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number ECO2008-02333-RWC. Gómez was a visiting professor in the Finance Department at Stern-NYU
while working on this paper.

†Instituto de Empresa Business School, Madrid. E-mail: juanp.gomez@ie.edu
‡Department of Financial Economics, Norwegian Business School. Email: richard.priestley@bi.no
§FBE, Marshall School of Business, USC. E-mail: fzapatero@marshall.usc.edu



Labor Income, Relative Wealth Concerns, and the Cross-section of Stock

Returns

Abstract

The finance literature documents the relation between labor income and the cross-section

of stock returns. A possible explanation is the hedging of investors with relative wealth

concerns who pay a premium for securities that help them to keep up with their peers. At

the census division level we find that the risk premium associated with labor income risk

is negative and statistically significant. This premium is predominantly local in nature, as

opposed to the aggregate, country-wide cross-sectional effect so far documented. Also, it is

larger in areas with lower population density, as expected when investors have relative wealth

concerns.



1 Introduction

Over the years, the finance literature has accumulated evidence of a connection between labor

income and the cross-section of stock returns. Mayers (1972) is credited as the first to suggest

the analysis of labor income as a measure of human capital in an asset pricing setting. In

two influential papers, Campbell (1996) and Jagannathan and Wang (1996) use growth in

labor income as a measure of the return on human capital. Their intuition is that human

capital, a fundamental part of the economy’s endowment, has been typically overlooked in

the CAPM. The inclusion of the return to human capital in empirical asset pricing models is

able to explain a much higher portion of the cross-sectional variation in stock returns relative

to the standard CAPM. Lettau and Ludvigson (2001a and 2001b) and Santos and Veronesi

(2006) both introduce labor income based variables into conditional asset pricing models and

find that the explanatory power of the model increases substantially.

In this paper, we consider an alternative channel for the interaction between returns

on human capital and the cross-section of stock returns that is different from the market

completeness argument in Campbell (1996) and Jagannathan and Wang (1996) or the time

varying risk premium arguments in Lettau and Ludvigson (2001a) and Santos and Veronesi

(2006). Specifically, the empirical evidence presented in this paper shows that labor income

is related to the cross-section of stock returns through the hedging activity of investors with

relative wealth concerns. This idea is based on the KEEping up Pricing Model (KEEPM) of

relative wealth concerns developed in Gómez, Priestley and Zapatero (2009). In this model

investors hedge the risk that their reference group (“peers”) will experience an income shock

by investing in securities strongly correlated with the income of these peers. Equilibrium

prices will reflect the price pressure resulting from the hedging activities of investors with

relative wealth concerns.

Relative wealth concerns imply restrictions on the relationship between human capital

and stock returns not previously identified in the literature on this topic: i) the risk premium

associated with the labor income factor (positive correlation between labor income and secu-

rity returns) is negative, since investors are willing to pay extra for securities that hedge this

risk; ii) this connection must hold at the local level, since the main source of relative wealth

concerns pertains to the surroundings of the investor.

We test the KEEPM across the nine US Census divisions to investigate whether relative

wealth concerns can be a reason behind the relation behind labor income and the cross-section

of stock returns. We already know from the extant literature that aggregate country labor

income risk helps to explain the cross-section of stock returns. However, in the presence of

relative wealth concerns, local (divisional) non-diversifiable labor income risk, rather than

aggregate labor income risk, should be relevant for explaining cross-sectional stock returns,

and that is the main research question that motivates our work.
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We provide strong empirical evidence that supports this conjecture. In particular, we show

that the risk premium associated with orthogonal (with respect to the return on the US stock

market portfolio) labor income risk is negative both at the aggregate and divisional level.

However, while there is a positive correlation between labor income at the disaggregate and

aggregate levels, we find that the additional information of labor income at the disaggregate

level has much stronger explanatory power.

Interestingly, the absolute value of the orthogonal risk premium is higher for those divi-

sions with lower population density. The difference in the average premium across divisions

with population density less than 100 individuals per square mile (four divisions) and the

rest (five divisions) is 2.1% per annum, both economically and statistically significant. This

is consistent with the hypothesis that in areas of lower population density there is more peer

pressure to keep up with neighbors’ wealth because there is a closer interaction, as opposed

to a certain degree of anonymity in areas more densely populated.

We use as test assets a set of twenty portfolios for each division formed on the loca-

tion of a firm’s headquarters. We estimate time series regressions that show that a local

factor mimicking portfolio of orthogonal local labor income is more important that an ag-

gregate equivalent. This establishes the “local” nature of the labor income. Subsequently,

we estimate cross-sectional regressions using both the Fama and MacBeth (1973) and GMM

methodologies that reveal estimated prices of risk that are negative and, in an absolute sense,

larger for low population density divisions.

Finally, we conduct a range of robustness tests: we include additional test assets, we

impose a common market risk premium across divisions, and we reduce the number of test

assets. Our results are robust to all these tests. Additionally, we want to check the robustness

of our model with respect to a number of existing asset pricing models that successfully

employ country-wide labor risk factors to explain the cross-section of stock returns. To this

end, we consider if the estimated prices of risk on the orthogonal labor income factors are

affected by the inclusion of Lettau and Ludvigson’s (2001a) cay variable and Santos and

Veronesi’s (2006) labor to consumption wealth ratio variable. The results are robust to the

inclusion of these two variables.

The point of departure of our analysis is the assumption that relative wealth concerns are

prevalent in the economy. Evidence of relative wealth concerns is presented in Ravina (2005).

Gómez (2007) analyzes the impact of these preferences on portfolio choice. Garćıa and Strobl

(2011) study the implications of these preferences for information acquisition. Shemesh and

Zapatero (2011) document strong evidence of peer pressure in luxury car purchases, and the

pressure is stronger in areas of lower population density. A related finding is in Hong, Kubik

and Stein (2004), who show that sociable investors (defined as those who interact with

their neighbors or attend church) are more likely to invest in stocks, controlling for other

factors. They interpret this finding as evidence of market participation as a public good:
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wider participation decreases fixed entrance costs for sociable investors. DeMarzo, Kaniel

and Kremer (2004) present a model of endogenous, price-driven relative wealth concerns;

this principle is then applied to financial bubbles in DeMarzo, Kaniel and Kremer (2008)

and technological investment and investment cycles in DeMarzo, Kaniel and Kremer (2008).

Brown, Ivković, Smith and Weisbenner (2008) find evidence consistent with keeping up with

the Joneses behavior in stock market participation: individual market participation increases

with average community market participation.

Gómez, Priestley and Zapatero (2009) examine the asset pricing implications of relative

wealth concerns in an open-economy, multi-country model and show that in the presence of

local non-diversifiable income or assets, relative wealth concerns result in an approximate

multi-beta asset pricing model. According to the KEEPM, stock returns are explained by

their covariances with the market portfolio and the local risk factors (one per peer group).

The model predicts that the price of risk on each of the local factors (labor income or housing

at the aggregate country level) should be negative because investors are willing to pay more

(expect lower return) for those stocks that help them to hedge the risk of deviating from

their peer’s non-diversifiable wealth.1

Our paper is related to the literature on portfolio under-diversification. The theory pre-

dicts that, in a frictionless model with full market participation and complete financial mar-

kets, investors should hold the same well-diversified portfolio. This prediction was first

refuted at the international level by the seminal paper of French and Poterba (1991). This is

known as the “home bias puzzle” and refers to the finding that investors over-invest in do-

mestic stocks relative to the optimal global risk-diversification level.2 More recently, several

papers have documented that this lack of diversification is also present at the domestic level

within the US. This phenomenon has been dubbed the “home bias at home puzzle.” Coval

and Moskowitz (1999), for instance, study the investment behavior of money managers and

observe that they favor (with respect to what would be optimal) local firms. Ivković and

Weisbenner (2005) and Massa and Simonov (2006) show that US and Swedish households,

respectively, exhibit a strong preference for local investments. Their empirical tests seem

to suggest that investors exploit local information to obtain higher returns. The fact that

our tests are conducted at the broader division level versus the state or city level limits the

potential impact of superior information arguments in our findings.

Although we do not perform any direct test on portfolio holdings in this paper, the

KEEPM yields partial equilibrium results that may be consistent with those in the home

bias at home literature: investors in a given division are willing to pay a premium for local

assets positively correlated with the divisional, non-diversifiable wealth. Our tests show

1Gaĺı (1994) shows that in the absence of a market friction, such as the existence of non-diversifiable
assets, optimal portfolio holdings are identical across investors and only market risk is priced in equilibrium.

2For a literature review of this puzzle and suggested explanations see Lewis (1999).
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that after taking into account the hedging properties of local (same division) assets, assets

from other divisions can only offer very marginal extra hedging. This would reinforce the

assumption of locally biased portfolio holdings. However, we often observe some local assets

commanding a negative correlation with the proxy for relative wealth concerns. This has

an interesting implication: investors seem willing to short local (same division) stocks that

covary negatively with local labor income. Notice that this is consistent with a (Joneses)

hedging argument as opposed to a familiarity argument -see, for instance, Huberman (2001)-

where investors hold only long position on local stocks.

Our paper contributes to the literature that explores the effects of relative wealth concerns

on stock prices. In related work, Korniotis (2008) presents and tests a EHF model where

investors at the state level in the US care about broader regional consumption risk (defined

at different aggregation levels). As a result, investors are willing to pay for keeping up

with regional consumption; hence a negative, statistically significant regional risk-premium

arises. The EHF risk factor in Korniotis (2008), however, is averaged across regions whereas

our factors are division specific. More importantly, Korniotis’s factor is unrelated to labor

income, our main object of study. Korniotis and Kumar (2008) find evidence of state-level

stock return predictability associated with state unemployment rates and credit constraints.

Their paper does not study the cross-section of stock returns. Johnson (2008) finds that

financial assets that hedge against inequality risk (changes in the cross-section of income

distribution) in the US carry a sizeable and statically significant risk premium. In his model,

financial market incompleteness and status considerations drive the hedging demand and the

negative risk premium at the aggregate US level.

The paper is organized as follows. We present the theory and derive the KEEPM in section

2. Section 3 describes the data used in the analysis. The time series analysis is performed

in section 4 while section 5 presents the cross-sectional tests, using both the Fama-MacBeth

and the GMM methods. The robustness tests are reported in section 6. Section 7 offers some

final remarks and closes the paper.

2 The KEEPM

We consider the two main specifications discussed in the literature: exogenous and endoge-

nous keeping up with the Joneses preferences. In both specifications, we assume a one-period

economy with K divisions denoted by k 2 {1, 2, ..., K}. In each division there is a local firm.

At time t = 0, each firm issues one share that will yield a random payoff in time t = 1. We

normalize the initial value of the firm to 1. Let rk denote the random excess return on a

share of firm k. The vector r = (r1, ..., rk, ..., rK)
0 has a joint distribution function F (r), with

mean return vector E(r) and covariance matrix Ω. Firm shares can be freely traded across

divisions. There is also a risk-free bond in zero net supply. Let R denote the return on the
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risk-free bond. Financial markets are assumed to be complete.

In each division there are two types of agents: “investors” and “workers,” who are endowed

with non-diversifiable stochastic local labor or entrepreneurial income.

The Appendix shows (see equations (A3) and (A5)) that, whether endogenous or exoge-

nous, the existence of keeping up with the Joneses behavior and non-diversifiable income

implies the following optimal portfolio for the representative investor in division k:

x⇤
k = ✓kbkX

w
k + ⌧k Ω

�1E(r), (1)

where Xw
k represents a mimicking portfolio that maps the workers endowment return onto

the investment opportunity set; ✓k denotes the the relative wealth at t = 0 of the division’s

workers as a proportion of the total division’s wealth. The parameters b and ⌧ represent the

portfolio bias and the risk-tolerance coefficient, respectively, with values:

JONESES b ⌧

Exogenous γ

1�γ

1
α(1�γ)

Endogenous α�1
α

1
α

Notice that, given these definitions, there will exist a bias in portfolio holdings towards

the Joneses portfolio (hence, consumption) only if 0 < � < 1, in the exogenous specification,

and ↵ > 1, in the endogenous specification.3

Market clearing in financial markets at time t = 0 requires that
P

k !kx
⇤
k = xM , with xM

the market portfolio, with excess return rM , and !k = c0k/
P

k c
0
k. Spot market clearing at

time t = 1 implies that workers consume the proceedings of their (non-tradable) endowment,

w, and investors the return on their portfolios, c.

We regress the workers non-diversifiable wealth return, rwk = r0Xw, onto the country

market portfolio excess return:

rwk = �k rM + rFk . (2)

Portfolio �k xM represents the projection of the workers income onto the security market

line spanned by the aggregate market portfolio xM . Define the portfolio Fk ⌘ Xw
k � �k xM

as an orthogonal factor portfolio with return rFk = r0Fk and mean return µF
k . After these

definitions, the workers’ portfolio can be expressed as a linear combination of the market

portfolio and a zero-beta (orthogonal) portfolio: Xw
k = Fk + �kxM . We replace Xw

k in (1):

x⇤
k = ✓k bk Fk + ✓k bk �k xM + ⌧k Ω

�1E(r).

This portfolio has three components. Portfolio Fk is division-specific and can be interpreted

as a hedge portfolio: for each division k, portfolio Fk hedges investors from the risk involved in

3The constraint on ↵ > 1 is already present in DeMarzo, Kaniel and Kremer (2004).
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keeping up with the local non-diversifiable Joneses risk. Given the orthogonality conditions,

this portfolio plays the role of a division-specific, zero-beta asset.

The projection component, �kxM , corresponds to that part of the workers wage income

perfectly correlated with the country market portfolio. The standard component, Ω�1E(r),

is the highest global Sharpe ratio portfolio and it is common across divisions.

We define the coefficient H as the inverse of the risk-tolerance coefficient H�1 =
P

k !k⌧k.

After imposing market clearing, we solve for equilibrium expected returns:

E(r) = H Ω

" 
1�

KX

k=1

!k✓k bk �k

!
xM �

KX

k=1

!k✓k bk Fk

#
. (3)

Define the matrix F of dimension N⇥(K+1) as the column juxtaposition of the market port-

folio and the orthogonal portfolios, F ⌘ (xM , F1, ..., Fk, ..., FK). Let r
F ⌘ (rM , rF1 , ..., r

F
k , ..., r

F
K)

denote the vector of factor returns. Additionally, define the wealth vector as

W ⌘ H

 
1�

KX

k=1

!k✓k bk �1,�!1✓1 b1, ...,�!k✓k bk, ...,�!K✓K bK

!0

.

Given these definitions, the equilibrium condition (3) can be re-written as E(r) = ΩFW .

Pre-multiplying both terms of the previous equation by the transpose of matrix F we

obtain the equilibrium condition for the vector of prices of risk, λ ⌘ (�M ,�1, ...,�k, ...,�K),

with the market risk premium, �M , as the first component. Thus, λ = F
0
ΩF W , where

F
0
ΩF is a matrix of dimension (K+1)⇥(K+1) whose first column (row) includes the market

return volatility and a vector of K zeros and the remaining elements are the covariances

between Fk and Fk0 for all k, k
0 2 {1, 2, ..., K}.

The expected risk premia on the market and the zero-beta portfolios will be:

�M = H

 
1�

KX

k=1

!k✓k bk �k

!
�2
M ,

(4)

�k = �H

 
!k✓k bk Var(r

F
k ) +

X

k0 6=k

!k0✓k0 bk0 Cov(r
F
k , r

F
k0)

!
,

for all k 2 {1, 2, ..., K}.

The market portfolio, xM , is partially correlated with each division’s non-diversifiable

risk. This correlation is captured by the coefficient �k and offers partial hedging against

deviations from the local Joneses (in case ✓b > 0). Therefore, the equilibrium price of risk

for the country market risk factor, �M , varies relative to the symmetric equilibrium. The

parenthesis in the first equation in (4), which in the case of a symmetric equilibrium would
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be 1, captures the net price of risk on the aggregate market risk factor, after discounting the

(capitalization weighted) Joneses hedging effect. If the weighted value of the betas is higher

than the country market beta (i.e., 1), the model predicts that the market price of risk could

turn negative. Intuitively, if the hedging properties of the market portfolio against Joneses

deviations outweigh the compensation for systematic risk the net expected market price of

risk becomes negative.

More importantly, if there is a relative wealth concern (b > 0) in the economy (either

endogenous or exogenous) and workers income is not diversifiable (✓ > 0), there should be

K additional risk factors (one per division) together with the market risk factor. Regarding

their sign, the model predicts that if cov(rFk , r
F
k0) > 0 for all k, k0 2 {1, 2, ..., K}, then every

�k will be negative.4 To understand this result, suppose for the moment that the zero-beta

portfolios were orthogonal (Cov(rFk , r
F
k0) = 0) for all k, k0 2 {1, 2, ..., K}. Then, the price

of risk would be easily isolated and strictly negative. The intuition for the negative sign

would be as follows: An asset that has positive covariance with portfolio Fk will hedge the

investor in division k from the risk of deviating from the non-diversifiable (local) income of

the Joneses. This investor will be willing to pay a higher price for the asset thus yielding a

lower return. In equilibrium, the price of risk for Fk would be, in absolute terms, increasing

in bk and the volatility of the hedge portfolio. If the covariance across zero-beta portfolios is

positive, this just increases the absolute value of the negative prices of risk for every division’s

hedge portfolio.

Solving for W we obtain:

E(r) = βF λ, (5)

where βF = ΩF (F 0
ΩF )�1 denotes the K⇥(K+1), in general, for N assets, N⇥(K+1),

matrix of betas, with the first column as the market betas for all assets.

