private
state for multiple users, but isolate that state so that an exploit af-
fects only one user’s data. A group of event processes is almost as
efficient as a single ordinary process. The event process discipline
encourages efficient server construction, and in our experiments,
servers can cache thousands of user sessions with low storage costs.

Measurements on an x86 PC show that an Asbestos Web server
can support comprehensive user isolation at a cost of about 1.5
memory pages per user. Furthermore, although our prototypela-
bel implementation impacts performance, an Asbestos Web server
storing isolated data for thousands of users is in some ways com-
petitive with Apache on Unix. Asbestos shows that an OS can sup-
port flexible, yet stringent, security policies, includinginformation
flow control, even within the challenging environment of a high-
performance Web server.

2 APPLICATION GOAL

We evaluated Asbestos by implementing a secure applicationthat
we could not build on current systems, namely a dynamic-content
Web server that isolates user data. Our goal, in a nutshell:

1

Asbestos should support efficient, unprivileged, and
large-scale server applications whose application-
defined users are isolated from one another by the oper-
ating system, according to application policy.

The rest of this section expands and clarifies this goal. Although the
goal refers to server applications, Asbestos mechanisms should aid
in the construction of other types of software. For example,email
readers could use related policies to restrict the privileges of attach-
ments, reducing the damage inflicted by users who unwittingly run
disguised malicious code.

A large-scale server applicationresponds to network requests
from a dynamically changing population of thousands or evenhun-
dreds of thousands of users. A single piece of hardware may run
multiple separate or cooperating applications. Examples include
Web commerce and bulletin-board systems, as well as many pre-
Web client/server systems. Such applications achieve goodperfor-
mance through aggressive caching, which minimizes stable storage
delays. Byefficient, then, we mean that an Asbestos server should
cache user data with low overhead. This would be simple if the
cache were trusted, but we additionally want toisolate different
users’ data from one another, so that any security breaches are con-
tained. The Asbestos event process mechanism aims to satisfy this
requirement.

By unprivileged, we mean that the system administrator has
granted the application the minimum privilege required to complete
its job, and this minimum privilege is much less than all privilege.
Thus, the system follows the principle of least privilege.

Users areapplication-defined, meaning each application can de-
fine its own notion of principal and its own set of principals.One
application’s users can be distinct from another’s, or the user pop-
ulations can overlap. An application’s users may or may not corre-
spond to human beings and typically won’t correspond to the set of
human beings allowed to log in to the system’s console.

By isolated, we mean thata process acting for one user cannot
gain inappropriate access to other users’ data. Appropriate access
is defined by anapplication policy: the application defines which of
its parts should be isolated, and how. The policy should alsosupport
flexible sharingamong users for data that need not be isolated. All
users must trust some parts of the application, such as the part that
assigns users to client connections; since bugs in this trusted code
can allow arbitrary inter-user exploits, we aim to minimizeits size.

The application defines the isolation policy, but theoperating
systemenforces it. The OS should prevent even totally compro-
mised processes from violating the policy; for example, they should
be unable to launder data through non-compromised servicesand
applications. Thus, isolation policies can restrictinformation flow
among processes that may be ignorant of the policies. Unfortu-
nately, any system that controls information flow through run-time
checks can inappropriately divulge information when thosechecks
fail [31]; in effect, kernel data structures for tracking information
flow provide a covert storage channel. We aim to eliminate storage
channels that can be exploited without multiple processes,so that a
later, hardened version of Asbestos can improve security bylimit-
ing process creation rates. Section 8 discusses this issue in depth.

In summary, Asbestos must support a form ofmandatory access
control, which transitively isolates processes by tracking and limit-
ing the flow of information. Unprivileged applications define their
own isolation policies and decide what information need notbe
isolated. Furthermore, OS mechanisms for labeling processes must
support highly concurrent server applications.

These Asbestos ideas achieve full expression in the design and
implementation of the Asbestos OK Web server, a much improved

Network Stack (netd)

ok-demux idd

Worker 1 Worker 2

ok-dbproxy Database

Declassifier
Worker

Application

System

Figure 1: Processes of the Asbestos OK Web server. Grey boxes are
trusted. Worker processes contain one event process per user session.

version of the original OKWS for Unix [20]. The server imple-
ments a Web site with multiple dynamicworkers—one each for
logging in, retrieving data, and changing a password, for exam-
ple. Each worker is its own process; theok-demuxprocess ana-
lyzes incoming connection requests and forwards them to therel-
evant worker. Each worker caches relevant user data; cachesfor
different users are isolated from one another using labels and event
processes. A production system would additionally have a cache
shared by all workers, and Asbestos could without much trouble
support a shared cache that isolated users. We also implemented
SQL database access (table rows are labeled as belonging to partic-
ular users) and declassifiers (selected workers that can export user
data to the public). The workers are untrusted, meaning thatworker
compromise cannot violate the user isolation policy. Trusted com-
ponents include theok-demuxprocess, theok-dbproxydatabase in-
terface, and anidd process that checks user passwords, as well as
system components such as the network interface, IP stack, file sys-
tem, and kernel. Declassifier workers are semi-trusted: a compro-
mised declassifier can inappropriately leak the compromised user’s
data but cannot gain access to uncompromised users’ data. Figure 1
shows this server’s process architecture.

3 RELATED WORK

Mandatory access control(MAC) systems provide end-to-end en-
forcement of security policies by transitively following causal links
between processes. Operating systems have long expressed and en-
forced these policies usinglabels [9]. Labels assign each subject
and object a security level, which traditionally consists of a hier-
archical sensitivity classification (such asunclassified, secret, top-
secret) and a set of categories (nuclear, crypto, and so forth). To
observe an object, a subject’s security level must dominatethe ob-
ject’s. For example, a file with secret, nuclear data should only be
readable by processes whose clearance is at least secret andwhose
category set includes nuclear. Security enhancement packages sup-
porting labels are available today for many popular operating sys-
tems including Linux [25] and FreeBSD [44].

MAC systems generally aspire to achieve some variant of the
∗-property [3]: whenever a processP can observe objectO1 and
modify objectO2, O2’s security level must dominateO1’s. In the
absence of the∗-property,P could leakO1’s contents by writing
it to O2, leavingO1’s confidentiality atP’s discretionrather than
mandatorily enforcing it. Of course, real operating systems do pro-
vide some way to declassify or “downgrade” data—for example,
as a special privilege afforded certain users if they press the secure
attention key [17]—but this lies outside the main security model.

Most MAC systems are geared towards military settings, which
require labels to specify at least 16 hierarchical sensitivity classi-
fications and 64 categories [9]. This label format determines what

2

kinds of policies can be expressed. The fixed number of classifica-
tions and categories must be centrally allocated and assigned by a
security administrator, preventing applications from crafting their
own policies with labels alone. Thus, MAC systems typicallycom-
bine labels with a separate discretionary access control mechanism;
ordinary Unix users and groups might enforce access controlwithin
the secret, nuclear level.

Asbestos labels differ significantly from those of previousoper-
ating systems in that Asbestos lets any process dynamicallycreate
label categories, orcompartments. Moreover, a process can par-
tially bypass the∗-property by declassifying information or rais-
ing the security clearance of other processes—but only withre-
spect to certain compartments, such as the ones it creates. Asbestos
tracks information flow by dynamically adjusting labels, but a new
event processabstraction lets a single, unprivileged process sepa-
rately handle data from multiple compartments without accumulat-
ing restrictions. As described later, the Asbestos system call inter-
face provides a number of other novel features that facilitate the
use of labels, including temporary voluntary restrictionsand split
send/receive labels with different defaults.

The idea of dynamically adjusting labels to track potential
information flow dates back to the High-Water-Mark security
model [22] of the ADEPT-50 in the late 1960s. Numerous sys-
tems have incorporated such mechanisms, including IX [28] and
LOMAC [10]. The ORAC model [27] supported the idea of indi-
vidual originators placing accumulating restrictions on data, some-
what like creating compartments, except that data can stillonly be
declassified by users with the privileged Downgrader role.

Asbestos labels more closely resemble language-level flow con-
trol mechanisms. Jif [31], in particular, was an inspiration for
Asbestos because of its support for decentralized declassification
through separate ownership of different label components.Because
it is a programming language, Jif has the advantage of being able
to perform most of its label checks statically, at compile time. Run-
time checks can affect control flow on failure, thereby creating im-
plicit information flows [8]. However, compared to Asbestos, Jif
requires a centralized principal hierarchy and has no equivalent to
split label defaults, which Asbestos uses to support policies such as
preventing one process from talking to another.

Asbestos uses communication ports similar to those of previous
message-passing operating systems [6, 24, 30, 35, 36, 41], some of
which can confine executable content [14], others of which have
had full-fledged mandatory access control implementations[5].
Asbestos uses the same namespace—handles—for both ports and
compartments, allowing labels to emulate a wide range of security
mechanisms from discretionary capabilities to multi-level security.

In theory, capabilities alone suffice to implement mandatory ac-
cess control. For instance, KeyKOS [18] achieved military-grade
security by isolating processes into compartments and interpos-
ing reference monitors to control use of capabilities across com-
partment boundaries. EROS [39] later successfully realized the
principles behind KeyKOS on modern hardware. Psychologically,
however, people have not accepted pure capability-based confine-
ment [29], perhaps from fear that if just one inappropriate capabil-
ity escapes, the security of the whole system may be compromised.
As a result, a number of designs have combined capabilities with
authority checks [4], interposition [15], or even labels [16].

Mandatory access control can also be achieved with unmodified
traditional operating systems through virtual machines [11, 17]. For
example, the NetTop project [42] uses VMware for multi-level se-
curity. Virtual machines have two principal limitations, however:
performance [19, 46] and coarse granularity. One of the goals of
Asbestos is to allow fine-grained information flow control, so that

a single process can handle differently labeled data. To implement
a similar structure with virtual machines would require a separate
instance of the operating system for each label.

