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Abstract 

 

This paper examines the impact of changes in job security on corporate innovation in 20 non-U.S. 

OECD countries. Using a difference-in-differences approach, we provide firm-level evidence that 

the enhancement of labor protection has a negative impact on innovation. We then discuss possible 

channels and find that employee-friendly labor reforms induce inventor shirking and a distortion in 

labor flow. Further investigation reveals that the negative relation is more pronounced in 1) firms 

that heavily rely on external financing, 2) firms that have high R&D intensity, 3) manufacturing 

industries, and 4) civil-law countries. Our micro-level evidence indicates that enhanced employment 

protection impedes corporate innovation.  

 

JEL classification: F30, J5, J8, K31, O31 

Keywords: Employment protection laws; Labor law reform; Corporate innovation; Innovation 

efficiency; Inventor turnover 

 
 
aLally School of Management and Technology, Rensselaer Polytechnic Institute,  Troy, NY 12180 U.S.A, 
francb@rpi.edu; Phone: 518-276-3908 
 
bRobert C. Vackar College of Business, The University of Texas Rio Grande Valley,  Edinburg, TX 78539 
U.S.A, incheol.kim@utrgv.edu; Phone: 956-665-3354 
 
cCollege of Business Administration, Marquette University, Milwaukee, WI 53233 U.S.A., 
bin.wang@marquette.edu; Phone: 414-88-7188 
 
dInternational School of Economics and Management,  Capital University of Economics and Business, 
Beijing 100070, China 010-8395-2963, zhangzhengyi @cueb.edu.cn; Phone: 010-8395-2963 

 

                                                           

1 We thank Diego Escobari, Andre Mollick, Ji Woo Ryou, Alejandro Serrano, and Cihan Uzmanoglu for their helpful 
comments. We also thank participants at the 2015 FMA annual meeting and seminar participants at Capital University of 
Economics and Business and The University of Texas Rio Grande Valley. Any errors and omissions are solely our 
responsibility. 

Corresponding author: Incheol Kim, Robert C. Vackar Collge of Business, The University of Texas Rio Grande Valley, 

Edinburg, TX 78539 U.S.A. Email: incheol.kim@utrgv.edu. Phone: 956-665-3354. 

 

mailto:francb@rpi.edu
mailto:incheol.kim@utrgv.edu
mailto:zzhengyi_cueb@163.com
mailto:incheol.kim@utrgv.edu


 Electronic copy available at: https://ssrn.com/abstract=2687196 

1 

 

1. Introduction 

Innovation is the engine of a country’s long-run economic growth (e.g., Solow (1957); Romer 

(1986, 1990)). At the firm level, Griliches (1981) and Hall (1993) show that high-patent firms are 

associated with significantly higher stock market valuation. At the aggregate level, Hsu (2009) 

shows that the growth in patents predicts future stock market returns and premiums. It is 

therefore vitally important, especially for policy makers, to understand the underlying factors that 

drive innovation and ascertain their impact. Recent studies show that labor protection is an 

important factor affecting firm innovation. Nevertheless, the evidence is mixed and far from 

conclusive. For example, Acharya, Baghai, and Subramanian (2013) explore the impact of 

dismissal laws on innovation in the United States, the United Kingdom, France, and Germany 

and conclude that stringent dismissal laws spur innovation. Acharya, Baghai, and Subramanian 

(2014) find that wrongful discharge laws in the United States that protect employees against 

unjust dismissal promote innovation. In contrast, Bozkaya and Kerr (2014) find that in 

European countries, stringent employment protection regulations hinder venture capital 

investment, which is critical in nurturing innovation in entrepreneurial firms. Using U.S. data, 

Bradley, Kim, and Tian (2015) find that labor unions, which provide employees with perhaps the 

strongest form of protection against termination, impede corporate innovation. Moreover, both 

the European Union and the OECD have prioritized “strengthening innovation” on their 

agenda and have urged member countries to support entrepreneurial and innovative activities.1 

In this paper, motivated by the ongoing debate and policy implications, we aim to gain a richer 

understanding of this important issue by examining the relationship between innovation and 

employment protection laws in 20 OECD countries. 

 Given the conflicting evidence in the literature, we revisit this issue with two competing 

hypotheses. Our first hypothesis argues that strong labor protection promotes innovation. There 

                                                           

1
 For example, see https://www.oecd.org/eco/growth/Going-for-Growth-European-Union-2017.pdf. 

https://www.oecd.org/eco/growth/Going-for-Growth-European-Union-2017.pdf
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are at least two plausible reasons for such a relationship. First, employment protection laws 

protect employees against arbitrary dismissal and restrict the terms on which companies can hire 

workers, thereby providing employees with job security. Manso (2011) argues that the 

innovation-motivating incentive scheme should include both tolerance for early failure and 

reward for long-term success, suggesting that job security is an important factor in fostering 

innovation. Second, the theory on property rights (e.g., Grossman and Hart (1986); Hart and 

Moore (1990)) suggests that holdup problems can arise in bilateral relationships when contracts 

are incomplete. For instance, firm managers could expropriate the payoffs by laying off the 

employee after a successful innovation. The likelihood of such ex-post holdup problems, in turn, 

inhibits the employee’s ex ante willingness and effort to innovate. Employment protection laws 

constrain the firm’s ability to arbitrarily discharge an employee, thereby reducing the likelihood 

of holdup problems and incentivizing employees to innovate. Thus, stringent labor protection 

helps to promote firm innovation.  

 An alternative hypothesis predicts that labor protection impedes innovation. There are at 

least four plausible reasons for such a relationship. First, Allard (2005) points out that 

employment stability resulting from labor protection may lead to employee immobility because 

labor protection places a limit on the entry of new talents, skills, and ideas into a firm. Similarly, 

Autor, Kerr, and Kugler (2007) find that employers are more cautious in hiring new employees 

and laying off current employees once wrongful discharge laws are adopted. The distorted job 

flow implies that employers are reluctant to terminate unproductive employees due to high 

dismissal costs, thereby lowering labor productivity.2 Second, because strong labor protection 

lowers the probability of dismissal, it could encourage shirking, resulting in lower levels of 

                                                           

2 Evidence in the literature indicates that stringent labor protection affects the job flows of highly skilled workers 
less than those of other workers. For example, Boeri, Conde-Ruiz, and Galasso (2006) find that employment law 
legislation protects unskilled workers more than skilled workers due to the substantial fixed-cost component. 
Nevertheless, regular workers are also very important in affecting innovation output. For example, D’Acunto (2014) 
shows that the blue-collar workforce has a significant impact on the innovation efficiency of manufacturing firms. 
Bradley, Kim, and Tian (2015) find that labor unions that are mainly comprised of blue-collar workers, have direct 
effects on innovation. Therefore, distorted job flows by stringent labor protection can affect labor productivity and 
corporate innovation.  
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innovation effort and output. Bradley, Kim, and Tian (2015) find that labor unions that prevent 

employees from punishment for shirking impede firm innovation. Third, the strictness of 

employment protection is negatively related to wage inequality among workers (e.g., Koeniger, 

Leonardi, and Nunziata (2007)). The reduced wage gap could alter the landscape of the labor 

market by forcing out skilled workers, leading to a decline in innovation in countries with 

stringent labor protection. Last, strict labor regulations may hinder venture capital investment, 

which is the lifeblood of innovation (e.g., Chemmanur, Loutskina, and Tian (2014)). Bozkaya 

and Kerr (2014) find that stricter employment regulations cause higher labor adjustment costs 

than other labor market insurance mechanisms and venture capital investors are especially 

sensitive to these costs. Thus, stringent labor protection impedes firm innovation. 

 In this study, we examine whether and to what extent labor protection affects innovation 

at the firm level. To measure the stringency of employment protection in a country, we create an 

indicator variable (EPL_C) that captures large changes in the employment protection legislation 

(EPL) index (see Allard (2005)). The EPL index captures intertemporal variations in employment 

protection across 21 OECD countries from 1950 to 2003. To develop proxies for innovation, 

we use a data set obtained from the European patent office. We measure a firm’s innovation 

quantity by counting the number of patents applied for and its innovation quality by summing 

the total number of citations in each firm-year. Our measures of innovation productivity are 

consistent with the literature (e.g., Kamien and Schwartz (1975); Griliches (1990)).  

We employ a difference-in-differences (DID) method to investigate the impact of EPL 

on firm innovation. The DID method effectively controls for covariates and allows us to 

compare innovation outputs between treatment and control groups after a change in a country’s 

stringency of labor protection: firms from countries that experience a change in EPL (treatment 

group) versus firms from countries that do not experience a change in EPL (control group). The 

key assumption of the DID method is that, conditional on controls, treated and control firms are 

only randomly different. Our empirical specification controls for relevant firm and country 
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characteristics as in prior studies. To mitigate the omitted-variable problem, we also control for 

firm fixed effects to account for the time-invariant firm characteristics and for year fixed effects 

to absorb systematic period effects such as differences in macroeconomic conditions that may 

affect all sampled firms' innovation output.  

We find that treatment firms experience a 5.10% decrease in innovation quantity and a 

5.46% decrease in innovation quality following a major increase in employment protection 

relative to a set of control firms operating in the same industry at the same time but that are 

located in countries without changes in employment protection. Our findings support the 

hypothesis that labor protection could impede innovation. However, it is possible that our 

results are driven by the differences in pretreatment trends between treatment and control firms. 

In other words, differences in other dimensions, rather than changes in the stringency of 

employment protection, between the treatment and control firms could drive our results. To 

mitigate this concern, we employ a dynamics analysis to examine the timing of the relation 

between changes in employment protection and innovation. We find 1) there is a significant 

decrease in innovation one and two years after the passage of EPL; and 2) the coefficient 

estimates of the 1- and 2-year forward values of EPL are not significant, suggesting that there is 

no significant change in innovation prior to the passage of EPL.  

 We propose two channels for our findings. The first channel is inventor shirking. Strong 

labor protection could encourage shirking due to high dismissal costs, which would in turn lead 

to a reduction in innovation.  Specifically, we find that at the inventor level, there is a significant 

decrease in innovation productivity following a major increase in the stringency of labor 

protection. The second channel is distorted job flow. Successful innovation requires new 

technology as well as inventors equipped with the appropriate skill sets. To maintain innovation 

performance, firms need to hire talented inventors in a timely manner. However, high dismissal 

costs distort the job market by discouraging firms from laying off unproductive inventors and 

hiring skilled ones. The distortion in labor flow leads to an inefficient use of corporate resources 



 Electronic copy available at: https://ssrn.com/abstract=2687196 

5 

 

and a reduction in value added per worker (e.g., Hopenhayn and Rogerson (1993); Cingano et al. 