This pricing model that captures the equilibrium implications of keeping up with the

Joneses preferences, both under the exogenous and endogenous specifications, is termed the

KEEPM, which stands for “KEEping up Pricing Model”. In the following sections, we test

the models’ restrictions on the prices of risk in (4) and the cross-section performance of the

equilibrium condition (5).

3 Data description

Testing the implications of the KEEPM in equations (4) and (5) requires, in the first place,

to select the test assets and the risk factors. In this section, we describe the procedures and

data used to this end.

4Notice that this is a sufficient condition satisfied by our data in Table 1.
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In order to construct the risk factors that will proxy relative wealth concerns, it is nec-

essary to make some assumptions regarding the geographical dimension of “the peers”. For

example, should they be defined at the city, state, division, region or national level? Hong,

Kubik and Stein (2008) show that the probability of local bias in an investor’s portfolio hold-

ings increases the closer the investor is geographically to the company’s headquarters. Even

at the Census division level the bias in portfolio holdings is both economic and statistically

significant: the probability of holding a stock headquartered in the same division is higher

than the unconditional probability of holding any given stock. In defending their choice of

Census divisions, the authors conclude that using only the stock demand of those, presum-

ably, more biased investors living closer to the stock (say, at the state level) would leave out

most of the local-biased stock demand present at the divisional level.5

Our choice regarding the geographical dimension of the peers builds on the same intuition.

Arguably, the relevance of keeping up with the Joneses should be higher (larger � in the

model) at the state level. We are, however, measuring the cross-section impact of relative

wealth concerns on stock returns through the sign and size of the prices of risk on the

orthogonal income factor. As it is clear from equation (4), the size of the prices of risk

depends on the local non-diversifiable demand. At the state level, the proportion of local

demand relative to the aggregate country demand, !✓, is very small. Hence, probably at the

expense of underestimating �, we perform our analysis at the Census division level in order to

have a better assessment of the effect of keeping up with the Joneses on stock returns, both in

economic and statistical terms. At the same time, defining the Joneses at the broader Census

division level, rather than the state level, allows us to differentiate our hedging results from

a purely familiarity argument based on geographical proximity -see, for instance, Huberman

(2001). As an additional benefit, using the same division sorting as in Hong, Kubik and Stein

(2008) allows for a more direct comparison of our findings with theirs.

The second assumption we have to make pertains to the construction of the factor mim-

icking portfolios used as risk factors in our tests. To proxy local (ie., divisional) wealth, we

use personal income data from the Bureau of Economic Analysis (BEA). The BEA provides

quarterly personal income data at the state level that we aggregate into divisions. We calcu-

late per capita personal income data at the divisional level using data on annual population

in each division from the U.S. Census Bureau. Following Santos and Veronesi (2006), we

calculate the return on personal income per capita in quarter t by dividing the difference in

personal income between quarter t and quarter t� 1 by the personal income in quarter t� 1,

all per capita.

5Every state belongs to one of the nine Census Bureau divisions which we index with two capital letters:
West South Central (WS), Pacific (PA), East South Central (ES), Mountain (MO), East North Central
(EN), South Atlantic (SA), West North Central (WN), Middle Atlantic (MA), and New England (NE).
These divisions are grouped into four regions: West, Midwest, Northeast and South. We include a map of
the nine US Census regions, divisions and the states they comprise in Figure 1.
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From CRSP, we obtain stock returns for all NYSE, AMEX and NASDAQ stocks from 1960

to 2006. From COMPUSTAT, we obtain annual information on headquarter location, market

capitalization and book value of equity for the period 1963 to 2006. Using the information

on headquarters location in COMPUSTAT, each firm is assigned into one of the nine Census

divisions.

A question that arises is which stocks to use to form the factor mimicking portfolio. Based

on ample evidence of a local home bias in portfolio choice within the US (see references in the

Introduction), we use stocks headquartered in the same Census division as the orthogonal

labor income we are measuring. That is, to proxy division k0s orthogonal labor income we

will use stock returns from division k only. Notice that this assumption is not necessary

to derive the model’s main testable implication: a negative price of risk on the orthogonal

component of local non-diversifiable wealth. However, empirical support of the model under

this assumption would be consistent with an explanation of the documented home bias at

home puzzle based on relative wealth arguments.

The factor mimicking portfolios are constructed as follows: following equation (2) in the

model, for each division we regress the return on divisional level personal income per capita

on the CRSP aggregate stock market excess return and use the residuals from this regression

as the return on orthogonal labor income. Starting in 1960, we use five years of quarterly

data and regress the return on every individual stock in the division on a constant and on

local orthogonal labor income return.6 We use the slope coefficient on the orthogonal labor

factor, estimated until the fourth quarter of 1964, to rank stocks in 1965. Next, we form

three equal weighted portfolios according to the size of the coefficient. We then add one

year of quarterly data, re-estimate the coefficient, and then rank stocks, form portfolios and

compute their quarterly returns in 1966. We continue adding one year and re-estimating the

coefficients until we have thirty-six quarterly observations in the regressions. At this point,

we start rolling the data one year at a time: adding on a new year and taking off the first

year. We continue this process until the end of the sample.

The above procedure provides three portfolios from the first quarter of 1965 to the final

quarter of 2006 which are formed in year t based on the estimated coefficient on orthogonal

labor income estimated until year t � 1. The returns on the factor mimicking portfolio are

computed as the returns of the portfolio formed by the stocks with the highest one third of

coefficient estimates minus the returns on the portfolio formed by the stocks with the lowest

one third of coefficient estimates.

The next step involves the choice of test assets. Daniel and Titman (2005) and Lewellen,

Nagel, and Shanken (2010) note that testing asset pricing models using portfolios formed on

firm characteristics, such as size and book to market, can lead to spurious conclusions about

6We assume that a firm that is headquartered in division k in 1963 is headquartered in that division in
1960, 1961 and 1962.
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the usefulness of a proposed factor. The reason for this is that the factor structure of the

portfolios is so strong that any proposed factor that is only weakly correlated with size or

book-to-market will appear to price the test assets. That is, testing a new proposed factor

on test assets sorted by size and book-to-market is likely to have very low power. In order

to alleviate this concern we follow the recommendations in Daniel and Titman (2005) and

Lewellen, Nagel, and Shanken (2010) and sort stocks by lagged loadings on our proposed

factor.

To generate the test assets we repeat the procedure discussed above and calculate twenty

equally weighted portfolios for each division (except for ES, for which we only calculate ten

portfolios, due to the small number of stocks in this division in the early part of the sample).7

In addition, in spite of the potential problems in using firm characteristics such as book-to-

market to form portfolios, for our robustness exercises, we sort stocks in each division in year t

into twenty portfolios according to book to market at the end of year t�1. The reason for this

is that the book-to-market of a firm might be relevant to test our model because firms with

a low book-to-market are growth firms that tend to be younger and might have more human

capital specific factors, or unique technology that is specific to a particular geographical area

(like Silicon Valley in California). In contrast, firms with a high book-to-market ratio are

value firms and are more likely to be diversified geographically with production and sales

across divisions and internationally. In addition, firms with a low book-to-market ratio also

display high investment in R&D. Typically, the investment in R&D is highly intensive in

human capital, which results in the type of non-diversifiable wealth against which investors

will want to hedge by holding the security (a growth stock).8 We calculate excess returns on

all the test asset portfolios by subtracting the one month T-bill rate from the actual returns.

In addition to the local risk factors, we also require the excess return on the aggregate

stock market portfolio (erm), as proxied by the CRSP aggregate index. We compare the

performance of our model to that of the Fama-French three factor model that uses the

excess return on aggregate stock market portfolio, the small minus big market capitalization

portfolio (smb) and the high minus low book to market portfolio (hml). The quarterly premia

on erm, smb and hml are 1.50%, 1.07% and 1.07% respectively, over the sample period.

4 Time Series Regressions

We start our analysis calculating the average premium on the orthogonal labor risk factors.

Table 1 reports the mean annualized return of the factor mimicking portfolio returns, µF ,

7All the results presented in the paper are generally robust to the use of market capitalization weighted
portfolios.

8 In unreported results, we also sort stocks by market capitalization since, following the arguments in Hong,
Kubik and Stein (2008), smaller stocks are more local and should, other things equal, offer better hedging
opportunities. We find a strong role for orthogonal labor income when employing size sorted portfolios.
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in each division k, along with their t-statistics. In order to compare our results with Hong,

Kubik and Stein (2008), we order the divisions according to population density. Divisions

with low population density (less than 100 individuals per square mile) are indicated with a

“(L)” following their two-letter symbol.9 First, we observe that, as predicted by the model, all

the risk premia are negative, suggesting that investors are willing to pay a premium in order

to hold stocks that are strongly and positively correlated with the orthogonal component of

labor income relative to those that have low or negative correlation. The mean premia range

from an annual -2.84% in the EN division to -7.39% in MO. Table 1 also reveals a pattern

of higher (in absolute value) risk premia in low population density divisions compared to

divisions with high population density. For example, the average risk premia across the high

population density divisions is -3.3% per annum compared to an average of -5.4% in the low

population density divisions. According to the t-statistics, the risk premia are statistically

significant in low density divisions, with the exception of ES, and marginally statistically

significant in two high population density divisions: SA and EN.10

The results in Hong, Kubik, Stein (2008) are in terms of price difference, not returns.

Hence, the comparison is not straight forward. The implication, however, is the same: in

absolute value, the average risk premium that investors are willing to forgo (analogously, the

price they are willing to pay) for holding stocks that hedge them against deviation from the

local Joneses is significantly higher in low population density divisions. To understand how

our model explains this result, consider the determinants of the prices of risk in equilibrium

in equation (4). There are three parameters that may explain the differences across divisions:

the variance (Var(rF )) and covariance of the orthogonal local labor income factor mimicking

portfolios, the portfolio bias induced by relative wealth concerns b, and the amount of local

non-diversifiable wealth (relative to total country wealth) in the division, !✓.

Panel B of Table 1 reports the covariances (lower triangular matrix), variances (diagonal),

and correlations (upper triangular matrix) amongst the factor mimicking portfolios. There is

not a clear distinction in terms of variance between low and high density divisions, with the

exception of MO which has a variance more than double the average for the rest of divisions.

The covariances, and in particular the correlations, show that the factor mimicking portfolios

are fairly highly correlated (around 0.5). Hence, it is unlikely, that the difference in the prices

of risk is induced by the volatility of the residuals.

9Population density numbers (Census 2000) are: MA, 399; NE, 222; SA, 194; EN, 185; PA, 136; ES, 95;
WS, 74; WN, 38; MO, 21. Like in Harrison, Kubik and Stein (2008), we have excluded Alaska and Hawaii
to compute the density of PA.

10ES is peculiar in several respects. It has lower population and a substantially lower number of firms than
other divisions, as we argued before. More importantly, it is the poorest division on a GDP per capita basis.
Out of the four states in this division, in the BEA statistics for 2007, Mississippi ranked dead last among all
50 US states, and Tennessee, Kentucky and Alabama ranked 40, 41 and 44, respectively. From equation (4),
wealth is a factor in the determination of the size of the orthogonal risk premia. The low level of wealth of
this division can offset the effect of the Keeping up with the Joneses preferences.
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The portfolios bias b has different interpretations depending on the nature of the relative

wealth concern. In the case of EHF, b = γ

1�γ
, and the economic size of the risk premium

depends on the “Joneses” parameter �. Therefore, a possible explanation of our findings is

that in divisions with lower population density there is a stronger Joneses concern (higher �)

since, arguably, it is easier for investors to assess the level of wealth of their peers: in smaller

communities, for example rural areas, people tend to know each other better and have more

information about each other than in densely populated urban communities.

In a purely price driven explanation, b = α

1�α
, that is, the size of the price of risk increases

with the risk aversion of the representative investor ↵. In other words, if we were to explain

the differences in risk premia across divisions only through price hedging induced by relative

wealth concerns, we should conclude that the risk aversion of the representative investor is

higher for less densely populated divisions.

Finally, divisions with lower population density may contain a higher proportion of the

country’s non-diversifiable local income wealth. Unlike in Hong, Kubik and Stein (2008), in

the case of relative wealth concerns, limited total local wealth is not what drives the negative

risk premium (thus, pushing prices up), but rather the proportion of local non-diversifiable

wealth.

The premia recorded in Table 1 indicate that, if stocks headquartered in a given division

are sorted according to their sensitivity with respect to divisional level orthogonal labor

income, there is a reasonable spread in returns. These results are derived after projecting

divisional labor income onto purely divisional stocks. This begs two important questions

regarding the scope of keeping up with the Joneses behavior. The first concern is to what

extent these premia are purely local (divisional) rather than country-wide. A second issue

is how much of a given division’s cross-section of stock returns can be explained by the

orthogonal labor risk in other divisions.

4.1 Country versus divisional Joneses risk hedging

To what extent are the local premia purely local (divisional) rather than country-wide? To

answer this question, we calculate first a country-wide measure of orthogonal labor risk

premium. Following the same procedure explained in section 3, we take all US stocks, irre-

spective of their headquarters location, and regress them against the US aggregate orthogonal

labor income; we then sort these stocks into three portfolios, depending on the size of the

regression beta. Define rG as the return on the difference between the high and low portfolio

(P1-P3). The average premium on this portfolio difference is µG = �5.15% per annum with

a t-statistic of 2.55. This premium is highly correlated with the divisional level premia.

To disentangle local from aggregate (country) effects we perform two kinds of tests. First,
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we begin by estimating the following regression:11

ri,k,t = ↵i,k + �F
i,k r

F
k,t + �erm

i,k rerm,t + �smb
i,k rsmb,t + �hml

i,k rhml,t + ui,k,t, (6)

where ri,k,t is the excess return on portfolio i (i = 1, ..., 20) from division k (k = 1, ..., 9)

at time t; ↵i,k is the portfolio-specific constant (pricing error); �F
i,k is the estimated factor

loading on rFk,t, the factor mimicking portfolio of orthogonal local labor income in division k;

�erm
i,k is the estimated factor loading on rerm,t (excess return on the market portfolio); �smb

i,k is

the estimated factor loading on rsmb,t (the small-minus-big Fama-French factor); �hml
i,k is the

estimated factor loading on rhml,t (the high-minus-low Fama-French factor); finally, ui,k,t is

the error term. We then take the residuals from (6) and regress them against the country

factor mimicking portfolio return:

ui,k,t = ↵i,k + �G
i,k r

G
t + vi,k,t. (7)

With this test, we want to explore first whether local orthogonal labor risk matters in

explaining the return on locally formed portfolios in each division, i.e., whether �F
i,k 6= 0.

Secondly, we would like to know if, on top of what local orthogonal labor explains, country

orthogonal labor risk has any relevance, i.e., whether �G
i,k 6= 0.

Table 2 reports the results. In Panel A, we report the estimates of �F
i,k. This panel shows

that across all the nine divisions there is a large spread in the estimates. For example, in

the MA division, the estimates are positive for the first eight portfolios (portfolio 1 is the

portfolio with the highest coefficients on the local labor income factor, while portfolio 20 is

the portfolio with the lowest coefficients) and in seven cases they are statistically different

from zero. Portfolios nine through twenty have negative coefficient estimates on the divisional

level factor mimicking portfolio and eleven are statistically significant. The estimates, both

negative and positive, are large economically and generally decrease monotonically from

portfolio one to portfolio twenty, as we would expect given the sorting procedure. The

pattern in the estimated betas, together with the negative premium on the orthogonal labor

income factor mimicking portfolios in Table 1, clearly illustrate the following result: stocks

positively correlated with the orthogonal component of divisional labor income are stocks

that investors are willing to pay a premium to hold; their positive betas indicate that they

command a lower expected return, even after controlling for the three Fama and French

factors. Investors require an additional premium to hold those stocks that have a negative

beta. These results are consistent with the EHF model and the local good in short supply

model.

In general, the results of the MA division hold for all the other divisions which are

11We also want to explore if the factor mimicking portfolio of orthogonal local labor income is important
in the presence of the three Fama-French factors, hence we include these factors in the regression.
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listed according to their population density ranking, from highest (first column) to lowest

density (last column). In addition, while 60% of the test portfolios in the high population

density divisions have a statistically significant coefficient on the factor mimicking portfolio

for orthogonal local labor income, 82% of test portfolios in low population density divisions

have a statistically significant coefficient. In total 147 out of the 170 coefficient estimates on

the orthogonal local labor income factor are statistically significant.

Finally, to have an estimate of the expected return spread due to relative risk hedging

across stocks within each division, the last row in Panel A from Table 2 presents the product

of the difference between top, P1, and bottom portfolio, P20 (P10 for ES) betas, times the

average annualized premium µF
k from Table 1. The results show that this return spread can

be quite substantial: investors are willing to sacrifice in expected return up to 4.25% in NE

and up to 10.42% in MO in order to hedge relative wealth risk. With the exception of ES,

the return spread is usually higher in low density divisions than in high density divisions.

In Panel B of Table 2, we record the estimates of �G
i , the estimate from the regression

of the residuals on the global factor in regression (7). In only 15 out of a possible 170

cases do we observe a statistically significant estimate and all but two of these are in high

population density divisions. Therefore, there is very little role for global orthogonal labor

income once that divisional level orthogonal labor income is accounted for, especially in low

density divisions.

To confirm the local nature of our factors premia, we reverse the testing methodology.