4 ASBESTOS OVERVIEW

Asbestos IPC resembles that of microkernels such as Mach. Pro-
cesses communicate using messages sent toports. A process can
create arbitrarily many ports. Messages sent to a port are delivered
to the single process withreceive rightsfor that port; this is initially
the process that created the port, but receive rights are transferable.
The right tosendto a port, however, is determined through label
checks, as described below.

Asbestos messaging is asynchronous and, unusually,unreliable:
thesendsystem call might return a success value even if the mes-
sage cannot be delivered. There are several reasons for this. For
one, the kernel cannot tell whether a message is deliverableuntil
the instant that the receiving process tries to receive it, since in the
meantime the process’s labels can change to prevent delivery—or
to allow it. More seriously, given reliable delivery notification, a
process could leak information using careful label changes, for ex-
ample causing successful delivery to correspond to 1 bits and un-
successful delivery to 0 bits. However, since only label checks (and
resource exhaustion) will cause messages to be dropped, careful
compartment management—such as our Web server’s—can make
delivery reliable in practice.

Conventional mechanisms such as pipes and file descriptors are
emulated using messages sent to ports; to read a file, for example,
the client sends a READ message to the file server’s port and awaits
the corresponding READR reply. The protocol messages were in-
spired by Plan 9’s 9P [34].

When asked to create a port, the kernel returns a new port with
an unpredictable name. This is necessary because the ability to cre-
ate a port with a specific name would be a covert channel. There-
fore, communication is generally bootstrapped using environment
variables that specify the port names services are currently using.

Asbestos contains system calls for allocating, remapping,and
freeing memory at particular virtual addresses, for creating and de-
stroying processes, for creating and dissociating ports, for sending
and receiving messages, for bootstrapping, and for debugging, in
addition to calls supporting label and event process functionality.

5 ASBESTOS L ABELS

Asbestos labels supportdecentralized compartmentsthat any pro-
cess can dynamically create and manipulate. In order to allow non-
privileged programs to craft their own MAC security schemes, As-
bestos labels combine both mandatory and discretionary access
controls. Asbestos gives a program that creates a new compart-
ment adiscretionaryright to declassify data in that compartment:
the program can give that right away, making the right similar to
a capability. The program will typically launch other processes,
restricting their labels so that they can reveal data only topro-
cesses in the compartment. It may also give the right to declassify
to programs trusted to sanitize data; these programs can then re-
lease tainted data outside the compartment. Programs can use the
same discretionary rights to establish identity and integrity, and to
protect the right to send messages to a port—that is, to implement
a send capability.

Three features of the Asbestos label design are particularly im-
portant for decentralized compartments. First, a special sensitivity
level,⋆, represents declassification privilege with respect to a com-
partment. Second, when sending a message, a process can supply
additionally restrictivediscretionary labelson top of the process

3

labels maintained by the kernel; some of these labels are trans-
mitted to the receiving application for possible analysis.Finally,
Asbestos processes have separate send and receive labels with dif-
ferent defaultsfor future compartments, allowing policies that tran-
sitively prevent two processes from communicating withoutunduly
restricting either process’s ability to communicate with the rest of
the system.

5.1 Label basics
In general, information flow labels form alattice, a partial order
in which any finite set of labels has unique least upper and great-
est lower bounds [7]. The partial order⊑ determines whether one
label is dominated by another. The least-upper-bound operator ⊔
is used to combine security classes—when a process reads objects
with different classes, for instance. The greatest-lower-bound op-
erator⊓, unusual in other label systems, is used in Asbestos for
declassification.

In Asbestos, each processP has two labels, asend label PS and
a receive label PR (somewhat analogous to IX’s current and max-
imum labels). The send label represents the process’s current con-
tamination, the receive label the maximum contamination itis able
to accept from others. To first order,P may send toQ if

PS ⊑ QR, (1)

which means thatQ is able to receive messages from processes at
P’s current contamination level, and also thatQ is willing to accept
contamination atP’s level. When the message is delivered,Q’s send
label is contaminated byP’s send label, since information flows
from P to Q. Again to first order,

QS← QS⊔ PS, (2)

the least upper bound on the two send labels.
Asbestos compartments are named byhandles, which are 61-

bit numbers. Any process can create a compartment with the
new handlesystem call, which returns a previously-unused handle
and, as explained below, grants the calling process privilege for that
handle. Handle values are unique since boot time. Thus, unlike a
file descriptor value, a given handle value refers to the samehandle
in all contexts. The 61-bit namespace is large enough that allocat-
ing handles at a rate of 1 billion per second would require 73 years
to exhaust all values. The kernel generates handles by encrypting
a counter with a 61-bit block cipher (derived from Blowfish [38]),
resulting in an unpredictable but non-repeating sequence of values;
the unpredictability closes certain covert channels by concealing
the number of handles that have been created at any given time.
However, handles are not in any way self-authenticating [41]—
simply knowing a handle’s value confers no additional privilege.

Handle privileges are represented bylevels, which are members
of the ordered set[⋆, 0, 1, 2, 3]; in send labels,⋆ is the lowest or
most privileged level, and3 is the highest or least privileged level.
The default levels lie in between; they are1 for send labels and
2 for receive labels. The reasons for this difference are explained
below.

A label, then, is just a function from handles to levels. We
write them as functions, and also using set notation, such as
{h1 0, h2 1, 2}; the default level, which appears without a handle at
the end of the list, applies to all handles not mentioned explicitly.
To compare two labels, we compare each of their components:

L1 ⊑ L2 iff L1(h) ≤ L2(h) for all h.

With this ordering, the least-upper-bound and greatest-lower-bound
operators,⊔ and⊓, are (L1 ⊔ L2)(h) = max(L1(h), L2(h)) and
(L1 ⊓ L2)(h) = min(L1(h),L2(h)).

FS:
File Server
Usersu andv

U: Shell
Useru

V: Shell
Userv

UT: Terminal
Useru

US = {uT 3,1}
UR = {uT 3,2}

VS = {vT 3,1}
VR = {vT 3,2}

UTS = {uT 3,1}
UTR = {uT 3,2}

VS 6⊑ UTR

({vT 3, 1} 6⊑ {uT 3, 2})

US ⊑ UTR

Figure 2: Simplified process communication with labels. The file
server is trusted.

5.2 Privacy
We now examine how Asbestos labels can provide privacy through
information flow control, using a simple four-process example: a
trusted multi-user file server, user shells for usersu andv, and a
terminal to which useru is logged in. The system’s goal is to allow
useru’s information to pass freely over the terminal while prevent-
ing other users’ information from escaping. We first assume that
process labels are assigned out of band; the next section shows how
they are assigned in a decentralized fashion.

Each user needs a security compartment, so we assign each user
u a taint handle uT. The next step is to differentiate processes that
have seenu’s private data from those that have not. We will use
send labels for this purpose, since they track the flow of messages
by raising receivers’ levels with⊔. We mark the send label of any
process that seesu’s private data by settinguT ’s level higher then
the default of1. If we choose level3 for user taints, a process with
PS(uT) = 1 (the default send level) hasn’t seenu’s data, while a
process withPS(uT) = 3 has.

Now for receive labels. By default, processes havePR(uT) =
2. This is below the user taint level of3, so a process’s receive
label must be explicitly raised, touT 3, to allow it to receiveu’s
data. Raising receive labels makes the system more permissive, so
in Asbestos, it requires special privilege: processes are not free to
raise their receive labels arbitrarily.

Figure 2 shows the resulting system. The shell processesU and
V are tainted withuT andvT (that is,US(uT) = 3 andVR(vT) =
3), and their receive labels allow them to receive the data of their
respective users. Any processes they create or communicatewith
will have the same characteristics. Useru’s terminal,UT, has the
same labels asU. U can send messages toUT, sinceUS ⊑ UTR,
but V cannot, sinceVS(vT) > UTR(vT), and neither can any other
process that has seenv’s data.

Discretionary contamination Consider the file serverFSin Fig-
ure 2. To maintain the system’s information flow properties,the
file server must label files: a process that reads useru’s file must
become tainted withuT 3. (We worry about writes later.) The file
server must be able to taint different users’ processes in different
ways, so it cannot simply use Equation 2 to taint processes.

In Asbestos, the file server canselectivelytaint messages with
the appropriate handle by providing an optionalcontamination la-
bel CS when sending a message. This label raises the sender’s send
label to a neweffective send label ES = PS ⊔ CS. The effective
label, not the true send label, is used to check information flow and
to contaminate the receiver’s send label. Equations (1) and(2) thus
become

ES ⊑ QR and (3)

QS← QS ⊔ ES. (4)

4

Since contamination onlyrestricts information flow, it requires no
special privilege; processes can arbitrarily contaminatethe mes-
sages they send. The default contamination label is{⋆}, which, as
the lowest possible label, adds no additional contamination.

This is our first example of an optional, or discretionary, use of
the label system. The idea is simple: when processes can control
their interactions with the label system—in ways that don’tviolate
basic information flow properties, of course—the label system can
implement more security policies, potentially including all access
control interactions needed in an operating system.

The four levels The label assignment above preventsv’s data
from reaching any processes except for an explicitly initialized set,
those withPR(vT) = 3. But Asbestos’s four levels0–3, and its
different defaults for send and receive labels, allow otherpolicies
as well. Say, for example, we represent user taint byuT 2, rather
thanuT 3. ThenU andV could communicate with each other, as
well as with other processes in the system; and we could stillpre-
vent privacy violations viaUT, by lowering its receive label, to
{vT 1, 2}. UT could communicate withU, but still not withV, since
VS(vT) = 2; and if U received a message fromV, its send label
would rise tovT 2, preventing further communication withUT.

