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Laboratory-based X-ray phase-
imaging scanner using Talbot-Lau 
interferometer for non-destructive 
testing
Shivaji Bachche1, Masahiro Nonoguchi2, Koichi Kato2, Masashi Kageyama2, Takafumi Koike2, 

Masaru Kuribayashi2 & Atsushi Momose1

An X-ray Talbot-Lau interferometer scanning setup consisting of three transmission gratings, a 

laboratory-based X-ray source that emits X-rays vertically, and an image detector on the top has been 

developed for the application of X-ray phase imaging to moving objects that cannot be tested clearly 

with conventional absorption contrast. The grating-based X-ray phase imaging method usually employs 

a phase-stepping (or fringe-scanning) technique by displacing one of the gratings step-by-step while 

the object stays still. Since this approach is not compatible with a scanner-type application for moving 

objects, we have developed a new algorithm for achieving the function of phase-stepping without 

grating displacement. By analyzing the movie of the moiré pattern as the object moves across the 

field of view, we obtain the absorption, differential phase, and visibility images. The feasibility of the 
X-ray phase imaging scanner has been successfully demonstrated for a long sample moving at 5 mm/s. 
This achievement is a breakthrough for the practical industrial application of X-ray phase imaging for 

screening objects carried on belt-conveyers such as those in factories.

X-ray phase imaging has been attracting attention because it produces signi�cant contrast for weakly absorbing 
objects, such as polymers and so� biological tissues1–4. Among the methods of X-ray phase imaging reported so 
far, X-ray grating interferometry, such as X-ray Talbot interferometry5 and X-ray Talbot-Lau interferometry6, 
which is an advanced form of X-ray Talbot interferometry, is especially e�ective for practical X-ray phase imaging 
in clinical and industrial �elds because they operate with conventional X-ray generators in hospitals and factories.

A Talbot or Talbot-Lau interferometer detects the slight X-ray refraction caused by an object. When the 
object is placed in the interferometer, the intensity change is detected through the gratings at each pixel of an 
image detector. �is feature can be seen as a moiré pattern. X-ray phase imaging with interferometers is nor-
mally performed by analyzing moiré patterns acquired through a speci�c technique; that is, a fringe-scanning or 
phase-stepping technique by displacing one of the gratings. Moiré fringes contain the information of attenuation, 
phase shi� (refraction), and scattering by an object; they appear as the changes of fringe intensity, fringe position, 
and fringe visibility7, respectively. X-ray phase imaging separates these information quantitatively and generates 
absorption, refraction, and scattering (in other words, visibility) images.

In the fringe-scanning procedure in combination with the grating displacement, the object is assumed to stay 
still in the �eld of view (FOV) during the entire scan, which is typically 30 s in the clinical application of X-ray 
phase imaging reported in ref. 8. However, in non-destructive testing for industrial production, it is desirable to 
scan products that move continuously on a belt-conveyor system. Fringe scanning by grating displacement is not 
compatible with such an industrial application.

�is paper proposes an approach of a fringe-scanning method without any grating displacement for moving 
objects in the con�guration of an X-ray Talbot-Lau interferometer. An apparatus (X-ray phase scanner) consist-
ing of an X-ray source that emits X-rays vertically, X-ray transmission gratings, a sample stage that moves objects 
horizontally like a belt-conveyer, and a photon-counting image detector have been developed to demonstrate the 
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approach. A pilot experiment of successful X-ray phase imaging for moving objects larger than the FOV of the 
apparatus is presented.