This means that for each portfolio in each division we estimate first the sensitivity to the

aggregate, country-wide Joneses risk:

ri,k,t = ↵i,k + �G
i,k r

G
t + �erm

i,k rerm,t + �smb
i,k rsmb,t + �hml

i,k rhml,t + ui,k,t, (8)

where ri,k,t is the excess return on portfolio i (i = 1, ..., 20) from division k (k = 1, ..., 9)

at time t; ↵i,k is the portfolio-specific constant (pricing error); �G
i,k is the estimated factor

loading on rGt , the factor mimicking portfolio of orthogonal local labor income at the national

level. The remaining factors and loadings are as in regression (6). We then regress for each

division the residuals from (8) onto its local orthogonal risk factor mimicking portfolio, rFk,t:

ui,k,t = ↵i,k + �F
i,k r

F
k,t + vi,k,t. (9)

These two regressions allow us to ask first, if national orthogonal labor income is important

in determining the returns on the twenty divisional level portfolios, and second, whether after

accounting for national level orthogonal labor income, local orthogonal labor income at the

division is still important.

Panel A of Table 3 records the estimates of �G
i,k from equation (8) where 112 out of 170

coefficients are statistically significant, somewhat less than the 147 statistically significant es-
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timates when employing divisional level orthogonal labour income. More interestingly, Panel

B shows that even after accounting for global orthogonal labor income, divisional orthogonal

labor income is still important: 73 estimates of �F
i,k are statistically significant. We also

estimate the residual return spread between portfolio P1 and P20 across divisions, multiply-

ing the difference in betas from Table 3 Panel B times the divisional expected premium in

Table 1. The size of the spreads is smaller across divisions, as expected, since we have netted

out the country-wide spread component. Interestingly, the residual spread is clearly higher

among low density divisions than among high density divisions, ranging from -1.25% for MA

(the highest density division) to -5.8% for MO (the lowest density division).

These results jointly suggest that it is local orthogonal labor income that is important

in determining the returns on the divisional level portfolios. On the one hand, after con-

trolling for divisional orthogonal labor income, there is no role for global orthogonal labor

income. On the other hand, after first controlling for global orthogonal labor income there

is still a substantial role for local orthogonal labor income. Moreover, the return spread

within divisions between portfolios with high and low correlation with the orthogonal risk

factor is higher in low population density divisions, even after netting out the country-wide

component. These differences in spread between low and high population density divisions

suggest that the ability of the KEEPM in explaining the cross-sectional of stock returns

should be stronger in the former divisions (ie., those with lower population density). We will

test formally this hypothesis in section 5.

4.2 Orthogonal labor income from other divisions

To a large extent, the previous section showed that divisional level orthogonal labor income

is more important than its global equivalent lending support to the notion that either EHF

or goods in short supply are relevant at the Census level. We tackle now our second concern:

how much of the local cross-section in stock returns in a given division can be explained by

the orthogonal labor risk in other divisions. In order to understand this, we will perform two

complementary tests. First, we run regression (6) for every portfolio in each division. We

then take the residuals, ui,k,t, from each portfolio i in division k and regress them against the

orthogonal labor risk of divisions k0 6= k, one at a time:

ui,k,t = ↵i,k + �F
i,k,k0 r

F
k0,t + vi,k,t,

for i = 1, ..., 20 and k, k0 = 1, .2, ..., 9. We are interested in the estimates of �F
i,k,k0 .

Table 4 reports the results. Each row represents the 20 portfolios in each division (10 in

the case of ES); each column represents the local (divisional) orthogonal labor risk factor.

For a given portfolio i in division (row) k and orthogonal portfolio from divisions (column)

k0 6= k, the table presents the number of estimated coefficient, �F
i,k,k0 , that are statistically
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significant (| t-statistic |> 1.96). The diagonal is obviously blank. In most cases the betas

are not significant, especially among divisions with low population density. For instance, out

of the 160 coefficient estimates for each division (20 portfolios times the other 8 divisions),

there are 37 (MA), 28 (NE) and 29 (SA) significant estimates across high population density

divisions. In contrast, there are only 7 (WS), 6 (WN) and 16 (MO) statistically significant

estimates among low population density divisions. These findings indicate that there is only

a minor role for non-local orthogonal labour income.

Even more interesting is the observation that in 75% of the cases the significant coefficients

are negative. Thus, reading the table row-wise, once investors in a given division hedge

their exposure to local (i.e., same division) orthogonal labor risk with a portfolio of local

assets, they are either indifferent (non-significant beta) or they require, in most cases, a price

discount (alternatively, a risk premium) to hold local stocks that covary (significant beta) with

other division’s orthogonal labor risk. We would then expect that those portfolios outside

their division would be underweighted by local investors who want to hedge their exposure

to local Joneses risk. This evidence would be consistent with home-biased portfolios across

divisions.

In a second test, we want to net out the effect of the country orthogonal labor risk and then

investigate the role of the purely Joneses risk from other divisions. Recall from the earlier

results that when we first included the global orthogonal labor income factor, the residuals

from each division could be explained by divisional specific orthogonal labor income factor.

We now repeat this exercise but examine the extent to which other divisions orthogonal labor

income factors can explain the residuals after considering the global orthogonal labor income

factor. The procedure is the following: take division k; for each portfolio i in this division

we regress portfolio returns on the country orthogonal labor risk factor, as in equation (8).

We then take the time series residuals ui,k,t and regress them against a constant and the

orthogonal labor income factor from each of the nine divisions, one at a time:

ui,k,t = ↵i,k + �F
i,k,k0 r

F
k0,t + vi,k,t, (10)

for i = 1, ..., 20 and k, k0 = 1, .2, ..., 9. We are interested in the estimates of �F
i,k,k0 .

Table 5 reports the number of coefficients �i,k,k0 in regression (10) corresponding to portfo-

lios from division k (by rows) regressed against orthogonal risk from division k0 (by columns)

which are statistically significant (t-statistic > 1.96). Reading the table row-wise, the first

conclusion is that, with the exception of SA, the highest number of significant coefficients

corresponds always to the own division’s orthogonal labor income factor (bold numbers in the

diagonal). Virtually all the significant betas are positive. Reading the table by columns, we

conclude that, maybe with the exception of NE, orthogonal labor income from other divisions

is largely uncorrelated with the return on stocks outside the same division. This evidence
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tells us that own division Joneses risk is more relevant in explaining excess return above and

beyond what aggregate country labor risk explains than other division’s local Joneses labor

risk.

In summary, the results thus far indicate that divisional specific orthogonal labor income

is by far the most important factor in explaining stock returns in the time series. The joint

evidence leads us to conclude that confining the returns from a given division to be explained

by that same divisions local orthogonal labor income factor may not be a too restrictive

assumption.

5 Cross-Sectional Regressions

The previous section of the paper identified a clear pattern in the beta estimates with respect

to local orthogonal labor income that is important over and above that of the national orthog-

onal labor income factor and the individual orthogonal labor income from other divisions.

Given the risk premia on the factor mimicking portfolios reported in Table 1, this implies

that investors are willing to pay for assets that are highly correlated with local orthogonal

labor income and need an additional premium to hold stocks with negative correlation with

local orthogonal labor income.

In this section of the paper, we test the cross-sectional performance of the model by

directly estimating the risk premium associated with the factor mimicking portfolios using

two different methodologies: the Fama and MacBeth (1973) two-step approach and GMM

estimation based on the Stochastic Discount Factor (SDF) approach. The reason why we

employ two different methodologies is that they can help us answer different questions. The

Fama and MacBeth methodology allows us to focus not only on whether divisional level

orthogonal labor income is priced in the cross-section, but also offers a convenient way to

compare the role of global and divisional betas in explaining the cross-section. GMM allows

us to perform a different test on the role of betas at the global and divisional level, and

furthermore to easily impose a common estimate on the market price of risk on the market

portfolio. This allows for pricing kernels across divisions to differ only by the divisional level

orthogonal labor income.

Unless otherwise specified, in the cross-sectional tests we use the same portfolios (twenty

for all divisions except ES where only ten portfolios are formed) that were used in the time

series tests.

5.1 Fama-MacBeth Regressions

The Fama and MacBeth (1973) procedure involves a first step in which time series regressions

are used to estimate the betas, and a second step in which cross-sectional regressions are used
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to estimate the prices of risk. When data are available over a long sample period it is usual

to undertake a rolling regression approach by using sixty observations up to time t in the

first step to obtain the first beta; then this beta is used in the second step to estimate a

cross-sectional regression of average returns at time t + 1 on the beta estimated until time

t. The data are then rolled forward one month and the procedure is repeated. This results

in a time-series of cross-section estimates of the market price of risk. However, this rolling

procedure is not appropriate with quarterly time series data over a relatively short sample.

Instead, we estimate the beta coefficients over the entire sample and we use them in all of

the T cross-sectional regressions. This is the method recommended and employed by Lettau

and Ludvigson (2001b) for quarterly data over a relatively short time series sample such as

ours, and discussed in Cochrane (2005).

In the first instance, we want to know if local orthogonal labor income is important in

explaining the cross-section of returns. To this end, we estimate

ri,k = �0 + �F
k
b�F
i,k + �ermb�erm

i,k + �smbb�smb
i,k + �hmlb�hml

i,k + ✏i. (11)

where ri,k is the return on the ith portfolio in division k. We use the twenty portfolios formed

according to lagged coefficient on orthogonal labor income. Later we repeat the analysis using

book-to-market sorted portfolios. We estimate (11) for each division separately.12 Panel A

of Table 6 reports the results and shows that across all nine divisions the estimated price of

risk for divisional level orthogonal labor income risk is negative. In six cases the estimated

price of risk on the orthogonal local labor income is statistically significant, and there is

a clear difference between low and high population density divisions.13 For example, the

low population density divisions have a larger, in absolute terms, estimate, accompanied

with a higher level of statistical significance. The average estimated quarterly price of risk

across the four low population density divisions is -1.188 compared to -0.796 for the high

population density divisions, moreover, if we ignore the very low estimate in the ES division,

the estimates in the low population density divisions are almost twice as large as those from

the high population density divisions. We also report the cross-sectional R
2
which range from

0.25 to 0.85 with an average of 0.52, indicating a reasonable explanatory power.14 The final

row of Panel A reports a test that the pricing errors are jointly zero.15 It is not possible to

12This means that we estimate different prices of risk on the market, smb and hml factors for each division,
suggesting a separate SDF for each division. In the GMM estimation it is easy to impose a common price of
risk on these three factors across all divisions. As we shall see, this has no effect on the inferences that we
make regarding the role of orthogonal labor income.

13Recall that the estimate sign on �F
k should be negative. Therefore, the test is one sided.

14Following Jagannathan and Wang (1996) and Lettau and Ludvigson (2001b), we calculate R
2

as
[V arc(ri)� V arc(ei)] /V arc(ri), where V arc is the cross-sectional variance, ri is the average return and
ei is the average residual.

15This is a Chi-sq test, b↵0cov(b↵)�1b↵, where b↵ is the vector of average pricing errors across the twenty five
portfolios and cov is the covariance matrix of the pricing errors.
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reject the null hypothesis that the pricing errors are jointly zero, except for NE. Therefore,

the factors provide a good explanation of the cross-section of returns.

Using the Fama and MacBeth methodology, we can also address the role of divisional and

country orthogonal labor income in the cross-section. We will follow a similar structure as

in the time series regressions in the previous section. From the time series regression (6) we

obtain the estimates for the local betas, b�F
i,k, one per portfolio i in each division k. We also

obtain the slope estimates for the market and the smb and hml Fama and French factors.

Then, using the residuals from the first regression, we obtain the country-wide betas, b�G
i,k,

from regression (7). With these estimates, we perform a set of T cross-sectional regressions

of the form:

ri,k = �0 + �F
k
b�F
i,k + �G

k
b�G
i,k + �ermb�erm

i,k + �smbb�smb
i,k + �hmlb�hml

i,k + ✏i. (12)

In this cross-section regression, we ask whether the beta with respect to the national

orthogonal labor income helps price the test assets over and above the local orthogonal labor

income factor. Table 6 Panel B reports the results. The price of risk on the local factor

is always estimated to be negative and is statistically significant in six cases. The price of

risk associated with the country factor, �G is only negative on four occasions and is never

statistically significant. Note that the correlation ⇢ between the two betas, local and national,

is very low indicating that these betas are not capturing the same thing. We can not reject

the null hypothesis that the pricing errors are jointly zero in all cases except division SA.

The findings in Panel B suggest that the global betas are not important in explaining

the cross-section of returns. We now reverse the testing procedure of the cross-sectional

regressions and take the global factor first from (8) and then regress the residuals from the

time series regression on the local factors, as in equation (9). We reestimate (12). Panel C

reports the results. In this case, first note that the betas are very highly correlated, suggesting

the local factor and national factor betas are capturing the same thing. In the cross-section

neither of the prices of risk are statistically significant, which is probably not surprising given

their high correlation. Overall, the findings in the three Panels of Table 6 indicate that it

is the local factor that is important, over and above the country factor. The country factor

seems just a proxy for the local factor.

In the formal derivation of the KEEPM there is no explicit role for the smb and hml

factors. We have included them thus far in order to show that orthogonal labor income is

important over and above the information contained in other established risk factors. We

repeat the analysis of Table 6 using just the market factor and the orthogonal labor income

factor. The results for estimating the prices of risk are reported in Table 7: the estimated

prices of risk on the orthogonal labor income factors are very similar to those reported in

Table 6. In fact, the model performance as measured by the R
2
and the pricing error tests
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is similar to the case when smb and hml factors are included.16

5.2 GMM Estimation of the model

In this section of the paper, we consider an alternative approach to test the existence of rela-

tive wealth concerns at the Census division level. There are a number of advantages of using

this new methodology. First, we can implement a new, more direct test of whether global

risk is important in the presence of local risk. Second, in the Fama-MacBeth regressions,

we estimated a separate market price of risk, per division. This amounts to assuming that

each division is segmented from the others. Within the GMM methodology that we use in

this section, we can easily restrict the parameters in the pricing kernel associated with the

aggregate market factor to be the same across divisions. In this case, the only differences in

the pricing of the different divisions assets are the parameters associated with each division’s

specific orthogonal labor income factor.

We first derive an approximate linear expression for the equilibrium stochastic discount

factor m where the betas and the prices of risk are a function of the deep parameters of

the model. This introduces additional restrictions that will allow us to test the model. The

Appendix shows that whether the Joneses are endogenous or exogenous, the following Euler

equation must be (approximately) satisfied in equilibrium:

E

 
ri,t

"
H�1 � (1�

KX

k=1

!k✓kbk�k)rerm,t +
KX

k=1

!k✓kbkr
F
k,t

#!
= 0, (13)

where bk = γk

1�γk
in the exogenous Joneses case, and bk = αk�1

αk
in the endogenous spec-

ification. Therefore, we obtain an approximate linear expression for the stochastic discount

factor:

m ⇡ c0 + cermrerm +
KX

k=1

ckr
F
k ,

where c0 = H�1, cerm =
PK

k=1 !k✓kbk�k � 1 and ck = !k✓kbk.

The time series analysis in section 4 showed that, in most cases, there exists a low co-

variance between the return on the portfolios in a given division and the orthogonal labor

risk of other divisions. Hence, we will employ a truncated version of the linearized stochastic

discount factor per division, including only a constant, the stock market return and the cor-

responding divisional orthogonal risk, as we did in the Fama and MacBeth regressions. As a

16We do not report the results that are equivalent to Panels B and C of Table 6 where we aim at un-
derstanding whether global or divisional level risk is important in explaining the cross-section. They are
available on request and are entirely consistent with the findings in Table 6: once local risk is accounted for
there is no role for global risk. When global risk is accounted for, there is a role for local risk. Therefore,
whether we use the Fama-French three factor model or not makes no difference in terms of our findings.
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robustness check, the country orthogonal risk factor will be added later on.

The stochastic discount factor in division k becomes

mk ⇡ c0,k + cerm,krerm + ckr
F
k . (14)

The GMM methodology outlined in Hansen (1982) provides a natural way to estimate our

model.17 For a given division k, define ck = (cerm,k, ck). The forecast error at time t for the

parameter vector ck is given by vt(ck) ⌘ rt(c0,k + ck
0(rerm, r

F
k )), such that, according to the

equilibrium orthogonality condition (13), its unconditional expectation is zero, E(vt(ck)) = 0.

Defining the sample mean of the forecast errors over the T observations as:

µT (ck) ⌘
1

T

TX

t=1

vt(ck).

The GMM methodology estimates the parameter vector ck that minimizes

bck = argmin
ck

(µ0
T (ck)ΣµT (ck)),

where Σ is a positive definite weighting matrix.18 The ability of the model to price the

assets is assessed by testing that the orthogonality conditions, which follow a �2(N � L)

distribution, where N is the number of moment conditions, and L the number of parameters,

are zero. This is known as Hansen’s J-test.

In our model, we are interested in answering the following three questions: first, does the

orthogonal labor income factor help to price the assets (ck 6= 0)? Second, does it command

a negative price of risk (�F
k < 0), as predicted by the model? Thirdly, we would like to

know if country orthogonal labor risk is important in pricing the assets in the presence of

divisional orthogonal labor risk, and vice-versa. In order to answer the first two questions

simultaneously, we follow Cochrane (2005), who notes that:

E

 
mk

 
rerm

rFk

!
�

 
rerm

rFk

!
+

 
�erm

�F
k

!!
=

 
0

0

!
,

which together with the moment orthogonality conditions in (13) produce efficient estimates

of the parameters in the pricing kernel, the vector of prices of risk and their associated

17The advantage of this approach in our setting is enhanced by the multicollinearity among the factors.
Cochrane (1996) and Jagannathan and Wang (2002) consider the small sample properties of the GMM
method of estimating the stochastic discount factor and find that it has about the same performance in finite
samples as the Fama-MacBeth methodology.