Thus, when user taint uses level3, the system defaults to deny-
ing user-tainted messages, and the compartment manager must ex-
plicitly raise the receive level of each process allowed to receive
user data. When user taint uses level2, the system defaults to al-
lowing communication, and those processes thatshouldn’treceive
user data must have their receive labels explicitlylowered. (An ap-
plication of the latter might be allowing anyone to read a fileso
long as they don’t send the contents to the network daemon.) Dif-
ferent send and receive defaults make it easy to select either model,
whereas implementing the latter model in a traditional information
flow system would require changing every label in the system.

This also explains why Asbestos labels have levels0–3. We need
two levels for send and receive defaults, and levels above and below
each of these defaults. In send labels,1 usually corresponds to the
absence of taint;2 to a “partial taint”, as in the latter model, where
most communication remains unimpeded; and3 to full taint, where
most communication is prevented. Similarly, in receive labels, 3
indicates the right to be tainted arbitrarily;2 is the default; and
1 prevents communication with any tainted process.0 is used for
integrity and capabilities, as we’ll see below.

Multi-level policies requiring hierarchical sensitivityclassifica-
tion can be emulated in Asbestos using multiple compartments. For
instance, to supportunclassified, secret, and top-secretlevels, the
security administrator can use two compartments: one forsecret,
s, and one fortop-secret, t. A process’s receive label then reflects
its owner’s security clearance:{2} for unclassified, {s3, 2} for se-
cret, and{s3, t 3,2} for top-secret. Similarly, send labels reflect the
highest level of data a process has actually seen:{1} for unclassi-
fied, {s3, 1} for secret, and{s3, t 3,1} for top-secret.

Odd label values, such as a send label of{t 3, 1}, are also possi-
ble. Though this has no direct mapping to a security level, a process
with such a send label will only be able to send to processes with
top-secretclearance, so the desired information flow properties are
preserved. In general, however, the Asbestos design is streamlined
for large numbers of non-hierarchical compartments ratherthan tra-
ditional, military-style sensitivity classifications. Inparticular, we
believe that scalability to many compartments is a requirement for
MAC to protect user data in today’s Internet applications.

Receive labels and dynamic taint Asbestos receive labels limit
the taint that processes may receive, and thus the effects oftaint
accumulation. For example, the send labels in Figure 2 will not

change with respect touT and vT, absent intervention by some
privileged process. Asbestos labels can, however, supporta range
of other policies. For example,UR and VR could both be set to
{uT 3, vT 3, 2}, allowing either shell to read either user’s informa-
tion. OnceU readsv’s data, it will lose the ability to send messages
to UT—but, unfortunately, might still be able to convey some in-
formation by exploiting covert channels. Following the principle of
least privilege, it is better not to raiseU’s receive label if it doesn’t
need access tov’s data, but this policy choice is up to the applica-
tion designer. Like Figure 2, our Web server sets receive labels to
prevent dynamic taint except where specifically needed.

5.3 Declassification privileges
Asbestos decentralizes declassification using the special⋆ level: a
process withPS(h) = ⋆ has declassification privilege with respect
to h, or equivalently, is said tocontrol compartmenth. This priv-
ilege concretely means that other processes cannot contaminateP
with respect toh. Even if P receives a message from a processQ
with QS(h) = 3, PS(h) remains⋆, the lowest level.P can thus for-
ward data fromQ to less tainted processes, therebydeclassifying
information with respect toh. In notation, define

L⋆ =

(

⋆ if L(h) = ⋆

3 otherwise.

The contamination step from Equation (4) then becomes

QS← QS ⊔ (ES⊓ Q⋆

S); (5)

theES⊓Q⋆

S term gives⋆ levels inQS precedence over contamination
from ES. Only a process itself can remove⋆ levels from its send
label, using a special variant of thesendsystem call.

In our example, the file server, which is trusted by both users
to store their files, and which should apply a minimal taint toany
file data it returns (rather than being tainted indefinitely high), has
privilege with respect to bothuT andvT:

FSS = {uT ⋆, vT ⋆, 1},

FSR = {uT 3, vT 3, 2}.

The receive label allowsFS to receive messages tainted arbitrarily
with respect touT or vT; but regardless of the taints it receives, its
send label will stay the same foruT andvT.

Decontamination A process initially has privilege for every han-
dle it creates: thenew handle system call setsPS(h) = ⋆ for ev-
ery handle it returns. Sinceh was previously unused, all other pro-
cesses start withQS(h) ≥ 1 (the default send level). Normal mes-
sage exchange withP will not change this situation. However, As-
bestos allows a process with privilege to explicitly distribute priv-
ilege to other processes, either by forking or using a mechanism
calleddecontamination. This adds flexibility but, since a privileged
process could already decontaminate and forward data, doesn’t fun-
damentally change the system’s information flow properties. This
dynamic compartment creation and privilege manipulation differs
from systems such as Jif, which has a fixed hierarchy of users con-
trolling various I/O channels and code.

A process with declassification privilege for handleh can de-
contaminate other processes’ labels with respect toh by lowering
their send labels and raising their receive labels. This uses two
more optional label arguments to thesendsystem call, namely a
decontaminate-send label DS and adecontaminate-receive label
DR. The decontaminate-send label is used to lower the receiver’s
send label, and the decontaminate-receive label toraise the re-
ceiver’s receivelabel. Both of these operations make the system
more permissive, and thus require special privilege with respect to

5

the handle involved—the privilege represented by⋆. In notation,
Equations (3) and (5) become

ES ⊑ QR ⊔ DR and (6)

QS← (QS ⊓ DS) ⊔ (ES ⊓Q⋆

S), QR← QR ⊔ DR. (7)

The system must also check that whenever a decontamination label
might change the receiver’s labels, the sender controls therelevant
compartments: that is, thatPS(h) = ⋆ wheneverDS(h) < 3 or
DR(h) > ⋆.

5.4 Integrity
The file server can thus accept requests from any user withoutfear
of contamination and can declassify user data as appropriate. Of
course, a useful file server must also implement anintegrity policy
to prevent arbitrary processes from overwriting users’ data. An in-
tegrity policy can either be mandatory—transitively blocking any
flow of low-integrity data into a user’s files—or discretionary. Let
us first consider a discretionary policy, in which only processes that
speak foruseru can write tou’s files, but their writes are free to in-
corporate data from less trusted sources.

Speaking foru is a positive right, not a taint, and whether a pro-
cess speaks foru is unrelated to whether or not it has read any ofu’s
secret data. We thus need a new compartment to represent speak-
ing for u, represented byuG, useru’s grant handle. A process can
speak foru only if PS(uG) ≤ 0. Hence, our file server must verify
PS(uG) ≤ 0 before accepting a write tou’s file from P.

Asbestos supports such integrity checks with a fourth (and fi-
nal) optional label argument tosend, theverification label V. The
verification label temporarilylowers—restricts—the receiver’s ef-
fective receive label. Thus, the sender proves withV that its labels
are below a constraint independent of the receive label. Concretely,
the label check from Equation (6) becomes

ES ⊑ (QR ⊔ DR) ⊓ V. (8)

SinceES = PS ⊔ CS, this implies thatPS ⊑ V, and for the check
to succeed, the verification label must be an upper bound on the
sender’s send label. Unlike the other optional labelsCS, DS, and
DR, the verification label is also passed up to the receiving applica-
tion when the message is received. Thus, the application knows an
upper bound on the sender’s send label. In our file server example,
a process writingu’s file must supplyV = {uG 0,3} to prove it
speaks foru. The file server, in turn, verifies the process speaks for
u by checkingV(uG) ≤ 0 before accepting a write tou’s file.

An alternative design might eliminateV and just supply message
recipients with a copy of the sender’s send label—in effect,con-
veying all of a process’s credentials with every message it sends.
However, such designs lead to security problems in which an at-
tacker can trick a process into exercising unintended privileges, a
pitfall known as theconfused deputyproblem [12]. In our example,
a process that speaks for multiple users must explicitly name the
credentials it intends to exercise for each write.

Level 0 and mandatory integrity The 0 level permits the con-
struction of mandatory integrity policies. For example, a processP
with PS(uG) = 0 can speak foru, but since0 is less than the de-
fault send level of1, it cannot further disseminate the privilege: the
minuteP receives a message from a processQ that does not speak
for u (QS(uG) ≥ 1), PS will become tainted andP will lose its abil-
ity to speak foru. Thus,P cannot act forQ and relay low-integrity
data intou’s files.

As with secrecy, different defaults in send and receive labels al-
low targeted exclusion of particular processes. An exampleis pre-
venting system files from being corrupted from the network. The
file server can allocate a compartment,s, and requireV(s) ≤ 1 for

writes to system files. Setting the network daemon’s send label to
{s2, 1} then ensures that no process contaminated with data from
the network can overwrite system files.

5.5 Capabilities and preventing contamination
The discretionary verification label can be used to implement many
application-defined security policies, but it is limited inone impor-
tant way: An application can choose to ignore a message afterex-
aminingV, but since the message was already delivered (to allow
V to be examined), the application’s labels have already beencon-
taminated with the message’s taint. In general this taint cannot be
undone. Thus,V can flexibly verify integrity but cannot prevent in-
appropriate contamination. Imagine, for example, a mail reader that
starts an untrusted program to read an attachment. The mail reader
can, and should, accept contamination from other system processes,
such as the file system; but though it needs to communicate with the
attachment program, it doesn’t want to accept contamination from
it. A compromised attachment that develops a high taint should lose
the ability to send to the mail reader.

What is needed is a way to shift a simple form of message filter-
ing into the kernel. Asbestos supports this in a straightforward way
by integrating communication ports with the label system. The re-
sult not only prevents undesired contamination but also ends up
providing the semantics of capability-based send rights.