Apparatus and Method
X-ray phase scanner system configuration. An X-ray generator consisting of a tungsten rotating anode 
(UltraX 18, Rigaku, Japan) was placed at the bottom of the scanner to generate cone-beam X-rays in the vertical 
direction. �e generator can be operated at up to 60 kV tube voltage and 90 mA tube current (5.4 kW maxi-
mum load). �e focus size on the anode surface was 0.3 mm × 3 mm and the e�ective X-ray source size was 
0.3 mm × 0.3 mm, taking into account the take-o� angle (6°). �e X-ray source size does not satisfy the require-
ment of spatial coherence for a Talbot interferometer, and therefore Talbot-Lau con�guration with a source 
grating (G0), π/2-type phase grating (G1) and absorption grating (G2) (Microworks GmbH, Germany) was 
employed. �e gratings were mounted and aligned using mechanical stages, as shown in Fig. 1. �e periods of the 
gratings were 8.09 µm, 4.12 µm, and 8.4 µm, respectively, and assuming the design X-ray energy for the interfer-
ometer to be 30 keV, the G0-G1 and G1-G2 distances were 397 mm and 417 mm, respectively, which is reasonably 
compact for a scanner. �e heights of gold pattern for G0 and G2 were 115 µm and 136 µm, respectively. �e G1 
was made of Ni and its height was 5.21 µm. �e sample stage was located between G1 and G2 (68 mm above G1) 
and the sample was moved horizontally across the FOV. �e gratings had line-and-space patterns and the grating 
lines were aligned parallel to the sample movement direction.

An image detector (Hypix-3000, Rigaku, Japan) was mounted on the top of the scanner to capture a movie of 
the moiré pattern while the sample is moved across the FOV. �e detector is a photon-counting two-dimensional 
hybrid pixel array semiconductor detector having an active area of 77.5 mm × 38.5 mm with a pixel size of 
100 µm × 100 µm. �e detector has an X-ray photon count rate of greater than 106 cps/pixel with a readout speed 
up to 174 fps frame rate.

Phase measurement algorithm. An approach for the fringe-scanning method without grating move-
ment has been reported by generating arti�cial moiré fringes with the assumption that the gratings are ideally 
fabricated and the spacing of the moiré fringes is constant9–11. However, the actual gratings used for a Talbot-Lau 
interferometer have slight deformations due to the fabrication process and mounting, and the degradation in 
resultant image quality is not negligible. It is not easy to fabricate an ideal grating, especially when a large area is 
required. In this study, we propose an algorithm that is applicable even when the gratings are deformed. �us, the 
degradation of image quality is avoided, which leads to reduction in the cost of the apparatus.

�e purpose of the algorithm is to calculate three resultant images, namely, absorption A(p, q), refraction ϕ(p, q),  
and visibility V(p, q) from a recorded moiré movie of sample scanning. Here, p and q are the image coordinates 
�xed to the moving sample in the x- and y-directions, respectively, as shown in Fig. 1. Note that we de�ne (p, q) on 
the detector plane, and therefore, the coordinates on the sample are calculated by considering the magni�cation 
due to a cone-beam projection. �e movement of a sample is assumed to be parallel with the x-axis in this setup. 
�erefore, x = p−vt and y = q, where v is the nominal sample speed on the detector plane and t is time.

As a pre-processing, the e�ect of the built-in moiré pattern, which is normally observed without a sample 
because of incomplete grating alignment and slight grating deformation, was measured in advance as an instru-
mental function. For this purpose, we employed the conventional fringe-scanning technique or modi�ed robust 
fringe-scanning technique explained elsewhere12 with grating displacement without a sample. Given the moiré 
pattern observed at the j-th step of a fringe-scan is I0j(x, y),
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Figure 1. Schematic of the X-ray phase scanner prototype system (le�) and its pictures (right).
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are calculated, as shown in Fig. 2 (Steps 1 and 2). d1 is the period of G1, z0 is the distance between G1 and G2 and 
M is the number of phase steps (M ≥ 3). A0(x, y) is illumination intensity, ϕ0(x, y) is the background di�erential 
phase caused by the deformation and alignment of gratings, and V0(x, y) is the visibility of moiré fringes. Note 
that ϕ0(x, y) is wrapped between −π to π, and phase unwrapping is not needed here.