18Under GMM this weighting matrix is the inverse of a consistent estimator of the spectral density matrix of
vt at frequency zero, defined as S =

P
1

j=�1
E[vtv

0

t�j ] = T ·var(µT ). Hansen (1982) shows that it is optimal
to use the inverse of a consistent estimator of S as the weighting matrix, since the estimated parameter
vector has the lowest variance asymptotically. When Σ is the optimal weighting matrix S

�1, the asymptotic

standard errors are given by var(bc) = 1
T
(D0

TS
�1

DT )
�1, where DT = ∂µT (c)

∂c0
.
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standard errors (see Li, Vassalou and Xing (2006)).

Table 8 reports cross-sectional tests of the KEEPM using the GMM framework where we

consider only divisional level orthogonal labor income.19 In six cases the local orthogonal

labor income factor commands a statistically significant risk premia, all negative, as the

theory suggests. Estimates of the risk premia are similar to those of Table 7. Also like

in Table 7, there is a clear distinction between estimated risk premia in the high and low

population density divisions. In the low population density divisions the average risk premium

is estimated at -1.4% per quarter (around -6% per annum). In the high population density

divisions the average risk premium is -0.81% per quarter (around -3.3% per annum). Thus,

there is substantial evidence that KEEPM preferences are stronger in low population density

divisions.

The market factor is not significant in the pricing kernel. These results pertaining to the

market portfolio are consistent with other findings that market betas can not explain the

cross-section of returns (see, for example, Fama and French (1993)). However, at this stage,

we are estimating separate market risk premia across divisions, something which would imply

a separate pricing kernel in each division. Later we will impose a common market premium

across all divisions.

According to the J-test, the model can only be rejected in SA, and it holds only marginally

in MA. In addition to examining the model performance with the J-test, we analyze the size

of the pricing errors in each division. This will help us to evaluate whether we are accepting a

model that prices the tests assets poorly, but does not reject the J-test because the standard

errors are large. The opposite is also true: we might reject statistically a good model because

it has economically small pricing errors but very small standard errors (see Cochrane (1996)

for a discussion of this point).

Table 8 reports the average absolute pricing errors (aape) across each division. In all

but one case, NE, the pricing errors are economically small, averaging 0.32% per quarter

excluding NE. Interestingly, NE is a division where the J-test accepts the model, and in the

two cases where the J-test rejects the model (MA and SA) the pricing errors are economically

small, 0.23% and 0.49% per quarter respectively. So, even though we statistically reject the

model in the cases of MA and SA, economically the model does perform well given its small

pricing errors for these two divisions. Therefore, it is clearly important to check the size of

the pricing errors in conjunction with inferences made from the J-test.

The second row from the bottom of Table 8 reports the average absolute pricing errors

for the estimation of the pricing kernel when we include the smb and hml factors (aapeFF ).

In all cases the inclusion of the smb and hml factors increases the pricing errors. Across all

nine divisions the average pricing error is 0.78% per quarter when we include the smb and

19In Table 8, we use 20 test assets in each division, with the exception of ES where we use 10 test assets,
as in Table 6.
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hml factors as compared to 0.49% per quarter for the KEEPM. Furthermore, the unreported

coefficients in the pricing kernel and the risk premia associated with the smb and hml fac-

tors are rarely statistically significant: regarding smb, there are two divisions that have a

marginally significant coefficient in the pricing kernel and two that have a significant estimate

of this factor’s risk premium; with respect to hml, there is one division that has a significant

coefficient in the pricing kernel, one division with a statistically significant estimate of the

risk premium on this factor, and one division with a marginally significant estimate of the

factor’s risk premium.

The results regarding the lack of a role for the smb and hml factors is reinforced when we

consider the final row of Table 8 which reports the ∆J statistic that tests the null hypothesis

that the smb and hml factors are not important in pricing the assets. This test involves

estimating an unrestricted version of the model that includes all factors, and subsequently

estimating a restricted model where the factor is omitted, using the weighting matrix from

the unrestricted model. We can then evaluate the restriction using the differences in the two

models J-statistics:

TJ(restricted)� TJ(unrestricted) ⇠ �2(# of restrictions).

In six cases we cannot reject the null hypothesis. Overall, it appears that the smb and hml

factors are not necessary to price the tests assets over and above the KEEPM. This confirms

the results reported in Table 7 where the two Fama and French risk factors were removed

and the cross-section estimation of the model did not change.

So far, we have estimated the price of risk for the orthogonal labor risk in each particular

division, ignoring the effect of the orthogonal labor risk from other divisions and the country

overall. We now challenge these results by studying the relative importance of country versus

local orthogonal labor income. As noted in the discussion from the Fama-MacBeth cross-

sectional regressions, orthogonal country labor income does not seem to be able to price

the assets as effectively as orthogonal local labor income. In our case, the SDF approach is

particularly useful to evaluate the role of the orthogonal labor income factor and the relative

importance of country versus local orthogonal labor income.

With the objective of trying to further distinguish between these two sources of risk

in mind, we expand the SDF in (14) to include in each division k both global and local

orthogonal labor income. In this test we estimate:

mk ⇡ c0,k + cerm,krerm + ckr
F
k + cG,kr

G,

where rG is the factor mimicking portfolio for country orthogonal labor income.

Table 9 presents the results. Whereas the risk premium associated with the country

orthogonal labor income is not significant, in five cases the risk premia associated with the
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local orthogonal labor income are statistically significant. Only in one case the risk premia

on the global factor is statistically significant.

The J-test accepts the model in all but one case (SA). The average absolute pricing

error across all nine divisions is 0.58% per quarter. The final row of Table 9 reports the ∆J

statistic, which tests the null hypothesis that the country orthogonal labor income factor is

not important in pricing the assets. In all cases, we accept the restriction that this factor is

not important.

It is clear from the results of Table 9 that adding country labor income to the KEEPM

with local orthogonal labor income does not improve the model, consistent with the results

from the Fama-MacBeth cross-sectional regressions. These results indicate that local risk-

hedging dominates over country-wide domestic hedging of non-diversifiable wealth which

lends indirect support to the local portfolio bias implications of the model.

6 Robustness tests

The time series analysis, and both the Fama-MacBeth and the GMM cross-sectional results

so far presented lend empirical support to the main theoretical implication of our model:

relative wealth concerns at the US Census division level result in a negative risk premium

for those stocks positively correlated with shocks to local, non-diversifiable labor income.

This premium is local in its nature and different from a country-wide premium driven by the

same relative wealth concerns. Moreover, the results are stronger among divisions with lower

population density. The immediate implication is that local labor income at the divisional

level is more relevant than aggregate country-wide labor income risk in explaining the cross-

section of US stock returns.

We include in this section several robustness checks. In particular, we will study whether

including additional portfolios, imposing a single stock market risk premium across divisions,

or reducing the number or test portfolios affects our main empirical results. Finally, we

investigate the robustness of the KEEPM orthogonal risk factors in the presence of two

alternative labor related factors previously studied in the literature: the consumption to

wealth, cay, variable in Lettau and Ludvigson (2001a) and the labor income to consumption,

s, variable in Santos and Veronesi (2006). We will show that our results remain qualitatively

robust.

6.1 Additional Portfolios

We include additional test portfolios that are known to have a large spread in average returns.

In particular, we include an additional twenty portfolios formed according to book-to-market

ratio. The addition of book-to-market portfolios to the test assets is motivated by the
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possibility that firms with a low book-to-market are growth firms that tend to be younger,

and might have more human capital specific factors, or unique technology that is specific to a

particular geographical area (like Silicon Valley in California). In contrast, firms with a high

book-to-market ratio are value firms and are more likely to be geographically diversified, with

production and sales across divisions and countries. Additionally, firms with a low book-to-

market ratio tend to exhibit high investment in R&D. Arguably, the investment in R&D

is highly intensive in human capital, which results in the type of non-diversifiable wealth

against which investors will want to hedge by holding the security (a growth stock).

Table 10 reports estimates of the coefficients in the pricing kernel. In all cases except the

ES division, the estimates of ck are statistically significant, confirming that local orthogonal

labor income helps explain the test assets in all but one division. In comparison to Table 8,

where only the twenty portfolios formed on lagged orthogonal local labor income are used

as test assets, the estimated coefficients in the pricing kernel are larger and have greater

statistical significance. This indicates that the model can help explain the returns on book-

to-market portfolios.

In seven (one case marginally) of the nine divisions the local orthogonal labor income

factor commands a statistically significant risk premium, in all cases negative. Furthermore,

there is still a clear difference between low and high population density divisions (the average

quarterly risk premium in the low population density divisions is -1.41 compared to -1.08 in

the high population density divisions). Across all divisions, the J-test indicates that the

model is accepted. However, in all cases the inclusion of the book to market portfolios

increases the pricing errors.

The second row from the bottom of Table 10 reports the average absolute pricing error

when we include the smb and hml factors, aapeFF , which might be relevant to price book

to market stocks. In five cases, the inclusion of these factors reduces the pricing errors.

Moreover, in the final row of Table 10 we report the ∆J statistic, which tests the null

hypothesis that the smb and hml factors are not important in pricing the assets. In eight

cases (one marginally) we reject the null hypothesis in favor of the alternative that the smb

and hml factors are necessary to price these assets. Unlike Table 8, where the test assets

do not include book-to-market portfolios, the smb and hml factors, in conjunction with the

local orthogonal labor income factor, are important when we price the original portfolios and

the book-to-market portfolios simultaneously.20

20Results for market capitalization sorted portfolios are very similar to the book-to-market portfolios.
These are available on request.

25



6.2 Common Market Risk Premium across Divisions

The estimations we have considered so far treat each division separately, which amounts to

considering a different pricing kernel for each division. However, this would require that each

division were segmented from the others. In this part of the paper, we consider a common

pricing kernel for the market factor whilst still allowing the divisional risk factors based on

the orthogonal labor income to have difference prices of risk.

In order to achieve this, following Cochrane (2005) we employ GMM to estimate the

market price of risk from the CAPM using 10 size sorted portfolios from all stocks on CRSP,

irrespective of location. This amounts to specifying the SDF as:

m ⇡ c0 + ĉermrerm,

which is estimated jointly with the other moment condition:

E
⇣
m (rerm)� rerm + �̂erm

⌘
= 0

Using the ten size portfolios as test assets we obtain the following quarterly estimates of the

CAPM’s parameters: ĉerm = �3.694(t � value = 2.27); �erm = 0.0271(t � value = 2.32).

We now impose these estimates on each division and estimate the free parameters associated

with the divisional level orthogonal labor income. That is, the next step involves imposing

these estimates on the SDF that was estimated earlier for each of the k divisions, using the

twenty portfolio per division formed on the lagged factor mimicking portfolio coefficients:

mk ⇡ c0,k + bcerm,krerm + ckr
F
k , (15)

together with the remaining moment conditions
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where the hats indicate the estimates from the first step. Each division now has the same

parameters for the market factor, but different estimates for the orthogonal labor prices of

risk.21

The results are reported in Table 11. In all cases the price of risk associated with the

divisional price of risk is statistically significant. Thus, when we impose that the parameters

in the market factor are the same across all divisions, we find stronger support for the

existence of a negative price of risk associated with relative wealth concerns. We still find

that there is a substantial difference between the size of the estimated prices of risk for low

21Ideally we would like to estimate one system of equations using ten portfolios from each division, giving
ninety tests assets. However, with a small time series and large cross-section, it is not feasible.
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and high population density divisions. There is an increase in the size of the pricing errors

for some of the divisions. However, the J-test only rejects the null of zero pricing errors

in NE. The final row of the Table reports a test of whether we can impose the estimated

parameters for the market factor reported above. At conventional levels, we only reject the

null hypothesis that the estimated parameters for the market factor reported above are equal

to those estimated in Table 8, in the case of MO. Therefore, given that the imposition of the

same parameters for the market factor is not often rejected, the fact that the pricing errors

remain relatively small in most cases is reassuring.

6.3 Number of portfolios

In the previous GMM tests we have employed twenty test assets, with the exception of ES,

and forty tests assets when augmenting the original portfolios with twenty book-to-market

portfolios. In this part of the paper, we assess the robustness of the results when we use ten

rather than twenty test assets. The motivation for this is the finding in Cochrane (1996) that

the results of the iterative GMM procedure are sensitive to the relative size of N (number

of moment conditions) with respect to T (number of data points). In our case T is 168 and

N is 22. Cochrane (1996) finds that with 37 moment conditions and 186 data points the

GMM estimates behave poorly. With twenty portfolios, plus two moment conditions for the

risk premium, we have 22 moment conditions and 168 data points. By considering only ten

portfolios, we reduce the number of moment conditions to 12.

Table 12 reports the results from the GMM estimation. Three estimates of the local

orthogonal labor income factors are statistically significant in the pricing kernel, two of which

are in low population density divisions. In three of the four low population density divisions

the estimate of the risk premium is statistically significant. It is also statistically significant

in three of the high population density divisions. The market portfolio is never statistically

significant in the pricing kernel, and never commands a statistically significant risk premium.

According to the J-test, the model is only rejected for one division, NE, and this is the

division with relatively large pricing errors (1.43% per quarter). There does seem to be some

improvement when using ten, rather than twenty portfolios. First, the average pricing error

is 0.23% per quarter for all divisions excluding NE. Recall from Table 8 that when we employ

twenty test portfolios the average pricing error is 0.32% per quarter. Moreover, when we use

twenty test assets the model is rejected in the cases of MA and SA, even though the pricing

errors are small (0.23 and 0.49% per quarter respectively). This is not the case in Table 12

with ten portfolios as test assets.

While there are some improvements in the model when we use ten rather than twenty

portfolios as test assets (consistent with the findings in Cochrane (1996)), the overall tenor

of the results is unchanged. This is also the case when we include the smb and hml factors.
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There is not much improvement in the model performance and in five cases the pricing errors

are actually larger. The final row reports the ∆J test that examines whether we can accept

the null hypothesis that the smb and hml factors are not important to price the ten assets.

In all divisions except ES we can accept the null hypothesis.

6.4 Comparison with alternative models

Labor income has been used in a number of asset pricing applications. Lettau and Ludvigson

(2001a) and Santos and Veronesi (2006) both use labor income in time-varying risk premia

models. The former conditions consumption growth on their variable cay, which measures

the long run relationship between consumption, asset wealth and labor income. The latter

conditions the market returns on the ratio of labor income to consumption, s. We consider

whether the inclusion of the these two conditioning variables is related to the the divisional

level orthogonal labor income factor.

Panel A of Table 13 estimates the conditional consumption CAPM of Lettau and Lud-

vigson (2001a) with the addition of the divisional specific orthogonal labor income. As is

evident, the parameters in the pricing kernel are not affected by replacing the market re-

turn factor with consumption growth and the conditioning of consumption growth with cay.

The size of the estimated coefficients and the level of statistical significance is similar to the

standard estimates of the KEEPM reported in Table 8.

Very similar results are found in Panel B which estimates the Santos and Veronesi (2006)

conditional CAPM that scales the market return with ratio of labor income to consumption,

s. Overall, including labor income variables that allow for time varying expected returns

does not diminish the role of divisional level orthogonal labor income.

7 Conclusions

Mayers (1972) pointed out the importance of human capital as a component of aggregate

wealth. Following up on that hint, the finance literature has used labor income as an indicator

of human capital and linked it to the cross-section of stock returns. In this paper, we show

that relative wealth concerns can explain the link between labor income and stock returns.

Gómez, Priestley and Zapatero (2009) show that relative wealth/income concerns, whether

driven by keeping up with the Joneses preferences or local price inflation hedging, can affect

equilibrium prices through the hedging strategy of investors. In addition, the risk-premium

associated with the risk factor (labor income) is negative. We show that the predictions of

their model hold at the US census divisions level. In particular, the risk premium associated

with labor income is negative and, even more importantly, the risk factor is strongly local, as

consistent with the economic nature of relative wealth concerns. In this respect, we show that
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the risk premium associated with aggregate (country level) risk is negative and statistically

significant. However, our tests support the strong significance of the additional risk -with

respect to the aggregate/domestic factor- embedded in the local/divisional risk factor.

Interestingly, we show that the economic size of the effect is stronger the lower the popula-

tion density of the divisions. This is in line with the results of Hong, Kubik and Stein (2008)

and consistent with the local nature of relative wealth concerns: in areas of lower population

density (small towns or suburban areas, as opposed to large cities) there is a stronger sense

of community and peer pressure is stronger.

In general, local labor income has higher correlation with local stock returns than with

stock returns of other divisions, as we show in this paper. However, as we clearly document,

the pricing factor is the correlation between stock returns and labor income, and not ge-

ographic location. This is clearly different from the notion of familiarity suggested in the

literature as a possible factor in portfolio choice.
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Appendix

We summarize here the optimal portfolio choice problem of an agent with either endogenous
or exogenous keeping up with the Joneses preferences. For a detailed derivation, we kindly
refer the reader to Gómez, Priestley and Zapatero (2009).

Exogenous keeping up with the Joneses preferences

In this subsection we analyze the implications of a version of the keeping up with the Jone-
ses preferences of Abel (1990) and Gaĺı (1994). In particular, in the economy we consider
investors are endowed with an utility function22

u(c, C) =
c(1�α)

1� ↵
Cγα, (A1)

where c denotes the investor’s consumption of the single consumption good, the economy’s
numeraire; C is the division average or per capita consumption; ↵ > 0 is the (constant)
relative risk-aversion coefficient and 1 > � � 0 is the “Joneses parameter.”