First, the port namespace is the same as the handle value space,
so port names can be used as label compartments. Second, every
port p is associated with aport receive labelor port label pR. This
label is used to lower, or restrict, the process’s receive label, but
only for messages delivered to that port. It thus acts like a verifi-
cation label imposed by thereceiver, rather than the sender. For a
message sent to portp, the label check from Equation (8) becomes

ES ⊑ (QR ⊔ DR) ⊓ V ⊓ pR. (9)

The port label furthermore restricts how much a receive label
can be decontaminated. A process that controls a compartment can
grant another process the right to receive tainted messageswith DR,
and simultaneously taint its send label withCS. This idiom is com-
mon in practice; our Web server uses it, for example, to contaminate
worker processes with the relevant user taintuT. Some processes,
such as long-running system servers, may want to avoid undesired
taint, however. They do so by setting their port labels to lowvalues
(which prevent contamination). The kernel will reject any message
that attempts to decontaminate a receive label beyond what is al-
lowed by the port label; specifically, it checks thatDR ⊑ pR.

Port labels, like verification labels, are entirely discretionary.
Each process solely controls the port labels for all ports for which it
has receive rights, and neither lowering nor raising a port label re-
quires special privilege. Processes supply an initial portlabel when
creating a port; most often this is{3}, which adds no restrictions
relative to the process’s receive label, but it can be{2} or anything
else. As a convenience, the kernel modifies this port label bysetting
pR(p)← 0 before returning the new port. Since all other processes
in the system initially havePS(p) ≥ 1 (the default send level), no
other process can send top until P explicitly grants access. How-
ever, theset port label system call, which changes a port’s label,
doesn’t modify its input. By resetting the port label to{3} (with no
exception forp itself), the process can allow anyone in the system
to send messages top, subject only to the process receive label’s
restrictions.

Capabilities The resulting port label system supports capability-
like send rights. When processP first creates portp, no one else
can send top. P can grant the right to send top by decontaminating
another process’s send label with respect top; that is, it can send

6

P, Q Processes
p, h Ports, handles
⋆, 0, 1, 2, 3 Label levels, in increasing order
L, C, D, V, E Labels (functions from handles to levels)

PS ProcessP’s send label
PR ProcessP’s receive label
pR Portp’s receive label

L1 ⊑ L2 Label comparison:
true iff ∀h, L1(h) ≤ L2(h)

L1 ⊔ L2 Least-upper-bound label:
(L1 ⊔ L2)(h) = max(L1(h), L2(h))

L1 ⊓ L2 Greatest-lower-bound label:
(L1 ⊓ L2)(h) = min(L1(h),L2(h))

L⋆ Stars-only label:

L⋆(h) =

(

⋆ if L(h) = ⋆,
3 otherwise

Figure 3: Notation.

send(p, data,CS,DS,V,DR) // Send message to portp
Let Q be the process with receive rights forp
Let ES = PS⊔ CS

Requirements:
(1) ES ⊑ (QR ⊔ DR) ⊓ V ⊓ pR

(2) If DS(h) < 3, thenPS(h) = ⋆

(3) If DR(h) > ⋆, thenPS(h) = ⋆

(4) DR ⊑ pR

Effects:
GrantDS and contaminate withES,
but preserveQS’s ⋆ handles

QS← (QS⊓ DS) ⊔ (ES⊓Q⋆

S)
QR ← QR ⊔ DR

new port(L)
Let p be an unused port

Effects:
pR ← L
pR(p)← 0
PS(p)← ⋆

Returnp

set port label(p, L)
Requirement:

P has receive rights forp
Effect:

pR ← L

Figure 4: Label operations associated with three Asbestos system calls.
P is the calling process.

Q a message withDS = {p⋆, 3}. Q can then further redistribute
that send right. Note that it is primarily the port receive label, pR,
rather than the process label,PR, that prevents arbitrary processes
from sending top. A process can create many ports with different
receive labels and, just like capabilities, separately distribute the
right to send to each port.

5.6 Summary and implementation
Figure 3 summarizes the notation developed in earlier sections, and
Figure 4 gives the final versions of the label operations associated
with thesend, new port , andset port label system calls.

In user space, a label is represented as an array of handle values
plus a default level. A 64-bit number can represent a label entry:
the upper 61 bits are the handle value, the lower 3 bits encodeits
level in that label.

In kernel space, each active handle corresponds to a 64-bytedata
structure called avnode. For port handles, this structure includes the
port label and a reference to the process with receive rights. A hash
table maps handle values to vnodes. Vnodes are reference counted;

when all kernel references to a vnode disappear, the kernel may
reuse its memory.

Since a series of label operations accompanies every IPC, the
kernel label implementation has major impact on performance and
memory usage. In our current design, a label points to a sorted ar-
ray of chunks, each of which is a sorted array of up to 64 vnode
pointers. Since these pointers are 8-byte aligned, their lower 3 bits
are again available for the corresponding levels. Labels are refer-
ence counted and updated copy-on-write, so multiple entities can
share label memory when appropriate. Additionally, chunksare ref-
erence counted and updated copy-on-write, and multiple labels can
share chunks. Each chunk is marked with the minimum and max-
imum of its vnodes’ levels, as is each label. This helps optimize
certain common operations; for example, ifL2’s maximum level is
no larger thanL1’s minimum level, thenL1⊔L2 = L1 by definition.
In the worst case, of course, operations like⊑, ⊓, and⊔ are linear
in the size of their input labels. Optimization opportunities remain,
for example when most of label’s handle levels are⋆, and we plan
to improve the label implementation for future work. The smallest
label is about 300 bytes long, including space for one chunk.

6 EVENT PROCESSES

Labels alone don’t work well for processes that handle multiple
users’ private data. To avoid accumulating contamination,such pro-
cesses would have to be trusted with declassification privilege by
each relevant user, leaving them over-trusted and vulnerable. Exist-
ing OS abstractions are no help. On the one hand, user-level threads
are efficient but share an address space, and therefore do notpro-
vide isolation. On the other, forking a separate process peruser
provides isolation, but may have low performance due to operat-
ing system overheads, such as memory. What’s needed is a new
abstraction that combines the performance benefits of cooperative
user threads with the isolation benefits of forking new processes.

Many efficient servers [20, 33, 43, 45] use an implementation
pattern that suggests a solution to this problem. All serverwork is
driven by a simple event-driven dispatch loop:

while (1){
event = getnext event();
user = lookupuser(event);
if (user not yet seen)

user.state = createstate();
processevent(event, user);

}

This arrangement is efficient, since only one process is involved,
and there is little space overhead beyond the minimum memory
required to hold each user’s state. The missing piece is a wayto
isolate the state of different users, and to ensure that the process’s
labels are set correctly while executing on behalf of each user.

6.1 The event process abstraction
An Asbestosevent processabstracts the notion of a subset of pro-
cess state belonging to a single user. As with processes, theker-
nel restricts an event process’s privileges while it handles incoming
messages for a user, and isolates different event processes’ state;
but as with user-level threads, event processes limit concurrency
and impose low space and scheduling overheads. Each event pro-
cess is associated with one conventionalbase process, from which
its initial state is drawn. The event process’s kernel stateconsists
only of a send label, a receive label, receive rights for ports, and
a set of private memory pages, plus some bookkeeping informa-
tion, altogether occupying 44 bytes of Asbestos kernel memory. For
comparison, Asbestos’s minimal process structure takes 320 bytes.

7

The code for a typical event process-based server resemblesthe
event-driven dispatch loop above:

1. ep checkpoint(&msg);
2. if (!state.initialized){
3. initialize state(state);
4. state.reply =new port ();
5. }
6. processmsg(msg, state);
7. ep yield();

Intuitively, many event process entities now share the event loop,
each with its own isolated state. The twoep system calls manage
control flow transfer between events. The single “state” variable
refers to a different user in each event process.

When the base process first calls theep checkpointsystem call,
it enters the event process realm, and the base process itself will
never run again. The process is de-scheduled until a messagear-
rives on a port for which the base process,or any of its event pro-
cesses, holds receive rights. The kernel then schedules an event pro-
cess to receive that message. If a particular event process holds re-
ceive rights for the relevant port, thenep checkpointreturns in that
event process’s context, restoring its private labels, receive rights,
and memory. If, on the other hand, thebaseprocess holds the port’s
receive rights, the kernelcreates a new event processand returns
in that event process’s context. The event process starts with send
and receive labels copied from the base process’s labels, noreceive
rights, and no private memory pages.

When ep checkpoint returns a message in an event process’s
context, the label contamination and declassification rules are ap-
plied to that event process’s labels. The kernel makes eventprocess
memory writes private by marking all shared pages copy-on-write,
and an event process gets receive rights for any ports it creates.

After it finishes processing its message, the event process calls
the ep yield system call. This call saves any changes to the event
process’s labels, receive rights, and memory and then suspends
the whole process, just as when the base process first called
ep checkpoint. No event process will run until another message
is available for delivery.

Event processes often make temporary modifications to mem-
ory that are useful only for the current event. To keep the kernel
from saving such memory modifications acrossep yields, an event
process can callep clean to revert a specified memory range to
the base process’s state. An event process frees all its resources,
including its kernel-maintained state, with theep exit system call.

Event processes can execute most system calls, including send-
ing and receiving messages, allocating memory, and so forth. Event
processes’ execution states, unlike their memory states, are not iso-
lated: an event process may block indefinitely inrecv, blocking the
entire process, or even exit via the process-wideexit system call.

Usage Messages delivered to a base process handle typically cor-
respond to the advent of new client processes or new client net-
work connections, exactly the situations in which it is appropriate
to create a new event process. An event process can tell it is new
by checking and setting a memory location that the base process
initializes to zero; a new event process inherits the zero, while a
re-activation of an existing event process will see its previous non-
zero write to that location. A new event process will typically allo-
cate itself a new port on which to receive messages, as in line4 of
the above code sample. The system ensures that messages to this
port will be delivered to the current event process, which can thus
send queries to file or database servers on behalf of the current user
and later receive any replies. For some applications, newlycreated
event processes might exit immediately without creating a handle;

though this cannot store state between messages, it does avoid ac-
cumulating taint.

