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We present LABKIT, a user-friendly Fiji plugin for the segmen-

tation of microscopy image data. It offers easy to use manual

and automated image segmentation routines that can be rapidly

applied to single- and multi-channel images as well as to time-

lapse movies in 2D or 3D. LABKIT is specifically designed to

work efficiently on big image data and enables users of con-

sumer laptops to conveniently work with multiple-terabyte im-

ages. This efficiency is achieved by using ImgLib2 and Big-

DataViewer as the foundation of our software. Furthermore,

memory efficient and fast random forest based pixel classifica-

tion inspired by the Waikato Environment for Knowledge Anal-

ysis (Weka) is implemented. Optionally we harness the power of

graphics processing units (GPU) to gain additional runtime per-

formance. LABKIT is easy to install on virtually all laptops and

workstations. Additionally, LABKIT is compatible with high

performance computing (HPC) clusters for distributed process-

ing of big image data. The ability to use pixel classifiers trained

in LABKIT via the ImageJ macro language enables our users

to integrate this functionality as a processing step in automated

image processing workflows. Last but not least, LABKIT comes

with rich online resources such as tutorials and examples that

will help users to familiarize themselves with available features

and how to best use LABKIT in a number of practical real-world

use-cases.
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Introduction

In recent years, new and powerful microscopy and sam-

ple preparation techniques have emerged, such as light-

sheet (1), super-resolution microscopy (2–6), modern tis-

sue clearing (7, 8), or serial section scanning electron mi-

croscopy (9, 10) enabling researchers to observe biological

tissues and their underlying cellular and molecular composi-

tion and dynamics in unprecedented details. To localize ob-

jects of interest and exploit such rich datasets quantitatively,

scientists need to perform image segmentation, e.g. dividing

all pixels in an image into foreground pixels (part of objects

of interest) and background pixels.

The result of such a pixel classification is a binary mask,

or a (multi-)label image if more than one foreground class

are needed to discriminate different objects. Masks or la-

bel images enable downstream analysis that extract biolog-

ically meaningful semantic quantities, such as the number

of objects in the data, morphological properties of these ob-

jects (shape, size, etc.), or tracks of object movements over

time. In most practical applications, image segmentation is

not an easy task to solve. It is often rendered difficult by the

sample’s biological variability, imperfect imaging conditions

(e.g. leading to noise, blur, or other distortions), or simply

by the complicated three-dimensional shape of the objects of

interest.

Current research in bio-image segmentation focuses primar-

ily on developing new deep learning approaches, with more

classical methods currently receiving little attention. Al-

gorithms, such as StarDist (11), DenoiSeg (12), PatchPer-

Pix (13), PlantSeg (14), CellPose (15), or EmbedSeg (16)

have continuously raised the state-of-the art and outperform

classical methods in quality and accuracy of achieved auto-

mated segmentation. While these approaches are very pow-

erful indeed, deep learning does require some expert knowl-

edge, dedicated computational resources not everybody has

access to, and typically large quantities of densely annotated

ground-truth data to train on.

More classical approaches, on the other hand, can also yield

results that enable the required analysis, while often remain-

ing fast and easy to use on any laptop or workstation. Exam-

ples for such methods range from intensity thresholding and

seeded watershed, to shallow machine learning approaches

on manually chosen or designed features. One crucial prop-

erty of shallow techniques, such as random forests (17), is

that they require orders of magnitude less ground-truth train-

ing data than deep learning based methods. Hence, mul-

tiple software tools pair them with user-friendly interfaces,

e.g. CellProfiler (18), Ilastik (19), QuPath (20), and Train-

able Weka Segmentation (21). The latter specializes in ran-

dom forest classification and is available within Fiji (22), a

widely-used image analysis and processing platform based

on ImageJ (23) and ImageJ2 (24). It is, regrettably, not capa-

ble of processing very large datasets due to its excessive de-

mand for CPU memory, leaving the sizable Fiji community

with a lack of user-friendly pixel classification or segmenta-

tion tools that can operate on large multi-dimensional data.