Here, workers represent agents endowed with non-tradable income. For instance, their
human capital, that will materialize into wage income, or entrepreneurial income. Call w0

k the
initial aggregate endowment of non-financial wealth for workers in division k; wk denotes the
final (t = 1) random value of their non-tradable income. Workers face incomplete markets
because they cannot trade their human capital (due to moral hazard issues) and have no
access to financial markets; therefore, they cannot hedge their income risk.

Since each investor takes C as exogenous and common, the typical aggregation property
of the CRRA utility functions allows us to replace all the investors in a given division by
a representative investor with utility function (A1) endowed with the aggregated investors
income without affecting the equilibrium prices. At time t = 0 each representative investor
is endowed with a share of the local firm (unit value by assumption); hence, c0 = 1 in all
divisions.

We can write the problem’s first order condition as a function of the investor’s consump-
tion and the workers relative wealth, w/c:

E
�
r c�α(1�γ)(1 + w/c)αγ

�
= 0. (A2)

Notice that, in the absence of keeping up with the Joneses behavior (� = 0), the previous
condition reduces to E (r c�α) = 0, the standard CRRA Euler equation.

Condition (A2) allows us to solve for the representative investor’s optimal portfolio. Since
financial markets are complete, there exists a mimicking portfolio Xw that maps the workers
relative income onto the investment opportunity set such that w/c = w0(R + r0Xw). Fol-
lowing Gaĺı (1994), given w0 and Xw, for small values of E(r), the optimal portfolio of the
representative investor of division k can be approximated as a function of ↵, � and the risk
adjusted risk premia Ω

�1E(r):

x⇤
k =

✓k�k

1� �k
Xw

k +
1

↵k(1� �k)
Ω

�1E(r), (A3)

22To simplify the notation, we drop the division subindex k for the moment (thus, all variables to be
introduced next apply to investors in any division).
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with ✓k =
w0

k

1+w0
k

, the workers initial wealth as a proportion of the division’s total wealth

(investor’s plus non-diversifiable wealth).
Notice that even if there is a friction (✓k > 0) that prevents full risk-diversification for a

set of agents (the workers), investors will hold well diversified portfolios unless they exhibit
some degree of keeping up with the Joneses behavior (�k > 0). Thus, it is important to
emphasize that investors’ portfolios will be locally biased if and only if both keeping up with
the Joneses behavior and a market friction exist.

Endogenous keeping up with the Joneses preferences

In this section, we discuss the endogenous keeping up with the Joneses preferences presented
in DeMarzo, Kaniel and Kremer (2004). In this specification agents consume two types of
goods: c, which has the interpretation of a global good, and wk, a local good, like housing
services. Utility over consumption for these two goods is given by:

u(c, w) =
1

1� ↵
(c1�α + �w1�α).

The parameter � > 0 specifies the relative importance of the local good. All consumption
takes place at the end of the period. At time t = 0, investors are endowed with shares of
the firm that produces the global good. Call c0k the aggregate value of those shares at the
beginning of the period for agents in division k. For simplicity, let c0k = 1 in all divisions.
Workers in each division will receive a fixed number w̄k of units of the local good at time
t = 1. In equilibrium, the relative price of the local good in terms of the global good at

t = 1 is given by pk = �
⇣

ck
w̄k

⌘
α

. As it would be expected, the scarcer the (fixed) local good

endowment relative to the (stochastic) global good consumption, the higher the relative price
of the former. The investor’s hedging demand for this risk will trigger the endogenous keeping
up with the Joneses behavior in this model. Financial markets are complete.

If workers can not diversify their endowment risk (due, for instance, to short-selling
constraints and moral hazard), Proposition 2 in DeMarzo, Kaniel and Kremer (2004) shows
that the representative investor’s marginal utility is given by:

uc(c, p) = c�α
�
1 + �1/αp1�1/α

�α
. (A4)

Let p0 = �
⇣

c0

w̄

⌘
α

denote the relative price at t = 0 of one unit of the non-diversifiable, local

good endowment of workers at time t = 1. Recall that we normalized the initial investor’s
shares endowment c0 = 1. Hence, p0 = �w̄�α. The present value of the workers endowment
is therefore w̄0 = �w̄1�α.

In this model, the relative wealth at t = 0 of the workers in division k as a proportion of

the total division wealth is given by ✓k =
w̄0

k

1+w̄0
k

. Call w̄kpk/w̄
0
k the return on the workers wealth

(in units of the global good) over the period. Like in the exogenous preferences specification,
under complete (financial) markets, there exists a portfolio Xw

k such that w̄kpk
w̄0

k

= R + r0Xw
k .

After these definitions, we can write the approximate function for division k investor’s
optimal portfolio as follows:

x⇤
k =

✓k(↵k � 1)

↵k

Xw
k +

1

↵k

Ω
�1E(r). (A5)
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Notice that, in this model, the optimal portfolio for the logarithmic investor (↵ = 1)
coincides with the benchmark, well diversified portfolio Ω

�1E(r). No relative wealth concern
arises even in the presence of local, non-diversifiable wealth. Only for ↵ > 1 should we
observe a local bias in portfolio holdings.

A linear approximation for the Stochastic Discount Factor

We will derive this approximation both for the endogenous and the exogenous case. Like in
the derivation of the optimal portfolio, the only difference will lay on the interpretation of
the deep parameters.

Let us start with the exogenous Joneses specification. The investor’s (first order condition)
optimal consumption choice is given in equation (A2). This condition holds for any asset
i and any division k. The first-order approximation to the marginal’s utility is given by
uc(ck, wk/ck) ⇡ uc(c

0
k, w

0
k/c

0
k) + uc,c(c

0
k, w

0
k/c

0
k)(ck � c0k) + uc,w/c(c

0
k, w

0
k/c

0
k)(wk/ck � w0

k/c
0
k) =

uc(1, w
0
k) [1� ↵(1� �)(r0x⇤

k +R� 1) + ✓k ↵�(r
0Xw

k +R� 1)] .
Replacing the later expression in (A2) we obtain the following condition:

E (ri [⌧k � (r0x⇤
k +R� 1) + ✓kbk(r

0Xw
k +R� 1)]) = 0, (A6)

where ⌧k = 1
αk(1�γk)

and bk = γk

1�γk
. We multiply (A6) by !k, the proportion of country

market capitalization in division k and add up across all divisions:

E

 
ri

"
H�1 � (rM +R� 1) +

X

k

!k✓kbk(r
w
k +R� 1)

#!
= 0, (A7)

where H�1 =
P

k !k⌧k is the aggregate risk aversion coefficient. We have used the market
clearing condition

P
k !kx

⇤
k = xM and the definitions rM = r0xM and rwk = r0Xw

k . After
regressing the workers non-diversifiable income onto the country market portfolio return -
equation (2) - we can write rwk = �krM + rFk . We replace the later expression in the Euler
equation. Moreover, we assume that E(ri)(R� 1) ⇡ 0 for small values of E(ri) and the (net)
risk-free rate, R� 1. This results into equation (13).

We turn now to the endogenous Joneses specification. The investor’s optimal consump-
tion choice is given in equation (A4). This expression can be linearly approximated as follows:
uc(ck, pk) ⇡ uc(c

0
k, p

0
k)+uc,c(c

0
k, p

0
k)(ck�c0k)+uc,p(c

0
k, p

0
k)(pk�p0k) = uc(1, �kw̄

�αk

k )
⇥
1� ↵k(r

0x⇤
k+

R� 1) + ✓k (↵k � 1)
⇣

w̄kpk
w̄0

k

� 1
⌘i

.

Replacing the later expression in (A4) and given that w̄kpk
w̄0

k

= R+ r0wk we obtain condition

(A6) with ⌧k =
1
αk

and bk =
αk�1
αk

. Following the same procedure as in the exogenous case we

arrive at equation (A7) and finally equation (13).
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Table 1
Factor Risk Premia

Panel A reports the annualized mean percentage return of the factor mimicking portfolios

in each division, along with their t-statistics. There are nine Census Bureau Divisions which

we index with two capital letters: West South Central (WS), Pacific (PA), East South Central

(ES), Mountain (MO), East North Central (EN), South Atlantic (SA), West North Central

(WN), Middle Atlantic (MA), NE is New England (NE). Divisions with low population density

(less than 100 individuals per square mile) are indicated with a “(L)” following their two-letter

symbol. Panel B presents the covariances (lower triangular matrix), variances (diagonal), and

correlations (upper triangular matrix) amongst the factor mimicking portfolios.

Panel A: Annualized Mean Returns (%)

MA NE SA EN PA ES(L) WS(L) WN(L) MO(L)
µF
k -2.89 -2.88 -3.98 -2.84 -3.73 -3.03 -6.13 -4.97 -7.39

t-stat 1.45 1.54 1.85 1.96 1.47 1.34 2.22 2.50 2.62

Panel B: Variances, Covariances and Correlations

MA NE SA EN PA ES(L) WS(L) WN(L) MO(L)
MA 0.004 0.512 0.680 0.569 0.726 0.462 0.658 0.566 0.512
NE 0.002 0.004 0.465 0.483 0.594 0.289 0.433 0.496 0.317
SA 0.003 0.003 0.005 0.558 0.669 0.596 0.630 0.546 0.559
EN 0.002 0.003 0.002 0.002 0.514 0.443 0.586 0.600 0.378
PA 0.004 0.003 0.004 0.002 0.003 0.005 0.419 0.465 0.387

ES(L) 0.002 0.001 0.003 0.001 0.003 0.003 0.008 0.623 0.555
WS(L) 0.004 0.002 0.004 0.002 0.004 0.003 0.004 0.579 0.458
WN(L) 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.004 0.484
MO(L) 0.003 0.002 0.003 0.002 0.003 0.002 0.004 0.003 0.008
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Table 2
Regression of Excess Returns on Mimicking Portfolios: Divisions then Country

In Panel A we report, for each portfolio in each division, estimates of the slope �F
i,k (t-

statistics in parenthesis) from the regression:

ri,k,t = ↵i,k + �F
i,k r

F
k,t + �erm

i,k rerm,t + �smb
i,k rsmb,t + �hml

i,k rhml,t + ui,k,t,

where ri,k,t is the excess return on portfolio i (i = P1, ..., P20) from division k at time t; ↵i,k

is the portfolio-specific constant (pricing error); where �F
i,k is the estimated factor loading on

rFk,t, the factor mimicking portfolio of orthogonal local labor income in division k; �erm
i,k , �smb

i,k

and �hml
i,k are the estimated factor loading on the corresponding three Fama-French factors;

finally, ui,k,t is the error term. The last row reports the expected annualized percentage return

spread between portfolios P1 and P20 given their betas and the divisional mean premium µF
k

in Table 1.

In Panel B we report the slope �G
i,k (t-statistics in parenthesis) from the regression:

ui,k,t = ↵i,k + �G
i,k r

G
t + vi,k,t.

where ui,k,t are the residuals from the regression in Panel A and rGt the factor mimicking

portfolio for the country orthogonal labor risk.
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Panel A: βF
i,k

MA NE SA EN PA ES(L) WS(L) WN(L) MO(L)

P1 0.4199 0.8110 0.6265 0.5806 0.5993 0.6564 0.7980 0.7194 0.7983

( 3.5315 ) ( 5.0066 ) ( 3.4197 ) ( 5.1433 ) ( 5.0613 ) ( 6.2777 ) ( 7.6464 ) ( 6.6815 ) ( 5.8138 )

P2 0.3843 0.5364 0.4809 0.6909 0.3801 0.4128 0.9706 0.4438 0.5752

( 4.0363 ) ( 5.7507 ) ( 4.1197 ) ( 6.8514 ) ( 4.0096 ) ( 4.6079 ) ( 9.1537 ) ( 4.6352 ) ( 5.1254 )

P3 0.4096 0.5404 0.3582 0.3613 0.2910 0.1857 0.8460 0.5550 0.4797

( 6.1339 ) ( 5.3830 ) ( 3.6599 ) ( 4.2207 ) ( 3.4633 ) ( 2.6958 ) ( 8.9420 ) ( 4.8872 ) ( 4.2396 )

P4 0.2714 0.3960 0.3280 0.2333 0.1799 -0.0291 0.7083 0.3359 0.3595

( 2.9226 ) ( 4.1773 ) ( 3.6400 ) ( 2.8249 ) ( 2.1225 ) ( -0.3095 ) ( 9.8279 ) ( 3.5422 ) ( 3.9425 )

P5 0.2760 0.3337 0.1503 0.3046 0.1624 -0.0660 0.5689 0.4709 0.0632

( 3.3598 ) ( 4.1020 ) ( 1.6856 ) ( 3.8253 ) ( 2.0941 ) ( -0.6442 ) ( 7.6940 ) ( 5.0849 ) ( 0.7438 )

P6 0.1748 0.0833 0.1544 0.0789 0.1336 -0.1620 0.4799 0.2325 0.2445

( 2.6342 ) ( 1.0069 ) ( 1.5884 ) ( 1.0193 ) ( 1.6516 ) ( -1.2582 ) ( 6.8104 ) ( 2.7484 ) ( 2.1187 )

P7 0.1680 0.1091 0.0290 -0.0320 0.0612 -0.2393 0.5662 0.2124 -0.0254

( 2.7652 ) ( 1.2359 ) ( 0.3244 ) ( -0.4003 ) ( 0.8540 ) ( -2.3422 ) ( 7.5449 ) ( 2.2169 ) ( -0.2482 )

P8 0.1073 0.0734 0.1131 -0.0837 -0.1109 -0.6679 0.3883 -0.2390 -0.0392

( 1.4458 ) ( 0.6775 ) ( 1.3952 ) ( -1.0896 ) ( -1.3471 ) ( -7.1598 ) ( 5.5652 ) ( -2.9153 ) ( -0.4266 )

P9 -0.1495 0.0750 -0.0017 -0.1793 -0.1450 -0.1831 0.3505 -0.0641 -0.3822

( -2.0498 ) ( 0.8154 ) ( -0.0166 ) ( -2.3029 ) ( -1.8261 ) ( -1.6677 ) ( 3.9671 ) ( -0.8579 ) ( -3.4986 )

P10 -0.2280 0.1088 -0.0775 -0.2872 -0.0935 -0.8523 0.2165 -0.0748 -0.2374

( -3.1530 ) ( 1.3208 ) ( -0.7258 ) ( -3.5285 ) ( -0.9293 ) ( -6.4306 ) ( 2.9773 ) ( -0.8228 ) ( -2.3983 )

P11 -0.2836 -0.1633 -0.1400 -0.3266 -0.1562 0.2290 -0.3521 -0.2571

( -3.9986 ) ( -1.8094 ) ( -1.2643 ) ( -3.7207 ) ( -1.3152 ) ( 3.4797 ) ( -3.7654 ) ( -2.5618 )

P12 -0.0922 -0.0397 -0.2861 -0.2211 -0.4323 0.0881 -0.2928 0.0176

( -1.3764 ) ( -0.4484 ) ( -2.7080 ) ( -2.6075 ) ( -5.0392 ) ( 1.0001 ) ( -2.9195 ) ( 0.1439 )

P13 -0.1349 -0.1593 -0.0836 -0.4319 -0.2825 0.0373 -0.3100 -0.2239

( -1.7884 ) ( -1.5976 ) ( -0.7284 ) ( -5.2839 ) ( -3.9578 ) ( 0.4696 ) ( -3.4811 ) ( -1.9924 )

P14 -0.5526 -0.4013 -0.3811 -0.5739 -0.2693 0.0651 -0.2024 -0.4690

( -7.0888 ) ( -3.9502 ) ( -3.5179 ) ( -6.9635 ) ( -3.8906 ) ( 0.8632 ) ( -1.9985 ) ( -3.8215 )

P15 -0.4080 -0.9837 -0.4633 -0.6350 -0.6919 -0.1913 -0.5038 -0.5647

( -5.6604 ) ( -7.3034 ) ( -4.3585 ) ( -7.3141 ) ( -7.2489 ) ( -1.9964 ) ( -4.7836 ) ( -4.4522 )

P16 -0.7703 -0.4265 -0.6245 -0.3992 -0.7675 -0.2440 -0.6658 -0.4624

( -8.9604 ) ( -3.7260 ) ( -5.7442 ) ( -4.6085 ) ( -7.7013 ) ( -2.4472 ) ( -4.2580 ) ( -3.6944 )

P17 -0.6982 -0.4057 -0.4460 -0.6196 -0.5687 -0.2260 -0.5612 -0.8700

( -8.6639 ) ( -3.8325 ) ( -4.0843 ) ( -6.6076 ) ( -6.1703 ) ( -2.3927 ) ( -5.2962 ) ( -6.2101 )

P18 -0.6911 -0.4617 -0.8203 -0.7098 -0.7283 -0.3461 -0.4312 -0.6707

( -8.0482 ) ( -4.1567 ) ( -7.0487 ) ( -8.2873 ) ( -7.0151 ) ( -4.0588 ) ( -3.9432 ) ( -4.8162 )

P19 -0.5829 -0.4163 -0.7461 -0.7416 -0.8090 -0.4378 -0.5003 -0.7030

( -6.0548 ) ( -3.1180 ) ( -4.3902 ) ( -7.2128 ) ( -6.7902 ) ( -4.1819 ) ( -4.3553 ) ( -4.5796 )

P20 -1.0761 -0.6633 -1.2161 -0.8616 -1.0538 -0.4392 -0.7439 -0.6110

( -9.3323 ) ( -5.0108 ) ( -7.4083 ) ( -6.3972 ) ( -7.7131 ) ( -4.0234 ) ( -5.3379 ) ( -3.8293 )

(P1 � P20)µF
k -4,3234 -4,2461 -7,3336 -4,0959 -6,1661 -4,5713 -7,5838 -7,2725 -10,4150
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Panel B: βG
i,k

