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ABSTRACT

The oscillations of moderate to large raindrops are investigated using a seven-story fall column with shape
data obtained from multiple-strobe photographs. Measurements are made at a fall distance of 25 m for drops
of D 5 2.5-, 2.9-, 3.6-, and 4.0-mm diameter, with additional measurements at intermediate distances to assess
the role of aerodynamic feedback as the source of drop oscillations. Oscillations, initiated by the drop generator,
are found to decay during the first few meters of fall and then increase to where the drops attained terminal
speed near 10 m. Throughout the lower half of the fall column, the oscillation amplitudes are essentially constant.
These apparently steady-state oscillations are attributed to resonance with vortex shedding.

For D 5 2.5 and 3.6 mm, the mean axis ratio is near the theoretical equilibrium value, a result consistent
with axisymmetric (oblate/prolate mode) oscillations at the fundamental frequency. For D 5 2.9 and 4.0 mm,
however, the mean axis ratio is larger than the theoretical equilibrium value by 0.01 to 0.03, a characteristic of
transverse mode oscillations. Comparison with previous axis ratio and vortex-shedding measurements suggests
that the oscillation modes of raindrops are sensitive to initial conditions, but because of the prevalence of off-
center drop collisions, the predominant steady-state response in rain is expected to be transverse mode oscillations.

A simple formula is obtained from laboratory and field measurements to account for the generally higher
average axis ratio of raindrops having transverse mode oscillations. In the application to light to heavy rainfall,
the ensemble mean axis ratios for raindrop sizes of D 5 1.5–4.0 mm are shifted above equilibrium values by
0.01–0.04, as a result of steady-state transverse mode oscillations maintained intrinsically by vortex shedding.
Compared to the previous axis ratio formula based on wind tunnel measurements, the increased axis ratios for
oscillating raindrops amount to a reduction of 0.1–0.4 dB in radar differential reflectivity ZDR, and an increase
of about 0.5 mm for a reflectivity-weighted mean drop size of less than about 3 mm.

1. Introduction

The shape of raindrops is a critical factor in estimating
rain intensity using advanced weather radars that trans-
mit and/or receive pulses having orthogonal polariza-
tion. Because raindrops are aspherical, having a larger
horizontal chord (h) than vertical chord (y), the radar
reflectivity from a horizontally polarized pulse (ZH) in
rain will be larger than from a vertically polarized pulse
(ZV). Thus, the difference between these orthogonal re-
flectivities depends on the axis ratios of raindrops, a 5
y /h.

In proposing the use of a differential radar reflectivity
[ZDR(dB) 5 10 log(ZH/ZV)] to improve radar rainfall
estimates, Seliga and Bringi (1976) relied on equilib-
rium axis ratios measured in a vertical wind tunnel by
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Pruppacher and Beard (1970), expressed as a linear
function of the equivalent spherical diameter. Recent
laboratory and field measurements, however, have
shown that raindrops with diameters larger than D 5 1
mm continuously oscillate in response to vortex shed-
ding (Beard et al. 1989; Beard and Tokay 1991). Con-
tinuous oscillations were also found when the laboratory
studies were extended to D 5 2.5 mm (Kubesh and
Beard 1993), and in more recent field measurements
(Tokay and Beard 1996), continuous raindrop oscilla-
tions were found from D 5 1.0 mm to D 5 4.0 mm
(the largest size measured). Aircraft measurements of
raindrop shape for D 5 2–6 mm also show large var-
iations from equilibrium axis ratios (Chandrasekar et al.
1988).

Of particular significance to estimating rainfall rate
using polarization radar is the observed shift in the time
average axis ratio for oscillating raindrops. For example,
the higher average axis ratios from laboratory mea-
surements of Kubesh and Beard (1993) for D 5 2.0 and
2.5 mm decrease the ZDR(dB) signal for these sizes by
about 30%. Evidence of a decrease in ZDR has been
found by comparing measurements of ZDR with values
calculated from raindrop size distributions measured be-
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TABLE 1. Experiment parameters for D 5 2.5, 2.9, 3.6 and 4.0 mm: terminal velocity (V ), Reynolds number at terminal velocity (Re),
drop spacing (Dz) at terminal velocity (for drip rate of 2.3 Hz), distance to achieve 99% of terminal velocity (z99), distance to reduce the
oscillation amplitude to Da 5 0.01 (z01, as predicted by viscous decay), oscillation frequency for the fundamental mode ( f 2), and number
of oscillations at the fundamental frequency (n2) between z99 and the lowest measurement level at z 5 25.5 m.

D (mm) Re V (m s21) Dz (m) z99 (m) z01 (m) f2 (Hz) n2

2.5
2.9
3.6
4.0

1194
1489
2010
2303

7.24
7.78
8.46
8.72

3.1
3.4
3.7
3.8

10.2
11.2
12.0
12.1

4.5
7.4

14.3
19.2

87.1
69.7
50.4
43.0

184
128

80
66

low the radar pulse volumes (Goddard and Cherry
1984).

The purpose of the present experiment was to extend
the previous laboratory measurements for moderate-size
raindrops by Kubesh and Beard (1993) to larger sizes
using the same 25.5-m fall column. In the previous
study, drops of D 5 2.0 and 2.5 mm were generated at
terminal speed with a Reynolds number above the onset
for vortex shedding (Re 5 rDV/h ù 300, where r and
h are the density and viscosity of air). The drops were
therefore initially subjected to aerodynamic pressure
fluctuations as well as large amplitude oscillations as
result of drop generation. In the present study we gen-
erated drops from rest using a capillary ‘‘dripper’’ so
that aerodynamic forcing would be initially negligible.
Generating drops from rest also allowed more time for
the initial oscillations to decay before measuring the
axis ratio at fixed fall distance.