The required foundations for such a software tool have in re-

cent years been built by the vibrant research software engi-

neering community around Fiji and ImageJ2. The problem of

handling large multi-dimensional images has been addressed
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by a generic and powerful library called ImgLib2 (25). Ad-

ditionally, a fast, memory-efficient, and extensible image

viewer, the BigDataViewer (26), enables tool developers to

create intuitive and fast data handling interfaces.

Here, we present an image labeling and segmentation tool

called LABKIT. It combines the power of ImgLib2 and Big-

DataViewer with a new implementation of random forest

pixel classification. LABKIT features a user-friendly inter-

face allowing for rapid scribble labeling, training, and inter-

active curation of the segmented image. LABKIT also allows

users to fully manually label pixels or voxels in the loaded

images. It can be easily installed in Fiji via its updater, and

it can directly be called from Fiji’s macro programming lan-

guage. LABKIT additionally features GPU acceleration using

CLIJ (27), and can be used on high performance computing

(HPC) clusters thanks to a command-line interface.

Image Segmentation with LABKIT

LABKIT’s user interface is built around the Big-

DataViewer (26), which allows interactive exploration

of image volumes of any size and dimension on consumer

computing hardware (Fig. 1A, B). Beyond the common

BigDataViewer features, users have access to a set of simple

drawing tools to manually paint or correct existing labels on

image pixels in 2D and voxels in 3D. Importantly, the raw

data is never modified by any such actions. Pixel and voxel

labels are grouped by classes in individual layers. Each class

is represented by a modifiable color, and can be used to

annotate different types of objects and structures of interest

in the image.

Thanks to the intuitive interface design, users can efficiently

segment their images by manually drawing dense labels on

the entire image (Fig. 1C). Labels that are generated with the

drawing tools can directly be saved as images or exported

to Fiji for downstream processing. Dense manual labelings

of complete images or volumes created with LABKIT can be

used to manually segment objects, as was done previously

to mask particles in cryo-electron tomograms of Chlamy-

domonas (28).

However, this process is very time consuming and doesn’t

scale well to large data. LABKIT is therefore often used

to densely and manually label a subset of the image data,

which is then used as ground-truth for supervised deep learn-

ing approaches. Published examples include the generation

of ground-truth training data for a mouse and a Platyneris

dataset in order to segment cell nuclei with EmbedSeg (16).

LABKIT is also suggested as a tool of choice for ground-truth

generation by other deep learning methods (11, 12, 29). Still,

manually generating sufficient amount of ground-truth train-

ing labels for existing deep learning methods remains a cum-

bersome and tedious task.

In order to create high quality segmentation while maintain-

ing a manageable amount of user input, a core feature of

LABKIT is a random forest based pixel classification (17)

based on Weka (30, 31), newly implemented and optimized

for speed. When using this feature, instead of annotating en-

tire objects, a random forest is trained on only a few pixel

annotations per class. Such sparse manual labels, or scrib-

bles (see Fig. 1D, left), are directly drawn by users over the

image. Naturally, the sparse labels must be drawn on cor-

rect and representative pixels from each pixel class, and are

then used to train the shallow random forest classifier. Once

trained, this classifier can then be used to generate a segmen-

tation (dense pixel classification, see Fig. 1D).

Two or more classes can be used to distinguish foreground

objects from background pixels. Fig. 2A & B showcase ex-

amples of a single foreground and background classes. If de-

sired, out of focus objects can even be discarded, for example

by making such pixels part of the background class (Fig. 2B,

arrowheads). For more complex segmentation tasks that need

to discriminate various visible structures (e.g. nucleus vs. cy-

toplasm vs. background) or cell types (as in Fig. 2C), two or

more foreground classes can be used (Fig. 2D).