MA NE SA EN PA ES WS WN MO

P1 -0,1481 -0.2103 0.0628 -0.0471 0.0200 0.1320 -0.0663 -0.0173 0.1368

( -1.6745 ) ( -1.6276 ) ( 0.4994 ) ( -0.6549 ) ( 0.1775 ) ( 1.3750 ) ( -0.5632 ) ( -0.1874 ) ( 0.8469 )

P2 -0.0591 0.0232 -0.0082 0.0067 -0.0971 0.0453 -0.0650 0.0114 0.0950

( -0.8289 ) ( 0.3096 ) ( -0.1018 ) ( 0.1041 ) ( -1.0806 ) ( 0.5485 ) ( -0.5432 ) ( 0.1388 ) ( 0.7190 )

P3 -0.0877 -0.2047 -0.0446 0.0058 -0.0675 0.0660 0.0164 -0.0268 0.0816

( -1.7668 ) ( -2.5865 ) ( -0.6647 ) ( 0.1067 ) ( -0.8462 ) ( 1.0409 ) ( 0.1539 ) ( -0.2757 ) ( 0.6123 )

P4 -0.1278 -0.0363 -0.0489 -0.0199 -0.0871 -0.0420 -0.0079 -0.0656 0.0900

( -1.8539 ) ( -0.4766 ) ( -0.7915 ) ( -0.3777 ) ( -1.0838 ) ( -0.4840 ) ( -0.0966 ) ( -0.8085 ) ( 0.8392 )

P5 -0.1087 -0.0060 -0.0690 -0.0251 -0.0433 -0.1369 -0.0199 -0.0109 -0.0062

( -1.7811 ) ( -0.0910 ) ( -1.1298 ) ( -0.4950 ) ( -0.5876 ) ( -1.4553 ) ( -0.2382 ) ( -0.1373 ) ( -0.0618 )

P6 -0.0932 -0.1313 -0.1968 -0.0074 -0.1307 -0.1785 -0.0318 -0.0492 0.0488

( -1.8919 ) ( -1.9982 ) ( -3.0271 ) ( -0.1508 ) ( -1.7135 ) ( -1.5121 ) ( -0.3996 ) ( -0.6790 ) ( 0.3591 )

P7 -0.0520 -0.0458 -0.1354 0.0110 -0.0495 -0.0111 -0.0859 -0.1128 0.0231

( -1.1464 ) ( -0.6462 ) ( -2.2378 ) ( 0.2169 ) ( -0.7266 ) ( -0.1177 ) ( -1.0167 ) ( -1.3800 ) ( 0.1922 )

P8 -0.0822 -0.1003 -0.0817 0.0343 -0.0939 0.2201 0.0231 -0.0425 0.0917

( -1.4864 ) ( -1.1557 ) ( -1.4758 ) ( 0.7008 ) ( -1.2032 ) ( 2.6071 ) ( 0.2930 ) ( -0.6048 ) ( 0.8480 )

P9 -0.1201 -0.1711 -0.0761 0.0336 -0.0856 0.0586 0.0227 -0.0230 0.1312

( -2.2268 ) ( -2.3504 ) ( -1.0643 ) ( 0.6768 ) ( -1.1370 ) ( 0.5787 ) ( 0.2276 ) ( -0.3588 ) ( 1.0222 )

P10 -0.1277 -0.1576 -0.0914 -0.0149 -0.1655 -0.0634 0.0634 -0.0434 -0.0577

( -2.3940 ) ( -2.4206 ) ( -1.2523 ) ( -0.2871 ) ( -1.7457 ) ( -0.5184 ) ( 0.7738 ) ( -0.5570 ) ( -0.4953 )

P11 -0.1081 -0.1200 -0.1393 0.0022 -0.1375 0.0035 -0.0183 -0.0750

( -2.0567 ) ( -1.6666 ) ( -1.8478 ) ( 0.0384 ) ( -1.2222 ) ( 0.0477 ) ( -0.2282 ) ( -0.6347 )

P12 -0.0653 -0.1250 -0.1796 -0.0076 -0.1302 -0.0280 -0.0160 0.1870

( -1.3056 ) ( -1.7718 ) ( -2.5214 ) ( -0.1408 ) ( -1.6079 ) ( -0.2818 ) ( -0.1854 ) ( 1.3058 )

P13 -0.0438 -0.2393 -0.0801 -0.0336 -0.0668 -0.0491 -0.0259 0.0208

( -0.7747 ) ( -3.0677 ) ( -1.0182 ) ( -0.6455 ) ( -0.9873 ) ( -0.5479 ) ( -0.3397 ) ( 0.1569 )

P14 -0.1243 -0.1378 -0.1746 0.0146 -0.0777 0.0713 -0.0955 0.2476

( -2.1547 ) ( -1.7010 ) ( -2.3853 ) ( 0.2771 ) ( -1.1846 ) ( 0.8394 ) ( -1.1031 ) ( 1.7273 )

P15 -0.0889 -0.0602 -0.0425 -0.0211 -0.1451 0.0348 -0.0052 0.1583

( -1.6577 ) ( -0.5563 ) ( -0.5818 ) ( -0.3805 ) ( -1.6101 ) ( 0.3216 ) ( -0.0580 ) ( 1.0623 )

P16 -0.1129 -0.0900 -0.0523 0.0134 0.0623 -0.0879 0.0998 0.0350

( -1.7675 ) ( -0.9801 ) ( -0.7011 ) ( 0.2423 ) ( 0.6582 ) ( -0.7821 ) ( 0.7456 ) ( 0.2373 )

P17 -0.0822 -0.0824 -0.0233 0.0190 -0.0737 -0.0609 -0.0069 -0.1995

( -1.3677 ) ( -0.9706 ) ( -0.3109 ) ( 0.3177 ) ( -0.8425 ) ( -0.5708 ) ( -0.0758 ) ( -1.2135 )

P18 -0.0641 -0.0670 -0.0852 -0.0108 -0.0752 0.0150 -0.0052 -0.0938

( -0.9975 ) ( -0.7510 ) ( -1.0692 ) ( -0.1979 ) ( -0.7631 ) ( 0.1558 ) ( -0.0558 ) ( -0.5722 )

P19 -0.1037 -0.0641 -0.0373 -0.0293 -0.0957 -0.1488 -0.0666 0.3576

( -1.4442 ) ( -0.5981 ) ( -0.3198 ) ( -0.4465 ) ( -0.8461 ) ( -1.2646 ) ( -0.6765 ) ( 2.0002 )

P20 -0.1434 -0.1471 -0.0382 -0.0689 -0.0513 -0.0594 -0.1106 0.0436

( -1.6716 ) ( -1.3904 ) ( -0.3384 ) ( -0.8039 ) ( -0.3950 ) ( -0.4820 ) ( -0.9279 ) ( 0.2318 )
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Table 3
Regression of Excess Returns on Mimicking Portfolios: Country then Divisions

In Panel A we report, for each portfolio in each division, estimates of the slope �G
i,k (t-

statistics in parenthesis) from the regression:

ri,k,t = ↵i,k + �G
i,k r

G
t + �erm

i,k rerm,t + �smb
i,k rsmb,t + �hml

i,k rhml,t + ui,k,t,

where ri,k,t is the excess return on portfolio i (i = P1, ..., P20) from division k (k = 1, ..., 9)

at time t; ↵i,k is the portfolio-specific constant (pricing error); �G
i is the estimated factor loading

on rGt , the factor mimicking portfolio of orthogonal local labor income at the national level;

�erm
i,k , �smb

i,k and �hml
i,k are the estimated factor loading on the corresponding three Fama-French

factors; finally, ui,k,t is the error term.

In Panel B we report the slope �F
i,k (t-statistics in parenthesis) from the regression:

ui,k,t = ↵i,k + �F
i,k r

F
k,t + vi,k,t.

where ui,k,t are the residuals from the regression in Panel A and rFt the factor mimicking

portfolio for division k labor risk. The last row reports the expected annualized percentage

return spread between portfolios P1 and P20 given their betas and the divisional mean premium

µF
k in Table 1.

40



Panel A: βG
i,k

MA NE SA EN PA ES WS WN MO

P1 0.0097 -0.0005 0.5539 0.2705 0.6528 0.6125 0.9144 0.5739 0.9513

( 0.0695 ) ( -0.0022 ) ( 2.8904 ) ( 2.3500 ) ( 3.7228 ) ( 3.9550 ) ( 4.7046 ) ( 3.8120 ) ( 3.6942 )

P2 0.1795 0.3619 0.2994 0.4619 0.1691 0.3011 1.1471 0.4033 0.6774

( 1.6019 ) ( 2.9976 ) ( 2.3970 ) ( 4.4436 ) ( 1.1919 ) ( 2.3093 ) ( 5.6460 ) ( 3.1544 ) ( 3.2535 )

P3 0.1362 -0.1443 0.1369 0.2467 0.1447 0.2373 1.1629 0.4126 0.5702

( 1.6387 ) ( -1.0971 ) ( 1.3050 ) ( 2.9190 ) ( 1.1642 ) ( 2.4659 ) ( 6.6718 ) ( 2.6820 ) ( 2.7540 )

P4 -0.0654 0.1479 0.1075 0.1066 -0.0117 -0.1078 0.9254 0.1396 0.4917

( -0.6074 ) ( 1.2291 ) ( 1.1111 ) ( 1.3167 ) ( -0.0951 ) ( -0.8251 ) ( 6.7621 ) ( 1.1010 ) ( 2.9782 )

P5 -0.0190 0.1796 -0.0546 0.1410 0.0682 -0.3373 0.7130 0.3766 0.0374

( -0.1978 ) ( 1.7504 ) ( -0.5869 ) ( 1.7806 ) ( 0.6058 ) ( -2.4031 ) ( 5.2436 ) ( 3.0017 ) ( 0.2470 )

P6 -0.0663 -0.2448 -0.3372 0.0344 -0.1560 -0.4768 0.5680 0.0882 0.3068

( -0.8673 ) ( -2.4803 ) ( -3.4421 ) ( 0.4613 ) ( -1.3413 ) ( -2.7070 ) ( 4.4198 ) ( 0.7897 ) ( 1.4863 )

P7 0.0200 -0.0391 -0.2830 0.0040 -0.0482 -0.1407 0.5621 -0.0707 0.0311

( 0.2842 ) ( -0.3643 ) ( -3.1470 ) ( 0.0516 ) ( -0.4686 ) ( -0.9765 ) ( 3.9655 ) ( -0.5632 ) ( 0.1714 )

P8 -0.0965 -0.1813 -0.1076 0.0224 -0.3220 0.1673 0.5685 -0.2982 0.1728

( -1.1472 ) ( -1.3867 ) ( -1.2795 ) ( 0.3018 ) ( -2.7747 ) ( 1.1283 ) ( 4.6705 ) ( -2.8089 ) ( 1.0612 )

P9 -0.3890 -0.3384 -0.1709 -0.0411 -0.3380 0.0420 0.5173 -0.1058 -0.0166

( -5.0008 ) ( -3.1162 ) ( -1.5926 ) ( -0.5406 ) ( -3.0198 ) ( 0.2726 ) ( 3.3980 ) ( -1.0974 ) ( -0.0826 )

P10 -0.4695 -0.2887 -0.2551 -0.2191 -0.4642 -0.5544 0.4298 -0.1605 -0.3209

( -6.1969 ) ( -2.9518 ) ( -2.3422 ) ( -2.7596 ) ( -3.3160 ) ( -2.7463 ) ( 3.5054 ) ( -1.3705 ) ( -1.8116 )

P11 -0.4708 -0.3621 -0.4031 -0.2065 -0.4654 0.3128 -0.3406 -0.3754

( -6.2343 ) ( -3.3900 ) ( -3.6349 ) ( -2.3891 ) ( -2.7810 ) ( 2.7550 ) ( -2.7649 ) ( -2.0916 )

P12 -0.2202 -0.3019 -0.5897 -0.1600 -0.7292 0.0547 -0.2849 0.4315

( -2.9689 ) ( -2.8807 ) ( -5.7877 ) ( -1.9449 ) ( -6.1133 ) ( 0.3639 ) ( -2.1726 ) ( 2.0128 )

P13 -0.2069 -0.6258 -0.2339 -0.3545 -0.4358 -0.0599 -0.3217 -0.1349

( -2.4458 ) ( -5.6137 ) ( -1.9872 ) ( -4.4071 ) ( -4.2905 ) ( -0.4430 ) ( -2.7588 ) ( -0.6683 )

P14 -0.7250 -0.5393 -0.6413 -0.3388 -0.4467 0.2457 -0.3854 0.1729

( -8.7001 ) ( -4.4287 ) ( -6.1064 ) ( -3.9257 ) ( -4.5716 ) ( 1.9320 ) ( -2.9859 ) ( 0.7610 )

P15 -0.5289 -0.7029 -0.4006 -0.4578 -1.0259 -0.1770 -0.4406 -0.1040

( -6.6981 ) ( -3.9086 ) ( -3.5759 ) ( -5.1268 ) ( -7.5797 ) ( -1.0758 ) ( -3.1194 ) ( -0.4358 )

P16 -0.8760 -0.4472 -0.5291 -0.2284 -0.6399 -0.5210 -0.3441 -0.2962

( -9.0354 ) ( -3.1893 ) ( -4.5479 ) ( -2.6329 ) ( -4.0194 ) ( -3.1016 ) ( -1.6279 ) ( -1.2858 )

P17 -0.7491 -0.4183 -0.3465 -0.3584 -0.7416 -0.4367 -0.4932 -1.1492

( -8.0364 ) ( -3.2204 ) ( -2.9972 ) ( -3.6731 ) ( -5.5010 ) ( -2.7286 ) ( -3.4440 ) ( -4.3908 )

P18 -0.7028 -0.4163 -0.7318 -0.4833 -0.9070 -0.4273 -0.3788 -0.7522

( -6.9768 ) ( -3.0213 ) ( -5.8445 ) ( -5.3338 ) ( -5.8779 ) ( -2.8747 ) ( -2.6130 ) ( -2.9178 )

P19 -0.7034 -0.3838 -0.5760 -0.5451 -1.0345 -0.9149 -0.5744 0.2288

( -6.5648 ) ( -2.3420 ) ( -3.1890 ) ( -5.1793 ) ( -5.8869 ) ( -5.2778 ) ( -3.8213 ) ( 0.7914 )

P20 -1.1916 -0.7117 -0.8882 -0.7112 -1.1840 -0.7172 -0.8801 -0.3973

( -9.0399 ) ( -4.3635 ) ( -4.8301 ) ( -5.3178 ) ( -5.6575 ) ( -3.8434 ) ( -4.8170 ) ( -1.3498 )
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Panel B: βF
i,k

MA NE SA EN PA ES WS WN MO

P1 0.2425 0.6237 0.1213 0.3023 0.1627 0.3563 0.2660 0.3303 0.4095

( 2.6451 ) ( 4.3546 ) ( 1.0188 ) ( 2.9767 ) ( 1.7687 ) ( 4.0214 ) ( 2.8725 ) ( 3.3639 ) ( 3.4332 )

P2 0.1586 0.3029 0.1260 0.2841 0.1741 0.2389 0.3122 0.1843 0.2965

( 2.1388 ) ( 3.6377 ) ( 1.6315 ) ( 3.1047 ) ( 2.3568 ) ( 3.1474 ) ( 3.2466 ) ( 2.1693 ) ( 3.0538 )

P3 0.1895 0.4591 0.1163 0.1458 0.1289 0.0895 0.2194 0.2666 0.2463

( 3.5243 ) ( 5.2580 ) ( 1.7959 ) ( 1.9256 ) ( 1.9810 ) ( 1.5635 ) ( 2.6326 ) ( 2.6242 ) ( 2.5290 )

P4 0.1833 0.2597 0.1112 0.1227 0.1090 -0.0015 0.1993 0.2048 0.1724

( 2.5903 ) ( 3.0964 ) ( 1.8643 ) ( 1.6880 ) ( 1.6851 ) ( -0.0193 ) ( 3.0673 ) ( 2.4393 ) ( 2.2098 )

P5 0.1688 0.2022 0.0781 0.1591 0.0756 0.0130 0.1699 0.2158 0.0396

( 2.6758 ) ( 2.8142 ) ( 1.3536 ) ( 2.2528 ) ( 1.2742 ) ( 0.1548 ) ( 2.6116 ) ( 2.6038 ) ( 0.5470 )

P6 0.1271 0.1381 0.1537 0.0423 0.1236 -0.0302 0.1541 0.1450 0.1224

( 2.5246 ) ( 1.9742 ) ( 2.5661 ) ( 0.6272 ) ( 2.0321 ) ( -0.2864 ) ( 2.5030 ) ( 1.9493 ) ( 1.2434 )

P7 0.0910 0.0957 0.0863 -0.0268 0.0499 -0.1445 0.2167 0.1921 -0.0246

( 1.9531 ) ( 1.2485 ) ( 1.5500 ) ( -0.3859 ) ( 0.9180 ) ( -1.6876 ) ( 3.2292 ) ( 2.3053 ) ( -0.2830 )

P8 0.0987 0.1113 0.0762 -0.0767 0.0282 -0.5026 0.0895 -0.0673 -0.0617

( 1.7655 ) ( 1.1924 ) ( 1.4624 ) ( -1.1477 ) ( 0.4585 ) ( -6.2973 ) ( 1.5174 ) ( -0.9434 ) ( -0.7917 )

