

 1

Laboratory as a Service (LaaS): a Model for
Developing and Implementing Remote
Laboratories as Modular Components

Mohamed Tawfik1, Christophe Salzmann2, Denis Gillet2, David Lowe3, Hamadou Saliah-Hassane4, Elio
Sancristobal1, and Manuel Castro1

1 Electrical & Computer Engineering Department, Spanish University for Distance Education
(UNED), Madrid, Spain

2 School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne,
Switzerland

3 Faculty of Engineering and Information Technologies, University of Sydney, Sydney, Australia
4 TELUQ, University of Quebec, Montreal, Canada

Abstract—This contribution introduces a novel model,

Laboratory as a Service (LaaS), for developing remote

laboratories as independent component modules and

implementing them as a set of loosely-coupled services to be

consumed with a high level of abstraction and virtualization.

LaaS aims to tackle the common concurrent challenges in

remote laboratories developing and implementation such as

inter-institutional sharing, interoperability with other

heterogeneous systems, coupling with heterogeneous

services and learning objects, difficulty of developing, and

standardization.

Index Terms—component-based remote laboratories, LaaS,

modular remote laboratories.

I. INTRODUCTION

In the last decade, we have witnessed a significant
proliferation of remote laboratories [1, 2], unconstrained
by temporal or geographical considerations, in all fields of
education—particularly engineering and applied science
education—thanks to the exponential revolution of digital
technologies. Initial concerns were focused on expanding
their application range and dealt with commonplace issues
such as security, scheduling, and bandwidth, which
eventually, and to a great extent, have been overcome.

Later, the general conclusion from several empirical
studies [3-5] was that learning outcomes depends on the
exact instructions given to group and the different patterns
of work and collaboration regardless of the laboratory
format. Thus, current concerns are focused on issues
related to remote laboratories delivery format and their
pedagogical impact. These issues encompass their
integration with heterogeneous educational systems and
coupling with other services and learning objects in order
to yield a rich scaffold educational environment and hence
better learning experience and outcomes. In addition, such
integration will promote sharing laboratories across
institutions and hence more availability and cost offset.

In response to these needs, this paper proposes a novel
model, Laboratory as a Service (LaaS), for developing and
implementing modular remote laboratories efficiently with
a high level of abstraction and virtualization. The goal is
to:

1) Define an organized manner for sharing remote
laboratories globally among institutions.

2) Allow wrapping remote laboratories in any
heterogeneous application container (e.g., widget,
applet, or any Web client) independently of the
underlying technology adopted in both, as well as,
their coupling and mashing up with heterogeneous
services (e.g., learning objects) across the Web.

3) Facilitate maintenance, reusability, and leveraging
legacy equipment.

4) Allow interchangeability of components between
provider and consumer—seamlessly and
programmatically—insofar as consumer could
contribute with one or more component instead of
the fully-reliance on the provider’s equipment and
facilities.

5) Promote online experimentation and discovery in
either every day’s formal or informal contexts.

6) Set principles for a first global standardized design
pattern—for remote laboratories development and
implementation—to be followed and adopted by
remote laboratories developers.

The rest of the paper is structured as follows: Section II
discusses the previous efforts and the related works, and
outlines the novelty of the proposed solution. Prior
delving into the description of the LaaS model, Section III
describes the modular remote laboratories concept.
Section IV describes the proposed LaaS model which
builds on top of the modular remote laboratory concept.
Section V provides a demonstrative case study example on
the implementation of LaaS. As a Proof-of-Concept
(POC), in Section VI the proposed theory is applied to the
real-world by developing the first modular remote
prototype. Finally, a conclusion is drawn in Section VII
along with the future works.

II. RELATED WORKS

 Earlier attempts to deliver remote laboratories as a
service can be found in [6-10] . In [6], the functions of
commercial instruments based on Virtual Instrument
Software Architecture (VISA) and Interchangeable Virtual

 2

Instruments (IVI) were listed in Web Services Description
Language (WSDL) files and registered in a Universal
Description, Discovery and Integration (UDDI) to be
allocated and consumed by Simple Object Access
Protocol (SOAP) Web service. A similar approach for
controlling instruments online using SOAP Web service is
found in [7, 8]. In [9], a simple experiment was developed
in LabVIEW and delivered as Representational State
Transfer (REST) Web service, to be consumed using
Asynchronous JavaScript and XML (AJAX) calls. A
similar approach based on REST Web service and AJAX
is found in [10].

A distinctive approach was adopted in [11], where a
further effort have been realized in order to add
intelligence to remote laboratories at the server side and to
make little or no assumption about the client. The
underlying communications in this approach were realized
using Websockets owing to its efficiency and high
transmission rate. On the other hand, to promote
compatibility with different client applications.