(2010a)). Using the number of new hires and new leavers as proxies for the distortion in labor 

flow, we find that there is a significant decrease in new hires and new leavers following the 

enhancement of labor protection. In addition, we find that firms are less likely to hire more 

productive inventors and less productive inventors are less likely to leave their current jobs after 

the enhancement of labor protection. Taken together, the results suggest that inventor shirking 

and distorted job flow after the enhancement of EPL could be the underlying channels through 

which labor protection affects firm innovation. 

 We conduct four cross-sectional tests to provide further support for our findings. First, 

we examine whether the negative impact varies conditional on the reliance on external financing. 

Rajan and Zingales (1998) show that firms with more growth opportunities are more likely to 

rely on external financing. Acharya and Xu (2015) find that public firms that are more dependent 

on external financing exhibit better innovation performance than a sample of matched private 

firms. Simintzi, Vig and Volpin (2015) find that employment protection reduces corporate 

financial leverage. Therefore, we predict that the negative impact of EPL on firm innovation 

should be more pronounced in firms with a strong reliance on external financing. We find 

supporting evidence for this prediction. Second, given the direct impact of R&D expenditures 

on corporate innovation, we conjecture that the negative impact of labor protection on 

innovation is stronger in R&D-intensive firms than in non-R&D-intensive counterparts. The 

results are consistent with our conjecture. Third, we examine whether the negative impact varies 

across different industries. The 2008 National Science Foundation Business R&D and 

Innovation Survey (BRDIS) indicates that firms in manufacturing industries are more innovative 

than their nonmanufacturing counterparts.3 We expect the negative impact of labor protection 

on corporate innovation to be stronger in manufacturing industries. Our findings are consistent 

                                                           

3 The document is available through the NSF website (http://www.nsf.gov/statistics/infbrief/nsf11300/). 
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with this expectation. Fourth, we examine whether the negative impact differs in civil law versus 

common law countries. Botero et al. (2004) show that labor laws are generally stronger in civil 

law countries than common law countries. We find that the negative relation is much stronger 

for firms in civil law countries than their counterparts in common law countries. Our results are 

also robust to using an alternative subsample, alternative measures of labor protection stringency 

and innovation, and alternative empirical specifications. In summary, our evidence supports the 

hypothesis that stringent labor laws impede firm innovation.  

 Our paper relates broadly to three strands of the financial economics literature: 1) the 

literature on the real effect of EPL, 2) the literature on law and innovation, and 3) the literature 

on labor protection and innovation. First, our paper relates to studies examining the real effects 

of EPL. For example, literature has shown that stringent EPL reduces corporate investment and 

productivity (Besley and Burgess (2004)), affects corporate financing decisions (Simintzi, Vig, 

and Volpin (2015)), and impedes corporate takeover activities (Dessaint, Golubov, and Volpin 

(2017)). Our study adds to this line of research by showing that EPL has a negative impact on 

corporate innovation. 

 Second, our paper is related to the literature on the role of laws in fostering/stifling 

innovation. For example, prior studies show that personal bankruptcy law (Fan and White 

(2003)), debtor-friendly bankruptcy laws (Acharya and Subramanian (2009)), antitakeover laws 

(Atanassov (2013); Sapra, Subramanian, and Subramanian (2014)), intellectual property 

protection laws (Fang, Lerner, and Wu (2017)) and trade secret laws (Png (2017)) affect 

innovation. Our paper extends this line of research by examining the impact of labor laws on 

innovation. The studies closest to ours are those by Atanassov (2013) and Sapra et al. (2014). 

However our paper is significantly different from these studies on two accounts. First their work 

examine how the enhanced job security for managers due to the passage of antitakeover laws 

affects innovation. In contrast our paper focuses primarily on the impact of labor protection for 

general employees. Second, their research question is whether the threat of hostile takeover as a 
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disciplining mechanism affects managers’ incentive to innovate, whereas ours is whether the 

significant changes in the costs of firing employees and the flexibility of hiring new ones due to 

labor reforms hinder innovation. 

Third, our paper adds to the literature debating the relationship between labor protection 

and innovation. On the positive side, existing literature finds that labor protection promotes 

innovation. For example, Acharya, Baghai, and Subramanian (2014) use the staggered adoption 

of wrongful discharge laws across U.S. states and find that wrongful discharge laws, which 

reduce the possibility of holdup, spur innovation at the firm level. On the negative side, studies 

show that labor protection reduces productivity and impedes innovation. For example, Riphahn 

(2005) provides evidence that provisions against layoff during a probationary period reduce the 

productivity of new hires by dampening their efforts due to a reduced likelihood of being fired. 

Bradley, Kim, and Tian (2015) find that labor unions impede corporate innovation and attribute 

their findings to an ex ante underinvestment in R&D, employee shirking, and a reduction in 

wage inequality. Our paper contributes to the ongoing debate by documenting a negative impact 

of EPL on innovation.  

 Our paper is closely related to Acharya, Baghai, and Subramanian (2013) who find that 

dismissal laws in the United States, the United Kingdom, France, and Germany limit employers’ 

ability to hold up innovating employees and thereby foster innovation at the country level. Our 

study is distinct from their work in two important ways. First, we focus on the effect of EPL on 

individual firms. Given the heterogeneity at the firm level, the positive relation between dismissal 

laws and innovation at the country level may not generalize to the firm level. Their macro-level 

evidence may derive from an efficient provision of public goods. In addition, a micro-level probe 

enables us to exploit heterogeneities across firms to examine the conditions under which the 

effect of EPL is more pronounced. Second, we focus on 20 OECD countries. Using a large 

sample with more country-level heterogeneities, we are able to better examine the real effect 

EPL has on innovation in an international setting. We do not include the United States in our 
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sample for two reasons, First, Fisher, Putman, and Hassani (2016) show that there is a clear 

distinction in labor laws between the United States and the European Union. Namely, labor laws 

in the United States are employer-friendly while labor laws in the European Union are very 

protective of employees. Second, the dominance of U.S. firms in terms of the number of firms 

and patents would raise the concern that our findings are driven solely by U.S. firms.4   

 The remainder of the paper is organized as follows: Section 2 describes sample selection 

and reports summary statistics; Section 3 discusses our empirical findings; and Section 4 

concludes. 

2. Sample selection and summary statistics 

2.1 Sample Selection 

We start the sample construction process with the intersection of a European patent database 

and the Compustat Global database. We collect patent information from the European Patent 

and Trademark Office (https://www.epo.org/index.html).5 We merge the patent data with the 

Compustat Global database, which is the common source for global financial data from 1987 

onward.  We use fuzzy matching by firm names, carefully inspect all automatic matches, and 

perform any remaining matches manually. We then keep the observations for 20 OECD 

countries whose EPL index is available. Our final sample consists of 90,752 firm-year 

observations, including 13,105 unique firms across 20 countries for the period from 1987 

through 2003.  

2.2 Variable measurement 

2.2.1 Measuring innovation 

We extract innovation data from the latest version of the European patent database. The 

database covers published European patent applications as well as published international 

                                                           

4 See Table 2 on page 1016 in Acharya, Baghai, and Subramanian (2013). 
5 The dataset is also available on the OECD patent database website: 
http://www.oecd.org/sti/inno/oecdpatentdatabases.htm#rawdata.   

http://www.oecd.org/sti/inno/oecdpatentdatabases.htm#rawdata
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applications that are seeking patent protection via the European Patent Office.6 It also provides 

detailed information including filing date, granted date, assignee’s information, inventor name, 

inventor location, number of citations received, affiliated company name, and other patent-

relevant information. Our choice is driven by two factors.  The first factor is sample structure.  

Sixteen out of twenty OECD countries in this study are European countries, so it is more 

reasonable to use the patent data compiled by the European Patent Office. The second factor is 

the validity of patents. Jaffe and Lerner (2004) document that the U.S. Patent and Trademark 

Office has been issuing too many invalid patents that fail to meet the patentability requirements. 

Frakes and Wasserman (2017) find that although it has similar patentability requirements, the 

European Patent Office expends greater resources to scrutinize patent application than the 

United States.7 

 To measure a firm’s quantity and quality of innovation, we construct two variables:  1) 

the natural logarithm of patents applied; and 2) the natural logarithm of number of citations 

received for each firm-year.8 Patent application have on average a 2- or 3-year lag from the time 

of submission to the patent office until the time it is actually granted. Citations tend to 

accumulate over a long period of time (e.g., 50 years), but the citations we can observe at best are 

those received up to 2010. Therefore, we adjust our two measurements of innovation to address 

this truncation bias. We follow Hall, Jaffe, and Trajtenberg (2001, 2005) and correct the 

truncation problem by using a fixed-effects approach. We divide the number of patent (citation 

counts) for each firm-year by the mean number of patents (citation counts) of all firms for that 

country-year. 

                                                           

6
 A growing number of studies (e.g., Harhoff and Wagner (2009)) employ the patent data set offered by the 

European patent office for their international innovation research. 
7 Jaffe and De Rassenfosse (2017) briefly discuss differences in citation practices between the U.S. Patent and 

Trademark Office and the European Patent Office. Lerner and Seru (2017) highlight the challenges associated with 

the NBER Patent Citation Dataset. 
8 For our main analyses, we include all patent applications. We believe counting all patenting attempts is a better 
proxy for measuring corporate innovation. Alternatively, we measure the quantity of innovation by only counting 
patents that are eventually granted. Our results remain qualitatively unchanged. 
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2.2.2 Measuring the stringency of labor protection  

To measure the stringency of labor protection that varies over time and across countries, we 

utilize the EPL index in Allard (2005), which covers eighteen aspects of employment protection 

legislation grouped into three broad categories: laws protecting workers with regular contracts, 

laws protecting workers with temporary contracts, and regulations applying to collective 

dismissals.9 Our choice of EPL index is driven by its superior performance in the following three 

aspects, when compared to other indices for employment protection such as the Botero et al. 

(2004) index and the Deakin, Lele, and Siems (2007) index. First, the EPL index 

comprehensively measures all country-level changes in EPL from 1950 to 2003, enabling us to 

explore the within-country correlation between changes in labor protection and corporate 

innovation. In contrast, the Botero et al. (2004) index only measures the stringency of 

employment protection in 1997. Second, the EPL index covers all aspects of employment 

protection legislation across 21 OECD countries. In contrast, the Deakin, Lele, and Siems (2007) 

index is only available for five countries: the United States, the United Kingdom, France, 

Germany, and India. Third, the EPL index has been widely used in studies that examine the 

economic impact of employment protection such as Alimov (2015), Simintzi, Vig, and Volpin 

(2015), Dessaint, Golubov, and Volpin (2017), and Subramanian and Megginson (2017). 