P9 0.0568 0.1601 0.0439 -0.1163 0.0128 -0.1371 0.0795 -0.0079 -0.2791

( 1.0922 ) ( 2.0829 ) ( 0.6576 ) ( -1.7040 ) ( 0.2162 ) ( -1.4952 ) ( 1.0731 ) ( -0.1211 ) ( -2.9696 )

P10 0.0407 0.1710 0.0338 -0.1035 0.0796 -0.5053 0.0135 0.0054 -0.1145

( 0.8023 ) ( 2.4837 ) ( 0.4978 ) ( -1.4488 ) ( 1.0778 ) ( -4.4151 ) ( 0.2252 ) ( 0.0681 ) ( -1.3564 )

P11 0.0086 -0.0161 0.0459 -0.1407 0.0431 0.0601 -0.1381 -0.1188

( 0.1695 ) ( -0.2097 ) ( 0.6644 ) ( -1.8156 ) ( 0.4868 ) ( 1.0876 ) ( -1.6775 ) ( -1.3890 )

P12 0.0277 0.0608 0.0326 -0.0843 -0.0425 0.0443 -0.1142 -0.0687

( 0.5581 ) ( 0.8107 ) ( 0.5139 ) ( -1.1360 ) ( -0.6740 ) ( 0.6040 ) ( -1.2989 ) ( -0.6698 )

P13 -0.0022 0.0669 0.0256 -0.1421 -0.0396 0.0456 -0.1129 -0.1398

( -0.0396 ) ( 0.8383 ) ( 0.3492 ) ( -1.9744 ) ( -0.7369 ) ( 0.6915 ) ( -1.4460 ) ( -1.4547 )

P14 -0.0547 -0.1454 0.0057 -0.2603 -0.0287 -0.0336 -0.0047 -0.3791

( -0.9821 ) ( -1.6796 ) ( 0.0874 ) ( -3.4476 ) ( -0.5554 ) ( -0.5418 ) ( -0.0545 ) ( -3.6158 )

P15 -0.0428 -0.5437 -0.0920 -0.2431 -0.1090 -0.0774 -0.2160 -0.3974

( -0.8092 ) ( -4.4630 ) ( -1.3249 ) ( -3.0924 ) ( -1.5313 ) ( -0.9660 ) ( -2.3051 ) ( -3.6096 )

P16 -0.1262 -0.1926 -0.1270 -0.1850 -0.2651 -0.0034 -0.3793 -0.2854

( -1.9636 ) ( -1.9379 ) ( -1.7670 ) ( -2.3950 ) ( -3.2441 ) ( -0.0409 ) ( -2.7209 ) ( -2.6390 )

P17 -0.1311 -0.1854 -0.0988 -0.2849 -0.1190 -0.0179 -0.2397 -0.4249

( -2.1252 ) ( -2.0150 ) ( -1.3793 ) ( -3.3304 ) ( -1.6811 ) ( -0.2298 ) ( -2.5312 ) ( -3.5103 )

P18 -0.1441 -0.2290 -0.1571 -0.2871 -0.1647 -0.1054 -0.1842 -0.3529

( -2.1627 ) ( -2.3576 ) ( -2.0381 ) ( -3.6361 ) ( -2.0420 ) ( -1.4627 ) ( -1.9062 ) ( -2.9289 )

P19 -0.0805 -0.2040 -0.1663 -0.2783 -0.1752 -0.0124 -0.1606 -0.5625

( -1.1236 ) ( -1.7527 ) ( -1.4871 ) ( -2.9987 ) ( -1.9034 ) ( -0.1471 ) ( -1.5973 ) ( -4.2759 )

P20 -0.1882 -0.2947 -0.2844 -0.2813 -0.2756 -0.0773 -0.2286 -0.3760

( -2.1587 ) ( -2.5701 ) ( -2.5280 ) ( -2.3611 ) ( -2.5351 ) ( -0.8503 ) ( -1.8756 ) ( -2.7243 )

(P1 � P20)µF
k -1,2448 -2,6449 -1,6147 -1,6574 -1,6347 -2,6105 -2,1040 -2,7773 -5,8046
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Table 4
Orthogonal labor risk from other divisions

We regress each portfolio i in division k against division k orthogonal risk and the Fama

and French factors:

ri,k,t = ↵i,k + �F
i,k r

F
k,t + �erm

i,k rerm,t + �smb
i,k rsmb,t + �hml

i,k rhml,t + ui,k,t,

where ri,k,t is the excess return on portfolio i (i = P1, ..., P20) from division k (k = 1, ..., 9)

at time t; ↵i,k is the portfolio-specific constant (pricing error); �F
i,k is the estimated factor

loading on rFk,t, the factor mimicking portfolio of orthogonal local labor income in division k;

�erm
i,k , �smb

i,k and �hml
i,k are the estimated factor loading on the corresponding three Fama-French

factors; finally, ui,k,t is the error term.

We then regress the residuals against the local orthogonal risk from each division k0 6= k:

ui,k,t = ↵i,k + �F
i,k,k0 rFk,t + vi,k,t.

The table reports the number of coefficients �F
i,k,k0 corresponding to portfolios from division

k (by rows) regressed against orthogonal risk from division k0 6= k (by columns) which are

statistically significant (t-statistic > 1.96). There are 20 portfolios per division except for ES

(only 10 portfolios). The last column presents the percentage of significant betas smaller than

zero in each division. Overall, among the significant betas, the percentage of those smaller than

zero is 75%.

Orthogonal labor risk from division

MA NE SA EN PA ES WS WN MO �F
i,k,k0 < 0

P
or
tf
ol
io
s
fr
om

d
iv
is
io
n

MA
. . . 1 2 13 0 1 0 9 11 97%

NE 0
. . . 4 7 1 2 3 4 7 100%

SA 2 2
. . . 7 0 0 3 6 9 93%

EN 4 9 0
. . . 0 0 0 1 4 28%

PA 1 3 2 2
. . . 1 1 2 5 65%

ES 1 2 0 2 1
. . . 1 2 1 34%

WS 1 1 2 0 0 0
. . . 0 3 86%

WN 1 3 0 2 0 0 0
. . . 0 50%

MO 3 3 0 2 0 1 6 1
. . . 12%
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Table 5
Country versus divisional Joneses risk hedging

We regress each portfolio i in division k against the country orthogonal risk and the Fama

and French factors:

ri,k,t = ↵i,k + �G
i,k r

G
t + �erm

i,k rerm,t + �smb
i,k rsmb,t + �hml

i,k rhml,t + ui,k,t,

where ri,k,t is the excess return on portfolio i (i = P1, ..., P20) from division k (k = 1, ..., 9)

at time t; ↵i,k is the portfolio-specific constant (pricing error); �G
i is the estimated factor loading

on rGt , the factor mimicking portfolio of orthogonal local labor income at the national level;

�erm
i,k , �smb

i,k and �hml
i,k are the estimated factor loading on the corresponding three Fama-French

factors; finally, ui,k,t is the error term.

We then regress the residuals against the local orthogonal risk from each division k0 =

1, ..., 9:

ui,k,t = ↵i,k + �F
i,k,k0 rFk,t + vi,k,t.

The table reports the number of coefficients �i,k,k0 corresponding to portfolios from division

k (by rows) regressed against orthogonal risk from division k0 (by columns) which are statisti-

cally significant (t-statistic > 1.96). There are 20 portfolios per division except for ES (only 10

portfolios).

Orthogonal labor risk from division

MA NE SA EN PA ES WS WN MO

P
or
tf
ol
io
s
fr
om

d
iv
is
io
n MA 10 9 0 0 0 0 0 0 1

NE 0 12 0 0 0 2 0 1 3
SA 0 8 3 1 0 0 0 0 0
EN 3 6 0 11 3 0 0 0 3
PA 0 4 0 0 6 0 0 1 1
ES 2 0 0 0 0 4 0 0 0
WS 0 1 1 0 0 1 7 0 3
WN 0 4 0 0 0 0 0 9 1
MO 0 2 0 1 0 0 1 0 12
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Table 6
Fama-MacBeth Cross-Sectional Regressions: Including Fama and French factors

The return on each portfolio i in division k, ri,k, is regressed on a constant, the same division

orthogonal labor risk rFk,t, the market return and the return on the smb and hml Fama and

French factors. Slope estimates on the local orthogonal labor risk, the market and the Fama

and French factors are obtained. Then, the following cross-sectional regressions are performed:

ri,k = �0 + �F
k
b�F
i,k + �ermb�erm

i,k + �smbb�smb
i,k + �hml b�hml

i,k + ✏i.

Panel A reports the constant and the estimated quarterly prices of risk from the cross-

section regression (t-values in parenthesis). R2 = [V arc(ri)� V arc(ei)] /V arc(ri), where V arc

is the cross-sectional variance, ri is the average return and ei is the average residual. R̄2 is the

adjusted R2. We define the pricing error for a given portfolio i as the difference between the

actual return and the expected return according to the cross-sectional test; p.e. represents the

square root of the aggregate squared pricing errors across all portfolios in each division (p-value

in brackets).

In Panel B, we take the residuals from the time series regression in Panel A and regress

them against a constant and the country orthogonal labor risk return, rGt . From this regression

we obtain the slope b�G
i,k, one per portfolio i in each division k. We then perform a set of T

cross-sectional regressions of the form:

ri,k = �0 + �F
k
b�F
i,k + �G

k
b�G
i,k + �ermb�erm

i,k + �smbb�smb
i,k + �hml b�hml

i,k + ✏i.

Panel B reports the constant and the estimated quarterly prices of risk from the cross-

section regression (t-values in parenthesis) both for the local and aggregate country risk factors.

⇢ is the average correlation between b�F
i,k and b�G

i,k across portfolios i within each division k.

In Panel C we revert the order: first, portfolio returns are regressed against the national

orthogonal labor risk; then, the residuals are regressed against the local orthogonal labor risk.

The panel presents only the estimates for the local, �F , and national, �G, prices of risk together

with the correlation coefficient ⇢ between local and national betas across portfolios.

Panel A: Cross-Sectional Estimates
MA NE SA EN PA ES(L) WS(L) WN(L) MO(L)

�0 3.386
(2.62)

3.119
(2.43)

0.928
(0.42)

0.003
(0.26)

3.572
(2.15)

0.670
(0.37)

1.362
(1.03)

�0.149
(0.08)

0.351
(0.18)

�F �0.715
(1.44)

�0.794
(1.69)

�0.971
(1.79)

�0.656
(1.78)

�0.847
(1.34)

�0.421
(0.71)

�1.563
(2.30)

�1.019
(2.05)

�1.736
(2.40)

�erm �1.693
(0.97)

�0.528
(0.34)

1.734
(0.88)

0.594
(0.31)

�1.224
(0.73)

0.964
(0.33)

�0.702
(0.44)

1.951
(0.86)

0.720
(0.38)

�smb 0.504
(0.61)

0.021
(0.24)

�0.354
(0.35)

1.462
(1.97)

0.283
(0.28)

1.573
(1.22)

1.141
(1.37)

0.961
(1.18)

0.818
(0.94)

�hml �0.752
(0.60)

�1.299
(1.29)

�0.043
(0.03)

0.426
(0.24)

�0.489
(0.51)

�0.653
(0.31)

2.588
(2.83)

0.007
(0.00)

0.938
(0.97)

R
2

0.66 0.26 0.40 0.85 0.40 0.30 0.80 0.43 0.57
p.e. 14.618

[0.75]
31.686
[0.03]

9.600
[0.96]

9.775
[0.96]

15.368
[0.69]

6.289
[0.71]

6.963
[0.99]

14.789
(0.74)

7.839
[0.99]
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Panel B: First stage local, second stage country orthogonal labor risk
MA NE SA EN PA ES(L) WS(L) WN(L) MO(L)

�0 3.350
(2.61)

3.141
(2.45)

0.993
(0.46)

�0.645
(0.46)

3.306
(1.94)

0.830
(0.45)

1.176
(0.83)

�0.054
(0.03)

0.470
(0.26)

�F �0.724
(1.47)

�0.794
(1.68)

�0.978
(1.85)

�0.681
(1.85)

�0.846
(1.33)

�0.432
(0.73)

�1.588
(2.33)

�1.004
(2.02)

�1.724
(2.39)

�G 0.957
(0.26)

�1.315
(0.61)

0.497
(0.22)

0.557
(1.12)

�1.646
(0.55)

0.893
(0.43)

1.447
(0.48)

1.314
(0.36)

�0.948
(0.45)

�erm �1.429
(0.75)

�0.421
(0.26)

1.672
(0.86)

2.704
(1.11)

�1.107
(0.67)

0.397
(0.12)

�0.438
(0.26)

1.984
(0.88)

0.527
(0.29)

�smb 0.425
(0.47)

0.021
(0.02)

�0.378
(0.38)

1.278
(1.70)

0.332
(0.33)

1.768
(1.33)

1.192
(1.41)

0.893
(1.15)

0.922
(1.02)

�hml �0.903
(0.63)

�1.593
(1.49)

0.085
(0.05)

�1.423
(0.62)

�0.677
(0.71)

�0.340
(0.15)

2.422
(2.16)

�0.126
(0.12)

0.976
(1.00)

R
2

0.64 0.34 0.42 0.87 0.47 0.22 0.80 0.46 0.56
p.e. 20.837

[0.35]
17.09
[0.58]

24.454
[0.18]

6.22
(0.99)

14.627
[0.75]

5.69
[0.78]

9.28
[0.97]

14.94
(0.72)

7.665
[0.99]

⇢ 0.16 -0.08 0.13 0.11 0.014 0.13 0.14 -0.09 0.14

Panel C: First stage country, second stage local orthogonal labor risk
MA NE SA EN PA ES(L) WS(L) WN(L) MO(L)

�F �2.519
(0.97)

�0.262
(0.28)

�2.580
(0.97)

�2.330
(1.20)

�0.275
(0.09)

0.297
(0.25)

�1.372
(0.51)

�1.280
(0.68)

�0.685
(0.40)

�G �0.373
(0.36)

�0.353
(0.44)

�0.529
(0.68)

0.153
(0.11)

�0.719
(0.79)

�0.693
(0.72)

�0.856
(1.28)

�0.827
(0.71)

�1.393
(1.24)

⇢ 0.93 0.75 0.76 0.94 0.87 0.56 0.86 0.88 0.71
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Table 7
Fama-MacBeth Cross-Sectional Regressions: without Fama and French factors

We regress first the return on each portfolio i in division k, ri,k, on a constant, the same

division orthogonal labor risk rFk,t and the market return. We estimate the slope on the local

orthogonal labor risk, b�F
i,k. We also obtain the slope estimate for the market. We then perform

a set of T cross-sectional regressions of the form:

ri,k = �0 + �F
k
b�F
i,k + �ermb�erm

i,k + ✏i.

The table reports the constant and the estimated quarterly prices of risk from the cross-

section regression (t-values in parenthesis). R2 = [V arc(ri)� V arc(ei)] /V arc(ri), where V arc

is the cross-sectional variance, ri is the average return and ei is the average residual. R̄2 is the

adjusted R2. We define the pricing error for a given portfolio i as the difference between the

actual return and the expected return according to the cross-sectional test; p.e. represents the

square root of the aggregate squared pricing errors across all portfolios in each division (p-value

in brackets).

MA NE SA EN PA ES(L) WS(L) WN(L) MO(L)
�0 1.425

(1.23)
1.986
(1.66)

2.442
(1.34)

�0.632
(0.54)

2.739
(1.65)

0.170
(0.11)

2.474
(2.24)

0.004
(0.32)

1.590
(1.05)

�F �0.729
(1.47)

�0.876
(1.84)

�0.887
(1.64)

�0.638
(1.73)

�0.888
(1.41)

�0.442
(0.73)

�1.549
(2.27)

�1.003
(1.99)

�1.737
(2.41)

�erm 0.425
(0.28)

0.215
(0.16)

�0.866
(0.39)

2.551
(1.70)

�0.39
(0.25)

2.330
(1.24)

�0.003
(0.18)

1.569
(1.04)

�0.126
(0.07)

R
2

0.60 0.25 0.38 0.83 0.36 0.23 0.69 0.48 0.58
p.e. 17.164

[0.57]
24.715
[0.17]

28.497
[0.07]

7.753
(0.99)

15.47
[0.56]

9.527
[0.39]

8.233
[0.98]

11.507
(0.91)

8.762
[0.98]
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Table 8
GMM Cross-Sectional Tests of KEEPM

This table presents the GMM estimates of the following pricing equation:

Et�1

�
ri,k,t

⇥
c0,k + cerm,krerm,t + ckr

F
k,t

⇤�
= 0,

where ri,k,t is the excess return on portfolio i in division k, c0,k is the intercept, cerm,k

is the loading on the market factor, rerm,t is the return on the market portfolio, ck is the

loading corresponding to the orthogonal component of local labor income, and rFt is the local

labor income return. In the table, �F
k is the quarterly risk premium corresponding to the local

orthogonal labor income factor, and �erm is the quarterly risk premium corresponding to the

market factor. J represents the J-test of the model, aape is the average absolute pricing error

of the model, aape FF is the average absolute pricing error of a model that also includes the

smb and hml Fama-French factors. ∆J is the statistic that compares our baseline model and

the model augmented with the Fama-French factors. p-values between brackets.