It is also worth noting that the acronym LaaS has been
pronounced in the literature for almost three years few
times, with two different interpretations. The first
interpretation refers to the cloud computing and the
Anything as a Service (XaaS) concepts as described in
[12-16]. In these approaches, however, the difference
between cloud computing and remote access is still
blurred. Yet, there is no clear application of the cloud
computing principles on real physical laboratories that
might be distributed at various universities globally.

The second interpretation—the interpretation assumed
in this paper—simply refers to the delivery of remote
laboratory as a service that can interoperate with
heterogeneous systems and services. The second
interpretation is more generic and can be implemented
many ways. For instance, in [17], Web service was
adopted in conjunction with a proprietary Lab Description
Language (LDL) developed by the author in order to
achieve interoperability.

Even though, the solution proposed in this paper (LaaS)
builds on top of these efforts, it has four main distinctive
aspects. The first aspect is that Web service in LaaS is a
method and not a solution itself and its adoption is not
necessary. For instance, for data streaming (e.g., video and
measurement streaming) low level protocol
communications are implemented instead. The second and
most important aspect is that LaaS goes further beyond
abstracting the functions of the laboratories; it implies
their development as a set of independent component
modules in order to allow interchangeability of
components between providers and consumers—
seamlessly and programmatically—insofar as consumer
could contribute with one or more component instead of
the fully-reliance on the provider’s equipment and
facilities. The third aspect is that LaaS contemplates the
future Web and the next generation learning environment
in terms of: (1) seamlessly allocating and importing
services; (2) bringing objects to the Web; and (3) mashing
up and coupling services together—which was possible, in
part, thanks to the modular remote laboratories concept.
The fourth and last aspect is that LaaS is meant to be a
model that addresses the development of remote
laboratories, as well as, their implementation process
broadly—which entails the relation between consumers,
providers, and service broker, as well as, the format of

exchanging information and resources between them. As a
Proof-of-Concept, a modular remote laboratory was
developed successfully and implemented according to the
LaaS model.

III. MODULAR REMOTE LABORATORIES

Consider the generic and common remote laboratory
architecture shown in Figure 1. Typically a remote
laboratory consists of a laboratory server—which is
connected to all the equipment and hosts the control
software—in addition to any combination of the on-
demand components. The control software can be
developed either from scratch using a multipurpose
programming language (e.g., Java, C#, or C/C ++) or
using a commercial solution, commonly LabVIEW or
MATLAB. The Data Acquisition (DAQ) board acts as an
interface between the laboratory server and the equipment
that don’t support direct interface to the computer. A
Webcam is used for video live streaming. Commercial
Automatic Test Equipment (ATE) is used for specific
signal generation or acquiring tasks. Standard connectors
are used for connecting components directly to the
laboratory server without intermediaries and they
encompasses Universal Serial Bus (USB), LAN-based
eXtensions for Instrumentation (LXI), PCI eXtensions for
Instrumentation (PXI), and AdvancedTCA Extensions for
Instrumentation and Test (AXIe). Sensors and actuators
are used to convert physical parameters from the objects
under control to electrical signals, and vice versa,
respectively. A switching board is used for remote
switching or wiring any terminals either from the objects
under control or the ATE. Some applications might
require a controller—in addition to the laboratory server—
for a specific task. Commonly used controllers are either
microcontrollers or Field-Programmable Gate Arrays
(FPGAs) [18, 19].

Modular remote laboratories or component-based
remote laboratories are based on interchangeable
component modules that expose their I/O terminals or
their I/O connectors (i.e., if they physically don’t exist or
unavailable) in an independent and an abstracted way.

Figure 1. Modular remote laboratories architecture.

 3

Some components can be modularized and some are fixed
and cannot be modularized or interchanged
programmatically (e.g., laboratory server and DAQ
board). The idea beyond modularizing remote laboratories
is to facilitate maintenance, reusability, and
interchangeability of components seamlessly and
programmatically.

In this sense, if the I/O terminals and connectors of all
the component modules of a remote laboratory are
provided in a “service description file” in order to allow
consumers to get clues on them as shown in Figure 1, the
consumer would be able to consume them separately.
Furthermore, if one of the component modules is not
available and the appropriate I/O connectors are provided
instead, the consumer could replace this module with
his/her own one instead of the full-reliance on the
provider’s equipment. For instance, a remote laboratory
for image processing may expose an API to allow user to
connect his/her camera capture. The image will be
transmitted to the laboratory for processing and then
return back to the user.

IV. LABORATORY AS A SERVICE (LAAS)

LaaS is a model for developing and implementing
modular remote laboratories efficiently. It builds upon the
modular remote laboratory concept and implies the
delivery of the entire laboratory functions and components
in the “service description file” as a set of abstracted
services. LaaS follows the Service Oriented Architecture
(SOA) and fulfills its essential requirements, which are:
(1) interoperability of services regardless of their platform,
operating system, and programming language; (2)
description of services, their characteristics, and the data
that they exchange in a clear and unambiguous manner
that allows a potential consumer to allocate and consume
them; and (3) access to services by means of standard
communication protocols and common format messages.
LaaS defines the relation between laboratory providers
(i.e., providers of the “service description files”), service
broker repository or market place (i.e., Web portal in
which “service description files” are indexed), and
laboratory consumers (i.e., who build an end-user
application upon the provided services). LaaS merges
features from cloud computing—in terms of consuming
services on-demand with minimum restrictions and higher
virtualization—and features from grid computing—in
terms of global distribution. LaaS embraces the Web of
Things (WoT) in terms of coupling laboratories with
heterogeneous services and bringing objects to the Web
for all spectrum of needs—in either formal or informal
contexts.