 To capture either a positive or negative effect of any labor law changes, we follow the 

spirit of Simintzi et al. (2015) and create a variable, EPL_C, which equals 1 (0) after (before) the 

EPL index increases in a country-year and equals -1 (0) after (before) the EPL index decreases in 

a country-year. As noted in the construction of the EPL index in Allard (2005), many countries 

experienced trivial changes that may not have a significant effect on labor protection. To better 

gauge the impact of labor protection on innovation, we only consider changes in the EPL index 

whose absolute value is greater than 0.2 (the absolute mean value of the change of the EPL 

                                                           

9 Please refer to Appendix A for a brief discussion of EPL index construction and page 7 in Allard (2005) for the 
detailed procedure, respectively. 
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index). If a country experiences more than two changes of EPL in the opposite direction during 

our sample period, we include the largest change only. As a robustness check, we also use the 

EPL index in Allard (2005), which is labeled as EPL_A. Higher values of EPL_A indicate more 

stringent labor protection for workers. It is notable that the main difference between EPL_C 

and EPL_A is that EPL_C focuses on large changes in EPL, whereas EPL_A considers all 

changes. The results for EPL_A are reported in Table 7, Panel D.  

2.2.3 Measuring other control variables 

In measuring the effect of labor protection on innovation, we include an extensive set of control 

variables. At the firm level, the control variables include the natural logarithm of firm assets in 

U.S. dollars (LnAssets), return on assets (ROA), market-to-book ratio (MB), property, plant, and 

equipment scaled by assets (Tangibility), firm leverage (Leverage), R&D expenses scaled by assets 

(R&D), and Herfindahl-Hirschman Index based on the two-digit SIC code (HHI). The choice of 

these variables is based on the existing innovation literature. For example, Beck, Demirguc-Kunt, 

and Maksimovic (2005) and Beck, Demirguc-Kunt, Laeven, and Levine (2008) find that firm size 

plays a critical role in shaping a firm’s long-term growth. Small firms are generally more 

financially constrained and are therefore less likely to undertake costly innovative projects given 

their uncertain outcome. Therefore, we use the natural logarithm of firm assets as a proxy for the 

uncertainty level in conducting risky projects. Growth firms generally rely extensively on external 

financing (e.g., Rajan and Zingales (1998)). In addition, the success of an innovative project is 

highly correlated with financing ability and sustainability of the firm. We use the market-to-book 

ratio to control for a firm’s growth opportunity. Fang et al. (2014) raise the question about the 

suitability of R&D expenditures as a proxy for innovation productivity. Bradley et al. (2015) 

further differentiates R&D expenditures as input for innovation from patents and citations that 

are output for innovation. Therefore, we include R&D expenditures scaled by assets in our 

regression. Aghion et al. (2005) provide empirical evidence that market competition and 
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innovation exhibit a U-shaped relationship. On the contrary, Hashmi (2013) finds a mild 

negative relationship between competition and innovation. To account for the effect of market 

competition on innovation, we use the Herfindahl-Hirschman Index as a proxy for the degree of 

product market competition.  

 At the country level, the control variables include the natural logarithm of GDP per 

capita (LnGDP_Capita), the natural logarithm of country-level cumulative patents in the past 5 

years (LnPatentStock5), public spending on secondary and tertiary education scaled by GDP 

(Ed_Share), the intellectual property protection index (IP), international trade (Trade), an indicator 

for the political orientation of the ruling party (Right), and the disproportionality of the electoral 

system (Disp_Index). The inclusion of the above macro-level variables follows the existing 

literature. For example, Furman, Porter, and Stern (2002) find that a country’s knowledge stock 

is critical for fostering innovation. They use GDP per capita to capture the ability of a country to 

translate its knowledge stock into economic development. GDP per capita also captures the 

variations in macroeconomic conditions across countries. The stock of international patents 

(LnPatentStock5) is employed to directly measure a country’s pool of new technology. Furman, 

Porter, and Stern (2002) also suggest that the intensity of human capital investment and the 

strength of protection for intellectual property could affect the national innovative capacity. 

Following their paper, we also include the fraction of GDP spent on secondary and tertiary 

education (Ed_Share) and an intellectual property protection index (IP) in our baseline 

regressions. MacGarvie (2006) finds that a country’s international trade is a conduit for the 

diffusion of technological knowledge and is correlated with citations of that country’s patents. 

We add trade as a control; it is constructed by taking the difference between the level of imports 

and the level of exports scaled by GDP in a country-year. Evidence in Krozner and Strahan 

(1999) suggests that political economy variables are linked to regulatory changes. Perotti and Von 

Thadden (2006) argue that labor market structures are usually shaped by political decisions. To 

measure political environment, we use an indicator variable (Right) for the ideology of the 
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political party in power that equals one if it is right leaning and zero otherwise. This variable 

essentially captures the sentiment in the country toward labor protection and the current 

government’s leaning toward passing economic regulations that could affect innovation. In 

addition, Pagano and Volpin (2005) argue that weak employment protection is likely to occur in 

countries with majoritarian rather than proportional electoral rules. We therefore further control 

for the disproportionality of the electoral system (Disp_Index) in a country by using the c Index 

developed by Gallagher and Mitchell (2008). In our robustness analysis, we consider several 

possible omitted variables. Acharya, Baghai, and Subramanian (2013) argue that changes in labor 

laws may be correlated with business cycles in a country. Ayyagari, Demirguc-Kunt, and 

Maksimovic (2010) find that in emerging countries, corruption is detrimental to innovation. 

Therefore, we control for annual GDP growth (GDP_Growth), unemployment rates 

(Unemployment), country-level corruption (Corruption), and an indicator of recessions (Recession).10 

This indicator equals one if a country experiences two consecutive quarters with negative GDP 

growth and zero otherwise. All variables, except for those normalized by the natural logarithm, 

are winsorized at the first and ninety-ninth percentile value. Detailed definitions of all variables 

are presented in Appendix B.  

2.3 Summary statistics 

Table 1 provides the summary statistics for all variables during our sample period. The EPL 

index (EPL_A) varies from 0.500 (lowest) to 4.100 (highest), and the mean and median values 

are 1.664 and 1.400, respectively. This wide range in the EPL index indicates a large variation in 

the strictness of labor laws across countries. The mean value of EPL_C is -0.172. On average, a 

firm files 2.464 patents and receives 6.419 citations. The mean value of total assets is about 

$2,012 million. The proportion of R&D expenditures represents about 1.1% of total assets. 

[Insert Table 1 Here] 

                                                           

10
 Country-level corruption is measured by the corruption perception index created by Transparency International. 
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In Table 2, we report the distribution of EPL stringency and innovation output by 

country. The most innovative country in our sample is Germany, where on average, a firm files 

8.978 patents and receives 18.152 citations. Additionally, the mean values of EPL_A and 

EPL_C are 2.242 and -0.703, respectively. On the other hand, the least innovative country is 

Portugal, which reported no successful patent applications during our sample period.  In general, 

European countries have more stringent employment protection than other OECD countries. 

For example, Greece has the strongest job security for workers (EPL_A=3.8), whereas New 

Zealand has the weakest employee protection (EPL_A=0.737).  

[Insert Table 2 Here] 

3. Empirical results 

3.1 Baseline regression results 

In the baseline regression model, we utilize a difference-in-differences (DID) method, which 

allows us to compare innovation output between treatment and control groups after a change in 

a country’s EPL index (either tightening or relaxation). That is, firms from countries that 

experience a change in the EPL index (treatment group) versus firms from countries that do not 

experience a change in the EPL index (control group). Inspired by Simintzi et al. (2015), we 

specify the DID regression model as follows: 

𝐿𝑛𝑃𝑎𝑡(𝑜𝑟 𝐿𝑛𝐶𝑖𝑡𝑒)𝑖,𝑡+𝑁 = 𝛼 + 𝜇𝑖 + 𝛿𝑡 + 𝛽𝐸𝑃𝐿_𝐶𝑘,𝑡 + 𝜃𝑖𝑋𝑖,𝑡 + 𝜖𝑖,𝑡+𝑁, 

where i denotes a firm, t denotes a year, and k is a country. The dependent variable 𝐿𝑛𝑃𝑎𝑡(𝑜𝑟 𝐿𝑛𝐶𝑖𝑡𝑒)𝑖,𝑡+𝑁 is the measure of a firm’s innovation output in year t+N (N=0, 1, 2); 

EPL_C is the indicator for major changes in the EPL index; the key variable of interest; 𝑋𝑖,𝑡 is 

the vector of control variables; 𝛼 is the constant; 𝜇𝑖 is the firm fixed effects; 𝛿𝑡 is the year fixed 

effects; and 𝜖𝑖,𝑡+𝑁 is the error term. The vector 𝑋𝑖,𝑡 includes both firm- and country-level control 
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variables as described in the previous section. Standard errors are clustered at the country level 

because labor laws change at the country level.  

 The results of the baseline regression are reported in Table 3. The coefficients of EPL_C 

are all negative and statistically significant at least at the 5% level. Our results are also 

economically nontrivial. For example, in Column (1), we find that on average, patent counts for 

firms in the treatment group decline (increase) by 5.1% relative to those in the control group 

after a tightening (relaxation) in the stringency of employment protection. In Column (3), we 

also find consistent evidence showing that the number of citations received significantly 

decreases (increases) by 5.46% for the treatment group after the EPL index increases (declines). 

These results suggest that employee-friendly labor reform hinders corporate innovation in both 

quantity and quality.  

 Our findings contrast with those in Acharya et al. (2013). To identify what drives the 

inconsistency, we replicate their baseline results using European patent data. The results are 

reported in Panel A, Columns (1) and (2) of Appendix C. Consistent with their findings, the 

stringency of dismissal laws has a positive impact on innovation. For the sake of direct 

comparison, in Columns (3) and (4) we replace the dismissal law index with the EPL index in 

Allard (2005) and find that at the country level, labor protection also positively affects innovation.  