An event process has all the power of an ordinary process to
restrict its labels, for example to reflect the fact that it isprocessing
a specific user’s private data. In the multi-user file server example
in Section 5.2, the file server would end up contaminating an event
process’s send label with the user’suC handle, correctly reflecting
that just the event process was contaminated.

The base process does not explicitly create event processes, nor
does it know of their existence. In fact, once it callsep checkpoint,
the base process never executes again in user space, and there is no
way to change its memory. Different event processes are alsoun-
aware of each other’s existence except possibly through message-
based communication, preserving the independence and isolation
represented by per-event process labels. We plan for futurework
to investigate mechanisms for event processes to selectively share
memory, subject to label checks.

6.2 Implementation
Event processes are efficient for two reasons. First, the kernel
scheduling cost is little higher than that of a single process, even
with many event processes. Second, the memory overhead of an
event process can be as low as a single page of memory—to hold
the event process’s user-level state—plus a few hundred bytes of
kernel state.

While event process memory acts like a copy-on-write copy of
the base process’s memory, the implementation is optimizedfor
event processes that modify very little memory. The memory state
of each dormant event process includes just a list of modifiedpages
and the modified pages themselves. That is, event processes do not
keep their own page tables. A running event process borrows the
base process’s page table data structure in the kernel, changing it in
exactly those places that differ.

Typically, programs scatter users’ data across the stack inaddi-
tion to various places on the heap. This would lead to a relatively
large number of pages that are unnecessarily specific to eachevent
process. Some of these pages merely hold temporary variables, oth-
ers must persist across the processing of several messages.Storing
the non-temporary data in a contained data structure on the heap
can minimize the number of persistent pages required. This data
management technique is much more natural in event-driven pro-
gramming, which the event process system calls symbiotically en-
courage. Thus, event processes tend to use minimal private mem-
ory, and the optimization of only storing page table differences is
profitable in practice.

7 WEB SERVER DESIGN

The Asbestos Web server is based on the OKWS system for
UNIX [20]. In the original OKWS design, ademultiplexer, ok-
demux, accepts each incoming TCP connection and parses its
HTTP headers to determine what service the remote client is re-
questing. It then hands the connection off to aworker processspe-
cialized for providing that service. OKWS’s goal is to isolate ser-
vices, so that one compromised service cannot affect others. Like
its UNIX predecessor, OKWS on Asbestos also isolates services
in different worker processes, but it additionally enforces user iso-
lation within workers via event processes: a compromised worker
cannot leak one user’s information to other users.

7.1 Startup
OKWS is started by a launcher process. The launcher spawnsok-
demux, site-specific workers requested by the site operator, and two
other processes seen in Figure 1,idd andok-dbproxy. The processes

8

netd

ok-demuxidd WorkerW

1. u’s TCP connection

2. GrantuC ⋆

3. Lookup UN/PW

4. GrantuG ⋆,uT ⋆

5. GrantuT ⋆

6. GrantuC ⋆,uG ⋆,
ContaminateuT 3

7. CreateW[u]

8. Grantu
W

⋆; read/write

Figure 5: OKWS message flow for handling useru’s Web request.

exchange and inherit handles to establish the communication paths
seen in the diagram.

Theok-demuxmust be certain that it is communicating with the
worker processes that the launcher started and wants to avoid trust-
ing workers to identify themselves correctly. Thus, the launcher
grants a process-specificverification handleto each process it
starts. Theok-demuxcollects these handle values from the launcher.
When a worker identifies itself to theok-demux, it must provide a
verification labelV containing its verification handle at level0, al-
lowing theok-demuxto verify that it speaks for the relevant process.
Other designs, such as having the launcher mediate initial commu-
nication with the workers, would also be possible.

In the current prototype, a process crash would necessitatea
restart of the whole process suite, though a more mature version
of launcher could restart dead processes (as in OKWS on Unix).

7.2 Basic connection handling
We now describe the data path of a simple Web request to OKWS
running on Asbestos; Figure 5 shows the steps. When a useru
makes an HTTP connection:

1. The user-level network servernetdaccepts incoming TCP pack-
ets from the network. Oncenetdhas acceptedu’s connection, it
allocates a new portuC to act as a “socket” to which processes
can send READ and WRITE messages. The port label,uCR, is
set to{uC 0, 2}, so that no process can initially send to it. Sec-
tion 7.7 describesnetdfurther.

2. As it started up,ok-demuxregistered withnetd to listen for in-
coming TCP connections on the machine’s Web port. Therefore,
netdnotifiesok-demuxof the new connection by granting ituC

at level⋆.

3. ok-demuxreads network data fromu over portuC until it can
authenticateu. Currently, OKWS uses a simple username and
password pair, though more sophisticated handshakes are pos-
sible. It sendsu’s username and password to OKWS’s identity
server,idd, which is described in Section 7.4.

4. If u provided a valid login,idd grantsok-demuxtwo handles
corresponding tou, a taint handle uT and agrant handle uG,
both at level⋆. These handles function like the similarly-named
handles in Section 5.

5. ok-demuxgrantsuT ⋆ to netd, which then raises its receive label
to containuT 3 and raisesuCR to {uC 0,uT 3, 2}. These changes
allow uT-tainted data to escape over the network, but only via
uC. From now on,netdwill respond to all messages onuC (such
as READs) with replies contaminated withuT 3.

6. Whenok-demuxread TCP payload bytes fromnetd in Step 3,
it also noted which serviceu is requesting. If this service ex-
ists, ok-demuxforwardsuC to the workerW that provides the
service, simultaneously contaminatingW’s send label withuT 3
and granting ituG ⋆.

7. WorkerW returns fromep checkpoint into a new event process
W[u], receivinguC ⋆, uG ⋆, and the contaminationuT 3.

8. Event processW[u] makes a new portuW and grants it tonetd
at level⋆. It then readsu’s request by sending read requests to
netd’s port uC, yielding, and readingnetd’s replies touW upon
wakeup. After reading and parsingu’s entire request, the event
process formulates a reply and writes it touC.

9. W[u] callsep exit.

We briefly argue that the workerW[u] can communicate withu
as intended.W[u]’s send label is contaminated withuT 3 in Step 6,
butnetd’s receive label was changed in Step 5 to accommodate that
contamination. Consequently, the kernel will allowW[u] to send
data overuC to netdand across the network tou.

The security of the protocol comes because any process or event
process that accessesu’s data either is trusted and hasuT ⋆ in its
send label, or is not trusted and hasuT 3. In this example,netd, idd
andok-demuxhaveuT ⋆, but we assume them uncompromised (see
Section 7.8 for further discussion). The event processW[u] and its
descendents have had the opportunity to see useru’s private data,
and therefore haveuT 3 in their send labels. All other processes,
such as those working on behalf of a different userv, cannot re-
ceive messages fromW[u] or its descendents, and therefore cannot
receiveu’s data. Even if such data theft were possible,netdwould
not allow its traffic over the network: any process with{uT 3, vT 3}
in its send label cannot send data touC due to that port’s port label
restrictions.

Note that while the kernel enforces security policies that iso-
late user data flows from one another, OKWS’s concept of user is
opaque to the operating system. Having declassification privilege
for an OKWS user’s handle, such asuT, implies nothing about ac-
cess to sensitive system resources, such as the kernel disk image or
the system password file. An Asbestos application like OKWS has
no need for “superuser” access, with all of its attendant dangers.

7.3 Web sessions
Since HTTP is stateless, many Web servers support storage ofses-
sion datathat persists over multiple HTTP connections. OKWS can
securely store per-user server-side state with simple additions to the
above protocol. When supporting sessions, theok-demuxprocess
stores a table of all recently active user-worker pairs. In Step 6, if
useru requests service from workerW, ok-demuxlooks in this table
for a port to the event processW[u]. If it finds such a port, it for-
wardsuC directly toW[u]. If it does not, it forwardsu’s connection
as normal, causing a new event process to be forked. When the new
event process allocates portuW in Step 7, it grants it took-demux,
which then inserts it into its session table for future use.

The worker event process writes session data to memory as nor-
mal. To preserve this state across connections, it must callep yield
instead ofep exit in Step 9. Becauseok-demuxsendsu’s requests
for W directly toW[u], those requests will see any previous changes
to session state. At the end of the event loop, event processes should
typically call ep clean before yielding to discard all pages mod-
ified since the checkpoint that do not hold session data; thiswill
typically include the stack. When a useru’s session times out or
u explicitly logs off, u’s worker event processes callep exit and
ok-demuxcleansu’s user-worker pairs out of its session table.

7.4 Managing identities
In Steps 3 and 4, theok-demuxverifies useru’s login credentials
by querying an identity serveridd. This server associates persistent
user identification data, such as username, user ID, and userpass-
word, with the more temporary grant and taint handlesuT anduG.
Whenidd answers a successful login query in Step 4, it either gen-
erates newuT anduG handles (ifu has not logged in recently), or

9

returns cacheduT anduG handles if available. In the current imple-
mentation,idd stores user information in a relational database (see
Section 7.5) and never cleans its cache. The identity serverhas spe-
cial access throughok-dbproxyto this password database, which
other processes such as workers cannot access directly. Thus, the
lookup in Step 3 will result in a database query per first-timelogin.

