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Laboratory evidence of freak waves provoked
by non-uniform bathymetry

K. Trulsen,a) H. Zeng,b) and O. Gramstadc)

Department of Mathematics, University of Oslo, Norway

(Received 14 July 2011; accepted 23 July 2012; published online 5 September 2012)

We show experimental evidence that as relatively long unidirectional waves prop-

agate over a sloping bottom, from a deeper to a shallower domain, there can be a

local maximum of kurtosis and skewness close to the shallower side of the slope.

We also show evidence that the probability of large wave envelope has a local

maximum near the shallower side of the slope. We therefore anticipate that the

probability of freak waves can have a local maximum near the shallower side of a

slope for relatively long unidirectional waves. C© 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4748346]

I. INTRODUCTION

It is well known that as waves propagate from deeper to shallower water, linear refraction can

transform the waves such that the wavelength becomes shorter, while the amplitude and the steepness

become larger.1, 2

We here address the question if the change of depth can provoke increased likelihood of freak

waves. A freak wave satisfies a requirement that it is much more extreme than a typical “reference”

wave, common criteria are ηc/Hs > 1.25 or H/Hs > 2 where the crest elevation is ηc and the wave

height is H. Here the significant wave height Hs, defined as four times the standard deviation of the

surface elevation, is used as reference.3

In an inhomogeneous medium we insist that it is most useful to avoid averaging over space

for the determination of the reference wave, thus the significant wave height should be treated as a

function of space and the criteria for freak waves become local.4 While linear refraction transforms

the local significant wave height, it is not anticipated that linear refraction itself can transform the

probability of freak waves over changing bathymetry as long as the local criteria for freak waves

suggested above are employed. This is indeed supported by our own recent numerical studies.5

On sufficiently deep water, long-crested waves are subject to modulational instability6 which

is known to spawn wave evolution that can lead to freak waves.7–9 Nonlinear wave evolution of

long-crested waves on deep water and the concomitant development of freak waves has been well

described both theoretically10–12 and experimentally.13–19 One particular aspect that we shall be

concerned with, is that nonlinear modulations during the evolution of irregular waves can cause

spectral development and frequency down-shift, suspected to be related to the occurrence of freak

waves.12, 15

On flat bottom of finite depth h, various competing processes determine the nonlinear wave

evolution. The modulational instability becomes weaker as the depth is decreased,20 and vanishes

altogether for uniform long-crested waves on small depths kh < 1.363 where k is the wavenumber

corresponding to the depth h.21 On the other hand, if the steepness increases due to linear refraction,

as discussed above, the effect of modulational instability could be enhanced, at least when kh > 1.363.

Limiting to flat bottom, these nonlinear properties are contained within the Zakharov equation.22
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FIG. 1. The bottom profile and locations of the wave probes.

While the modulational instability is attenuated for decreasing depth, static nonlinearities such as

second-order effects are enhanced, but even so Janssen23 anticipated that the final outcome could

still be that the kurtosis decreases for diminishing depth of a flat bottom.

On variable depth, the variation of kurtosis of nonlinear waves has been computed in some

recent numerical studies. Janssen and Herbers24 studied the kurtosis of initially long-crested waves,

becoming directional as they refracted over a submerged shoal in otherwise deep water. They found

that strongly non-Gaussian behavior can be produced due to the concomitant effects of focusing and

nonlinearity. The maximum kurtosis was found down-wave of the location of the steepest waves

near the top of the shoal. Their deeper kh was around 20 and their shallower kh was 0.22. Sergeeva,

Pelinovsky, and Talipova25 employed a KdV equation for variable depth for long-crested waves

propagating over a slope connecting two domains of different constant depth. They found that the

kurtosis could achieve a local maximum close to the shallower side of the slope. In their case the

deeper kh was 0.44 and the shallower kh was 0.3 and the gradient of the depth was 0.03. Zeng and
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FIG. 2. Time series for all probes for case 1.
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TABLE I. Three cases.