However, when we extend the sample by including another 17 OECD countries, as shown in 

Columns (5) and (6), the sign of the coefficient estimates of EPL becomes negative, suggesting 

that the addition of more heterogeneous countries could at least partially contribute to the 

reverse findings in Acharya et al. (2013). We also examine whether the country-level evidence in 

Acharya et al. (2013) can be generalized to the firm level. Specifically, using a large sample of 

firms in the United States, the United Kingdom, Germany, and France, we rerun our baseline 

DID regression model and find that EPL continues to have a negative impact on innovation, 

whereas dismissal laws are no longer effective in fostering innovation (See Appendix C, Panel B). 

The results suggest that 1) the dismissal law index is not as effective as the EPL index in 
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accounting for the firm-level heterogeneity; and 2) firm-level heterogeneity within a country and 

across countries could also be contributing to the contrasting findings between the two studies.  

[Insert Table 3 Here] 

3.2 Dynamic model  

The advantage of the DID method in Table 3 is that it allows us to directly compare the change 

in innovation in firms that are subject to labor law reforms (treated firms) with the change in 

innovation in firms that do not experience such reforms (control firms). Nevertheless, one 

remaining concern is that our results are driven by pretreatment differences in the characteristics 

of treated and control firms. In other words, differences in other dimensions, rather than 

changes in labor protection between the treatment and control firms could be driving our results.  

 To address this concern, we employ a dynamic model that enables us to examine the 

dynamics of innovation in years around the changes in labor protection laws. As such, we follow 

Bertrand and Mullainathan (2003) and Simintzi et al. (2015 and include lead and lags of the 

testing variable in our DID specification. More specifically, we replace EPL_C with five 

variables: EPL_C (+2) is the 2-year forward value of EPL_C; EPL_C (+1) is the 1-year forward 

value of EPL_C; EPL_C (0) is the contemporaneous value of EPL_C; EPL_C (−1) is the 1-year 

lagged value of EPL_C; and EPL_C (−2) is the 2-year lagged value of EPL_C. We also include 

other control variables and fixed effects as in the baseline DID regression model. Standard 

errors are still clustered at the country level. The results in Table 4 show that there are no 

changes in innovation output prior to labor law reforms because the coefficient estimates of 

EPL_C (+2) and EPL_C (+1) are statistically insignificant. Therefore, there is no evidence 

suggesting that our results are driven by pretreatment trends and reverse causality. In contrast, 

the coefficient estimates of EPL_C (-2), EPL_C (−1) and EPL_C (0) are negative and significant, 

indicating that changes in labor protection affect innovation output. Taken together, our findings 

suggest that employee-friendly labor laws impede corporate innovation. This evidence is 
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consistent with the findings of Atutor et al. (2007), Bassanini et al. (2009), and Calcagnini et al. 

(2014), which show that strong employment protection leads to a reduction in corporate 

productivity.  

[Insert Table 4 Here] 

3.3 Potential Channels  

In this subsection, we investigate potential channels through which changes in labor protection 

could impact firm innovation. We first test innovation productivity before and after EPL-index 

changes at the individual inventor level. Riphahn (2005) shows that an “anti-layoff” clause during 

probationary period causes lower productivity induced by shirking. Cingano, Leonardi, Messina, 

and Pica (2010b) document that an increase in EPL leads to a reduction in a firm’s productivity, 

measured as investment per worker and capital per worker. Bradley et al. (2015) also support this 

view by showing that labor unionization discourages employees from expending effort on 

innovation because of the lowered probability of dismissal. We conjecture that strong job 

security leads to inventor shirking and thus decreases innovation.  

Following Bernstein (2015), we classify an inventor as Stayers if he/she does not change 

employment affiliation during our sample period. We then delete stayers who only produce one 

patent during our sample period and the stayers who only have one stayer-year observation. The 

stayers from the treatment (control) group must have at least a 5-year patent invention history 

before and after labor law reforms. We then aggregate the total number of patents invented by 

each stayer and the total number of citations received by those patents. By limiting our sample to 

Stayers, we are able to test the effect of labor law reforms on stayers’ innovation productivity. The 

model specification is the same as the baseline DID regression model except that we replace firm 

fixed effects with inventor fixed effects to account for the impact of inventors’ characteristics on 

innovation. The results are reported in Table 5, Panel A. In Column (1), where the dependent 

variable is the natural logarithm of patents (LnPat), the coefficient estimate of EPL_C is -0.0207 
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and is statistically significant at the 1% level, indicating that stringent labor laws have a negative 

impact on innovation performance of Stayer. In Column (2), we replace the natural logarithm of 

patents (LnPat) with the natural logarithm of citations (LnCite) and rerun the regression. We find 

consistent results. More specifically, we find that the number of citations significantly decreases 

by 5.16% following the tightening of EPL. These results are consistent with those reported by 

Bassanini et al. (2009), which show that due to high dismissal costs, strong employment 

protection laws reduce labor productivity as measured by aggregate total factor productivity.  

Second, we test whether high dismissal costs result in a decline of a firm’s labor flow. 

Autor et al. (2007) contend that strong EPL increases firing costs that distort firms’ firing and 

hiring decisions, leading to the inefficient use of corporate resources. In this test, we adopt the 

same model specification as the baseline DID regression model. Columns (1) and (2) in Panel B 

of Table 5 present the results of the DID regression with LnNewHires and LnLeavers as the 

dependent variable, respectively. We define LnNewHires as the natural logarithm of one plus the 

number of inventors that firms hire and LnLeavers as the natural logarithm of one plus the 

number of inventors that leave firms each year during our sample period.11 To be included in the 

treatment group, both the new hires and leavers must invent at least one patent before and after 

the EPL reforms. We also limit the sample to those firms providing the information of inventors 

who change affiliations during our sample period. Column (1) in Table 5 Panel B shows that 

firms hire significantly fewer inventors due to the EPL tightening. This evidence is consistent 

with the findings of Autor et al. (2007) that show a decrease in state employment following the 

adoption of wrongful discharge laws by U.S. states. Results reported in Column (2) indicate that 

after tightening in the EPL, there is a decline in the likelihood of inventors' leaving their current 

jobs. However, given the fact that we cannot distinguish forced leavers from voluntary leavers 

due to the lack of relevant information in the European patent database, it is impossible to 
                                                           

11 The major drawback of the European patent data set is that it does not show all inventors affiliated with a specific 
organization every year. Only inventors who file a patent application in a year are recorded in the database, so we are 
not able to trace all inventors’ employment histories year by year. Following Bernstein (2015), we limit our study to 
inventors who appear in the innovation database seven years before and after EPL-index changes.  
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directly test whether changes in EPL result in an increase or decrease in forced layoffs. Instead, 

we interpret this result as evidence that enhanced EPL reduces inventor turnover.   

To provide additional evidence, we examine whether firms are less likely to hire more-

productive inventors and whether less-productive inventors are less likely to leave their current 

jobs after the enhancement of EPL. The tests are in the same spirit of those in Gao, Hsu, Li, and 

Zhang (2018) who examine whether smoke-free laws promote innovation by attracting more 

productive inventors. Columns (3) and (4) in Panel B of Table 5 present the results of the DID 

regression with LnNewHires_Productive and LnLeavers_Unproductive as the dependent 

variable, respectively. We define LnNewHires_Productive as the natural logarithm of one plus the 

number of productive inventors that firms hire and LnLeavers_Unproductive as the natural 

logarithm of one plus the number of unproductive inventors that leave firms each year during 

our sample period. A newly hired inventor is a productive inventor if her/his total number of 

patents invented in the previous years (before this inventor changed her/his affiliation) is above 

the median value of patents invented in the previous years among all newly hired inventors.12 

Unproductive leavers are the new leavers whose number of patents invented in the previous 

years is below the median value of patents invented in the previous years among all leavers. The 

results in columns (3) and (4) in Table 5, Panel B show that high dismissal costs due to the 

tightening of EPL make firms less likely to hire productive inventors and more likely to retain 

unproductive inventors. Taken together, strong labor protection causes labor market distortion 

and thereby limits firms’ ability to innovate.  

[Insert Table 5 Here] 

3.4 Subsample Analyses  

                                                           

12 Another drawback of this analysis is that new hires or leavers have an unbalanced invention history; inventors 
who have a longer recorded invention history will, on average, have more patents. 
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In this subsection, we explore the conditions under which the relationship between labor 

protection and innovation varies. Specifically, we conduct four subsample analyses. First, we 

examine how reliance on external financing plays a role in our context. Rajan and Zingales (1998) 

show that firms with more growth opportunities are more likely to rely on external financing. 

Acharya and Xu (2015) find that public firms that are more dependent on external financing 

exhibit better innovation performance than a sample of matched private firms. Motivated by 

these studies, we test whether external financing reliance significantly impacts our results. 

Following Moshirian, Tian, Wang, and Zhang (2014), we construct the variable of external 

financing reliance, which is defined as (capital expenditure + R&D expense -cash flow from 

operation)/capital expenditure. Based on the median value of external financing reliance sorted 

by industry and year, we divide our sample into two groups: high versus low external financing 

reliance. Consistent with the findings of prior studies, the results in Table 6, Panel A indicate that 

the impact of EPL on innovation is stronger for firms with higher reliance on external financing.  

 Second, we examine whether the negative impact of labor protection on innovation is 

stronger in R&D-intensive firms than in their non-R&D-intensive counterparts. We conjecture 

that R&D-intensive firms are more sensitive to the effect of enhanced labor protection. Because 

of missing information regarding R&D input, the R&D intensity is highly skewed. Because over 

70% of our firm-year observations lack information on R&D input, we assign a value of zero if a 

firm has a missing value for its R&D expenditures. Accordingly, we classify a firm as an R&D-

intensive firm if its R&D input is nonzero (non-missing value of R&D input) and as a non-

R&D-intensive firm otherwise. Consistent with our conjecture, the results in Table 6, Panel B 

show that the negative impact of EPL on innovation is concentrated in R&D-intensive firms. 

 Third, we investigate whether the negative impact of labor protection on innovation 

varies by industry. The 2008 National Science Foundation Business R&D and Innovation Survey 

(BRDIS) indicates that firms in manufacturing industries are more innovative than their 
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nonmanufacturing counterparts. 13  We conjecture that the impact is more pronounced in 

manufacturing industries. Industries are defined as manufacturing if the firm’s first digit SIC is 

either 2 or 3 and nonmanufacturing otherwise. The results in Table 6, Panel C are consistent 

with our conjecture. 

Fourth, we examine whether the legal origin of the company's home country causes 

variations in the impact of EPL on innovation. La Porta et al. (1998) show that a country’s legal 

origin, meaning that the country is rooted either in civil or common law, shapes the development 

of domestic laws. Botero et al. (2004) further show that labor laws are generally stronger in civil 

law countries than in common law countries. We conjecture that the impact of labor protection 

on innovation is stronger for firms in civil law countries than those in common law countries. 