From the cloud computing perspective, “service
description files” should be registered at an intermediary
and provided to users on demand abstracting to him the
physical layer and the technical concerns. However, the
laboratory hardware would be hosted physically at their
distributed providers but allocated and discovered at the
broker. Thus, LaaS model is partially cloud and partially
distributed and servers of each laboratory will still be
located at their provider’s institution. The cloud will be a
global semantic repository server denominated “market
place” as depicted in Figure 2. The market place is a
repository that at least creates providers or institutions
profiles and supports semantic Web technologies—or at
least provides an enhanced search-engine. Once the

consumer has imported the LaaS he/she wants, he/she
would be able to consume its APIs and communicate
directly with the equipment without any extra layers in
between.

Developers or consumers are free to develop their own
Graphical User Interface (GUI) in form of Widget, applet,
or any Web client, using their preferred programming
language and technologies upon the provided services in
the “service description file”. Furthermore, consumer
might consume part of the provided services to develop
widget as GUI for entering values and the other part for
developing another widget as a GUI for drawing graphs
from the received measurement. Thus, LaaS will facilitate
the creation of mashed-up learning services and
customized Personal Learning Environments (PLEs).

External software applications provides GUI to the
users by supporting interactive multimedia. Interactive
multimedia can be developed by plugin-based solutions
such as ActiveX controls, Java applets, and Rich Internet
Applications (RIAs). Recently, several approaches
endeavored to shift from plug-in solutions towards native
Web technologies such as AJAX, and JavaScript [10, 20]
in order to achieve maximum compatibility and mobile
access. All recent Internet browsers and platforms support
Ajax and there is no need to install any software on the
client machine. AJAX per se does not provide the rich
multimedia and graphical capabilities provided by RIAs.
Both solutions usually co-exist and there is no estimation
that AJAX would replace RIAs in the near future. Another
approach towards open standards is found in [21], where
OpenSocial widgets are built using JavaScript and
Dynamic HTML (DHTML) in order to render in any
widget engine or container.

If the laboratory is made available, it should be
accessible unless another session is currently running by
another user. Else, the consumer should contact the
provider for enquiries. It is left up to the consumer to build
his/her own scheduling system for a large scale

Figure 2. LaaS model.

 4

deployment with numerous groups and students.
Scheduling system is out of the scope of the LaaS model
as it focuses on the lowest level implementation for
maximum abstraction.

A. SOA Immplementation

The most popular middleware technologies for
implementing SOA are Common Object Request Broker
Architecture (CORBA), Distributed Component Object
Model (DCOM), JAVA Remote Method Invocation
(RMI), Data Distribution Service (DDS), and Web
services. Software specifications—targeting high level
business applications—like Java Business Integration
(JBI), Windows Communication Foundation (WCF), and
Service Component Architecture (SCA) provide a model
for composing applications that follow SOA and thus
facilitate developing SOA solutions.

DCOM relies on a proprietary binary protocol of
Microsoft, which isn’t supported by all object models and
thus hinders interoperability across platforms. Moreover,
DCOM usually requires a highly administered, costly, and
complex environment to implement and manage.
Similarly, Java Middleware can only be implemented with
the presence and requirement of Java Virtual Machine
(JVM) in remote and local components of the system
involved. CORBA is relatively advantageous as it allows
developers to choose almost any language, hardware
platform, and networking protocol. However, its
development, implementation, and maintenance are very
costly and it fails to provide the features of security and
versioning. It is also too low-level and complicated and it
has a steep learning curve. Therefore, CORBA objects
have been hard to reuse effectively. A common major
problem of the above mentioned solutions is that if the
client has a firewall or a very restrictive server which only
enables HTTP connections their communication could
become impossible. Other technologies such as DDS,
.NET Remoting, and Web services have quickly gained
greater industry acceptance and support than predecessors
like DCOM, RMI, or CORBA.

Web services have been designed to overcome the
problems of platform dependence defining a standard way
to exchange information through internet to an
unprecedented level. Web services are based on open Web
standards and broadly support interoperability across

heterogeneous environments. These open standards make
Web services indifferent to the operating system, object
model, and programming language used. Web services are
easily tunneled on HTTP in firewalls and proxies in
contrast to DDS and .Net Remoting. By applying
performance enhancement techniques, Web services can
be the only potential candidate for defining the LaaS
model. Web services are either activity-oriented—
implemented by SOAP—or resource-oriented—
implemented by REST.