As explained later, this algorithm assumes that every coordinate point (p, q) of the sample must travel across 
at least one moiré fringe along the x-axis. �erefore, ϕ0(x, y) must have values spanning from −π to π at every 

Figure 2. Flowchart illustrating the proposed algorithm for calculating absorption, refraction, and visibility 
images of a sample moving across FOV.
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y (Step 3). If this condition is not satis�ed, gratings are re-aligned, for examply by inclining one of the gratings, 
so that more moiré fringes are introduced, and steps 1 and 2 are repeated. A�er ϕ0(x, y) is thus de�ned, the 
FOV is divided into n regions, so that the pixel (x, y) having the value of ϕ0(x, y) between −π + 2π(k − 1)/n and 
−π + 2πk/n belongs to the n-th region. Further, �ag matrices Ak (k = 1, 2, …, n) (Step 5) are de�ned as,
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�e number of �agged pixels in Ak at every y is stored in Nk(y) (Step 6). �e number n must be more than three 
and should be selected as large as possible, provided that su�ciently large values for Nk(y) are available.

A�er this preparation, a movie is recorded while the sample moves linearly in the x-direction across the FOV 
(Step 7). Giving I(x, y, ti) as the movie frame at ti, where i indicates the frame number (i = 1, 2, … m), Jk (p, q) is 
calculated (Step 8) by
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As mentioned above, the coordinate (p, q) is �xed to the sample and relates to the coordinate (x, y) in the FOV 
with x = p−vti and y = q. �us, Jk (p, q), which corresponds to the k-th step of fringe-scanning, is obtained with-
out moving gratings but rather by utilizing the movement of the sample. Next, the resultant images are calculated 
with conventional formulae (Step 9):
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is introduced to compensate the non-uniform visibility, especially in the y (q) direction due to cone-beam illumi-
nation. �e raw images with moiré fringes generated by the experimental setup and an example of the de�nition 
of Ak are shown in Fig. 3.

Result and Discussion
In this demonstration, the X-ray generator was operated at 60-kV tube voltage and 70-mA tube current. Samples 
were moved at a speed of 5 mm/s continuously and movies were recorded at 14-ms X-ray exposure per frame (71 
fps). �ese parameters were chosen so that the nominal speed of the sample at the detector plane was one pixel 
per frame. �e mean visibility of moiré fringes (V0 given by Equation (3) and shown in Fig. 3) was 52% around 
the center of the FOV.

Figure 4(a–c) show an absorption image, a refraction image, and a visibility image reconstructed for a high-
lighter pen. Figure 4(d–f) show close-up images of the red rectangular areas marked in Fig. 4(a–c), respectively. 
�e lining structure, tip stoppers, cap locking mechanism, ink �ow connector to the tip of the highlighter pen, 
sponge �lled with ink and other small details are revealed in the resultant images. �e contrast of the sponge 
�lled with ink is especially remarkable in the visibility image as the contrast is considered to be generated by 
the ultra-small-angle scattering depending on the amount of ink in the sponge. �e refraction image provided a 
signi�cant signal of an air bubble inside the plastic cap as shown in Fig. 4(e). �e two vertical dark areas in these 
images are the shadows caused by the metallic components of the sample holder stage.

�e standard deviation σ of the refraction image calculated from 50 × 50 pixels near and outside of the sample 
in Fig. 4(b) was 0.014 rad in terms of moiré-fringe phase, which corresponds to 0.053-µrad beam de�ection at 
the sample. Assuming that the σ is mainly caused by photon statistics, thanks to the low-noise property of the 
employed photon counting detector, the σ is theoretically proportional to the square root of total X-ray exposure, 
which is inversely proportional to the square root of sample speed v under a given X-ray intensity. Figure 5(a) 
shows the σ as a function of v and also a �tting curve by √v suggesting the validity of this assumption.

�e sample speed is crucial to the spatial resolution in terms of motion blur. �e spatial resolution at the 
detector plane in the x-direction was evaluated by the full width at half maximum (FWHM) of the di�erential 
edge pro�le of the sample feature in the absorption image. �e spatial resolution in the y-direction, which was 
independent of the motion blur, was evaluated by the FWHM of a sharp edge pro�le in the refraction image. �ey 
are shown as functions of v in Fig. 5(b). As mentioned above, the sample speed of 5 mm/s corresponds to 1 pixel/
frame; therefore, the e�ect of motion blur is not a concern below this speed in the x-direction. Actually, the spa-
tial resolution near the Nyquist limit was attained below 5 mm/s, and clear degradation of the spatial resolution 
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is found over that speed. Although the spatial resolution in the y-direction was almost constant as expected, the 
slight degradation shown in Fig. 5(b) is considered to be due to the e�ect of the vibration of the sample stage 
which increases with the sample speed. �is was con�rmed by evaluating the moiré movie of the sample scan 
where an increase in the sample vibration (below one pixel on average) was found with sample speed increment.