2. Experiment

a. Experimental parameters

The experimental parameters for the drop sizes in-
vestigated in our study are given in Table 1 for standard
laboratory conditions of 208C and a pressure of 1 at-
mosphere. The smallest size of D 5 2.5 mm was chosen
to be the same as the largest size studied by Kubesh
and Beard (1993) to provide a comparison between the
results for drops generated at rest and terminal speed.
Ideally, the sizes would have been selected at 0.5-mm
diameter intervals, but because of the limitation of cap-
illary size the drops were produced at D 5 2.5, 2.9, 3.6,
and 4.0 mm.

The drop diameter (D) and terminal speed (V) in this
study result in Reynolds numbers in the range 1200–
2300, where the wake has an irregular vortex pattern as
observed for spheres falling in liquids (see Beard et al.
1991). The vertical separation of successive drops (Dz)
at terminal speed is calculated from the typical drop
generation rate of 2.3 drops per second. At these wide
separations of 1000 diameters there should be no ap-
preciable aerodynamic influence between successive
drops. According to the measurements of List and Hand
(1971), for a drop with D 5 2.9 mm falling at Re ù
1360, the disturbed airflow caused by the passage of the
drop at a fixed level is surprisingly small: peak velocities
of less than 2 cm s21 immediately after passage and less

than 1 cm21 after (2.3 Hz)21 5 0.44 s, the time between
drop passages in the present experiment.

The calculated distance for a drop to reach 99% of
its terminal velocity in Table 1 (z99) includes the effect
of increasing drag from a decreasing axis ratio as the
drop accelerates (Beard 1977). The fall distance (z01)
was calculated for a drop to decay by viscous dissipation
from its initial amplitude at the generator to a negligible
amplitude of Da 5 0.01. The oscillation amplitude was
defined as the difference between the mean axis ratio
(a) and the minimum value (amin) at the point of max-
imum oblate distortion: Da 5 a 2 amin. According to
viscous decay theory, drops of all four sizes in the ex-
periment fell through an appreciable portion of the fall
column at terminal velocity with a surplus of time for
damping out the initial oscillations, because the fall col-
umn of 25.5 m is significantly longer than z99 and z01.

The last two parameters in Table 1 give the oscillation
frequency of the fundamental mode ( f 2) and the cor-
responding number of oscillation cycles (n2) as a drop
falls from the height of z99 down to the lowest mea-
surement section at z 5 25.5 m. The large value of n2

demonstrates that there is sufficient time for oscillations
to adjust after the drop has reached terminal speed and
after the initial oscillation energy should have been
mostly dissipated. Because the relaxation time for dif-
fusion of momentum about a sphere is of order t s 5
0.04 D2r/h (Bird et al. 1960), the airflow around a D
5 4 mm drop can adjust for 1.8 time constants during
one oscillation cycle of f 2. This indicates that the air-
flow around the drop can achieve a quasi-steady equi-
librium with oscillating drops in the lower portion of
the fall column. Because the oscillation frequency and
decay rate increase for the harmonics of the fundamental
mode, the values of z01 and n2 in Table 1 represent the
maximum decay distance (z01) and the minimum num-
ber of oscillation cycles n2.

b. Experimental design

The experiment was located in the stairwell of a six-
story building and consisted of a drop generator at the
penthouse level, a fall column extending down to the
basement, and a camera section that could be placed at
various levels in between (see Fig. 1). The fall column
was assembled using a 46-cm-diameter ventilation duct
having a helical wire frame. At each floor, a platform
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FIG. 1. Diagram of experiment showing drop generator, fall column,
and camera unit. Drops were produced by dripping water from a
stainless steel capillary with deionized water fed from an elevated
reservoir through a filter. Drops falling through the center of the
camera unit were photographed against a light trap using strobes to
illuminate the surrounding interior. The camera unit could be posi-
tioned at any of seven levels to obtain data at fall distances up to
25.5 m.

FIG. 2. Photographic negative image of 4.0-mm-diameter drop hav-
ing an axis ratio of 0.80, approximately the mean axis ratio at fall
distances of 10.1, 17.4, and 25.5 m. The light region in the center
of the drop is the rectangular light trap directly behind the drop.

was mounted over the opening between railings, and a
duct section extended to the platform below. This design
allowed the measurement section, containing the strobes
and camera, to be placed on a platform at any floor by
simply lifting the duct, inserting the camera section, and
resting the duct on top.

The drop generator consisted of a stainless steel cap-
illary supplied by a reservoir of deionized water. The
drop size was controlled by the capillary bore size and
drip rate was adjusted by changing the height of the
water reservoir above the capillary tip. The relatively

large horizontal cross section of the reservoir allowed
the drip rate and drop size to remain essentially constant
over the course of an experimental run of a few hours.
Drop sizes, obtained by measuring the mass of individ-
ual drops, were consistent to within 1% over an indi-
vidual experimental run and to within 2% between sep-
arate runs at one drop size.