REST Web services are preferred for hypermedia
systems, e-commerce, and ad-hoc composition over the
Web (mashup), while SOAP Web services are preferred in
Enterprise application integration (EAI) and in
sophisticated Business-to-Business (B2B) applications
with a longer lifespan and advanced QoS requirements
[22]. The simplicity and the high performance of REST—
as well as its homogeneity with Web applications in
general and mashup applications in particular—makes it
the ideal candidate for implementing the LaaS model. In
our case service discovery wouldn’t be necessary since its
role will be assigned to the market place [23].

Web services, however, are only suitable for
transactions or request/response messages. For persistent
connections like streaming of data (e.g., Webcam video
streaming or measurement streaming), other approaches
should be considered to allow server pushing like encoded
over Transmission Control Protocol (TCP) or User
Datagram Protocol (UDP) and the most recently HTML5
WebSocket APIs— which will help avoiding the reliance
on any decoding plugins and promoting the development
of Web native applications. WebSocket APIs haven’t been
officially standardized by the World Wide Web
Consortium (W3C) yet. Nevertheless, it is recommended
to rely on low level protocols such as TCP and UDP to
achieve maximum abstraction and compatibility. Thus,
“service description file” should include
laboratory/experiment information and all its supported
functions and connections.

V. CASE STUDY

The idea of the proposed theories can be briefly
resumed in the following demonstrative example.
Consider the following scenario shown in Figure 3, where
the owner of the modular laboratory provides it as a set of

Figure 3. LaaS case study scenario 1.

 5

services in a “service description file”, according to the
LaaS model, to the consumer.

In this example, the laboratory provides an experiment
for implementing a control strategy on an electric motor.
User uploads his/her Proportional-Integral-Derivative
(PID) control program to the controller, changes the PID
parameters (e.g., speed and position), and monitors the
feedback effect of different control loops. The laboratory
has 5 main component modules: a motor, a controller, a
Webcam, a power supply, and a database. All the
provided services of the laboratory (i.e., the functions, the
I/O terminals, and the I/O connectors) are listed in the
“service description file” (e.g., a pdf file) to be read and
consumed by the consumer. The service description file is
divided into two main parts:

1) The first part contains information such as:

 A description about the experiment, how it
works, objectives, etc.

 Metadata ontologies to help the mediator or
the service broker to list it in the marketplace.

 Days and hours in which the laboratory is (or
not) available if applicable.

 Access policy and contact or query forms for
applying access if applicable.

2) The second part contains all the laboratory
functions, I/O terminals, and I/O connectors in
form of either Web service or Uniform Resource
Identifier (URI) for streaming over low level
protocol or Websocket. The Webcam component
module will provide an output terminal for video
streaming. The controller component module will
provide an input terminal to allow user to submit
his/her own program code file.

The service broker (or the provider him/herself)
indexes the “service description file” in the market place
(i.e., not shown in the figure for simplicity). The consumer
(or developer) allocates the laboratory in the marketplace
and downloads the “service description file”. Upon the
services provided in that file, the consumer builds his/her
own widget application and wraps it in a Sharable Content
Object Reference Model (SCORM) container. User,
afterwards, will be able to load his SCORM package in
any SCORM-compatible LMS. User might not consume
all the provided services in the same widget, instead

he/she might link some of the provided services to other
service-based object. For instance, user might want to
introduce the PID parameters though his own widget but
monitor the results in an external widget from different
server that are specialized in building charts with regard to
the received parameters.

Consider the same scenario of the previous example but
with some modifications as shown in Figure 4, where the
provider doesn’t wish to share some of his laboratory
component modules, the database and the power supply.
In this case, the provider tries as possible to reduce the
load on his/her own equipment and facilities and instead
leaves it to the consumer to connect his/her own
component modules as long as they adhere to the same
adopted standard. To accomplish this, the provider instead
provides the consumer with standard-based I/O connectors
to connect his/her component modules. In this example,
the consumer connects his/her database using an Open
Database Connectivity (ODBC) connector and connects
his/her power supply using IVI/VISA connector. The rest
of the procedures are same as the previous example.

This aim of this example was to explain the concept of
modular components and interchangeability using two
components, however the idea is much broader and can be
applicable to any other laboratory component.

VI. MODULAR REMOTE LABORATORY PROTOTYPE

In this section, we apply the proposed theory to the real
world by developing the first modular remote laboratory
prototype to be delivered according to the LaaS model.
The developed laboratory is a motor-tacho laboratory,
shown in Figure 5, which consists of a NI USB-6009
DAQ card from National Instruments (www.ni.com), a
28GD11-222E/404E motor-tacho from Portescap
(www.portescap.com), and an integrated Webcam. The
software was entirely developed using LabVIEW and a
numerical control code was developed using MATLAB
and imported as an “.m file” into the LabVIEW code
using the “LabVIEW MathScript Node”.