The results in Table 6, Panel D provide supporting evidence for this conjecture.  

[Insert Table 6 Here] 

3.5 Robustness Checks 

In this subsection, we perform several sensitivity analyses to provide evidence of the robustness 

of our results. Results are shown in Table 7. First, we include firms with headquarters in the 

United States. Inclusion of U.S. observations dramatically increases our sample size but does not 

alter our results, suggesting that our main finding is robust to the alternative sample. The results 

are in Table 7, Panel A.  

 Second, we control for country/industry fixed effects to account for unobservable 

country/industry characteristics that could influence corporate innovation productivity. Ellison 

and Glaeser (1997) document that unbalanced developments exist in some industries across 

countries due to natural resources and geographic concentration. The results in Table 7, Panel B 

show that our results are robust to the addition of country/industry fixed effects.  

                                                           

13 The document is available through the NSF website (http://www.nsf.gov/statistics/infbrief/nsf11300/). 
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 Third, we examine whether different country trends are driving the results. We augment 

our DID regressions with country-specific time trends. The coefficients of EPL_C in Table 7, 

Panel C remain statistically significant at least at the 5% level. 

 Fourth, to examine whether our results are robust to alternative measures of labor 

protection stringency, we use the EPL index developed by Allard (2005), the EPL indicators 

reconstructed by Simintzi et al. (2015) that focus on major labor law reforms, and EPL_C, which 

includes all the changes in the EPL index. The results are reported in Table 7, Panel D, Panel E, 

and Panel F, respectively.14 We find that our results continue to hold.  

 Fifth, we examine whether our results are robust to alternative dependent variables. The 

primary purpose of our study is to ascertain whether there is a casual relationship between labor 

protection and innovation. Therefore, to proxy for a firm’s innovation tendency, we only keep 

the eventually granted patents and citations on those grants in our sample. In our innovation 

data, approximately 60% of patents applied for are eventually granted. Again, after replacing the 

dependent variable with the number of patents granted and number of citations received for 

those granted patents, we find consistent results in Table 7, Panel G (the coefficient estimates of 

EPL_C are all negative and significant at least at the 1% level).  

 Finally, we limit our analyses to firm observations that have at least one patent during 

1987–2003. Because only about 30% of our sample firms have more than one patent, we delete 

firm observations with zero patents and rerun our regressions. The results in Table 7, Panel H 

show that the negative relation between EPL and innovation remains significant. As in the 

aforementioned discussion, we also consider several possible omitted macro-variables: annual 

GDP growth, unemployment rates, country-level corruption, and an indicator of recessions. We 

find that our results still hold after the addition of these variables. The results are reported in 

Appendix D. It is noted that in Panel D column (4), the result for LnPat becomes insignificant 
                                                           

14 In Table 7, Panel E, the number of observations is larger than that in baseline regression because to construct the 
EPL indicators as in Simintzi et al. (2015), we have to extend the sample period to 2005 in order to include one 
major labor law reform in Australia that occurred in 2005. Our extended sample ends in 2005 because the truncation 
bias is very severe after 2005. 
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after controlling the corruption perception index. This is probably due to the fact that we lose 

more than one-third of sample observations. Additionally, in Appendix E, we employ three 

alternative measures of innovation to examine whether our results still hold. To account for the 

possible nonlinearity relation between firm size and innovation, we use as the dependent 

variable the natural logarithm of patent-weighted citations, LnCitePat, which is calculated as the 

total number of citations received divided by total patent counts for each firm-year. We also 

follow Trajtenberg, Henderson, and Jaffe (1997) and construct another two innovation measures 

Generality and Originality. Generality (Originality) is the Herfindahl index of the citing (cited) patents 

used to capture dispersion across technology classes. The results in Appendix E show that our 

results are robust to alternative innovation measures. 

 [Insert Table 7 Here] 

4. Conclusion 

In this study, we investigate whether there is a causal relation between labor protection and 

innovation at the firm level. In contrast to the findings of Acharya et al. (2013, 2014), our 

findings indicate that employee-friendly labor law reform causes a decline in a firm’s innovation 

output. Further examination reveals that stringent employment protection laws encourage 

inventor shirking and distort labor market flow. We also find that the negative relation is more 

pronounced in firms with heavy reliance on external financing, with high R&D intensity, in 

manufacturing industries, and in civil-law countries. Our extensive micro-level evidence 

highlights that strong employment protection impedes corporate innovation.  

 Our paper contributes to at least three strands of the financial economics literature. First, 

our findings provide evidence on the real effect of labor protection laws and extend the literature 

examining whether and how the effects of labor protection laws are translated into real economy. 

Second, our study contributes to the literature on law and innovation. Literature has shown that 

legal environment has a direct impact on innovation (e.g., Fan and White (2003); Acharya and 
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Subramanian (2009); Atanassov (2013); Fang, Lerner, and Wu (2017) and Png (2017)). Our paper 

extends this line of research by examining the impact of labor laws on innovation. Third, our 

paper contributes to the literature on labor protection and innovation by providing international 

firm-level evidence to the ongoing debate on the relation between labor protection and 

innovation. Our findings also have important policy implications, given that both the European 

Union and the OECD have put stimulating innovation on their agenda and urge member 

countries to support entrepreneurial and innovative activities. 
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Table 1: Descriptive Statistics 
 

This table presents summary statistics for the key variables used in this study. The sample is constructed from the 

intersection of the European Patent Database and Compustat Global, after imposing requisite data requirements. 

The sample consists of 90,752 firm-year observations in 13,105 unique firms across 20 OECD countries from 1987 

to 2003. Detailed definitions of all variables are provided in Appendix B. All variables, except for those normalized 

by natural logarithm, are winsorized at the one percent level at each tail. 

 

Variable Mean Median Std Dev Min Max 

Pat (Patent) 2.464 0.000 27.600 0.000 1729.000 

Cite (Citation) 6.419 0.000 69.672 0.000 3572.000 

EPL_C -0.172 0.000 0.652 -1.000 1.000 

EPL_A 1.664 1.400 0.636 0.500 4.100 

Assets (US $ million) 2012.670 246.371 6799.470 1.668 53053.540 

ROA 0.027 0.046 0.145 -0.819 0.288 

MB 1.553 0.586 3.017 0.000 20.703 

Tangibility 0.315 0.280 0.236 0.000 0.937 

Leverage 0.228 0.206 0.183 0.000 0.729 

R&D 0.011 0.000 0.035 0.000 0.236 

HHI 0.277 0.176 0.269 0.020 1.000 

LnGDP_Capita 10.194 10.205 0.264 8.709 10.822 

LnPatentStock5 9.744 9.924 1.424 3.135 11.563 

Ed_Share 0.408 0.395 0.094 0.105 0.802 

IP 4.286 4.420 0.433 1.670 4.670 

Trade 1.352 1.324 2.966 -11.101 17.184 

Right 0.557 1.000 0.497 0.000 1.000 

Disp_Index 10.635 10.870 5.253 0.420 25.250 
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Table 2: EPL Indicators and Innovation by Country 
 

This table presents the country distribution of EPL indicators (EPL_C and EPL_A) and firm innovation measures 

(Patent and Citation). See Appendix I for all variable definitions and descriptions. 

 

Country Name N EPL_C EPL_A Patent Citation 

Australia (AUS) 5,236 0.903 1.154 0.048 0.152 

Austria (AUT) 714 0.000 2.546 0.417 0.819 

Belgium (BEL) 854 0.662 2.497 1.724 4.412 

Canada (CAN) 13,346 0.000 1.200 0.266 0.829 

Switzerland (CHE) 1,731 0.886 1.431 3.284 10.070 

Germany (DEU) 5,275 -0.703 2.242 8.978 18.152 

Denmark (DNK) 1,097 -0.981 1.613 2.006 8.237 

Spain (ESP) 1,314 -0.762 2.525 0.067 0.116 

Finland (FIN) 893 0.000 2.300 6.727 30.010 

France (FRA) 4,957 0.998 2.993 2.407 5.534 

U.K. (GBR) 17,086 0.000 1.343 0.680 2.493 

Greece (GRC) 703 0.000 3.800 0.003 0.000 

Ireland (IRL) 694 -0.412 1.425 1.784 5.376 

Italy (ITA) 1,653 -0.728 3.381 0.893 1.815 

Japan (JPN) 29,298 -0.650 1.435 4.207 11.022 

Netherland (NLD) 2,035 0.532 2.275 1.267 2.973 

Norway (NOR) 1,045 0.000 2.716 0.810 1.858 

New Zealand (NZL) 596 0.000 0.737 0.025 0.065 

Portugal (PRT) 398 -0.990 3.704 0.000 0.000 

Sweden (SWE) 1,827 -0.948 2.787 2.031 5.186 
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Table 3: The Impact of Labor Protection on Firm Innovation 
 
This table presents the baseline results of the difference-in-differences (DID) regression model. In columns (1), (2), and 
(3), the dependent variable is LnPatt+N , the natural logarithm of patents applied for by a firm in year t+N (N=0, 1, 2). In 
columns (4), (5), and (6), the dependent variable is LnCitet+N , the natural logarithm of citations received by a firm in year 
t+N (N=0, 1, 2). All variable definitions are given in Appendix B. Each regression includes firm and year fixed effects. 
Below the coefficient estimates in parentheses are t-values adjusted for heteroscedasticity and country-level clustering. 
***, **, and * indicate significance at the 1% 5%, and 10% levels, respectively. 