Data on drop shape were collected by photographing
the drops as they fell through the camera section (Fig.
1). Deflecting cones were used to isolate drops that fell
within the camera viewing area. The drops were illu-
minated by four synchronized strobes placed just within
the 15-cm diameter camera column. An example image
of a 4-mm diameter drop is shown in Fig. 2. Because
a clear water drop acts as a lens, the light trap appears
as a white distorted rectangle on the negative image.
Drop images of ¼ true size on the film were taken using
a 35-mm camera equipped with a 50-mm lens and power
winder. The combination of available strobe lighting and
film speed allowed two to three images per drop to be
recorded on one frame of film for those fall distances
where the drops were moving at terminal speed (z 5
10–25.5 m). These multiple images allowed for multiple
axis ratio measurements of the same drop.

Because of poor insulation in the stairwell, the tem-
perature ranged from a low of 88C in the winter to a
high of 288C in the summer. Over this temperature
range, the fall speeds change by only 3% (Table 2; Beard
and Heymsfield 1988) and the surface tension changes
by only 1%. Also, the oscillation frequency, which de-
pends on the square roots of drop volume, water density,
and surface tension, is affected by less than 1%. Ap-
preciable changes in water viscosity over the 218C tem-
perature range resulted in a 120% to 227% change in
the decay time constant from the values in Table 1 at
208C. Therefore, the effect of temperature is negligible
for all the experimental parameters in Table 1, except
for the theoretical damping distance (z01).

3. Data analysis

Axis ratios were obtained by measuring the maximum
vertical and horizontal chords (y , h) from the negative
image of each drop using a microscope with a micro-
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TABLE 2. Parameters for the 26 experiment runs at four drop diameters tabulated by drop diameter–run number (expt), fall distance to
camera (z), number of axis ratio measurements (N ), mean axis ratio ( ), standard deviation (s), 95% confidence interval for the estimatea
of the mean [95% confidence interval (CI)], minimum axis ratio (amin), and maximum axis ratio (amax).

Expt z (m) N a s 95% CI amin amax

2.5–1
2.5–2
2.5–3
2.5–4

0.65
2.8

10.1
25.5

143
265
265
117

0.975
0.928
0.887
0.892

0.024
0.018
0.023
0.019

0.004
0.002
0.002
0.004

0.915
0.879
0.804
0.846

1.090
0.994
0.967
0.944

2.9–1
3.6–1 to 2

25.5
25.5

103
210

0.874
0.798

0.029
0.036

0.006
0.005

0.812
0.704

0.947
0.899

4.0–1 to 4
4.0–5 to 8
4.0–9 to 10
4.0–11 to 13
4.0–14 to 16
4.0–17 to 19

0.65
2.8
6.5

10.1
21
25.5

299
660
345
485
337
326

0.979
0.880
0.818
0.796
0.796
0.808

0.084
0.025
0.041
0.046
0.043
0.045

0.010
0.002
0.004
0.004
0.005
0.005

0.824
0.811
0.718
0.633
0.663
0.691

1.178
0.957
0.958
0.933
0.934
0.928

meter eyepiece. A plumb line was placed in the camera
section and photographed before each experimental run.
This negative was used to align each drop image before
measuring the maximum vertical and horizontal chords.
The uncertainty in axis ratio measurements was esti-
mated to be da 5 60.01, based on repeated measure-
ment of drop images.

Data were obtained at the greatest fall distance (25.5
m) for four drop sizes: D 5 2.5, 2.9, 3.6, and 4.0 mm.
Data were also obtained at the intermediate levels of
6.3 and 10.1 m for D 5 2.5 and 4.0 mm, with additional
measurements at 21.1 m for D 5 4.0 mm. Also, for D
5 4.0 mm, data were collected at upper levels, before
the drops reached terminal velocity. Additional exper-
imental runs were made to check the consistency of the
measured axis ratios.

Table 2 contains summary information on the axis
ratio measurements for the four drop diameters. This
information is grouped by drop diameter with results
combined at each fall distance. There were no significant
differences among experimental runs taken at the same
fall distance for a given drop size. Table 2 includes the
fall distance (z) and number of axis ratio measurements
(N), as well as the mean axis ratio (a), standard devi-
ation (s), 95% confidence interval for the estimate of
the mean (95% CI), maximum axis ratio (amax), and
minimum axis ratio (amin).

Drop images for D 5 4.0 mm were recorded just
below the dripper at about a dozen different fall dis-
tances (in the range z 5 0.60–0.70 m) to obtain rep-
resentative axis ratios for a complete oscillation cycle,
and for use as an ‘‘initial’’ amplitude in calculating vis-
cous decay. Analysis of these images indicated large
amplitude oblate–prolate oscillations. The oscillations
of successive drops appeared to be in phase at the same
distance (z) below the capillary during a single exper-
imental run. The drops were generally much less in
phase after falling to z 5 2.8 m, and there was no in-
dication of oscillations being in phase at lower levels
(z $ 6.5 m).

4. Results

a. Oscillation behavior at different fall distances

Measurements were made at several levels for D 5
2.5 and 4.0 mm to examine the decay of oscillations
induced by the dripper and the change in mean axis
ratio with fall distance. For D 5 2.5 mm, the initial
mean axis ratio was found to decrease between levels
at z 5 0.65, 2.8, and 10.1 m and then remain essentially
constant to z 5 25.5 m, where a 5 0.89 (see Table 2).
Judging from relatively constant standard deviations
(0.018–0.024), the axis ratio amplitude for D 5 2.5 mm
does not appear to change appreciably during the drop’s
fall.