A. Experiment Description

The idea of its experiment is very simple as it aims to
emphasize the theory and prove its reliability rather than
delving into the technical details of the experiment per se.
In the experiment, user feeds the motor with a voltage

Figure 4. LaaS case study scenario 2.

http://www.ni.com/
http://www.portescap.com/

 6

rang from 0V to 5V and monitors the corresponding
voltage value measured by the tachometer. A control
strategy is implement—using MATLAB—so that if the
applied voltage is greater than 5V it will be automatically
modified and introduced as only 5V. Likewise, if the
applied voltage is lower than 0V, it will be introduced as
0V. The tachometer measurement is streamed
continuously until the user either stops the experiment or
introduces a new input voltage value. Each time the user
inputs a value, it is automatically recorded and stored
temporarily. Finally, when the user stops the experiment,
all the introduced input voltage values—previously
stored—are retrieved and copied to his/her database (i.e.,
not the database of the provider).

B. LaaS immplementation

The motor-tacho laboratory has three component
modules as shown in Figure 6, and one of these modules,
the database, allows interchangeability using a standard
connector, ODBC. This laboratory requires that the
consumer connects his/her own ODBC-compliant
database to the laboratory server software by sending its
Data Source Name (dsn) file in order to be identified. The
file is transferred as follows: first, the consumer hosts the
“.dsn file” in a Web server and provides the URL of the
file to the laboratory server software through a Web
service call; then, the laboratory server software copies the
information in the “.dsn file” and use it to communicate
remotely with the consumer’s database.

Web service were created using the “LabVIEW
RESTFul Web Service Tool” and through proxy VIs—not
the main laboratory software VI—because Web service in
LabVIEW cannot run with loops owing to the inherent
HTTP latency compared to the loops speed. Thus, in order
to keep the main laboratory software VI running and

accepting sequential calls, Web service should be
implemented using proxy VIs that don’t contain loops so
that Web service calls would be handled by the proxy VIs
and the proxy VIs would accordingly communicate with
the running laboratory software VI. This will, in turn,
allows the provider to visually monitor the main
laboratory software VI running and its associated bugs.
The communication between the proxy VIs and the
laboratory software VI cannot be local even if both run on
the same machine because the proxy VIs will be: uploaded
to memory, hosted by the “LabVIEW Application Web
Server”, and deployed independently of the LabVIEW
environment. Thus, the communication will be realized on
network using “LabVIEW Shared Variables” as illustrated
in Figure 7.

In the current example, two proxy VIs will be needed,
method1 and method1. Each proxy VI acts as a single
Web service method. The default TCP port of the
“LabVIEW Application Web Server” is 800.

The tachometer streams the encoded reading on the
TCP port 89 once an incoming connection is detected. The
Webcam server was developed in LabVIEW using the
ActiveX control distribution of VideoCapX
(www.videocapx.com). LabVIEW acts as an ActiveX
container and sequential methods and properties were
created using the “Property Node” and the “Invoke Node”
functions in order to allow streaming encoded captures
over the TCP port 88.

The “service description file” consists of the following:
 Description: A remote laboratory for switching

on a permanent magnet DC motor and reading
the output using a tachometer.

 Keywords: Principles of control, electric
machines, DC motor, power engineering,
electrical engineering.

 Provider: Universidad Nacional de Educación a
Distancia (UNED).

 Contact: mtawfik@ieec.uned.es, 0034000000.

 Operation days/hours: Open for public each
week from Friday to Monday from 9am to 9 pm,
otherwise contact for enquiry.

 Additional resources and manuals:
http://.........../Motortacho_User_Manuel.pdf.,
http://youtube.com/watch?V=6..MotortachoRem
oteLab.

 Component modules: WebCam (provider),
Motor-tacho (provider), and database (user,
standard=ODBC).

 Provided services:

1) http://192.168.1.66:88>>>for Webcam
streaming

i.e., Encapsulation ASF/WMV, video codec
(VP8), audio codec: MPEG audio, caching
600ms.

2) http://192.168.1.66:89>>>for tachometer
reading streaming

i.e., data is sent as a String and at 400 ms
sampling rate.

3)
http://192.168.1.66:80/webServicemethod1/:In
putVolt>>>for introducing input voltage
value.

Figure 5. Motor-tacho laboratory.

Figure 6. LaaS: motor-tacho laboratory.

mailto:mtawfik@ieec.uned.es
http://.........../Motortacho_User_Manuel.pdf
http://youtube.com/watch?V=6..MotortachoRemoteLab
http://youtube.com/watch?V=6..MotortachoRemoteLab
http://192.168.1.66:88/
http://192.168.1.66:89/
http://192.168.1.66/webServicemethod1/:InputVolt
http://192.168.1.66/webServicemethod1/:InputVolt

 7

i.e., as a response, the user gets the latest
tachometer reading.