Deeper side Shallower side

Case Hs [m] Tp [s] kph kpac Ur kph kpac Ur

1 0.06 1.273 1.6 0.057 0.014 0.99 0.070 0.072

2 0.06 1.697 1.1 0.038 0.029 0.70 0.049 0.14

3 0.06 2.121 0.81 0.028 0.053 0.54 0.038 0.24

Trulsen5 used a nonlinear Schrödinger (NLS) equation for variable depth to investigate long-crested

waves propagating over a slope connecting two domains of different constant depth, with the deeper

kh being 10 and the shallower kh being between 1.2 and 4.0. With our shallower domain being much

deeper than those of the other authors,24, 25 we found that the kurtosis could be significantly reduced

toward the shallower domain, and a local minimum of kurtosis could be achieved near the shallower
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FIG. 3. Normalized frequency spectrum S(ω) for all probes for case 1 with linear scales. Nominal peak frequency indicated

by vertical dashed line.
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side of the slope. We therefore speculate that there may exist a transition zone between two opposite

regimes, a “deeper” regime with reduction of kurtosis toward the shallower side, and a “shallower”

regime with a possible maximum of kurtosis near the shallower side.

We are not aware of previous analysis of laboratory experiments discussing the statistical

behavior suggested by the above three papers.5, 24, 25 While there are available analysis of field

measurements of waves on a sloping bottom near a coast,26–28 we hesitate to apply those for our

present purposes since both short-crestedness and skew incidence may have important effects so far

not accounted for in the numerical modeling.

The present paper provides experimental evidence of the above numerical predictions for long-

crested waves propagating normally incident over non-uniform bathymetry. Such evidence was

found in experiments recently carried out at Marin in The Netherlands.29 We show that as the waves

propagated over a slope, from a deeper to a shallower domain, there was a local maximum of kurtosis

and skewness near the shallower side of the slope, accompanied by a local increased probability of
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FIG. 4. Same as Fig. 3 for case 2.
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large envelope height. It will be realized that the range of shallower kh of the experiments does not

coincide with any of the three numerical studies,5, 24, 25 but falls within the suspected transition zone

between the “deeper” and “shallower” regime.

II. EXPERIMENT

The experiments were performed at Marin in The Netherlands for a benchmark workshop on

numerical wave modeling.29 Irregular long-crested waves were propagated over a 1:20 slope from

water of constant depth 0.60 m to water of constant depth 0.30 m. Between the wave generator and

the start of the slope, the bottom was flat with depth 0.60 m. The distance from the wave generator

to the start of the slope was 143.41 m. The slope ended at 149.41 m from the wave generator.

Behind the slope there was a flat bottom with depth 0.30 m. A beach started at 173.41 m from the

wave generator. The wave probes were located at distances 39.15 m, 78.80 m, 102.12 m, 143.41 m,
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FIG. 5. Same as Fig. 3 for case 3.
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FIG. 6. Statistics for case 1.

146.43 m, 149.41 m, 157.74 m, and 172.89 m from the wave generator. The bottom profile and the

locations of the wave probes are shown in Fig. 1.

Three cases of long-crested irregular waves were employed, generated with constant nominal

significant wave height Hs and different nominal peak periods Tp, as shown in Table I. The peak

wavenumber kp has been computed from the linear dispersion relation ω2
p = gkp tanh kph where
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FIG. 7. Statistics for case 2.
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FIG. 8. Statistics for case 3.

ωp = 2π /Tp using the acceleration of gravity g = 9.81 m2/s. We have defined the characteristic

amplitude ac = Hs/
√

8 corresponding to a uniform wave of the same mean power. The Ursell

number has been computed as Ur = kpac/(kph)3. We remark that Cherneva et al.26 employed a

parameter ωh = ωp

√
h/g as an alternative to our kph, they are related by ω2

h = kph tanh kph.

For the three cases the time series have, respectively, 92 378, 91 969 and 92 148 time samples

taken with uniform interval �t = 0.02 s. The time series of case 1 are shown in Fig. 2 suggesting some

startup effects. The first 10 000 samples (200 s) are not included in the subsequent analysis in order

to exclude the startup effects. This leaves us with some 1294, 966, and 774 peak periods for each

case, respectively. These are rather insufficient amounts to achieve meaningful freak wave statistics

according to common criteria such as ηc/Hs > 1.25 or H/Hs > 2,3 but sufficient for reasonable

estimates of kurtosis, skewness and overall distribution functions.