For D 5 4.0 mm, the initial mean axis ratio was found
to decrease between successive levels at z 5 0.65, 2.8,
6.5, and 10.1 m, and then remain essentially constant
to the lowest level, where a 5 0.81 (see Table 2). The
standard deviations of 0.03–0.07 indicate that the axis
ratio amplitude for D 5 4.0 mm decayed substantially
from z 5 0.65 to 2.5 m, increased at z 5 6.5 m and
10.1 m, and then remained nearly constant to the lowest
level at z 5 25.5 m. The axis ratio data for D 5 4.0
mm from experimental runs at the six fall distances are
plotted in Fig. 3 for comparison with calculations of
oscillation damping. The axis ratios at each level are
represented by a ‘‘box’’ having a center bar at the mean
(a) and the top and bottom of the box at the 95% con-
fidence interval about the mean. The bent error bars
show the range of the standard deviation about the mean
axis ratio (a 6 s), and the straight bars denote the
extremes (amax, amin).

Oscillation amplitudes were estimated from the data
using values of amax and amin, which are given in Table
2 and plotted by vertical bars in Fig. 3. For example,
the range in axis ratio for D 5 4.0 mm observed at z
5 0.65 m is amax 2 amin 5 0.354. Therefore, the am-
plitude for a sinusoidal oscillation would be Da 5
0.345/2 5 0.177. Sinusoidal amplitudes are consistent
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FIG. 3. Axis ratio parameters for D 5 4.0 mm averaged for mea-
surements at each fall distance: z 5 0.65, 2.8, 6.5, 10.1, 21.1, and
25.5 m (at ‘‘floors’’ labeled 6.6, 6, 5, 4, 1, and B). Plotted at each
level are values for the mean axis ratio, the 95% confidence interval
for the mean, the range for the standard deviation, and the maximum
and minimum axis ratios (see key in upper-right corner). The solid
curve shows the theoretical axis ratio change for a nonoscillating
4-mm drop accelerating from rest. The dashed curves show the axis
ratio envelope for viscous decay.

with oscillations of the spheroidal mode (see Beard
1984).

In Fig. 3, the solid curve is the axis ratio calculated
from an oblate distortion response to the change in hy-
drostatic pressure for a 4-mm drop accelerating from
rest (Beard 1977). In this hydrostatic model, an initially
spherical drop becomes increasingly distorted as it ac-
celerates, approaching its equilibrium axis ratio (aH 5
0.77) at terminal speed. As shown in Table 1, 99% of
terminal speed is attained at z99 5 12.1 m, where the
axis ratio becomes essentially constant (see Fig. 3). At
a fall distance of 2.8 m, the initial oscillations for D 5
4.0 mm damp to where the standard deviation was the
smallest of any level (s 5 0.03) and the Reynolds num-
ber was larger than 300, indicating that vortex shedding
should have been present. At the 6.5-m fall distance,
the standard deviation of the axis ratios increased back
to about 0.04, and at greater fall distances the standard
deviations were typically 0.04–0.05. From these axis
ratio results in Fig. 3 it is readily apparent that some

mechanism, other than the initial oscillations produced
by the drop generator, is 1) causing oscillations as the
4-mm drops approach terminal speed and 2) maintaining
oscillations thereafter at a nearly constant amplitude.

The dashed curves in Fig. 3 delineate an amplitude
envelope for viscous decay obtained from a time con-
stant for the fundamental mode oscillation: t 2 5 rw D2/
(20hw) (Pruppacher and Klett 1997). An initial ampli-
tude of Da 5 0.26 was chosen so that the decay would
agree with the estimate from the measurements of Da
5 0.177 at z 5 0.65 m. For D 5 4.0 mm, the time
constant of t 2 5 0.8 s is much shorter than the 3.5-s
fall time in this study. A reduction to Da . 0.01 is
predicted to occur at z01 5 19 m by viscous dissipation
theory at 208C, as is evident from the dashed curves in
Fig. 3. Over the temperature range of the experiments
(88–288C), z01 5 13–23 m because of changes in water
viscosity with temperature.

From z 5 0.65–2.8 m the observed decay was actually
stronger than predicted by viscous dissipation of fun-
damental mode oscillations. Two mechanisms that
would increase damping are vorticity diffusion and the
stronger damping of higher harmonic oscillations. The
latter would be induced as a drop releases from the
dripper, because the drip shape is not a pure spherical
harmonic. The more rapid decay of higher harmonics
is evident from the time constants for n 5 3 and 4,
which are (5/14)t 2 and (5/27)t 2. The theoretical decay
can be forced to agree with the observations at both z
5 0.65 and 2.8 m by using a decay time constant of
0.55t 2 and increasing the initial amplitude at z 5 0 to
Da 5 0.35. The factor 0.55t 2 therefore represents an
effective decay time constant for an assumed exponen-
tial decay of oscillation energy in the first few meters
of fall. The additional damping is probably caused by
vorticity diffusion because of the circulation generated
in the large amplitude oscillations (Prosperetti 1977).

Despite the strong damping observed for the initial
oscillations for D 5 4.0 mm, the oscillation amplitudes
increase from z 5 2.8 to 10.1 m. The oscillation am-
plitudes exceed the envelope for viscous dissipation be-
yond about 5 m and during the final 80% of its fall
distance and 70% of its fall time.

b. Axis ratios at the maximum fall distance

The distributions and means for our axis ratio mea-
surements at the maximum fall distance of z 5 25.5 m
are presented in Fig. 4. For each drop size the distri-
bution of axis ratios is a histogram having a horizontal
scale for the number of observations in each 0.01 in-
terval of axis ratio. The shaded region in Fig. 4 indicates
the range of the equilibrium axis ratio from previous
estimates given in Table 3. Our mean axis ratio (a ,
indicated by arrows) is within the range of equilibrium
axis ratio for D 5 2.5 and 3.6 mm, but above the range
for D 5 2.9 and 4.0 mm.