 
 

  (1) (2) (3) (4) (5) (6) 
  LnPatt+N LnCitet+N 

 
N=0 N=1 N=2 N=0 N=1 N=2 

EPL_C -0.0510** -0.0537*** -0.0516*** -0.0546*** -0.0564*** -0.0511*** 

 
(-2.72) (-3.13) (-3.05) (-3.43) (-3.38) (-3.08) 

LnAssets 0.0343** 0.0337** 0.0312** 0.0343** 0.0313** 0.0270** 

 
(2.55) (2.80) (2.85) (2.75) (2.60) (2.68) 

ROA -0.0046 0.0270* 0.0146 -0.0064 0.0328* 0.0212 

 
(-0.25) (1.74) (0.75) (-0.35) (2.00) (1.17) 

MB 0.0026*** 0.0028*** 0.0024*** 0.0022** 0.0025*** 0.0021*** 

 
(2.92) (5.78) (3.58) (2.76) (4.93) (3.13) 

Tangibility -0.0216 -0.0254 -0.0300 -0.0094 -0.0176 -0.0231 

 
(-1.25) (-1.09) (-1.22) (-0.53) (-0.86) (-1.22) 

Leverage -0.0934* -0.0916** -0.0813*** -0.0829** -0.0850** -0.0734*** 

 
(-1.96) (-2.81) (-3.23) (-2.12) (-2.42) (-2.87) 

R&D 0.8614*** 0.6356* 0.3714 0.9321*** 0.6158** 0.3402 

 
(3.55) (1.85) (1.02) (2.95) (2.10) (1.07) 

HHI 0.0064 0.0227 0.0179 0.0153 0.0285 0.0294 

 
(0.24) (0.99) (0.76) (0.87) (1.45) (1.26) 

LnGDP_Capita 0.0267 0.0219 0.0316 0.0052 0.0161 0.0264 
 (0.68) (0.56) (0.84) (0.13) (0.41) (0.75) 
LnPatentStock5 -0.0117 -0.0092 -0.0051 0.0071 -0.0056 0.0033 
 (-0.27) (-0.25) (-0.14) (0.20) (-0.17) (0.10) 
Ed_Share 0.0410 -0.0866 -0.0810 -0.0774 -0.0922 -0.1081 
 (0.56) (-1.25) (-0.93) (-1.47) (-1.56) (-1.45) 
IP -0.0410 -0.0234 -0.0239 -0.0273 -0.0265 -0.0280 
 (-1.71) (-0.95) (-1.03) (-1.52) (-1.51) (-1.29) 
Trade -0.0021 -0.0025 -0.0024 -0.0029 -0.0025 -0.0033 
 (-0.98) (-1.21) (-1.03) (-1.58) (-1.21) (-1.54) 
Right -0.0055 0.0020 0.0038 -0.0003 -0.0012 0.0026 
 (-0.68) (0.24) (0.45) (-0.03) (-0.14) (0.33) 
Disp_Index -0.0007 0.0003 -0.0000 0.0008 0.0000 -0.0003 
 (-0.45) (0.18) (-0.01) (0.66) (0.01) (-0.17) 
Constant -0.1441 -0.1128 -0.2220 -0.1118 -0.0684 -0.2075 

 
(-0.38) (-0.30) (-0.57) (-0.36) (-0.20) (-0.62) 

Firm FE YES YES YES YES YES YES 
Year FE YES YES YES YES YES YES 
Observations 90,752 90,752 90,752 90,752 90,752 90,752 
Adj. R-squared 0.687 0.791 0.797 0.772 0.776 0.782 
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Table 4: Dynamic Analysis  
 

This table reports the results of regressions of firm innovation on the two-year lagged, one-year lagged, the 
contemporaneous, and the one-year and two-year forward values of the EPL_C indicator. The dependent variables are 
LnPat and LnCite in columns (1) and 2), respectively. All variable definitions are given in Appendix B. Each regression 
includes firm and year fixed effects. Below the coefficient estimates in parentheses are t-values adjusted for 
heteroscedasticity and country-level clustering. ***, **, and * indicate significance at the 1% 5%, and 10% levels, 
respectively. 

 
  (1) (2) 
 LnPat LnCite 
   
EPL_C (+2) 0.0013 0.0015 

 
(0.20) (0.27) 

EPL_C (+1) 0.0029 0.0020 
 (1.18) (0.80) 
EPL_C (0) -0.0370** -0.0393*** 
 (-2.26) (-2.90) 
EPL_C (-1) -0.0256*** -0.0284*** 
 (-3.04) (-2.96) 
EPL_C (-2) -0.0052*** -0.0050** 
 (-2.93) (-2.60) 
LnAssets 0.0415** 0.0408** 
 (2.41) (2.62) 
ROA -0.0102 -0.0143 
 (-0.49) (-0.70) 
MB 0.0022*** 0.0014** 
 (3.14) (2.81) 
Tangibility -0.0202 -0.0060 
 (-0.84) (-0.27) 
Leverage -0.1177* -0.1012** 

 
(-1.97) (-2.26) 

R&D 0.8225** 0.8611** 

 
(2.38) (2.10) 

HHI -0.0022 0.0109 

 
(-0.08) (0.58) 

LnGDP_Capita 0.0221 -0.0013 
 (0.56) (-0.03) 
LnPatentStock5 -0.0137 -0.0178 
 (-0.25) (-0.41) 
Ed_Share 0.1134 0.0146 
 (1.33) (0.25) 
IP -0.0430 -0.0277 
 (-1.50) (-1.26) 
Trade -0.0036 -0.0034 
 (-1.67) (-1.59) 
Right -0.0108 -0.0059 
 (-1.22) (-0.72) 
Disp_Index -0.0018 -0.0015 
 (-1.08) (-1.14) 
Constant -0.0394 0.2726 

 
(-0.08) (0.65) 

Firm FE YES YES 
Year FE YES YES 
Observations 76,014 76,014 
Adj. R-squared 0.703 0.789 
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Table 5: Potential Channels: Inventor-level Evidence 

 
This table reports the results for channels tests of inventor shirking and labor market distortion. In Panel A, the 
dependent variable is the innovation performance of the Stayers. Stayers are defined as inventors who have not changed 
their affiliation during our sample period. In column (1), the dependent variable is LnPat, which is the natural logarithm 
of patents applied by a firm’s Stayers in a year. In column (2), the dependent variable is LnCite, the natural logarithm of 
citations received by a firm’s Stayers in a year. Each regression includes inventor and year fixed effects. In Panel B, the 
dependent variables are proxies for inventor turnover in the labor market. In Column (1), the dependent variable is 
LnNewHires, the natural logarithm of one plus the number of newly hired inventors for a firm-year. In column (2), the 
dependent variable is LnLeavers, the natural logarithm of one plus the number of inventors left in a firm-year. In column 
(3), the dependent variable is LnNewHires_Productive, the natural logarithm of one plus the number of newly hired 
productive inventors for a firm-year. In column (4), the dependent variable is LnLeavers_Unproductive, the natural 
logarithm of one plus the number of unproductive inventors left in a firm-year. We define as productive inventors the 
newly hired inventors whose number of patents is above the median value of patents applied for in the past by newly 
hired inventors. Unproductive inventors are the new leavers whose number of patents is below the median value of 
patents applied for in the past by new leavers. In Panel B, each regression includes firm and year fixed effects. For both 
Panels, below the coefficient estimates in parentheses are t-values adjusted for heteroscedasticity and country-level 
clustering. ***, **, and * indicate significance at the 1% 5%, and 10% levels, respectively. 

 
Panel A: Innovation of Stayers 
 

  (1) (2) 
 LnPat LnCite 
   
EPL_C -0.0207*** -0.0516** 
 (-3.38) (-2.23) 
LnAssets 0.0025 -0.0138 
 (0.25) (-1.09) 
ROA 0.0017 0.2200 
 (0.02) (1.69) 
MB 0.0001 0.0013 
 (0.09) (0.52) 
Tangibility -0.0878 -0.2473 
 (-1.03) (-1.28) 
Leverage -0.0374* -0.0403 

 
(-1.80) (-0.69) 

R&D -0.2927 -0.0907 

 
(-1.32) (-0.16) 

HHI 0.0380 -0.0603 

 
(0.79) (-0.50) 

LnGDP_Capita -0.0697*** -0.0831** 
 (-4.80) (-2.68) 
LnPatentStock5 0.0766* 0.1938* 
 (1.88) (1.80) 
Ed_Share 0.2752*** 0.4217*** 
 (3.13) (2.96) 
IP 0.0003 -0.0118 
 (0.03) (-0.44) 
Trade -0.0015 0.0045* 
 (-1.70) (2.07) 
Right 0.0107*** 0.0209** 
 (4.92) (2.25) 
Disp_Index 0.0010 0.0065 
 (0.56) (1.24) 
Constant 0.2998 0.0827 

 
(0.87) (0.09) 

Inventor FE YES YES 
Year FE YES YES 
Observations 48,326 48,326 
Adj. R-squared 0.261 0.224 
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Panel B:  Inventor Turnover 
 

 (1) (2) (3) (4) 
 LnNewHires LnLeavers LnNewHires_Productive LnLeavers_Unproductive 

     
EPL_C -0.1311*** -0.0287*** -0.0509** -0.0683*** 

 
(-3.33) (-4.69) (-2.80) (-4.62) 

LnAssets 0.0568 -0.0103* 0.0722* -0.0079 

 
(1.46) (-1.98) (1.78) (-0.63) 

ROA 0.0408 0.0020 -0.0112 -0.0333** 

 
(1.21) (0.20) (-0.67) (-2.13) 

MB 0.0030** 0.0000 0.0008 -0.0015 

 
(2.41) (0.07) (0.74) (-1.70) 

Tangibility -0.0976 -0.0271 -0.1409* -0.0408 

 
(-1.14) (-1.36) (-1.78) (-1.00) 

Leverage -0.0821* 0.0104 -0.0564* 0.0274 

 
(-1.88) (1.23) (-1.86) (0.71) 

R&D 0.8801* 0.0472 0.4874 -0.2324 

 
(1.96) (1.01) (1.41) (-1.41) 

HHI 0.1210** 0.0066 0.0787 -0.0181 

 
(2.26) (0.97) (1.17) (-0.54) 

LnGDP_Capita -0.0318 0.0300 -0.1081* -0.0568 
 (-0.33) (1.63) (-1.92) (-1.19) 
LnPatentStock5 0.0618 -0.0115 0.0535 -0.0317 
 (0.55) (-0.73) (0.88) (-0.59) 
Ed_Share 0.4862** 0.1413*** 0.4399* 0.1771 
 (2.22) (3.80) (1.79) (1.09) 
IP -0.0507 0.0171 -0.0831** -0.0321 
 (-0.89) (1.63) (-2.72) (-0.93) 
Trade -0.0063 -0.0014 0.0067 0.0081** 
 (-1.16) (-1.12) (1.42) (2.84) 
Right 0.0174 -0.0015 -0.0082 -0.0152 
 (0.87) (-0.36) (-0.48) (-1.09) 
Disp_Index 0.0108 0.0024 0.0056 0.0036 
 (1.57) (1.72) (1.55) (1.53) 
Constant -0.6672 -0.2519 0.5221 1.0535 

 
(-0.72) (-1.42) (0.80) (1.61) 

Firm FE YES YES YES YES 
Year FE YES YES YES YES 
Observations 26,311 26,311 26,311 26,311 
Adj. R-squared 0.454 0.039 0.562 0.048 
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Table 6: Subsample Analyses 

 
This table reports the results for subsample analyses. LnPatt+N is the natural logarithm of patents applied for by a firm in 
year t+N. LnCitet+N is the natural logarithm of citations received by a firm in year t+N. In Panel A, we divide the sample 
into high versus low reliance on external financing subsamples based on the median value. The measure of external 
financing reliance is calculated as (capital expenditure + R&D expense – cash flow from operation)/capital expenditure. 
In Panel B, we divide the sample into high versus low R&D intensity subsamples based on the median value of R&D 
expenses. In Panel C, the sample is divided into two subsamples: firms in manufacturing industries versus firms in other 
industries. In Panel D, firms are grouped based on their home country’s legal origins: civil law versus common law. 
Other control variables are included but omitted for brevity. All variable definitions are given in Appendix B. Each 
regression includes firm and year fixed effects. Below the coefficient estimates in parentheses are t-values adjusted for 
heteroscedasticity and country-level clustering. ***, **, and * indicate significance at the 1% 5%, and 10% levels, 
respectively. 