The spectra at each probe for cases 1, 2, and 3 are shown in Figs. 3–5 with linear scales. The

vertical dashed lines show the nominal peak frequencies ωp, and help illustrate that there is spectral

development leading to a downshift of the peak clearly visible in case 1, but not in the other two

cases. Indeed, from Table I we anticipate modulational instability only for the deeper side of case

1. The bandwidths can be estimated by inspection of Figs. 3–5. The ratio between the half-peak

half-width and the peak frequency is estimated to be approximately 0.1 in all cases for the probe

closest to the wave maker.

In Figs. 6–8 we show the variance of the surface elevation in the upper frame, the skewness of

the surface elevation in the middle frame and the kurtosis of the surface elevation in the lower frame.

For the three statistical estimates we also indicate 95% confidence intervals obtained from 10 000

bootstrap samples from the original dataset.

For all three cases there is a local maximum of variance, skewness, and kurtosis at or near the

shallower edge of the slope.

For case 1, Fig. 6, the global maximum of the kurtosis happens within the domain of deeper

constant depth. This is likely related to the spectral evolution leading to a downshift of the spectral

peak seen in Fig. 3, and is also likely related to the fact that the deeper kh is greater than 1.363 as seen

in Table I. For this case, the smaller local maximum of kurtosis and the global maximum of skewness

at the shallower edge of the bottom slope are most likely not due to modulational instability since

here the depth is smaller than the threshold value.
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FIG. 9. Exceedance function of the wave envelope A normalized by the standard deviation σ of the surface elevation at each

individual location (crosses), compared to the exceedance function of the Rayleigh distribution (solid line). The rows from

top to bottom correspond to the eight wave probes, from left to right in Fig. 1, respectively. The columns from left to right

correspond to the three cases 1, 2 and 3.

For cases 2 and 3, Figs. 7 and 8, there is a global maximum of all three statistical quantities

at the shallower edge of the slope. In both of these cases, the depth is everywhere smaller than the

threshold value for modulational instability, and no shift of the spectral peak can be easily seen in

Figs. 4 and 5. For these cases, the global maximum of kurtosis coincides with the global maximum

of the variability of the kurtosis estimate.

In Fig. 9 we show the exceedance probability of the wave envelope, 1 − P, where P is the

cumulative distribution function of the wave envelope, and compare with the Rayleigh distribution,

at the various measurement stations. The envelope A(t) was obtained by taking the Hilbert transform

η̃(t) of the surface elevation η(t) and computing A(t) =
√

{η̃(t)}2 + {η(t)}2, see Ochi.30 In the figure

the envelope has been normalized by the standard deviation of the surface elevation appropriate

for each individual measurement station. We interpret deviation from the Rayleigh distribution as
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an indication of non-Gaussian behavior of the surface elevation beyond static second-order effects.

The only location where all cases yield a systematic increase in extreme wave occurrence beyond

Gaussian statistics is at the sixth probe located at the shallow edge of the slope. There is also evidence

of increased extreme wave probability at the third probe on top of the deeper domain, likely related

to nonlinear modulational effects for the two deeper cases 1 and 2.

There is available field experimental evidence of significantly enhanced freak wave occurrence

for sloping bottom, e.g., Fig. 11(c) in Cherneva et al.26 for even smaller depth than considered here

(their ωh = 0.4738, our smallest ωh = 0.518), but it is not clear that such comparison can be justified

due to unknown details of direction of wave incidence and directional spectrum.

III. CONCLUSIONS

We have shown experimental evidence that as long-crested waves propagate normally incident

over a sloping bottom, from a deeper to a shallower domain, there can be a local maximum of

kurtosis and skewness close to the shallower side of the slope, and there can be a local maximum

of probability of large wave envelope at the same location. We therefore anticipate a corresponding

local maximum of freak wave probability here as well.
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