Our data have standard deviations of 0.019–0.045
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FIG. 4. Measured axis ratios for D 5 2.5, 2.9, 3.6, and 4.0 mm at
a fall distance of z 5 25.5 m. Distributions are shown for each drop
size with mean axis ratios indicated by arrows. The shaded region
covers the range for previous estimates of the equilibrium axis ratio
(see Table 3).

TABLE 3. Experimental mean axis ratios ( ) for each drop size ata
the maximum fall distance of z 5 25.5 m in comparison to the em-
perical formula (aW) from the wind tunnel study of Pruppacher and
Beard (1970) and the equilibrium axis ratios from the perturbation
model (ap) of Pruppacher and Pitter (1971), the hydrostatic model
(aH) of Green (1975), and the numerical model (aN) of Beard and
Chuang (1987). Also shown is range in equilibrium axis ratios (Da)
from previous research.

D
(m) a aW ap aH aN Da

2.5
2.9
3.6
4.0

0.892
0.874
0.798
0.807

0.875
0.850
0.807
0.782

0.893
0.858
0.797
0.765

0.881
0.851
0.799
0.770

0.892
0.861
0.808
0.778

0.018
0.008
0.011
0.017

(Table 2), which is much larger than the experimental
uncertainty of 0.01, whereas the 95% confidence inter-
vals for the means are smaller (ø0.005, Table 2). Thus,
the histograms in Fig. 4 appear to provide reasonable
estimates of the mean and variance of axis ratios for
water drops falling at terminal velocity.

The distributions of axis ratios have a range of 60.05
to 60.10 with either a distinct central peak for D 5 2.5
and 3.6 mm, or a broad central maximum for D 5 2.9
and 4.0 mm. Axis ratios obtained from a drop oscillating
with a constant amplitude would result in a secant dis-
tribution having a central minimum with peaks at the
maximum and minimum axis ratios, because the chang-
es in axis ratio are slowest at the turning points where
the axis ratios have extreme values.

A simple interpretation of the distributions in Fig. 4
is that the axis ratios were obtained for drops oscillating
with a variety of amplitudes—more with low amplitudes
than high amplitudes, so that their sum has a central
maximum [for particular examples, see Kubesh (1991)].
This interpretation was suggested by Chandrasekar et
al. (1988) based on aircraft observations of raindrop axis
ratios. The oscillation modes cannot be easily deduced
from these distributions, because of the likely occur-
rence of various axis ratio amplitudes. However, when
a mean axis ratio differs significantly from the equilib-
rium (nonoscillating) value, this information may be
used to infer particular oscillation modes [e.g., as dis-
cussed in Beard and Kubesh (1991)].

5. Discussion

a. Comparison with previous results

Mean axis ratios (a) at z 5 25.5 m are tabulated in
Table 3 for comparison with equilibrium axis ratios from
past research: aW, the linear fit to wind tunnel data by
Pruppacher and Beard (1970); aP, the perturbation mod-

el of Pruppacher and Pitter (1971); aH, the hydrostatic
model of Green (1975); and aN, the numerical model
(Beard and Chuang 1987). The range for previous equi-
librium axis ratios, shown in the last column (Da) and
extended from D 5 2.0 to 4.5 mm, is represented by
the shaded area in Fig. 4. The mean axis ratios from
the present study (a) are within the range of previous
axis ratios for D 5 2.5 and 3.6, but our means are higher
than previous values for D 5 2.9 and 4.0 mm. These
latter differences appear to be real because by compar-
ison to the shaded region in Fig. 4, the means at D 5
2.9 and 4.0 mm are displaced more than the 95% con-
fidence interval above the range from previous studies.

Axis ratio data for water drops falling at terminal
velocity in air are presented in Fig. 5 for comparison
with results from laboratory measurements, aircraft
measurements, and theory. The curve for the equilib-
rium axis ratio (aN) is from the numerical model of
Beard and Chuang (1987). This theoretical result is in
good agreement with average axis ratios from wind tun-
nel observations of drops in air [see Figs. 10–16, Prup-
pacher and Klett (1997)] and can be represented by

aN 5 1.0048 1 0.0057D 2 2.628D2 1 3.682D3

2 1.677D4 (1)

with diameter in units of centimeters. This formula is
preferred to the one in Pruppacher and Klett (1997),
which is based on the numerical results of Chuang and
Beard (1990) for electrified raindrops, because more
accurate terminal fall speeds could be used in the ab-
sence of electric forces. Note also that the formula for
axis ratio in Pruppacher and Klett (1997) has a mistake:
the first coefficient should be 1.016 68 rather than
1.101 668. Equation (1) provides axis ratios that deviate
less than 0.003 from the numerical results over the range
in D from 0 to 7 mm. Wind tunnel data typically scatter
by about 60.015 above and below the mean axis ratio
provided by (1).