 
 

  (1) (2) (3) (4) (5) (6) (7) (8) 
  LnPatt+N LnCitet+N LnPatt+N LnCitet+N 

 
N=0 N=2 N=0 N=2 N=0 N=2 N=0 N=2 

 
Panel A: External Financing Reliance 

 
High Low 

EPL_C -0.0814** -0.0899*** -0.0907*** -0.1005*** -0.0220* -0.0123 -0.0191* -0.0016 

 
(-2.67) (-3.26) (-3.41) (-3.90) (-1.75) (-1.17) (-1.88) (-0.15) 

Observations 45,367 45,367 45,367 45,367 45,385 45,385 45,385 45,385 
Adj. R2 0.692 0.794 0.771 0.785 0.677 0.799 0.774 0.776 

 
Panel B: R&D Intensity 

 
High Low 

EPL_C -0.0842* -0.0914** -0.1049** -0.0939** -0.0193 -0.0148 -0.0129 -0.0142 

 
(-1.88) (-2.21) (-2.79) (-2.35) (-1.59) (-1.62) (-1.70) (-1.57) 

Observations 25,864 25,864 25,864 25,864 64,888 64,888 64,888 64,888 
Adj. R2 0.739 0.815 0.795 0.800 0.591 0.754 0.721 0.734 

 
Panel C: Industry classification 

 
Manufacturing industry Nonmanufacturing industry 

EPL_C -0.0656*** -0.0637*** -0.0728*** -0.0651*** -0.0029 -0.0041 -0.0029 -0.0041 

 
(-3.06) (-2.90) (-3.59) (-2.95) (-0.27) (-0.44) (-0.30) (-0.57) 

Observations 41,799 41,799 41,799 41,799 49,003 49,003 49,003 49,003 
Adj. R2 0.703 0.803 0.777 0.789 0.593 0.691 0.690 0.677 

 
Panel D: Legal Origins 

 
Civil Law Common Law 

EPL_C -0.0361** -0.0319** -0.0322*** -0.0323** 0.0081 0.0311* -0.0023 0.0260 

 
(-2.28) (-2.34) (-3.01) (-2.73) (0.61) (2.28) (-0.19) (1.78) 

Observations 53,794 53,794 53,794 53,794 36,958 36,958 36,958 36,958 
Adj. R2 0.685 0.831 0.806 0.815 0.700 0.716 0.686 0.695 
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Table 7: Sensitivity Analyses 

This table presents results for several robustness tests. In Panel A, we include firms with headquarters in the United States. In Panel B, 
we control for country/industry fixed effects. In Panel C, we add country-specific time trends. In Panels D, E and F, we use 
alternative measures of labor protection stringency respectively: EPL_A (the EPL index in Allard (2005)), EPL_S (EPL indicators 
reconstructed by Simintzi et al. (2015)) and EPL_C that includes all changes in EPL index. In Panel G, the dependent variable is the 
number of patents granted (columns (1) and (2)) and number of citations received for those granted patents (columns (3) and (4)), 
respectively. In Panel H, we delete firm observations with zero patents. In columns (1) and (2), the dependent variable is LnPatt+N , 
the natural logarithm of patents applied by a firm in year t+N. In Columns (3) and (4), the dependent variable is LnCitet+N, the natural 
logarithm of citations received by a firm in year t+N. Other control variables are included but omitted for brevity. All variable 
definitions are given in Appendix B. Each regression includes firm and year fixed effects. Below the coefficient estimates in 
parentheses are t-values adjusted for heteroscedasticity and country-level clustering. ***, **, and * indicate significance at the 1% 5%, 
and 10% levels, respectively. 
 

  (1) (2) (3) (4) 
  LnPatt+N LnCitet+N 

 
N=0 N=2 N=0 N=2 

 
Panel A: Including U.S. firms 

EPL_C -0.0480*** -0.0537*** -0.0563*** -0.0543*** 

 
(-4.01) (-4.91) (-5.69) (-4.93) 

Observations 189,861 189,861 189,861 189,861 
Adj. R2 0.732 0.798 0.764 0.777 

 
Panel B: Country/Industry fixed effects 

EPL_C -0.0564*** -0.0569*** -0.0590*** -0.0561*** 

 
(-3.35) (-4.26) (-4.80) (-4.30) 

Observations 90,752 90,752 90,752 90,752 
Adj. R2 0.686 0.795 0.771 0.781 

 
Panel C: Country-specific time trends 

EPL_C -0.0500** -0.0480** -0.0480*** -0.0468** 

 
(-2.52) (-2.72) (-2.88) (-2.72) 

Observations 90,752 90,752 90,752 90,752 
Adj. R2 0.687 0.797 0.772 0.782 

 
Panel D: EPL index in Allard (2005) 

EPL_A -0.0838*** -0.0863*** -0.0858*** -0.0754*** 

 
(-6.62) (-7.19) (-7.01) (-6.48) 

Observations 90,752 90,752 90,752 90,752 
Adj. R2 0.791 0.800 0.776 0.784 

 
Panel E: EPL indicators in Simintzi et al. (2015) 

EPL_S -0.0322 -0.0323** -0.0334** -0.0338** 

 
(-1.39) (-2.55) (-2.12) (-2.62) 

Observations 109,882 109,882 109,882 109,882 
Adj. R2 0.677 0.791 0.764 0.775 

 
Panel F: EPL_C including all changes 

EPL_C -0.0364*** -0.0439*** -0.0399*** -0.0386** 

 
(-3.18) (-3.47) (-3.26) (-2.84) 

Observations 90,752 90,752 90,752 90,752 
Adj. R2 0.687 0.796 0.772 0.782 

 
Panel G: Granted patents 

EPL_C -0.0734*** -0.0554*** -0.0582*** -0.0534*** 

 
(-3.87) (-3.29) (-4.32) (-3.55) 

Observations 90,752 90,752 90,752 90,752 
Adj. R2 0.714 0.778 0.758 0.762 

 
Panel H: Firms having at least one patent 

EPL_C -0.0609 -0.0620* -0.0783** -0.0736** 

 
(-1.56) (-2.01) (-2.59) (-2.54) 

Observations 25,922 25,922 25,922 25,922 
Adj. R2 0.690 0.766 0.746 0.756 
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Appendix A: A Brief Discussion of the EPL Index Construction in Allard (2005) 

In 1985, the OECD created the original EPL indicator; it only included regular and temporary contracts. In late 1990s, 

the OECD broadened the indicator to include collective dismissals and created a new indicator to cover all the main 

aspects of job security. This new version of the EPL has been available annually only since 1998 and is based on the 

numerical scores of surveys that cover eighteen aspects of employment protection legislation in three domains: laws 

protecting workers with regular contracts, laws protecting workers with temporary contracts, and regulations applying to 

collective dismissals. The final scores are reviewed and corrected if necessary by each of the national governments. The 

weighting scheme is as follows: regular contracts are assigned a weight of 5/12, temporary contracts are assigned a 

weight of 5/12, and collective dismissals are weighted at 1/6. To develop a long-time series for researchers to better 

assess the impact of labor protection on the real economy, Allard (2005) collected reliable information on legislative 

changes for 21 OECD countries over 50 years and reconstructed the OECD employment protection indicator. More 

specifically, to assign a score to a country-year that is not covered by the OECD EPL indicator, Allard reviewed volumes 

of legislation and dozens of other related publications and attempted to answer the questions in the OECD’s surveys. 

After obtaining scores on the three domains, Allard created the EPL index by following the weighting scheme used in 

the creation of OECD EPL indicator.  
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Appendix B: Definition of Variables 

Variable Name Description 

LnPatt+N The natural logarithm of patents applied by a firm in year t+N (N=0,1,2) divided by the 
mean number of patents of all firms in that country-year. [Data Source: European Patent Office] 

LnCitet+N The natural logarithm of citations received by a firm in year t+N (N=0,1,2). [Data Source: European 
Patent Office] 

LnCitePatt+N The natural logarithm of citations per patent applied by a firm in year t+N (N=0,1,2), scaled by the 
total number of citations per patent received by all patents applied for in that country-year. [Data 
Source: European Patent Office] 

Generality+N The Herfindahl Index of the citing patents used to capture dispersion across technology classes in 
year t+N. [Data Source: European Patent Office] 

Originality+N The Herfindahl Index of the cited patents used to capture dispersion across technology classes in 
year t+N. [Data Source: European Patent Office] 

EPL_C An indicator variable that equals 1 (0) after (before) EPL index increases in a country-year, and equals 
-1 (0) after (before) EPL index decreases in a country-year. We only consider changes in EPL index 
whose absolute value is greater than 0.2 (the mean value). [Data Source: Allard (2005)] 

EPL_A EPL index in Allard (2005). [Data Source: Allard (2005)] 

LnAssets The natural logarithm of total assets. [Data Source: COMPUSTAT Global] 

ROA Returns on Assets. Net income divided by total assets. [Data Source: COMPUSTAT Global] 

MB Market-to-book ratio. Market value of common equity divided by book value of common equity. 
[Data Source: COMPUSTAT Global] 

Tangibility The ratio of tangible assets over total assets. Net property, plant and equipment divided by total 
assets. [Data Source: COMPUSTAT Global] 

Leverage Total debt divided by total assets [Data Source: COMPUSTAT Global] 

R&D R&D expenses divided by total assets. [Data Source: COMPUSTAT Global] 

HHI Herfindahl-Hirschman Index scaled by sales based on the first two digits of SIC code. [Data Source: 
COMPUSTAT Global] 