7.5 Database interaction

Asbestos offers preliminary database support to worker processes
through a port of the Unix package SQLite [40]. A separate pro-
cess calledok-dbproxyinterposes on all OKWS database accesses,
converting Asbestos labels and security policies to data types and
functions native to standard SQLite. With database access,OKWS
can extend its label-based security policy to one that persists across
system reboots. In our current implementation,ok-dbproxyis both
privileged and trusted: it is trusted to contaminate and check labels
to ensure secrecy and integrity respectively, and is privileged in that
idd grants it all user taint handles at level⋆.

ok-dbproxyadds a “user ID” column to the table definition of
every table accessed by OKWS workers. The workers themselves
cannot access or change this column. Whenok-dbproxyreceives
INSERTs, UPDATEs, or other SQL queries that write to the
database, it first checks that the request came with a valid username
u and a verify labelV bounded above by{uT 3, uG 0, 2}. This ver-
ify label conveys two important facts. First, the sender’s send label
does not contain handles other thanuT at level3, and therefore the
sender has not been contaminated by any data aside from his own.
Second, because the verify label containsuG at level0, the sender
was granted the ability to write data foru, either byidd or one of
its proxies (i.e.,ok-demux). After approving the given verify label,
ok-dbproxyqueriesidd to affirm the binding between useru and the
two handlesuT anduG. If all checks pass,ok-dbproxyrewritesu’s
request so that every row written will haveu’s user ID in the private
“user ID” column.

Whenever a worker process fetches data from the database via
SELECT, theok-dbproxyprocess reapplies the appropriate con-
tamination to returned rows. If a row’s user ID column contains
u’s ID, thenok-dbproxyreturns the row’s data contaminated with
uT 3; it queriesidd for uT if it does not have this mapping in cache.
Each row is returned as a separate message with a separate taint,
and to finish the request,ok-dbproxysends an untainted message
indicating that all data has been returned. Since each worker’s re-
ceive label is limited to receiving at most one user’s taint,a worker
will receive only rows meant for its user, and cannot tell howmany
other rows were sent. A more relaxed policy could allow workers
to be tainted with multiple users’ data; but like any dynamictaint-
ing mechanism, this would open a storage channel to the database
through worker process labels.

Our current prototype retrofits a standard database with a subset
of Asbestos’s security features; for instance, rows can only be con-
taminated with one handle. We envision future database systems
built specifically for Asbestos that incorporate labels andevent pro-
cesses in a deeper way.

7.6 Decentralized declassification

Finally, the OKWS prototype supportsdecentralized declassifica-
tion. As stated above, if any process, such as userv’s worker event
process, wishes to read useru’s data from the database, the database
will contaminate the response withuT 3. User v’s event process
will fail to receive this message, since its receive label isnot high
enough. Even if it were to receive the message, its send labelwould
be too contaminated to send data back tov over the connectionvC.

But useru may want to share some data withv, such as his pub-
lic profile. That is, useru sometimes needs todeclassifyhis private
data for public access.

OKWS supports semi-trusted declassifiers for this purpose.A
declassifierD within OKWS is a worker like any other, except
that the launcher tellsok-demuxof its declassifier status. Whenok-
demuxhands a connection off to a declassifier workerD in Step 6, it
grants Dthe handleuT ⋆ instead of contaminating it withuT 3. With
uT at ⋆, the workerD has the privilege to declassify data marked
with useru’s taint. Thus, whenD contacts the database to SELECT
u’s private data,ok-dbproxy’s response does not affectD’s send la-
bel. The declassifier can now write declassified data to the database,
providing a verification label ofuT ⋆ to prove it has this right. Inter-
nally, ok-dbproxyflags a data row as declassified by setting its user
ID entry to zero. Whenok-dbproxyreads data with zeroed user IDs
back out of the database, it does not apply any contamination, and
userv’s worker process can safely readu’s declassified data out of
the database without affecting its send label. This declassification
is decentralized, since it does not directly involveidd, the creator
of handleuT. Furthermore, theD[u] event process is trusted only by
u; it cannot declassify any other user’s data, sinceok-demuxonly
granted ituT ⋆. An attack on a declassifier worker can expose more
of u’s data than intended, but cannot otherwise affect the system’s
information flow.

7.7 Network server
All access to the network in Asbestos is through one process,netd,
which implements the TCP/IP stack (using a port of LWIP [26]),
manages network devices (using a version of Intel’s Linux driver
for the E1000 gigabit card), and creates connections for other pro-
cesses. As the single interface to the network,netdhas a privileged
role and must properly apply restrictions to connections itmanages.
An application can send a message tonetd to request a outgoing
connection to a remote host or to listen for incoming connections.
In either case,netdwraps a new connection with an Asbestos port,
which it grants at level⋆ to the requesting application. Once a pro-
cess has a port to an open connection, it may perform READ and
WRITE operations to transfer data, CONTROL operations to close
the connection or change the low-water mark, and SELECT oper-
ations to determine available buffer space. On a listening socket,
a process may perform READ operations to accept incoming con-
nections and CONTROL operations to close the socket. In order to
apply labeling to network connections,netdoptionally maintains a
taint handle for each connection. When a process tellsnetdto add
a taint handle to a connection, later messages sent in response to
operations on that connection will be contaminated with thetaint
handle at level3. In OKWS, for example,netd contaminates all
data read from useru’s connection withuT 3 at ok-demux’s behest.

7.8 Trust and privilege in OKWS
Currently, all OKWS components are trusted and/or privileged ex-
cept for the worker processes. We claim that for typical Web sites,
the worker processes correspond to the most vulnerable and error-
prone parts of the computing base. They are vulnerable because
they read, write, store and manipulate sensitive data both from the
network and from the database. They are error-prone for several
software engineering reasons. First, worker code typically does not
face external code audit, both because it varies greatly from site to
site and because many sites’ intellectual property controls discour-
age this practice. Second, load on Web sites can fluctuate wildly:
with unexpected load spikes come emergency performance fixes
that can accidentally circumvent security mechanisms. Third, large
Web sites can run hundreds of thousands of lines of Web code,

10

and since writing Web service code that functions correctly(pro-
duces the correct result for honest users) seems simple, it is often
assigned to junior programmers without stringent oversight. Ex-
perience has shown, however, that writingsecureWeb services is
challenging indeed. We believe securing Web applications with au-
tomatic, kernel-enforced mechanisms to be a significant step for
Web security.

In the future, we plan to move more OKWS components out of
the trusted or privileged computing base. For instance,netdcould
be decomposed into a simple trusted and privileged component
and an event-process-based workhorse. The trusted front end would
classify incoming packets and firewall outgoing packets based on
discretionary label rules; it would therefore be privileged with re-
spect to all handlesuT, asnetd is now. It would forward packets,
once classified, to the appropriate event processes of an untrusted
netdback end, which would manage the specifics of TCP buffering
and flow control. Each back-end event process would be contam-
inated with respect to the user on whose behalf it speaks, much
like worker processes in the current system. Similarly, thedatabase
might be decomposed into a trusted, privileged indexer, andan
event-process-based back end that would manage caching andsta-
ble storage.

8 COVERT CHANNELS

Asbestos labels prevent processes from explicitly transmitting
sensitive information to unauthorized parties. However, suppos-
edly isolated processes can still communicate informationthrough
covert channels. Our goal is not to eliminate covert channels—an
impossible task—but rather to make it significantly harder to leak
information than on systems used as Internet servers today.While
high-grade military systems are required to quantify the rates of all
covert channels, for Asbestos we content ourselves with enumerat-
ing the channels.

Broadly speaking, covert channels can be categorized as either
timing or storage channels. A processA conveys information toB
with a timing channel if it modulates its use of system resources
in a way that observably affectsB’s response time. For instance,A
might flush the processor cache or cause the disk arm to be moved
farther from a subsequent request. We are less concerned with tim-
ing channels than with storage channels, as to some extent timing
channels can be mitigated by limiting processes’ ability tomeasure
time precisely [13]. (Asbestos offers no such feature, however, and
the problem admittedly becomes harder in the presence of network
communication.)

Storage channels are caused by any state that can be modified
by processA and observed byB whenA is not supposed to transmit
information toB. It was a goal to avoid storage channels that could
be exploited within a single process, so that at least two cooperating
processes are required to communicate information in violation of
a label policy.

The Asbestos design contains two inherent storage channels, the
program counter and labels. Theep yield system call potentially
affects the program counter of a differently tainted event process
by causing it to run. Two colluding, identically-labeled event pro-
cesses can transmit a bit of information by the order in whichthey
call ep yield if the next scheduled event processes have lesser taint.
This channel is roughly equivalent to the covert channel intention-
ally included by the drop-on-exec feature of IX [28].

The sendsystem call potentially raises the value of the recip-
ient’s send label to an unanticipated value. This is also a storage
channel, as labels can be observed through lack of communication.
Consider a tainted processA attempting to communicate a bit of
sensitive information to an untainted processC. An attacker might

construct two untainted processes,B0 and B1, both of which re-
peatedly send heartbeat messages toC. By sending a message that
contaminates processBi , A can communicate the valuei to C. Such
storage channels are inherent to any system with run-time checking
of dynamic labels [31].

Both of the above channels require at least two processes, which
means they can be mitigated by restricting the ability to fork.
This illustrates one advantage of the event process abstraction as
compared to a more traditional one-label-per-process architecture.
Event processes reduce concurrency, thereby also reducingthe
number of send labels and program counters available as storage
channels at any given time.

Other Asbestos kernel data structures have been carefully de-
signed to avoid exploitable storage channels. Handles are gener-
ated by incrementing a 61-bit counter, which is a storage channel.
However, since the kernel encrypts the counter value to produce
handles, the user-visible sequence of handles does not convey ex-
ploitable information.

The current implementation still has several other storagechan-
nels we intend to close or limit, but we believe these can be mit-
igated without affecting the claims of the paper. In particular, As-
bestos does not yet deal gracefully with certain forms of resource
exhaustion.

9 EVALUATION

The goal of this section is to show that OKWS on Asbestos pro-
vides a useful level of performance. First, we show the amount of
additional memory required to support user isolation in OKWS is
small. We then compare OKWS’s throughput and latency to that
of Apache running on Linux. A prototype OS like Asbestos can
hardly be expected to compete with mature, well-tuned systems
like these. Our experiments nevertheless show OKWS on Asbestos
can already compete with these systems for some scenarios—and
indicate fertile ground for future performance improvements.