Also shown in Fig. 5 is the dashed line from the
empirical formula based on wind tunnel measurements
of Pruppacher and Beard (1970):

aW 5 1.030 2 0.62D (2)
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FIG. 5. Raindrop axis ratios as a function of diameter. Shown are
mean axis ratios (symbols) and standard deviations (vertical lines)
for the aircraft observations of Chandrasekar et al. (diamonds), the
laboratory measurements of Beard et al. (triangles), Kubesh and
Beard (squares), and present experiment (circles). Curves are shown
for the numerical equilibrium axis ratio (aN) from Beard and Chuang
(1987), the radar–disdrometer-derived axis ratios of Goddard and
Cherry (1984), the empirical formula (aW) from the wind tunnel data
of Pruppacher and Beard (1970), and the present fit to axis ratio
measurements (aA). The shaded region covers the range for previous
estimates of the equilibrium axis ratio (see Table 3).

with diameter in units of centimeters. This early ex-
pression for axis ratio was used by Seliga and Bringi
(1976) in their original paper on ZDR. The dashed curve
in Fig. 5 (labeled ‘‘ZDR–disdrometer estimate’’) was ob-
tained by Goddard and Cherry (1984) measurements of
ZDR with values calculated from corresponding disdro-
meter-obtained drop size distributions. The difference
between the empirical formula of Pruppacher and Beard
(aW) and the dash curve is significant. For example, at
D 5 2 mm, the ZDR–disdrometer estimate of axis ratio
is a 5 0.95, whereas the result from the empirical for-
mula is aW 5 0.90. Thus, in rainfall characterized by a
reflectivity-weighted mean diameter of 2 mm, the ex-
pected ZDR signal using the ZDR–disdrometer estimate is
only half that of signal predicted by the empirical for-
mula. This example demonstrates that such large dif-
ferences in raindrop axis ratio need to be resolved.

The experimental axis ratios, shown in Fig. 5 for
laboratory and aircraft measurements for oscillating
drops, scatter about the equilibrium axis ratios (e.g., aN)
with means mostly above equilibrium for D . 1 mm.
The shift in the mean above equilibrium axis ratio can
be explained by transverse mode oscillations induced
by vortex shedding, whereas the two-sided scatter can
occur if a small fraction of the oscillation energy (,2%)

excites the axisymmetric ‘‘spheroid’’ mode at the fun-
damental frequency (see Beard and Kubesh 1991; Ku-
besh and Beard 1993).

In laboratory measurements, Beard et al. (1989, 1991)
determined from axis ratio scatter and optical measure-
ments that water drops begin oscillating at 1-mm di-
ameter, at the same size for the onset of vortex shedding.
The threshold of 1-mm diameter for raindrop oscillation
was documented in field measurements at the ground
by Beard and Tokay (1991). As can be seen from Fig.
5, the laboratory studies also reveal that the mean axis
ratios for D . 1 mm are larger than values for the
corresponding equilibrium axis ratios.

For laboratory measurement of larger drop sizes of
D 5 2.0 and 2.5 mm, Kubesh and Beard (1993) also
found that drops oscillated and had mean axis ratios that
were higher than equilibrium values. Chandrasekar et
al. (1988) in aircraft measurements of drops from D 5
2 to 3.6 mm also determined that the mean axis ratios
were higher than equilibrium values.

The general trend for laboratory measurements in the
range D 5 1.0–2.5 mm is that the mean axis ratios are
shifted above the equilibrium axis ratios in the direction
suggested by Goddard and Cherry (1984) from ZDR–
disdrometer measurements (dashed curve).

In the present study the mean axis ratios for D 5 2.5
and 3.6 mm were within the range of equilibrium values,
whereas Kubesh and Beard (1993) obtained a mean axis
ratio for D 5 2.5 mm that was significantly above the
equilibrium value. The standard deviations from these
two studies are similar, indicating that the amplitude of
the oscillations would be similar for similar oscillation
modes. For D 5 2.9 and 4.0 mm, our mean axis ratios
are considerably above the range for equilibrium axis
ratios, as are the mean axis ratios from the aircraft mea-
surements of Chandrasekar et al. (1988). The aircraft
data show considerably more fluctuation in axis ratio
than laboratory data, possibly indicating that the axis
ratios were broadened by turbulent fluctuations in the
drop velocities (see Chandrasekar et al. 1988).

The laboratory results in Fig. 5 indicate that the os-
cillation amplitude, as characterized by the standard de-
viation, increases with drop size. This trend is consistent
with the increase in the Weber number, the ratio of the
aerodynamic perturbation force to the surface tension:
We 5 rDy 2/g, where r is the air density, g is the surface
tension, and y is a perturbation velocity induced by
vortex shedding. Note that the Weber number increases
with drop size, even if the perturbation velocity remains
constant. Therefore, oscillation amplitudes induced by
vortex shedding should increase with drop size, as long
as the forcing and response are suitably matched in both
mode and frequency.