3)
http://192.168.1.66:80/webservice/method2/:U
serID/:Password/*ODBCURL>>>for
introducing the path of the user’s .dsn file and
his/her database credentials.

i.e., as a response, the session is ended and a
list of the input voltage values introduced by
the user is copied to his/her database in a new
created columns (col1 and col2). Additional
information are provided as a response such
as: the introduced parameters by him/her
except the password value, a list of the voltage
input values, database connection information,
number of TCP connections and sent packages
during the tachometer reading streaming, and
number of samples written by the virtual DAQ
channel.

C. Consumption

As mentioned previously, LaaS doesn’t contemplate
the way consumers would deploy the provided services in
their end-user applications. It only assures the delivery of
services in an abstracted way and basing on well-known
and accepted standards. Assuming the “service
description file” was deposited and indexed in a service
broker Web portal, now let’s consider the scenario from
the consumer’s perspective.

After allocating and reading the “service description
file”, and having understood the laboratory functions and
components, we can consume the streaming URIs of the
tachometer reading and the Webcam either
programmatically or using a decoding client.

We can start a new session by method1 and introduce
the following voltage inputs successively, 8, -3, 2, 4, and
6V. Notice that values beyond the maximum voltage
value (5V) will apply only the maximum voltage value

Figure 7. Topology of Web service implementation in LabVIEW.

http://192.168.1.66/webservice/method2/:UserID/:Password/*ODBCURL
http://192.168.1.66/webservice/method2/:UserID/:Password/*ODBCURL

 8

(5V) and values beyond the minimum voltage value (0V)
will apply only 0V because of the control strategy written
in MATLAB.

We finally insert the URL of the “.dsn file” of our
ODBC-compliant database call, along with the
credentials (e.g., username=root and password=labview),
via the Web service method2 (e.g.,
http://192.168.1.66:8000/webservice/method2/root/labvie
w/192.168.1.22:80/odbctrial2.dsn).

As a result, the session is ended and the following
parameters are shown: the database connection
properties; the 2D array of the 5 introduced voltage
values (i.e., this array is copied to our database); the TCP
connections for tachometer reading streaming and the
sent packages; and the number of samples written by the
virtual DAQ channel. The response is as follows.

<Response>
 <Terminal>
 <Name>UserID value</Name>
 <Value>root</Value>
 </Terminal>
 <Terminal>
 <Name>sentPackages value</Name>
 <Value>79</Value>
 </Terminal>
 <Terminal>
 <Name>#connections value</Name>
 <Value>15</Value>
 </Terminal>
 <Terminal>
 <Name>NumberOfSamples value</Name>
 <Value>5</Value>
 </Terminal>
 <Terminal>
 <Name>User Inputs values</Name>
 <Value>
 <DimSize>5</DimSize>
 <DimSize>2</DimSize>
 <Name><Value>0.00</Value></Name>
 <Name><Value>8.00</Value></Name>
 <Name><Value>1.00</Value></Name>
 <Name><Value>-3.00</Value></Name>
 <Name><Value>2.00</Value></Name>
 <Name><Value>2.00</Value></Name>
 <Name><Value>3.00</Value></Name>
 <Name><Value>4.00</Value></Name>
 <Name><Value>4.00</Value></Name>
 <Name><Value>6.00</Value></Name>
 </Value>
 </Terminal>
 <Terminal>
 <Name>ODBCURL value</Name>
 <value>192.168.1.22:80/odbctrial2.dsn</value>
 </Terminal>
 <Terminal>
 <Name>DBConnectionProperties value</Name>
 <Value>
 <Name>command timeout (s)</Name>
 <Value>30</Value>
 <Name>connection string</Name>
 <Value>Provider=MSDASQL.1;User ID=root;</Value>
 <Name>default database</Name>
 <Value>labview</Value>
 <Name>provider</Name>
 <Value>MSDASQL.1</Value>
 </Value>
 </Terminal>
</Response>

The create columns (col1 and col2) and the data written
to our database (the array of input voltage values; the 5
inserted values) is shown in Figure 8.

Recall that during the execution of the experiment

sessions, the administrator or the lab provider can
monitor the main application VI running and that the
main application should be always running otherwise the
calls of the proxy VIs (implemented as Web service)
wouldn’t get response and consequently wouldn’t answer
the user’s petitions. Figure 9 shows the response of step 4
at the provider’s main application VI.

VII. CONCLUSION AND FUTURE WORKS

In this contribution, two novel concepts were
introduced: (1) modular remote laboratories, which aims
to convert laboratories into modular components in order
to facilitate maintenance, reusability, and
interchangeability of components seamlessly and
programmatically; and (2) LaaS model: which aims to
convert modular remote laboratories into a set of services
to be consumed by users with a high level of abstraction
and virtualization. It defines, as well, the broader
implementation mechanism of these laboratories. A broad
case-study example that resumes both concepts was
provided. Afterwards, a practical implementation of both
concepts was provided, where a simple modular remote
laboratory prototype was successfully developed and

Figure 8. Topology of Web service implementation in LabVIEW.