The performance measurements were conducted on a gigabit lo-
cal network with a Linux HTTP client generating requests. The
Asbestos server is a 2.8GHz Pentium 4 with 1GB of RAM, but As-
bestos currently only uses 256MB of RAM. Our experiments made
as few file system accesses as possible; we disabled all Web access
logging and ran all databases in memory.

9.1 Memory use
In Section 6, we argued the merits of event processes over more
traditional fork-accept designs. Our hypothesis was that each addi-
tional protection domain might consume only one additionalpage
of memory. Our measurements roughly support this claim.

Web sites often cache dynamic data to lighten database load
and to avoid latency. As discussed in Section 7.3, OKWS uses
event processes to cache dynamic data while maintaining isolation
among users. An event process persists over the lifetime of aWeb
session, which typically spans multiple HTTP connections.At the
end of an HTTP connection, the worker usesep clean to release
all memory allocated, except for the session data. A cleanedevent
process, with just session data, is called acached session. An event
process that is processing an HTTP request uses more memory than
a cached session, since it stores temporary variables and buffers;
such an event process is called anactive session. A typical Web
server has many more cached sessions than active ones.

Our experiments measured the amount of allocated memory af-
ter creating different numbers of Web sessions, including space for
kernel data structures. In all of our memory measurements, we ran
OKWS with one toy Web service, which stores data from a user’s

11

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
ot

al
 m

em
or

y
us

ed
 (

pa
ge

s)

Number of sessions

Active sessions
Cached sessions

Figure 6: Memory used by active and cached Web sessions as a func-
tion of the number of sessions. Includes all memory allocated by both
kernel and user programs.

HTTP request and returns it to the user in the subsequent request.
The size of the response is about 1K.

The system uses approximately 1.5 4KB pages per cached ses-
sion, as seen in Figure 6. One complete page is due to state
maintained in the worker’s event process. The remainder of the
memory is for kernel data structures—event processes, labels, and
handles—as well as potentially memory in other user processes,
such asnetd. The memory required for kernel data structures is
around twice as much as we expected, probably due to internal
fragmentation or a small memory leak.

To determine the memory cost of active sessions, we repeated
the previous experiment but modified the worker so that it does not
ever unmap memory, callep clean or call ep exit. This method
produces worst-case behavior, capturing the maximum amount of
memory consumed by our simple worker. The experiment shows
that an additional eight pages of memory are used by each active
session. Two of those pages are stack and exception stack pages,
one is for the event process’s message queue, and the remaining
five comprise the modified heap and pages with modified global
variables.

9.2 Web server performance
We examined two aspects of Web server performance: through-
put and latency. In these experiments, we tested an even simpler
Web application, which simply responds with a string of charac-
ters whose length depends on the client’s parameters. We compared
OKWS on Asbestos to the Apache Web Server, version 1.3.33 [2]
(which outperformed version 2.0.54 in our tests). We implemented
our test application both as a standard CGI process, writtenin C,
and as an Apache module written in C [1]. In both cases, Apache
keeps a pool of pre-forked processes to answer requests. Apache
with CGI processes additionally forks and executes the CGI binary
for each request. Apache with the module version of the service,
which we call “Mod-Apache”, does not fork for each request. Mod-
Apache is efficient but provides no isolation. Apache with CGI pro-
cesses does provide some isolation, but at a significant costwhen
compared to Mod-Apache, since each request is handled in a forked
process. However, at least in its default configuration, Apache does
not run CGI processes in a chroot jail, so if the CGI is exploitable,
any vulnerabilities exploitable by a UNIX user on the systemare
accessible. In contrast, as discussed previously, OKWS provides
isolation both between services and between users within a service.

9.2.1 Throughput
To test throughput for OKWS relative to Apache and Mod-Apache,
we first varied concurrency to maximize completed connections
per second. For Apache, 400 concurrent connections maximized

 0

 500

 1000

 1500

 2000

 2500

 3000

1 100 1000 3000 5000 7500 10000 Apache Mod-
Apache

A
ve

ra
ge

 c
on

ne
ct

io
ns

/s
ec

on
d

Cached OKWS sessions

Figure 7: Throughput for various numbers of cached sessions in
OKWS, compared with Apache and Mod-Apache.

Latency (µs)
Server Median 90th Percentile
Mod-Apache 999 1,015
Apache 3,374 5,262
OKWS, 1 session 1,875 2,384
OKWS, 1000 sessions 3,414 6,767

Figure 8: The median and 90th percentile latencies of requests to vari-
ous server configurations.

performance; for Mod-Apache 16 concurrent connections wasthe
sweet spot. Asbestos’s network stack is based on LWIP [26], which
was chiefly designed to conserve resources and does not offer
good performance under load; sixteen concurrent connections gave
maximum throughput. For OKWS, we then varied the number of
cached sessions in the system. In all tests, the server responded
with 144 bytes of HTTP data, 133 bytes of which were in headers.
Larger responses only exercise the network stack.

Since OKWS isolates users, they were authenticated and run in
different event processes as usual. We measured performance with
the session support described in Section 7.3: once authenticated to
the system, future requests were serviced by the event process cre-
ated in the authentication step. The OKWS throughput results thus
contain data both for forwarding messages to existing eventpro-
cesses and for creating new event processes, which is slower—it
involves communication with the database and some kernel over-
head. In our benchmark, for 1000 user sessions and more, each
user connected to its session exactly four times; a workloadwith
a different ratio of new sessions to existing sessions wouldper-
form somewhat differently. Because the number of sessions affects
the size of labels on some components, we expect performanceto
change with the number of cached sessions. Neither Apache nor
Mod-Apache isolates users, so no attempt to authenticate them is
made in this test.

Figure 7 shows that, with one session, OKWS performs better
than Apache, and a bit over half as well as Mod-Apache. OKWS
performs better than Apache until somewhere over one thousand
sessions are cached in the system, but even with 10,000 separate
event processes, each holding isolated memory state, it performs
approximately half as well as Apache. Section 9.3 further discusses
the factors that reduce OKWS’s performance as sessions increase.

9.2.2 Latency
This section compares the per-request latency of OKWS on As-
bestos with Apache and Mod-Apache. Stuck with low-concurrency
Asbestos, we measured the latency of all three servers with a
concurrency of only four simultaneous connections. Mod-Apache,
which processes each request within a single process, responds to
most requests with very low latency. This is to be expected ofa
server that can handle Web requests with simple library calls. Un-

12

like Mod-Apache, Apache with CGI pays performance penalties
for forking and IPC, responding to most requests with three to five
times the latency. As shown in Figure 8, OKWS with one user hasa
smaller median latency than Apache, as well as a smaller variance.
Scheduling affects OKWS to a lesser extent because there is no
parallelism for requests to choose from. All requests must sequen-
tially traversenetd, ok-demux, worker, and thennetdagain, which
doesn’t give the option for any request to be temporarily starved.
OKWS with 1000 cached sessions has latencies which are just abit
worse then those of Apache.

9.3 Label costs
Ideally, varying the number of sessions should have no effect on
throughput or latency. However, the size of various labels in the
system will increase with the number of sessions. Figure 9 shows
the costs of various components in the system in thousands ofCPU
cycles per connection as the number of cached sessions increases.
The OKWS and Network lines represent the time spent in OKWS
andnetdcode, respectively. The Kernel IPC line includes all time
spent in processingsendandrecv, which includes most of the sys-
tem’s label operations; time spent in other label operations is in-
cluded as well. The OKDB line represents time spent in the SQLite
database looking up usernames and passwords, and any remaining
processing time is accounted for in the Other line.

With one session in the system, most of the processing time is
in OKWS and the network stack. As the number of sessions in-
creases, database overhead incurred by user authentication quickly
becomes significant. This may simply represent another costof us-
ing unoptimized system components, in this case SQLite. However,
label and other kernel IPC operations also take significantly more
time as sessions increase. Since OKWS uses two handles to isolate
a user, 10,000 cached sessions impliesidd andok-dbproxy’s send
labels will contain more than 20,000 handles;netd’s receive label
will have accumulated 10,000 declassifications with respect to taint
handles; andok-demuxwill hold at least 10,000 handles for open
worker sessions. Furthermore, some of these large labels must be
updated to include a capability for each new TCP connection,and
then to release that capability when the connection is passed to an
event process or closed. Around 3,000 sessions, time spent doing
IPC and label operations surpasses time spent in the networkstack.
By 7,500 sessions, it equals the work being done in all of OKWS.
As expected, linear scaling factors in our label implementation lead
to linear performance degradation as labels increase in size. Further
optimization opportunities are under investigation, as isclearly re-
quired. However, we are pleased that the degradation is relatively
mild, with no obviously quadratic or exponential factors. As we
hypothesized, Asbestos labels and event processes make it practi-
cal to isolate user state even on a server storing data for thousands
of users.

10 CONCLUSION

The Asbestos operating system makes nondiscretionary access con-
trol mechanisms available to unprivileged users, giving them fine-
grained, end-to-end control over the dissemination of informa-
tion. Asbestos provides protection through a new labeling scheme,
which, unlike schemes in previous operating systems, allows data
to be sanitized ordeclassifiedby individual users within categories
they control. The categories, called handles, use the same names as
communication endpoints, making them a kind of generalization of
capabilities. As in a capability system, processes can dynamically
generate new handles and distribute them independently, and pro-
cesses can specify temporary label restrictions on sent messages to
avoid the unintentional use of privilege.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 K
cy

cl
es

/c
on

ne
ct

io
n

Cached OKWS sessions

OKDB
OKWS

Kernel IPC
Network

Other

Figure 9: The average cost in Kcycles/connection of various Asbestos
components, as the number of cached sessions increases.