Axis ratio data from various wind tunnel studies [see
Figs. 10–16, Pruppacher and Klett (1997)] agree with
equilibrium axis ratios in the mean because they scatter
only about 60.03 from theory (aN). This is consistent
with axisymmetric oscillations of small to moderate am-
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plitude. The axis ratios for more strongly oscillating
drops in Fig. 5, however, scatter mostly above theory.
The differences in average axis ratios between wind
tunnel measurements and those from laboratory and air-
craft measurements may be due to different steady-state
behaviors as a result of different initial conditions or
different airflows.

b. Adequacy of simulations

In all previous measurements of raindrop shape, the
environment has been altered to some degree from con-
ditions in natural rain. The shape and oscillations of
water drops suspended by the airstream in a vertical
wind tunnel can be affected by turbulence and gradients
in airflow used to keep the drops centered on the tunnel
axis. Because of solid surfaces bounding, turning, and
filtering the airflow, the intensity of wind tunnel tur-
bulence and shear at the small scales affecting drop
shape is much greater than in the atmosphere. Aircraft
measurements of raindrop axis ratio can be affected by
the accelerated airflow ahead of the sampling instrument
(Beard 1983; Xu 1995), and there is uncertainty in the
vertical dimension of raindrops because of fluctuations
in vertical air velocity (Chandrasekar et al. 1988). Rain-
drop axis ratios at the ground can be altered by strong
shear, although in light to moderate winds the influence
of shear is probably negligible (Tokay and Beard 1996).
Because natural turbulence in rain shafts above the
ground and in clouds is probably too weak at the smaller
scales needed to affect raindrop shape and oscillations
(Tokay and Beard 1996), laboratory measurements of
axis ratios in still air provide the best simulation of the
raindrop environment. Here we note that the shape of
raindrops falling aloft does not change appreciably from
that at the surface (Beard 1976), because the distortion
parameter (We) and the drag force are both proportional
to the air density times the velocity squared. As the air
density decreases aloft, the fall speed increases by an
amount nearly proportional to the square root of density
ratio. Thus, the distortion and drag forces do not change
significantly with altitude for a fixed drop size (weight).

Additional requirements for simulating raindrop os-
cillations in the laboratory are 1) the damping of os-
cillations caused by the drop generator and 2) the at-
tainment of steady-state oscillations in response to vor-
tex shedding at terminal velocity. In our present exper-
iment and earlier studies these requirements were
achieved by using fall columns of sufficient height to
allow the initial oscillations to decay and to permit a
large number of oscillation cycles at terminal velocity
before the axis ratios were measured.

Although the present study and that of Kubesh and
Beard (1993) met the requirements for studying steady-
state oscillations, two different oscillation behaviors
were observed for D 5 2.5 mm. Kubesh and Beard
produced drops at terminal speed that reached a steady-
state amplitude with axis ratios that scattered both above
and below the equilibrium value. The mean axis ratio

was greater by about 0.03 than equilibrium ratio. The
initial conditions provided immediate aerodynamic
feedback to drops oscillating at large amplitude (Da ø
0.3). Kubesh and Beard attributed the more symmetric
distribution of axis ratios at their highest measurement
level to the presence of axisymmetric oscillations, and
the more skewed distributions at the lowest measure-
ments level to transverse mode oscillation in modes in
response to asymmetric (transverse) vortex shedding.
They suggested that because vortex shedding is an in-
stability phenomenon, vortices may be triggered at suit-
able oscillation frequencies and modes. This sort of
lock-in resonance has been observed for other systems,
for example, elastically mounted cylinders in laminar
cross flow (Mihailovic et al. 1997).

In the present study, steady-state oscillations for D
5 2.5 and 3.6 mm showed two-sided scatter, as would
be produced by axisymmetric oscillations. The absence
of one-sided scatter was verified by an additional set of
axis ratio measurements at 10.1 m for D 5 2.5 mm and
at 25.5 m for 3.6 mm (see Table 2). The oscillations
caused by the drop generator were predominantly axi-
symmetric and only partially dissipated before the drops
had achieved a sufficient speed for vortex shedding. As
the drops accelerated, axisymmetric oscillations may
have initiated axisymmetric vortices as observed by
Winnikow and Chao (1966), thus providing a good
match between the axisymmetric forcing and response
in the steady state.

Because we observed a steady-state axis ratio behav-
ior for D 5 2.5 and 3.6 mm that was dominated by
axisymmetric oscillations having a mean similar to equi-
librium axis ratios, whereas Kubesh and Beard (1993)
found a steady-state axis ratio behavior for D 5 2.0 and
2.5 mm consistent with the axis ratio shift from trans-
verse mode oscillations, it appears that oscillation
modes in the steady state can be affected by initial con-
ditions. The different outcomes can be attributed to dif-
ferences in drop generators used in the two experiments:
1) symmetric oscillations produced by the dripper in the
present experiment leading to axisymmetric mode os-
cillations in the steady state and 2) asymmetric oscil-
lations during jet breakup in the experiment of Kubesh
and Beard leading to transverse mode oscillations in the
steady state.

If the above explanation is correct, then why did we
observe the transverse mode behavior for D 5 2.9 and
4.0 mm? Apparently, the transverse mode oscillations
dominated the steady state, despite the axisymmetric
initial conditions. This outcome may result from a better
match between the oscillation frequency and the shed-
ding of transverse vortices, for example, as a lock-in
resonance. For D 5 2.9 and 4.0 the steady-state oscil-
lations appear to be insensitive to initial conditions.

Over the range in drop sizes in Fig. 5 from D 5 1.3
to 4.0 mm, a scatter was found in axis ratios both above
and below equilibrium values. This behavior is readily
explained by axisymmetric oscillations, which require
an order of magnitude less energy than the transverse
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mode oscillations for the observed axis ratio amplitudes
of Da # 0.1. The data in Fig. 5 also indicate that average
axis ratios are usually larger than equilibrium values for
D 5 1–4 mm. The most likely mechanism for this be-
havior is vortex shedding that excites transverse mode
oscillations with significantly larger oscillation energies
than the axisymmetric mode.

c. Drop collisions in rain

The growth of raindrops in the warm rain process
occurs primarily by the collection of cloud drops. The
excess energy for the inelastic collisions (i.e., coales-
cences) between raindrops and cloud drops is many or-
ders of magnitude less than the surface energy of a
raindrop, so the resultant oscillations are negligible. In
contrast, the occasional collision of a raindrop with a
drizzle drop or smaller raindrop results in rapidly
damped large-amplitude oscillations of coalesced pairs,
or if energetic enough, breakup (see Beard et al. 1983).