Figure 9. Response to method2 at the main application VI.

http://192.168.1.66:8000/webservice/method2/root/labview/192.168.1.22:80/odbctrial2.dsn
http://192.168.1.66:8000/webservice/method2/root/labview/192.168.1.22:80/odbctrial2.dsn

 9

consumption results were provided.

From the low level perspective, future works will be
focused on expanding the application range and
modularizing different kinds of remote laboratories with
different components and operation scenarios in order to
investigate further issues and discover further solutions.
As well, future works will be focused on implementing a
scheduling mechanism using extra layers while
maintaining the service description file as abstracted as
possible in accordance with the premise of the LaaS
model.

From the high level perspective, the final goal is to set
bases towards an acceptable standard model to which
developers and laboratory providers could adhere to. For
this purpose, further collaboration will be realized with the
IEEE P1876™ Standard for Networked Smart Learning
Objects for Online Laboratories Working Group and the
Global Online Laboratory Consortium (GOLC)
consortium.

ACKNOWLEDGMENT

Authors would like to acknowledge the support of the
following projects: e-Madrid (S2009/TIC-1650),
RIPLECS (517836-LLP-1-2011-1-ES-ERASMUS-
ESMO), PAC (517742-LLP-1-2011-1-BG-ERASMUS-
ECUE), MUREE (530332-TEMPUS-1-2012-1-JO-
TEMPUS-JPCR), and Go-Lab (FP7-ICT-2011-8/317601).
As well, Authors would like to acknowledge the support
of the VISIR Community, the GOLC consortium, and the
IEEE P1876™ Standard for Networked Smart Learning
Objects for Online Laboratories Working Group.

Last but not least, authors would like to acknowledge
the project s-Labs (TIN2008-06083-C03-01) for
financially supporting the research visit of Mr. Tawfik at
UTS and EPFL, which resulted in developing the theory
and the prototype.

REFERENCES

[1] M. Tawfik, E. Sancristobal, S. Martin, G. Diaz, J. Peire,
and M. Castro, “Expanding the Boundaries of the
Classroom: Implementation of Remote Laboratories for
Industrial Electronics Disciplines,” Industrial

Electronics Magazine, IEEE, vol. 7, no. 1, pp. 9, March
19, 2013.

[2] M. Tawfik, E. Sancristobal, S. Martin, R. Gil, G. Diaz, J.
Peire, et al., “Virtual Instrument Systems in Reality
(VISIR) for Remote Wiring and Measurement of
Electronic Circuits on Breadboard,” Learning

Technologies, IEEE Transactions on, vol. 6, no. 1, pp.
13, March 12 (First Quarter) 2013.

[3] M. F. Aburdene, E. J. Mastascusa, and R. Massengale,
"A proposal for a remotely shared control systems
laboratory," presented at the Frontiers in Education
Conference, 1991. Twenty-First Annual Conference.
'Engineering Education in a New World Order.'
Proceedings., West Lafayette, IN, 1991, pp. 589 - 592

[4] I. E. Allen and J. Seaman, "The ninth annual survey of
Solan-C: Going the Distance: Online Education in the
United States, 2011," The Sloan Consortium,
Newburyport 2011.

[5] J. E. Corter, S. K. Esche, C. Chassapis, J. Ma, and J. V.
Nickerson, “Process and learning outcomes from
remotely-operated, simulated, and hands-on student
laboratories,” Computers & Education, vol. 57, no. 3,
pp. 14, November, 2011.

[6] H. Saliah-Hassane, D. Benslimane, I. D. L. Teja, B. F.
L.K., G. Paquette, M. Saad, et al., "A General
Framework for Web Services and Grid-Based
Technologies for Online Laboratories," presented at the
The International Conference on Engineering Education
and Research (iCEER) Tainan, Taiwan, 2005, p. 7.

[7] C. D. Capua, A. Liccardo, and R. Morello, "On the Web
Service-Based Remote Didactical Laboratory: Further
Developments and Improvements," presented at the
Instrumentation and Measurement Technology
Conference (IMTC), Proceedings of the IEEE
(Volume:3) Ottawa, Ont. , 2005, p. 5.

[8] A. Baccigalupi, C. D. Capua, and A. Liccardo,
"Overview on Development of Remote Teaching
Laboratories: from LabVIEW to Web Services,"
presented at the Instrumentation and Measurement
Technology Conference (IMTC), Sorrento, Italy, 2006,
p. 6.

[9] M. Ngolo, L. B. Palma, F. Coito, L. Gomes, and A.
Costa, "Architecture for remote laboratories based on
REST web services," presented at the E-Learning in
Industrial Electronics. ICELIE '09. 3rd IEEE
International Conference on Porto 2009, p. 6.

[10] S. Dutta, S. Prakash, D. Estrada, and E. Pop, “A Web
Service and Interface for Remote Electronic Device
Characterization,” Education, IEEE Transactions on,
vol. 54, no. 4, pp. 6, November, 2011.