MA NE SA EN PA ES WS(L) WN(L) MO(L)
c0,k 0.963

(23.99)
0.996
(30.52)

1.010
(22.94)

1.037
(25.99)

0.951
(24.84)

1.046
(20.01)

0.973
(28.58)

1.041
(23.19)

1.0417
(22.92)

ck 1.893
(1.22)

3.598
(2.66)

1.422
(0.76)

1.926
(1.09)

1.937
(1.23)

�0.993
(0.58)

2.391
(2.29)

1.882
(1.41)

2.303
(2.42)

cerm,k 1.005
(0.48)

0.643
(0.36)

�1.157
(0.42)

�2.335
(0.06)

1.569
(0.63)

�4.300
(1.72)

1.485
(0.81)

�2.281
(1.15)

0.084
(0.04)

�F
k �0.590

(1.23)
�1.179
(2.70)

�1.010
(1.93)

�0.738
(2.11)

�0.820
(1.33)

�0.553
(0.99)

�1.519
(2.29)

�1.165
(2.41)

�1.799
(2.61)

�erm �0.207
(0.16)

0.224
(0.19)

1.248
(0.82)

1.961
(1.60)

�0.442
(4.20)

2.874
(1.91)

�0.517
(0.48)

2.076
(1.58)

0.373
(0.26)

J 17.562
[0.06]

21.806
[0.19]

28.796
[0.04]

7.774
[0.97]

16.617
[0.48]

8.494
[0.20]

11.436
[0.83]

15.415
[0.56]

7.675
[0.97]

aape 0.233 1.397 0.495 0.215 0.336 0.390 0.409 0.405 0.485
aape FF 1.077 1.942 0.630 0.260 0.535 0.382 0.660 0.430 0.720
∆J 5.189

[0.02]
1.401
[0.23]

7.660
[0.01]

1.348
[0.25]

2.361
[0.13]

0.233
[0.63]

3.791
[0.05]

0.273
[0.60]

0.556
[0.46]
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Table 9
GMM Cross-Sectional Tests of KEEPM: Including Country Labor Income

This table presents the GMM estimates of the following pricing equation:

Et�1

�
ri,k,t

⇥
c0,k + cerm,krerm,t + ckr

F
k,t + cG,kr

G
t

⇤�
= 0,

where ri,k,t is the excess return on portfolio i in division k, c0,k is the intercept, cerm,k is

the loading on the market factor, rerm,t is the return on the market portfolio, ck is the loading

corresponding to the orthogonal component of local labor income, rFt is the local labor income

return, cG,k is the loading on the country orthogonal labor risk, rGt . In the table, �F
k is the

quarterly risk premium corresponding to the local orthogonal labor income factor, �erm is the

quarterly risk premium corresponding to the market factor and �G is the quarterly risk premium

corresponding to the country orthogonal labor risk. J represents the J-test of the model, aape

is the average absolute pricing error of the model. The last row reports the ∆J statistic which

tests the null hypothesis that the global orthogonal labor income factor is not important in

pricing the assets. p-values between brackets.

MA NE SA EN PA ES(L) WS(L) WN(L) MO(L)
c0,k 0.990

(18.73)
0.989
(26.56)

1.002
(19.76)

1.033
(13.11)

0.884
(14.99)

1.048
(20.66)

0.972
(18.11)

1.041
(23.09)

1.021
(23.45)

ck �5.714
(1.15)

4.258
(2.15)

2.577
(0.64)

2.083
(0.31)

2.438
(1.25)

�1.434
(0.78)

0.212
(0.05)

2.158
(0.63)

1.387
(0.76)

cG,k 11.078
(1.53)

�1.198
(0.40)

�1.551
(0.36)

0.391
(0.07)

�0.409
(0.11)

1.391
(0.48)

2.275
(0.45)

�0.461
(0.09)

2.201
(0.57)

cerm,k 4.921
(1.48)

0.429
(0.21)

�1.262
(0.45)

�1.227
(0.30)

3.779
(1.18)

�3.556
(1.16)

1.284
(0.52)

�2.439
(0.92)

0.782
(0.32)

�F
k �0.385

(0.84)
�1.193
(2.73)

�1.001
(1.91)

�0.730
(2.12)

�0.756
(1.22)

�0.532
(0.95)

�0.800
(1.31)

�1.161
(2.40)

�1.800
(2.65)

�G �1.482
(1.81)

�0.440
(0.58)

�0.663
(0.97)

�1.278
(1.44)

�0.579
(0.77)

�1.128
(1.59)

�0.785
(1.05)

�1.175
(1.38)

�1.245
(1.47)

�erm �1.966
(1.19)

0.198
(0.16)

1.204
(0.78)

1.704
(0.82)

�1.078
(0.69)

2.609
(1.57)

�0.200
(0.14)

2.105
(0.63)

0.313
(0.22)

J 15.350
[0.49]

21.362
[0.16]

29.593
[0.02]

7.815
[0.95]

15.749
[0.39]

8.494
[0.20]

16.090
[0.44]

15.292
[0.50]

7.128
[0.97]

aape 0.734 1.763 0.505 0.191 0.314 0.393 0.370 0.406 0.520
∆J 2.371

[0.12]
0.503
[0.48]

2.543
[0.11]

0.098
[0.75]

2.361
[0.12]

0.233
[0.63]

0.209
[0.65]

0.008
[0.93]

0.325
[0.56]
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Table 10
GMM Cross-Sectional Tests of KEEPM Augmented with Book-to-Market

Portfolios

On top of the twenty portfolio (ten for ES) in each division sorted according to the betas

with respect to the local orthogonal labor risk, we include an additional twenty portfolios formed

according to book-to-market ratio.
This table presents the GMM estimates of the following pricing equation:

Et�1

�
ri,k,t[c0,k + cerm,krerm,t + ckr

F
k,t]
�
= 1.

where ri,k,t is the excess return on portfolio i in division k; c0,k is the intercept, cerm,k is the

loading on the market factor, rerm,t is the return on the market portfolio, ck is the loading

corresponding to the orthogonal component of local labor income, and rFt is the local labor

income return. In the table, �F is the quarterly risk premium corresponding to the local

orthogonal labor income factor, and �erm is the quarterly risk premium corresponding to the

market factor. J represents the J-test of the model, aape is the average absolute pricing error

of the model, aape FF is the average absolute pricing error of a model that also includes the

smb and hml Fama-French factors. ∆J is the statistic that compares our baseline model and

the model augmented with the Fama-French factors.

MA NE SA EN PA ES(L) WS(L) WN(L) MO(L)
c0,k 0.945

(42.21)
0.983
(32.74)

0.933
(35.35)

1.019
(33.19)

0.992
(32.37)

1.005
(28.56)

0.976
(26.50)

0.997
(33.04)

1.017
(25.67)

ck 2.548
(2.01)

6.097
(4.73)

4.399
(3.42)

3.908
(2.56)

2.769
(2.43)

0.787
(0.53)

3.712
(3.98)

2.689
(2.33)

3.267
(3.78)

cerm,k 2.555
(1.69)

3.761
(2.68)

3.932
(2.71)

�0.264
(0.17)

0.813
(0.46)

�0.673
(0.33)

3.204
(2.03)

0.429
(0.30)

1.649
(1.00)

�F
k �0.519

(1.06)
�1.722
(4.41)

�0.913
(1.76)

�0.882
(2.57)

�1.385
(2.41)

�0.568
(1.01)

�1.941
(3.09)

�1.057
(2.19)

�2.026
(2.97)

�erm �1.140
(1.19)

�1.465
(1.58)

�1.598
(1.72)

0.789
(0.77)

0.210
(0.20)

0.705
(0.56)

�1.495
(1.36)

0.185
(0.18)

0.587
(0.52)

J 37.935
[0.43]

35.390
[0.54]

47.176
[0.12]

29.409
[0.81]

42.823
[0.24]

23.313
[0.14]

34.885
[0.57]

40.342
[0.32]

42.605
[0.24]

aape 0.729 4.298 0.450 1.045 0.692 0.668 1.657 0.611 1.678
aape FF 1.586 3.906 2.270 0.556 0.640 0.532 0.410 0.800 1.461
∆J 13.103

[0.00]
0.198
[0.65]

6.769
[0.01]

11.033
[0.00]

3.117
[0.08]

10.185
[0.00]

21.407
[0.00]

5.080
[0.02]

17.396
[0.00]
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Table 11
GMM Cross-Sectional Tests of KEEPM: Common Market Risk Premium

across Divisions

This table presents the GMM estimates of the following pricing equation:

Et�1

�
ri,k,t

⇥
c0,k + cerm,krerm,t + ckr

F
k,t

⇤�
= 0,

where ri,k,t is the excess return on portfolio i in division k, c0,k is the intercept, cerm,k

is the loading on the market factor, rerm,t is the return on the market portfolio, ck is the

loading corresponding to the orthogonal component of local labor income, and rFt is the local

labor income return. In the table, �F is the quarterly risk premium corresponding to the local

orthogonal labor income factor, and �erm is the quarterly risk premium corresponding to the

market factor. We estimate first the market price of risk from the CAPM using 10 size sorted

portfolios using GMM. The estimates of the parameters are: cerm = �3.694(t� value = 2.27);

�erm = 0.0271(t� value = 2.32). We now impose these estimates on each division and estimate

the free parameters associated with the divisional level orthogonal labor income. J represents

the J-test of the model, aape is the average absolute pricing error of the model. The ∆J-test

is a test of whether the restrictions that there is a common market price of risk.

MA NE SA EN PA ES(L) WS(L) WN(L) MO(L)
c0,k 1.050

(51.61)
1.073
(43.39)

1.062
(45.42)

1.060
(44.21)

1.056
(54.79)

1.041
(48.42)

1.074
(41.68)

1.064
(38.99)

1.086
(33.24)

ck �0.471
(0.56)

1.362
(1.32)

0.277
(0.35)

0.964
(0.74)

�0.320
(0.46)

�0.349
(0.38)

0.949
(1.33)

1.102
(0.99)

1.294
(1.56)

�F
k �0.842

(2.26)
�0.963
(2.41)

�1.188
(3.31)

�0.663
(2.23)

�1.189
(3.00)

�0.759
(1.85)

�1.544
(2.77)

�0.953
(2.30)

�1.613
(2.62)

J 11.836
[0.22]

19.988
[0.02]

8.628
[0.47]

4.150
[0.90]

5.775
[0.76]

9.088
[0.43]

10.781
[0.29]

4.056
[0.77]

6.392
[0.70]

aape 0.618 1.092 0.973 0.374 1.059 0.393 1.197 0.440 0.893
∆J 1.147

[0.28]
3.158
[0.08]

2.994
[0.08]

0.292
[0.59]

3.305
[0.07]

0.245
[0.62]

3.147
[0.08]

0.581
[0.46]

4.166
[0.04]
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Table 12
GMM Cross-Sectional Tests of KEEPM: Ten Portfolios per Division

This table presents the GMM estimates of the following pricing equation:

Et�1

�
ri,k,t

⇥
c0,k + cerm,krerm,t + ckr

F
k,t

⇤�
= 0,

where ri,k,t is the excess return on portfolio i in division k, c0,k is the intercept, cerm,k

is the loading on the market factor, rerm,t is the return on the market portfolio, ck is the

loading corresponding to the orthogonal component of local labor income, and rFt is the local

labor income return. In the table, �F is the quarterly risk premium corresponding to the local

orthogonal labor income factor, and �erm is the quarterly risk premium corresponding to the

market factor. J represents the J-test of the model, aape is the average absolute pricing error

of the model, aape FF is the average absolute pricing error of a model that also includes the

smb and hml Fama-French factors. ∆J is the statistic that compares our baseline model and

the model augmented with the Fama-French factors. p-values between brackets.

MA NE SA EN PA ES(L) WS(L) WN(L) MO(L)
c0,k 0.984

(24.26)
1.015
(25.86)

0.966
(16.47)

1.035
(23.50)

0.953
(21.31)

1.046
(20.01)

0.985
(26.13)

1.032
(23.08)

0.990
(19.45)

ck 1.010
(0.57)

3.184
(2.24)

3.871
(1.48)

1.815
(0.98)

2.027
(1.17)

�0.993
(0.58)

2.131
(2.06)

1.956
(1.39)

2.396
(2.25)

cerm,k �0.415
(0.48)

�0.343
(0.17)

2.409
(0.60)

�2.338
(1.09)

1.632
(0.58)

�4.300
(1.72)

0.640
(0.31)

�1.814
(0.86)

1.301
(0.47)

�F
k �0.578

(1.18)
�1.237
(2.81)

�1.111
(2.11)

�0.704
(1.97)

�0.815
(1.30)

�0.553
(0.99)

�1.578
(2.36)

�1.078
(2.19)

�1.682
(2.45)

�erm 0.614
(0.41)

0.876
(0.66)

�0.523
(0.24)

1.815
(0.98)

�0.456
(0.28)

2.874
(1.91)

0.012
(0.01)

1.673
(1.18)

�0.443
(0.24)

J 10.297
[0.17]

15.835
[0.03]

5.635
[0.58]

3.805
[0.80]

1.846
[0.96]

8.600
[0.28]

7.635
[0.36]

4.056
[0.77]

2.065
[0.96]

aape 0.188 1.431 0.230 0.117 0.141 0.390 0.311 0.205 0.245
aape FF 2.331 0.561 0.557 0.147 0.121 0.382 0.220 0.204 0.227
∆J 2.697

[0.10]
2.074
[0.15]

2.319
[0.13]

1.451
[0.23]

0.174
[0.66]

2.228
[0.14]

2.133
[0.14]

0.451
[0.50]

0.523
[0.47]
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Table 13

Panel A of the Table presents the GMM estimates of the following pricing equation:

Et�1

�
ri,k,t

⇥
c0,k + cdc,kdct + cdc⇤cay,k(dct ⇤ cayt�1) + ckr

F
k,t

⇤�
= 0,

where ri,k,t is the excess return on portfolio i in division k, c0,k is the intercept, cdc,k is the

loading on the growth rate of aggregate consumption, dct, cdc⇤cay,k is the loading corresponding

to consumption growth scaled by cay, and rFt is the local labor income return. In the table, �F

is the quarterly risk premium corresponding to the local orthogonal labor income factor, �dc is

the quarterly risk premium corresponding to consumption growth, and �dc⇤cay is the quarterly

risk premium corresponding to consumption growth scaled by cay. J represents the J-test of

the model p-values between brackets.

Panel B of the Table presents the GMM estimates of the following pricing equation:

Et�1

�
ri,k,t

⇥
c0,k + cerm,krerm,t + cerm⇤s,k(rerm,t ⇤ st�1) + ckr

F
k,t

⇤�
= 0,

where ri,k,t is the excess return on portfolio i in division k, c0,k is the intercept, cerm,k is

the loading on the return on the market portfolio, cerm*s,k is the loading corresponding to the

market return scaled by s, the consumption to wealth ratio, and rFt is the local labor income

return. In the table, �F is the quarterly risk premium corresponding to the local orthogonal

labor income factor, �erm is the quarterly risk premium corresponding to return on the market

portfolio, and �erm⇤s is the quarterly risk premium corresponding to the market return scaled

by s. J represents the J-test of the model p-values between brackets.

Panel A: Scaling with cay
MA NE SA EN PA ES(L) WS(L) WN(L) MO(L)

c0,k 0.686
(2.82)

1.526
(5.26)

1.123
(3.70)

1.193
(4.46)

1.505
(5.78)

1.601
(2.93)

1.005
(3.24)

1.056
(3.44)

1.127
(5.28)

ck 1.337
(1.28)

2.327
(1.88)

1.944
(1.70)

3.304
(2.46)

0.674
(0.65)

0.990
(0.74)

2.072
(2.32)

2.688
(2.16)

2.849
(2.89)

cdc,k 53.390
(1.10)

�109.651
(1.88)

�23.479
(0.36)

�37.951
(0.71)

�106.018
(2.07)

�129.492
(1.15)

3.061
(0.05)

�14.201
(0.22)

�8.855
(0.21)

cdc⇤cay,k �4492.589
(1.69)

�3238.957
(1.07)

1137.027
(0.42)

�589.270
(0.22)

�3007.536
(1.28)

�4151.378
(0.68)

2638.364
(0.95)

�3553.456
(0.95)

5569.32
(1.24)

�F
k �0.601

(1.26)
�1.266
(3.11)

�1.011
(1.93)

�0774
(2.16)

�0.813
(1.33)

�0.532
(0.92)

�1.463
(2.22)

�1.236
(2.52)

�1.936
(2.92)

�dc �0.116
(1.32)

0.208
(2.08)

0.071
(0.70)

0.796
(0.84)

0.166
(2.12)

0.228
(1.21)

0.039
(0.33)

0.023
(0.22)

0.089
(1.06)

�dc⇤cay �1.004
(1.85)

0.002
(0.72)

�0.001
(0.59)

0.000
(0.02)

0.001
(0.79)

0.002
(0.50)

�0.200
(0.84)

0.003
(1.00)

�0.004
(1.22)

J 11.643
[0.76]

15.948
[0.46]

26.673
[0.05]

8.832
[0.92]

13.371
[0.65]

6.509
[0.37]

10.244
[0.44]

16.031
[0.45]

8.228
[0.94]
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Panel B: Scaling with s
MA NE SA EN PA ES(L) WS(L) WN(L) MO(L)

c0,k 0.962
(31.00)

0.984
(22.03)

1.009
(21.72)

1.038
(24.64)

0.947
(23.69)

1.004
(18.18)

0.961
(25.36)

1.042
(23.08)

1.018
(21.92)

ck 1.448
(0.68)

3.114
(2.18)

1.332
(0.63)

1.826
(1.021)

2.077
(1.28)

0.559
(0.26)

2.189
(2.09)

1.833
(1.33)

1.909
(1.71)

cerm,k 32.367
(0.37)

0.338
(0.20)

�1.192
(0.39)

�2.364
(1.22)

1.875
(0.75)

�1.633
(0.49)

1.866
(0.98)

�2.337
(1.17)

�0.307
(0.14)
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Figure 1: US Census Regions and Divisions.
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