LnGDP_Capita The natural logarithm of GDP per capita measured by GDP in U.S. dollars divided by total 
population. [Data Source: World Bank] 

LnPatentStock5 The natural logarithm of cumulative patents in a country over the past 5 years. [Data Source: 
European Patent Office] 

Ed_Share Public spending on secondary and tertiary education scaled by GDP. [Data Source: World Bank] 

IP Intellectual property protection index. [Data Source: IMD World Competitiveness Report] 

Trade International trade measured by the level of imports minus the level of exports in a country. [Data 
Source: IMF] 

Right  An indicator for the political ideology of the ruling party, which equals one if it is right-leaning and 
zero otherwise. [Data Source: World Bank] 

Disp_Index Gallagher Index. The disproportionality of the electoral system in a country. [Data Source: Gallagher 
and Mitchell (2008)] 

GDP_Growth Annual growth rate in GDP. [Data Source: World Bank] 

Unemployment The ratio of unemployment divided by labor force. [Data Source: OECD] 

Corruption Corruption Perceptions Index. Higher values indicate less corruption. [Data Source: Transparency 
International] 

Recession  An indicator of recessions, which equals one if there are two consecutive quarters with negative GDP 
growth in a country and zero otherwise. [Data Source: OECD] 
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Appendix C: Replication of Baseline Results in Acharya et al. (2013) 

In Panel A, we replicate the baseline results in Acharya et al. (2013). DSL is the dismissal law index in Deakin, Lele, and 
Siems (2007). In columns (1)–(4), the sample includes four countries: the United States, the United Kingdom, France, 
and Germany. In columns (5) and (6), we extend the sample by adding another 17 OECD countries. Country and year 
fixed are included. In Panel B, we replicate the baseline results in Acharya et al. (2013) using firm-level data. All variable 
definitions are given in Appendix B. In Panel B, each regression includes firm and year fixed effects. Below the 
coefficient estimates in parentheses are t-values adjusted for heteroscedasticity and country-level clustering. ***, **, and * 
indicate significance at the 1% 5%, and 10% levels, respectively. 
 
Panel A: Replication of Baseline Results in Acharya et al. (2013)— Country Level  
  (1) (2) (3) (4) (5) (6) 
  LnPat LnCite LnPat LnCite LnPat LnCite 
DSL 1.9790*** 1.4078*** 

    
 

(7.82) (5.11) 
    

EPL_A 
  

0.1368*** 0.1400** -0.0932** -0.0822 

   
(2.73) (2.46) (-2.02) (-1.29) 

Constant 5.5453*** 6.8731*** 6.1303*** 7.2199*** 6.1983*** 7.2384*** 

 
(39.04) (41.41) (47.61) (46.26) (37.28) (28.38) 

Year FE YES YES YES YES YES YES 
Country FE YES YES YES YES YES YES 
Observations 100 100 100 100 357 357 
Adj. R-squared 0.987 0.985 0.986 0.987 0.987 0.973 
 
Panel B: Replication of Baseline Results in Acharya et al. (2013)—Firm Level 
  (1) (2) (3) (4) (5) (6) 
  LnPatt+N LnCitet+N 

 
N=0 N=1 N=2 N=0 N=1 N=2 

EPL_C -0.1181*** -0.0809*** -0.0728*** -0.0804*** -0.0783*** -0.0765*** 

 
(-3.60) (-3.09) (-2.81) (-2.98) (-2.91) (-2.88) 

DSL 0.2565 0.1458 0.0515 0.1264 0.1828 0.1218 
 (1.26) (0.82) (0.29) (0.72) (1.07) (0.70) 
LnAssets 0.0347*** 0.0347*** 0.0261*** 0.0320*** 0.0249*** 0.0173*** 

 
(9.90) (9.73) (7.26) (9.23) (7.36) (5.00) 

ROA -0.0068 0.0041 0.0106 -0.0014 0.0089 0.0132 

 
(-0.89) (0.51) (1.26) (-0.16) (1.02) (1.52) 

MB 0.0013*** 0.0019*** 0.0015*** 0.0013*** 0.0015*** 0.0013*** 

 
(4.07) (5.43) (4.31) (3.71) (4.13) (3.58) 

Tangibility -0.0130 -0.0064 -0.0147 -0.0117 -0.0116 -0.0159 

 
(-1.00) (-0.47) (-1.07) (-0.92) (-0.87) (-1.17) 

Leverage -0.0412*** -0.0585*** -0.0521*** -0.0372*** -0.0419*** -0.0420*** 

 
(-3.92) (-5.49) (-5.06) (-3.52) (-4.14) (-4.19) 

R&D 0.1706*** 0.1785*** 0.0633* 0.1965*** 0.1778*** 0.0303 

 
(4.28) (4.71) (1.70) (4.36) (4.28) (0.72) 

HHI 0.0235 0.0112 -0.0015 0.0123 0.0134 0.0109 

 
(1.15) (0.55) (-0.07) (0.65) (0.71) (0.55) 

LnGDP_Capita 0.0252 -0.0185 -0.0391 -0.0269 -0.0217 -0.0291 
 (0.57) (-0.52) (-1.12) (-0.76) (-0.62) (-0.87) 
LnPatentStock5 0.0047 -0.0010 -0.0012 0.0013 0.0010 -0.0021 
 (1.09) (-0.34) (-0.44) (0.43) (0.36) (-0.78) 
Ed_Share -0.0067 -0.1572 -0.3598** -0.1069 -0.0575 -0.2735 
 (-0.03) (-0.93) (-2.13) (-0.62) (-0.33) (-1.58) 
IP -0.0055 0.0295 0.0111 0.0037 0.0177 0.0198 
 (-0.18) (1.02) (0.36) (0.14) (0.64) (0.64) 
Trade -0.0392 -0.0387 -0.0633 -0.0183 -0.0462 -0.0825** 
 (-0.90) (-0.91) (-1.50) (-0.45) (-1.16) (-1.99) 
Right -0.0199*** -0.0163*** -0.0195*** -0.0142*** -0.0142*** -0.0167*** 
 (-4.17) (-3.85) (-4.48) (-3.31) (-3.28) (-3.79) 
Disp_Index 0.0001 0.0002 0.0006 0.0017* 0.0004 -0.0001 
 (0.14) (0.19) (0.54) (1.74) (0.39) (-0.12) 
Constant 0.0347*** 0.0347*** 0.0261*** 0.0320*** 0.0249*** 0.0173*** 

 
(9.90) (9.73) (7.26) (9.23) (7.36) (5.00) 
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Firm FE YES YES YES YES YES YES 
Year FE YES YES YES YES YES YES 
Observations 124,594 124,594 124,594 124,594 124,594 124,594 
Adj. R-squared 0.777 0.799 0.806 0.767 0.776 0.783 
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Appendix D: Additional Country-level Controls 

 
This table presents regression results after controlling additional country characteristics All variable definitions are given 
in Appendix B. Each regression includes firm and year fixed effects. Below the coefficient estimates in parentheses are t-
values adjusted for heteroscedasticity and country-level clustering. ***, **, and * indicate significance at the 1% 5%, and 
10% levels, respectively. 

 

  LnPat LnCite 

Variables (1) (2) (3) (4) (5) (6) (7) (8) 

                  

EPL_C -0.0509** -0.0430*** -0.0360** -0.0217 -0.0546*** -0.0495*** -0.0390*** -0.0185* 

 
(-2.73) (-2.91) (-2.45) (-1.34) (-3.44) (-3.61) (-3.14) (-1.81) 

Recession 0.0033 -0.0014 0.0016 0.0034 -0.0000 -0.0030 0.0017 0.0025 

 
(1.19) (-0.34) (0.39) (0.94) (-0.01) (-0.88) (0.55) (0.95) 

GDP_Growth 
 

-0.0046* -0.0041* 0.0002 
 

-0.0029* -0.0022 0.0001 

  
(-1.86) (-1.76) (0.25) 

 
(-1.81) (-1.60) (0.10) 

Unemployment 
  

0.4154** 0.0961 
  

0.6349*** 0.5237*** 

   
(2.48) (0.42) 

  
(3.80) (3.74) 

Corruption 
   

-0.0228* 
   

-0.0006 

    
(-2.00) 

   
(-0.05) 

Constant -0.1124 0.0460 -0.2559 0.7300** -0.1121 -0.0103 -0.4741 0.4853 

 
(-0.29) (0.15) (-0.86) (2.10) (-0.36) (-0.04) (-1.68) (1.62) 

         

Firm FE YES YES YES YES YES YES YES YES 

Year FE YES YES YES YES YES YES YES YES 

Observations 90,752 90,752 90,574 62,857 90,752 90,752 90,574 62,857 

Adj. R-squared 0.687 0.687 0.687 0.764 0.772 0.772 0.773 0.833 
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Appendix E: Alternative Innovation Variables 
 
This table presents the results for alternative innovation variables. In columns (1) and (2), the dependent variable is 
LnCitePatt+N, which is the natural logarithm of citations received on the firm’s patents applied, scaled by the number of 
patents applied for in year t+N (N=0 or 2). In columns (3) and (4), the dependent variable is Generalityt+N, the Herfindahl 
Index of the citing patents used to capture dispersion across technology classes in year t+N. In columns (3) and (4), the 
dependent variable is Originalityt+N, the Herfindahl Index of the cited patents used to capture dispersion across 
technology classes in year t+N. All other variable definitions are given in Appendix B. Each regression includes firm and 
year fixed effects. Below the coefficient estimates in parentheses are t-values adjusted for heteroscedasticity and country-
level clustering. ***, **, and * indicate significance at the 1% 5%, and 10% levels, respectively. 

 
  (1) (2) (3) (4) (5) (6) 
 LnCitePatt+N Generalityt+N Originalityt+N 

 
N=0 N=2 N=0 N=2 N=0 N=2 

EPL_C -0.0491*** -0.0466** -0.0116*** -0.0105** -0.0191*** -0.0175*** 

 
(-2.89) (-2.68) (-3.05) (-2.49) (-3.09) (-3.37) 

       
Controls YES YES YES YES YES YES 
Constant -0.2195 0.0058 -0.1899 -0.1567 -0.1971 -0.1750 

 
(-0.67) (0.02) (-1.47) (-1.43) (-1.08) (-1.16) 

Firm FE YES YES YES YES YES YES 
Year FE YES YES YES YES YES YES 
Observations 90,752 90,752 90,752 90,752 90,752 90,752 
Adj. R-squared 0.585 0.590 0.668 0.669 0.674 0.676 
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