Figure 3. Graphical illustration from Step 1 to Step 5 shown in Fig. 2. V0(x, y) and ϕ0(x, y) are measured 
from moiré images (Step 1 to Step 2). �e image labeled by Ak shows all regions (k = 1, 2, …, n) together with 
di�erent colors to which the �agged pixels in Ak belong. n = 20.

(a)

(b)

(c)

(d) (f)(e)

Figure 4. Results obtained for a highlighter pen by the proposed algorithms: (a) absorption image, (b) 
refraction image, and (c) visibility image. (d–f) are close-up images of the red rectangular areas shown in (a–c), 
respectively. �e gray scales are set to (0.30, 0.42) transmittance for (a), (−2.08 µrad, 2.08 µrad) beam de�ection for 
(b), and (0%, 50%) visibility reduction for (c). �e arrow in (e) indicates an air bubble detected inside the cap.
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�e apparatus presented here was developed mainly to demonstrate the function of the proposed algo-
rithm to realize phase imaging for moving objects. In order to translate this result into the development of 
practical apparatuses for use in factories, various improvements are needed, such as increasing the sample 
speed and expanding the FOV. �e spatial resolution due to vibration at higher speed could be improved, for 
example, by equipping a rigid and X-ray transparent stage, to which belt-conveyers are adjacent and products 
moving on the belt-conveyers are transferred smoothly. In order to increase the sample speed, detector sen-
sitivity is essentially important. �e detector employed in this study (Hypix-3000) was dedicated originally 
for low-energy X-ray experiments, which can be replaced for example with a CdTe-based photon counting 
image detector suitable for high-energy X-rays used for non-destructive testing. Fabrication of gratings with 
a high-aspect-ratio is also needed to enable the use of higher energy X-rays. While the height of the gold 
pattern of G2 was about 100 µm, a fabrication technique for realizing a height of 160 µm has been utilized for 
an experiment with 183-keV X-rays13. �us, it is feasible to improve the apparatus design for a high-energy 
phase-imaging scanner.

In order to expand the FOV especially in the y-direction, larger gratings and a larger image detector are nec-
essary. Fabrication of a large grating is a challenging task, but gratings of a 10 cm × 10 cm area14 have been fabri-
cated. However, when a larger grating is employed with a cone-beam illumination, a curved form is required for 
a high-aspect-ratio grating, which creates another technical challenge. Instead, it is also possible to align multiple 
�at gratings and detectors to cover an area larger than the FOV of each grating-detector set.

Although the scanner was developed for imaging continuously moving objects, the concept can be applied 
for the relative movement between objects and the Talbot-Lau interferometer system. �erefore, scanning the 
Talbot-Lau interferometer with an X-ray source and detector against a stable object is feasible with the same con-
cept of image formation. As a result, this study can be expanded to the examination of big structures that cannot 
be moved easily and to the human body for medical diagnoses.

Conclusions
An X-ray phase-sensitive scanner with the Talbot-Lau interferometer con�guration and a laboratory-based X-ray 
source was demonstrated. While conventional phase imaging is performed for an object stable in the FOV with 
the fringe-scanning technique, a special algorithm was proposed and implemented in this study for an object 
moving across the FOV. It should be noted that this algorithm allows the use of slightly deformed gratings. X-ray 
phase imaging was successfully performed for a sample moving at 5 mm/s with a spatial resolution of about 
200 µm, which corresponded to the Nyquist frequency of the detector. �us, the presented X-ray scanning setup 
is promising for practical use of X-ray phase imaging at factories for quality control of products moving on a 
belt-conveyor system.
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