As opposed to deep learning algorithms, random forests are

typically trained in a matter of seconds. Drawing scribbles

and computing the segmentation can therefore conveniently

be iterated due to the efficient parallelization we have imple-

mented, leading to live segmentation. Live results are com-

puted and displayed only on the currently visualized image

slice in BigDataViewer to increase the interactivity. Hence,

the effect of additional scribbles (sparse labels) is instantly

visible and users can stop once the automated output of the

pixel classifier reaches a similar quality to that of a fully man-

ual pixel annotation. This iterative workflow makes working

with LABKIT very efficient, even when truly large image data

are being processed. BigDataViewer’s bookmarking feature

can additionally be used to quickly jump between previously

defined image regions, thereby allowing validating the qual-

ity of the pixel classifier on multiple areas. Since we use

ImgLib’s caching infrastructure, all image blocks that have

once been computed are kept in memory and switching be-

tween bookmarks or browsing between parts of a huge vol-

ume is fast and visually pleasing. Once sufficiently trained,

the classifier can be saved for later use in interactive LABKIT

sessions or in Fiji/ImageJ macros. The entire dataset can be

directly segmented and the results saved to the disk. Re-

cently, sparse labeling combined with random forest pixel

classification in LABKIT was used to segment mice epider-

mal cells (32), as well as mRNA foci in neurons (33).

Once the image is fully segmented, the generated segmenta-

tion masks can be transferred to label layers and the drawing

tools can now be used to curate them. The goal of curation

is to resolve the remaining errors made by the trained pixel

classifier, such as drawing missing parts, filling holes, erasing

mislabeling and deleting spurious blobs (Fig. 3). Label cu-

ration is performed until the curated segmentation is deemed

satisfactory for downstream processing or analysis. LABKIT

can also be used to curate segmentation results obtained by

other methods that are not available within LABKIT, includ-

ing deep learning based methods (34).

Automated segmentation with LABKIT and the possibility

to quickly curate any automated segmentation result make

LABKIT a powerful tool that can considerably shorten the

time required to generate ground-truth data for training deep
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learning approaches. For example, we compared automatic

and manual segmentation with LABKIT on a rather small sub-

set of images (N=26, see one example in Fig. 4A) made pub-

licly available by the 218 Data Science Bowl (35). We seg-

mented all images within 5 minutes by iterative scribbling

and automated segmentation (see Fig. 4B). While many im-

ages consisted of homogeneous nuclei and led to high qual-

ity results, images with heterogeneous nuclei resulted in seg-

mentation errors (see arrows in Fig. 4B). Such errors include

spurious instances that do not correlate with any object in

the original image, instances that correspond to the fusion

of multiple instances, instances with holes, or even instances

that split in two. Such errors are obviously undesirable and

negatively impact the overall average precision score (AP =

0.72, see Methods for the metrics definition). As described

above, all such segmentation errors can easily be corrected

within LABKIT, either by adding sparse labels correspond-

ing to typical areas with errors, done during the iterative pro-

cess, or when they persist by manually curating the residual

errors in the final automated results (Fig. 4C). Curating all

26 images took an additional 10 minutes and raised the cor-

responding average precision to 0.76, a score very close to

the inter-observer distance (AP = 0.78), as shown in Fig. 4C

& D. In contrast, manually segmenting all images required

more than an hour (Fig. 4D), which is four times longer than

scribble-based pixel classification with LABKIT, followed by

full curation of the results to obtain images of comparable

quality.

Hence, whenever LABKIT automated segmentation is by

itself not sufficient, manually curating the results yields

ground-truth data that can be used to train a deep learning

method, leading to higher segmentation quality with less la-

beling effort.

Software and workflow integration

LABKIT’s automatic segmentation is not limited to the

dataset it was trained on. Because the trained classifier can

be saved for later use, it can be applied to new images. While

ensuring reproducibility of the results, it also helps maintain-

ing consistency in the image segmentation. Manually load-

ing both images and trained classifier in LABKIT for multi-

ple sets of images is a repetitive task ill-suited for automated

workflow. Therefore, to simplify the integration into exist-

ing workflows in Fiji, LABKIT can be easily called from the

ImageJ macro language. For instance, a simple macro script

can open multiple datasets and segment each of them using a

trained classifier.