[11] C. Salzmann and D. Gillet, "Smart device paradigm,
Standardization for online labs," presented at the Global
Engineering Education Conference (EDUCON), IEEE,
Berlin, 2013, p. 5.

[12] V. Cheruku, "Integrating Physical Laboratories into a
Cloud Environment," Master Thesis, Computer Science,
North Carolina State University, Raleigh, North
Carolina, 2013.

[13] R. I. Dinita, G. Wilson, A. Winckles, M. Cirstea, and A.
Jones, "A Cloud-based Virtual Computing Laboratory
for Teaching Computer Networks," presented at the
Optimization of Electrical and Electronic Equipment
(OPTIM), 13th International Conference on, Brasov,
2013, p. 5.

[14] C. R. S. d. Oliveira and I. N. d. Oliveira, "Uma proposta
para a disponibilidade de Laborató-rios de Física como
serviços da Computação em Nuvem," presented at the
9th International Information and Telecommunication
Technologies Symposium (I2TS'2010) Rio de Janeiro,
Brazil, 2010, p. 4.

[15] J. Rugelj, M. Ciglarič, A. Krevl, M. Pančur, and A.
Brodnik, "Constructivist Learning Environment in a
Cloud," in Workshop on Learning Technology for

Education in Cloud (LTEC'12). vol. 173, L. Uden, E. S.
Corchado Rodríguez, J. F. De Paz Santana, and F. De la
Prieta, Eds., ed: Springer Berlin Heidelberg, 2012, pp.
193-204.

[16] Y. Luo and X. Q. Zhang, “Cloud-Based Platform
Building Research of Teaching Resources,” Applied

Mechanics and Materials, vol. 347-350, pp. 4, August,
2013.

[17] S. Seiler, "Laboratory as a Service A Holistic
Framework for Remote and Virtual Labs," Doctoral
Thesis, Faculty of Mechanical Engineering-Department
of Mechatronics, Tallinn University of Technology,
2012.

[18] M. Tawfik, E. Sancristobal, S. Martin, G. Diaz, and M.
Castro, "State-of-the-art Remote Laboratories for
Industrial Electronics Applications," presented at the

 10

Technologies Applied to Electronics Teaching (TAEE),
2012, pp. 359-364.

[19] M. Tawfik, E. Sancristobal, S. Martin, R. Gil, G. Diaz, J.
Peire, et al., "On the Design of Remote Laboratories,"
presented at the IEEE Global Engineering Education
Conference (EDUCON), Marrakesh, Morocco, 2012, pp.
311-316.

[20] M. Ngolo, L. B. Palma, F. Coito, L. Gomes, and A.
Costa, "Architecture for remote laboratories based on
REST web services," in E-Learning in Industrial

Electronics, 2009. ICELIE '09. 3rd IEEE International

Conference on, Porto, 2009, p. 6.
[21] B. Evgeny, S. Christophe, and D. Gillet, "Widget-Based

Approach for Remote Control Labs," presented at the
9th IFAC Symposium on Advances in Control
Education, Resort Automobilist, Russia, 2012.

[22] L. E. Moser and P. M. Melliar-Smith, "Service-Oriented
Architecture and Web Services," in Wiley Encyclopedia

of Computer Science and Engineering, B. W. Wah, Ed.,
ed: John Wiley & Sons, Inc, 2008, p. 8.

[23] C. Pautasso, O. Zimmermann, and F. Leymann,
"RESTful Web Services vs. “Big” Web Services:
Making the Right Architectural Decision," presented at
the WWW '08 Proceedings of the 17th international
conference on World Wide Web Beijing, China, 2008, p.
10.

AUTHORS

M. Tawfik, E. Sancristobal, and M. Castro is UNED,
(email: mtawfik@ieec.uned,es, elio@ieec.uned.es, and
mcastro@ieec.uned.es).

C. Salzmann and D. Gillet is with EPFL (email:
Christophe.salzmann@epfl.ch and denis.gillet@epfl.ch).

D. Lowe is with University of Sydney (email:
david.lowe@sydney.edu.au).

H. Saliah-Hassane is with TELUQ | University of
Quebec (email: saliah@teluq.ca).

mailto:mtawfik@ieec.uned,es
mailto:elio@ieec.uned.es
mailto:mcastro@ieec.uned.es
mailto:Christophe.salzmann@epfl.ch
mailto:denis.gillet@epfl.ch
mailto:david.lowe@sydney.edu.au
mailto:saliah@teluq.ca

	I. Introduction
	II. Related Works
	III. Modular Remote Laboratories
	IV. Laboratory as a Service (LaaS)
	A. SOA Immplementation

	V. Case Study
	VI. Modular Remote Laboratory Prototype
	A. Experiment Description
	B. LaaS immplementation
	C. Consumption

	VII. Conclusion and Future Works
	Acknowledgment
	References
	Authors