Asbestos also introduces a new process abstraction, event pro-
cesses, which allow a server process to inhabit disjoint security
compartments without either privilege or contamination. Event pro-
cesses impose less overhead on the operating system than forked
address spaces, so many thousands of them can theoreticallycoex-
ist without resource strain. A prototype Web server manipulates la-
beled data so that even software bugs in the high-risk workercode
cannot cause one user to receive another’s private data. Thesys-
tem requires only 1.5 pages of memory per cached Web session
and exhibits performance comparable to Unix systems that provide
weaker isolation.

ACKNOWLEDGMENTS

The authors thank the following people for their comments and
technical contributions: Lee Badger; Chris Frost and Mike Mam-
marella for network stack integration; Michelle Osborne for work
on an earlier version of the system; the contributors to the LWIP
project, including Adam Dunkels and Leon Woestenberg; the
anonymous reviewers; and our shepherd Emin Gün Sirer.

This work was supported by DARPA grants MDA972-03-P-
0015 and FA8750-04-1-0090, and by joint NSF Cybertrust/DARPA
grant CNS-0430425. David Mazières and Robert Morris are sup-
ported by Sloan fellowships.

REFERENCES
[1] Apache API notes.http://httpd.apache.org/docs/

1.3/misc/API.html.

[2] Apache HTTP server project.http://httpd.apache.org.

[3] David E. Bell and Leonard La Padula. Secure computer system:
Unified exposition and Multics interpretation. Technical Report
MTR-2997, Rev. 1, MITRE Corp., Bedford, MA, March 1976.

[4] Viktors Berstis. Security and protection of data in the IBM Sys-
tem/38. InProc. 7th Annual Symposium on Computer Architec-
ture (ISCA ’80), pp. 245–252, May 1980.

[5] M. Branstad, Homayoon Tajalli, Frank Mayer, and David Dalva.
Access mediation in a message passing kernel. InProc. 1989
IEEE Symposium on Security and Privacy, pp. 66–72, Oakland,
CA, May 1989.

[6] David R. Cheriton. The V distributed system.Journal of the
ACM, 31(3):314–33, March 1988.

[7] Dorothy E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, May 1976.

13

[8] Dorothy E. Denning and Peter J. Denning. Certification ofpro-
grams for secure information flow.Communications of the ACM,
20(7):504–513, July 1977.

[9] Department of Defense.Trusted Computer System Evaluation
Criteria (Orange Book), December 1985. DoD 5200.28-STD.

[10] Timothy Fraser. LOMAC: Low water-mark integrity protection
for COTS environments. InProc. 2000 IEEE Symposium on Se-
curity and Privacy, pp. 230–245, Oakland, CA, May 2000.

[11] R. P. Goldberg. Architecture of virtual machines. InProc. AFIPS
National Computer Conference, Vol. 42, pp. 309–318, June 1973.

[12] Norman Hardy. The confused deputy (or why capabilitiesmight
have been invented).Operating Systems Review, 22(4):36–38,
October 1988.

[13] Wei-Ming Hu. Reducing timing channels with fuzzy time.In
Proc. 1991 IEEE Symposium on Security and Privacy, pp. 8–20,
Oakland, CA, May 1991.

[14] Trent Jaeger, Atul Prakash, Jochen Liedtke, and NayeemIslam.
Flexible control of downloaded executable content.ACM Trans-
actions on Information and System Security, 2(2):177–228, May
1999.

[15] Paul A. Karger. Limiting the damage potential of discretionary
Trojan horses. InProc. 1987 IEEE Symposium on Security and
Privacy, pp. 32–37, Oakland, CA, April 1987.

[16] Paul A. Karger and Andrew J. Herbert. An augmented capability
architecture to support lattice security and traceabilityof access.
In Proc. 1984 IEEE Symposium on Security and Privacy, pp. 2–
12, Oakland, CA, April 1984.

[17] Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H.
Mason, and Clifford E. Kahn. A VMM security kernel for the
VAX architecture. InProc. 1990 IEEE Symposium on Security
and Privacy, pp. 2–19, Oakland, CA, May 1990.

[18] Key Logic. The KeyKOS/KeySAFE System Design, March 1989.
SEC009-01. http://www.agorics.com/Library/
KeyKos/keysafe/Keysafe.html.

[19] Samuel T. King and Peter M. Chen. Operating system support
for virtual machines. InProc. 2003 USENIX Annual Technical
Conference, San Antonio, TX, June 2003.

[20] Maxwell Krohn. Building secure high-performance web services
with OKWS. In Proc. 2004 USENIX Annual Technical Confer-
ence, pp. 185–198, Boston, MA, June 2004.

[21] Maxwell Krohn, Petros Efstathopoulos, Cliff Frey, Frans
Kaashoek, Eddie Kohler, David Mazières, Robert Morris,
Michelle Osborne, Steve VanDeBogart, and David Ziegler. Make
least privilege a right (not a privilege). InProc. 10th Hot Topics
in Operating Systems Symposium (HotOS-X), Santa Fe, NM, June
2005.

[22] Carl E. Landwehr. Formal models for computer security.ACM
Computing Surveys, 13(3):247–278, September 1981.

[23] Robert Lemos. Payroll site closes on security worries,
February 2005. http://news.com.com/2102-1029
3-5587859.html.

[24] Jochen Liedtke. On microkernel construction. InProc. 15th ACM
Symposium on Operating Systems Principles, Copper Mountain
Resort, CO, December 1995.

[25] Peter Loscocco and Stephen Smalley. Integrating flexible support
for security policies into the Linux operating system. InProc.
2001 USENIX Annual Technical Conference—FREENIX Track,
pp. 29–40, June 2001.

[26] LWIP. http://savannah.nongnu.org/projects/
lwip/.

[27] Catherine Jensen McCollum, Judith R. Messing, and LouAnna
Notargiacomo. Beyond the pale of MAC and DAC—defining
new forms of access control. InProc. 1990 IEEE Symposium on
Security and Privacy, pp. 190–200, Oakland, CA, May 1990.

[28] M. Douglas McIlroy and James A. Reeds. Multilevel secu-
rity in the UNIX tradition. Software—Practice and Experience,
22(8):673–694, August 1992.

[29] Mark S. Miller, Ka-Ping Yee, and Jonathan Shapiro. Capability
myths demolished. Technical Report SRL2003-02, Johns Hop-
kins University Systems Research Laboratory, 2003.http:
//www.erights.org/elib/capability/duals/.

[30] James G. Mitchell, Jonathan Gibbons, Graham Hamilton,Pe-
ter B. Kessler, Yousef Y. A. Khalidi, Panos Kougiouris, Peter
Madany, Michael N. Nelson, Michael L. Powell, and Sanjay R.
Radia. An overview of the Spring system. InProc. COMPCON
1994, pp. 122–131, February 1994.

[31] Andrew C. Myers and Barbara Liskov. Protecting privacyusing
the decentralized label model.ACM Transactions on Computer
Systems, 9(4):410–442, October 2000.

[32] News10. Hacker accesses thousands of personal data files
at CSU Chico, March 2005.http://www.news10.net/
storyfull1.asp?id=9784.

[33] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An
efficient and portable Web server. InProc. 1999 USENIX Annual
Technical Conference, pp. 199–212, Monterey, CA, June 1999.

[34] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken
Thompson, Howard Trickey, and Phil Winterbottom. Plan 9 from
Bell Labs.Computing Systems, 8(3):221–254, Summer 1995.

[35] Richard F. Rashid and George G. Robertson. Accent: A commu-
nication oriented network operating system kernel. InProc. 8th
ACM Symposium on Operating Systems Principles, pp. 64–75,
Pacific Grove, CA, December 1981.

[36] Marc Rozier, Vadim Abrossimov, François Armand, I. Boule,
Michel Gien, M. Guillemont, F. Herrmann, Claude Kaiser,
S. Langlois, P. Leonard, and W. Neuhauser. CHORUS distributed
operating system.Computing Systems, 1:305–370, Fall 1988.

[37] Jerome H. Saltzer and Michael D. Schroeder. The protection of
information in computer systems.Proc. of the IEEE, 63(9):1278–
1308, September 1975.

[38] Bruce Schneier. Description of a new variable-length key, 64-bit
block cipher (Blowfish). InProc. Fast Software Encryption, Cam-
bridge Security Workshop, pp. 191–204. Springer-Verlag, De-
cember 1993. LNCS 809.

[39] Jonathan S. Shapiro, Jonathan Smith, and David J. Farber. EROS:
A fast capability system. InProc. 17th ACM Symposium on Op-
erating Systems Principles, pp. 170–185, Kiawah Island, SC, De-
cember 1999.

[40] SQLite.http://www.sqlite.org.
[41] Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren,

Gregory J. Sharp, Sape J. Mullender, Jack Jansen, and Guido
van Rossum. Experiences with the Amoeba distributed operating
system.Communications of the ACM, 33(12):46–63, December
1990.

[42] VMware. VMware and the National Security Agency team to
build advanced secure computer systems, January 2001.http:
//www.vmware.com/pdf/TechTrendNotes.pdf.

[43] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula,
and Eric Brewer. Capriccio: Scalable threads for Internet services.
In Proc. 19th ACM Symposium on Operating Systems Principles,
pp. 268–281, Bolton Landing, Lake George, NY, October 2003.

[44] Robert Watson, Wayne Morrison, Chris Vance, and Brian Feld-
man. The TrustedBSD MAC framework: Extensible kernel ac-
cess control for FreeBSD 5.0. InProc. 2003 USENIX Annual
Technical Conference, pp. 285–296, San Antonio, TX, June 2003.

[45] Matt Welsh, David Culler, and Eric Brewer. SEDA: An architec-
ture for well-conditioned, scalable Internet services. InProc. 18th
ACM Symposium on Operating Systems Principles, pp. 230–243,
Château Lake Louise, Alberta, Canada, October 2001.

[46] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble.Scale
and performance in the Denali isolation kernel. InProc. 5th Sym-
posium on Operating Systems Design and Implementation (OSDI
’02), pp. 195–210, Boston, MA, December 2002.

14