Image segmentation can be further accelerated by running

the process on GPUs thanks to CLIJ (27). Once CLIJ prop-

erly set up, GPU acceleration is available for LABKIT in both

graphical interface and macro commands. GPU processing is

particularly beneficial in the case of large images, for which

it allows shortening the lengthy segmentation tasks. Perform-

ing GPU-accelerated segmentation in LABKIT is a matter of

activating a checkbox, and does not present additional com-

plexity to users.

Some images, however, are far too large to be processed on

a consumer machine in a reasonable amount of time, if they

can be stored at all on such a computer. For such data, mod-

ern workflows resort to the use of HPC clusters, which are

purposely built for high computing performances with large

available memory. LABKIT offers a command line tool (36)

allowing advanced users to segment images on HPC clusters.

The capability of extending LABKIT and re-using its com-

ponents is illustrated by integration with the commercial

Imaris software (Oxford Instruments, UK) via the recently

released ImgLib2-Imaris compatibility bridge. In this con-

text, LABKIT operates directly on datasets that are trans-

parently shared (without duplication) between Imaris and

ImgLib2 (25). These datasets can be arbitrarily large, as

both Imaris and ImgLib2 implement sophisticated caching

schemes. In the same fashion, output segmentation masks

are transparently shared with the running Imaris application,

making additional file import/export steps unnecessary. Im-

portantly, this functionality can also be triggered and con-

trolled directly from Imaris to integrate it into streamlined

object segmentation workflows.

Performance of LABKIT

In order to process large images on consumer computers,

software packages must be able to load the data in mem-

ory, process it and save the results, all within the constraints

of the machine. In LABKIT, this is achieved by reading

only the portions of the image that are displayed to the user,

thanks to the use of the HDF5 format (37) and the Big-

DataViewer (26). The image is further processed in chunks

using a new ImgLib2 (25) implementation of the Trainable

Weka Segmentation algorithm. As a result, LABKIT is capa-

ble of processing arbitrarily large images and is compatible

with GPU acceleration and distributed computation on HPC

clusters.

To illustrate this, we segmented a 13.4 gigapixel image

(482x935x495x60 pixels, 25 GB) on a single laptop com-

puter, with and without GPU, and with different nodes of an

HPC cluster (see Table 1). The image was extracted and

2x down-sampled from the Fluo-N3DL-TRIF dataset made

available for the Cell Tracking Challenge (34, 38, 39) bench-

mark competition. Running the segmentation on the laptop

using GPU acceleration sped up the computation by 7.5 fold,

illustrating the benefit of harnessing GPU power for process-

ing large images. While running computation on an HPC

cluster comes with overhead, increasing the number of CPU

nodes shortens the computation dramatically, reaching a 40-

fold improvement from 1 CPU node to 50. Finally, GPU

nodes on an HPC allow for more parallelization of the com-

putation and therefore even higher computational speed-up

on the segmentation task, with 10 GPU nodes processing the

data in slightly over a minute.

Furthermore, we trained and optimized a classifier on the

Fluo-N3DL-TRIF dataset (original sampling), the largest

dataset of the Cell Tracking Challenge (training dataset of

size 320 GB, evaluation dataset of size 467 GB), and submit-

ted it for evaluation against undisclosed ground-truth. The

segmentation of both training and evaluation datasets was
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performed on an HPC cluster. LABKIT pixel classification

ranked as the highest performing segmentation method on

this dataset for all three evaluation metrics (OPCSB , SEG

and DET ) (40). More specifically, LABKIT segmentation

obtained the following scores: OPCSB = 0.895 (0.886 for

the second highest scoring entry), SEG = 0.793 (0.776) and

DET = 0.997 (0.997), performing better than the other en-

tries, including classical (bandpass segmentation) or deep

learning (convolution neural network) algorithms. As op-

posed to the deep learning algorithms to which it was com-

pared, Labkit only made use of a few hundred pixels in total,

distributed throughout a small fraction of the training dataset

(7 frames). Finally, LABKIT’s classifier was simply trained

through the LABKIT graphical interface, illustrating its ease

of use.

Discussion and conclusion

LABKIT is a labeling tool designed to be intuitive and sim-

ple to use. It features a robust pixel classification algo-

rithm aimed at segmenting images between multiple classes

with very little annotation required. Similar to other tools

of the BigDataViewer family (26, 41–43), it integrates seam-

lessly into the SciJava and Fiji ecosystem. It can be easily

installed through the Fiji updater and incorporated into es-

tablished workflows using ImageJ’s macro language.The re-

sults of LABKIT’s segmentation can be further analysed in

Fiji or exported to other software platforms, such as CellPro-

filer (18), QuPath (20) or Ilastik (19).

Manual labeling, in both 2D and 3D, is also made easy by

LABKIT. Other alternatives exist, among which QuPath (20)

(2D), Ilastik (19), napari (44) or Paintera (45). In particu-

lar, Paintera is specifically tailored to 3D labeling of crowded

environment, but at the cost of a steeper learning curve.

LABKIT is compatible with a wide range of image formats

since image data can be loaded directly from Fiji using Bio-

Formats (46). Nonetheless, in order to fully benefit from

LABKIT optimizations for large images, users must first con-

vert their terabyte-sized images to a file format allowing high-

speed access to arbitrary located sub-regions of the image.

This strategy is also employed by other software, with the

example of Ilastik (19). One such format is HDF5 (37), and

LABKIT uses in particular the BigDataViewer HDF5+XML

version. In Fiji, images can easily be saved in this format

using BigStitcher (42) or Multiview-Reconstruction (47, 48).

In the Cell Tracking Challenge (39, 40), LABKIT segmenta-

tion outperformed other entries on a particular dataset, among

which two deep learning approaches. These methods were

designed as part of a cell segmentation and tracking pipeline

on various images, and it is likely that recent and more spe-

cialized segmentation algorithms, such as StarDist (11) or

CellPose (15), would perform overall better. Yet, the full

potential of deep learning algorithms is only reached when

a sufficient amount of ground-truth data is available, which

is too frequently the limiting factor. Generating ground-truth

data for a deep learning method is a tedious endeavour with-

out the insurance of a perfect segmentation result. A safer

strategy is therefore to first try shallow learning for segmen-

tation tasks, before even thinking of moving to deep learn-

ing algorithms. In cases where higher segmentation quality

is truly necessary, curated results from shallow learning can

be used to generate the massive amount of ground-truth re-

quired to train a deep learning algorithm. As seen previously,

LABKIT is useful in all these scenarios since it can be used

to manually generate ground-truth annotations or to segment

the images with shallow learning before curating the results

in order to use them as ground-truth for other learning-based

algorithms (see Fig. 5).

In the future, we intend to extend LABKIT’s functionalities to

improve manual and automated segmentation. For instance,

we will add a magic wand tool to select, fill, fuse or delete la-

bels based on the pixel classification. Furthermore, we aim to

add new pixel classifiers,such as the deep learning algorithm

DenoiSeg (12) already available in Fiji. LABKIT source code

is open source and can be found online (49), together with its

command-line interface (36) and tutorials (50).

Methods

A. Timing instance segmentation generation. The

dataset consisted of all 256x256 images (N=26) in the test

sample of StarDist (11), originally published as part of the

2018 Data Science Bowl (35) (subset of stage1_train, acces-

sion number BBBC038, Broad Bioimage Benchmark Collec-

tion). The images were loaded in LABKIT as a stack and

sparsely labeled (scribbles). A classifier was then trained

with the default filter settings: "original image", "Gaussian

blur", "difference of Gaussians", "Gaussian gradient magni-

tude", "Laplacian of Gaussian" and "Hessian eigenvalues",

with sigmas: 1, 2, 4 and 8. The results were saved and

then manually curated using the brush and eraser tools. Fi-

nally, the same original image stack was densely manually

labeled afresh. The total time required to process all im-

ages was measured using a chronometer for i) LABKIT au-

tomated segmentation, including the sparse manual labeling,

ii) the previous step followed by a curation step and iii) dense

manual labeling. In order to evaluate the segmented images,

connected components were computed (4-connectivity) and

given unique pixel values (instance segmentation). Quality

metrics scores were calculated as the average precision with

threshold 0.5 as defined in StarDist (11). We used dense man-

ual labeling performed by another observer as reference im-

ages, and computed the metrics score for the results obtained

in i), ii) and iii). The average metrics over the images were

calculated as a weighted average of each individual image,

where the weights were the number of instances in the refer-

ence image.

B. Speed benchmark. The dataset was downloaded from

the Cell Tracking Challenge (39) website, and consisted of

the first training dataset of the Fluo-N3DL-TRIF example.

The dataset was down-sampled by a factor 2 in order to re-

duce its size and simplify the benchmarking. The dataset was

then saved in the BigDataViewer XML+HDF5 format using

BigStitcher (42). LABKIT was used to draw a few scribbles

on both background and nuclei areas, and to train a random
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C Cell tracking challenge

forest classifier using the default settings. The trained model

was then saved. The LABKIT command line tool was used to

run the benchmark experiment on a Dell XPS 15 laptop (32

MB RAM, Intel Core i7-6700HQ CPU with 8 cores, GeForce

GTX 960M GPU) and on an HPC cluster, with both CPU

(256 GB RAM, Intel Xeon CPU E5-2680 v3 with 2.5 GHz

and 24 cores) and GPU (512 GB RAM, Intel Xeon CPU

E5-2698 v4 with 2.2 GHz and 40 cores, with two GeForce

GTX 1080 GPUs) nodes. The segmentation results on the

HPC were saved in the N5 format to maximize writing speed.

Benchmarking included read/write of image data form disc,

optional data transfer to the GPU, computation of feature im-

ages and classification all together.

C. Cell tracking challenge. As in the speed benchmark

sample, all Fluo-N3DL-TRIF datasets (training and evalua-

tion) were converted to BigDataViewer XML+HDF5 format

using the BigStitcher Fiji plugin. This time, however, no

down-sampling was applied to the images. For training, only

frames 0, 1, 10, 20, 40, 50 and 59 from sequence “01” of the

training dataset were used. A few hundred pixels were an-

notated as foreground and background. Only nuclei’s central

pixels were labeled as foreground in order to force the classi-

fication algorithm to return segments of smaller size than the

actual nuclei. Thus, segmented nuclei are unlikely to touch

and segmentation errors are minimized. We used the follow-

ing filters to train the random forest classifier: "original im-

age", "Gaussian blur", "Laplacian of Gaussian", and "Hes-

sian eigenvalues", with sigma values 1, 2, 4, 8 and 16. The

filters can be set in LABKIT’s interface through the parame-

ters menu of the classifier. The trained classifier was saved

and the evaluation dataset was segmented using the LABKIT

command line tool on an HPC. Since the output of the pixel

classification is a binary mask, we performed a connected

component analysis to assign unique pixel values to the indi-

vidual segments. Finally, we dilated the segments to match

the size of the nuclei. The dilation was done in three steps:

the first two steps with a three-dimensional 6-neighborhood

dilation kernel, then with a 3x3x3 pixel cube kernel. The

combination of dilation kernels was chosen as to optimize the

SEG score on the training dataset. All metrics scores were

computed by the Cell Tracking Challenge platform.
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Figure captions

A

Foreground Background

Sparse manual labeling

C D

Dense manual labeling

B

H2B-mRFPruby

Automatic segmentation

Fig. 1. LABKIT allows easy manual labeling and automatic segmentation of large image volumes: (A) Maximum intensity projection of a single time point from a

∼1 TB timelapse of a developing Parhyale embryo imaged live with lightsheet microscopy. (B) LABKIT’s user interface is based on BigDataViewer and allows visualizing and

interacting with large volumes of image data. A slice of the developing Parhyale embryo is shown. (C) Users can label large datasets with dense manual annotations using

LABKIT’s drawing interface. (D) A core feature of LABKIT is the rapid segmentation of large image data using sparse manual labels (scribbles) combined with random forest

pixel classification to automatically produce the final segmentation. Scale bars 100 µm (A), 50 µm (B), 25 µm (C, D),

hardware GPU run time speed-up throughput in gigapixel

Laptop no 4 h 23 min 00 s 1 3.05 / h = 0.05 / min

Laptop yes 35 min 12 s 7.5 0.38 / min

1 CPU cluster node no 1 h 08 min 10 s 1 0.20 / min

10 CPU cluster nodes no 6 min 15 s 10.9 2.14 / min

50 CPU cluster nodes no 1 min 35 s 43.1 8.45 / min

1 GPU cluster node yes (2) 8 min 23 s 1 1.60 / min

10 GPU cluster nodes yes (2) 1 min 03 s 7.9 12.74 / min

Table 1. Benchmarking computation speed while segmenting a large biological image on various hardware: the experiment was performed on a laptop without and

with GPU acceleration, and on different numbers of CPU and GPU cluster nodes. In each category, the speed-up is calculated in comparison to the slower entry. Numbers

in between parenthesis in the GPU column indicate the number of GPU per cluster node.
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Sparse manual labeling Auto segmentation

A

B

C

Foreground 

Background

Hepatocyte cytoplasm

Sinusoids

Hepatocyte nuclei

Non-parenchymal nuclei

DAPI

C1-GFP

E.coli

D

HNF-4✁ Autofuorescence

Fig. 2. Semantic segmentation of microscopy images with LABKIT’s pixel classification: (A) Maximum intensity projection of a confocal stack showing HeLa cells

expressing C1-GFP (left), next to the sparse labeling (scribbles, center) and resulting cell segmentation (right). (B) Bright field microscopy image of E.coli, sparse labeling

discriminating cells and background and the resulting segmentation. Arrowheads show that segmentation of out of focus objects can be reduced by including pixels of

such objects in the background class. (C) Fixed mouse liver tissue section stained with immunofluorescence and imaged in multiple channels with a spinning disk confocal

microscope, showing Hepatocyte nuclei stained with antibody against HNF-4α a transcription factor expressed in hepatocytes, hepatocyte cytoplasm (autofluorescence) and

all nuclei stained with DAPI. (D) Labeling and resulting segmentation of the liver tissue section shown in A, segmenting Hepatocyte cytoplasm (green), Hepatocyte nuclei

(blue), nuclei of non-parenchymal cells (yellow) and sinusoids (magenta). Scale bars 20 µm (A), (C) and 5 µm (B)
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Draw Fill holes

Erase Delete blob

Fig. 3. LABKIT labeling tools used for curation: labels generated by manual dense labeling or automatic segmentation can be efficiently curated with drawing, filling,

erasing, or deletion of entire objects. Scale bar 10 µm.

A B

C D

26 images

5 min
AP = 0.72

> 60 min
AP = 0.78

15 min
AP = 0.76

Fig. 4. Comparing automatic and manual ground-truth generation with LABKIT: (A) Fluorescence image of nuclei (out of 26 images) extracted from the 2018 Data

Science Bowl (35). (B) Results from LABKIT automated segmentation of (A) after extracting connected components and giving each instance a unique pixel value. The

arrows point to various segmentation errors. On the top right corner, the total time necessary to obtain the corresponding segmentation of all 26 images (including labeling)

is indicated. Below the timing is the average precision (see Methods) as compared to a dense manual labeling performed by another observer. (C) Curation of (B) with

same post-processing. The arrows point to the corrected errors mentioned in (B). The timing information includes (B). (C) Dense manual labeling of (A) and the same

post-processing as in (B). No scale bar was available for the images.
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Manual Labeling Automatic Segmentation Curation

Acceleration:

GPU, HPC

Results & analysis:

Tracking,

Measure,

...

LABKIT

Deep Learning

Fig. 5. LABKIT’s iterative and interactive segmentation used for ground-truth generation: manual labeling, automatic segmentation and curation in LABKIT enable easy

and rapid image segmentation, whose results can be further processed or used as ground-truth for deep-learning classifiers.
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