Because collisions between precipitation drops are
generally off center, they typically produce initial con-
ditions similar to the experiment of Kubesh and Beard
(1993), where jet breakup caused asymmetric oscilla-
tions in drops moving at sufficient speed for vortex shed-
ding. The oscillations induced by off-center collisions
should decay to a negligible amplitude within about 10
m of fall, as the steady-state oscillations in the transverse
modes develop their characteristic shift in the mean axis
ratio. This oscillation behavior was found by Kubesh
and Beard for D 5 2.0 and 2.5 mm. Our laboratory
measurements with drops produced by axisymmetric
initial conditions without immediate vortex shedding
resulted in two types of steady-state oscillation behav-
ior: significant transverse mode oscillations with a shift
in mean axis ratio for D 5 2.9 and 4.0 mm, but only
axisymmetric mode oscillations for D 5 2.5 and 3.6
mm. In rain, however, the more prevalent off-center
collisions would initiate transverse mode oscillations for
all raindrop sizes from D 5 1.0–4.0 mm, which are
maintained intrinsically in a steady state by vortex shed-
ding.

In light to heavy rainfall, when the time between col-
lisions is much longer than the oscillation decay time
(Johnson and Beard 1984), the ensemble mean axis ratio
should be dominated by steady-state oscillations having
a mean axis ratio greater than the equilibrium axis ratio
from oscillations in transverse modes, and a two-sided
scatter about the equilibrium axis ratio from lower-en-
ergy oscillations in the axisymmetric mode. The labo-
ratory results in Fig. 5 indicate that raindrops should
oscillate with a standard deviation in axis ratio of s ø
0.02–0.03 in the intervals between raindrop collisions.
The axis ratio shift should be about 0.01–0.03 for
steady-state transverse mode oscillations initiated by
collisions. In very heavy rainfall, the larger amplitude
oscillations from more frequent collisions may dominate
the steady-state oscillations and result in axis ratio shifts

exceeding 0.03 (Jones 1959; Jameson and Beard 1982;
Jameson 1983; Beard and Johnson 1984).

d. Average axis ratio formula

The average axis ratio can be represented by the curve
labeled ‘‘fit to axis ratio measurements’’ obtained using
all the data points on Fig. 5 from D 5 0.70 to 4.1 mm
(Chandrasekar et al. 1988; Beard et al. 1991; Kubesh
and Beard 1993; present expt):

aA 5 1.012 2 0.144D 2 1.03D2 (3)

with diameter units of centimeters. This second-order
polynomial fit to the data has a standard deviation of
sA 5 0.010. Curve fits out to 10th order did not improve
the standard deviation beyond sA 5 0.009, because of
the scatter in average axis ratios. The range of drop
sizes covered by this formula should be restricted to D
5 1.1 to about D 5 4.4 mm. Outside this range the
formula for equilibrium axis ratio [Eq. (1)] can be used,
for example, for D 5 0–1.0 mm and D . 4.4 mm.
Removal of our two data points at D 5 2.0 and 3.6 mm,
where axisymmetric initial conditions apparently re-
duced the average axis ratios, did not substantially affect
the above formula, because there was no perceptible
difference in aA (K0.01) for the range D 5 1.0–3.0
with only a 0.004 increase in aA at D 5 4 mm. It is
not possible to capture the changes in axis ratio from
D 5 1.0 to 2.0 mm without using a fifth- (or higher)
order polynomial. If such detail is needed for calcula-
tions, for example, of ZDR, then we suggest using tabular
values of axis ratios at 0.1-mm intervals interpolated
from the mean axis ratios shown in Fig. 5. Axis ratios
for D 5 0.7–1.5 mm are given in Table 3 of Beard and
Kubesh (1991).

Equation (3) for aA should be useful for estimates of
average axis ratios in rainfall where raindrop oscillations
produced by raindrop collisions are a small fraction of
the oscillations produced intrinsically by vortex shed-
ding. Johnson and Beard (1984) made estimates of col-
lision-induced oscillations that decay by viscous dissi-
pation in exponential raindrop distributions for convec-
tive rain (Sekhon and Srivastava 1971). They found that
most raindrops had oscillation energies less than 1% of
the surface energy as long as their diameters were less
than 4, 3.5, and 3.0 mm for rainfall rates of less than
10, 30, and 100 mm h21, respectively. The oscillation
energy criterion of 1% is equivalent to an axis ratio
amplitude of 0.02 for transverse mode oscillations [see
Fig. 13, Beard and Kubesh (1991)], smaller than the
amplitudes inferred from the data in Fig. 5. Note that
the calculated contribution of drop collisions to raindrop
oscillations by Johnson and Beard (1984) is overesti-
mated because actual damping is significantly faster
than for viscous dissipation (see section 4a). Therefore,
Eq. (3) for aA represents an axis ratio shift caused by
raindrop oscillations that is significantly larger than that
caused by drop collisions for the above limits of drop
size, rainfall rates, and rainfall type.
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TABLE 4. Differential reflectivities in dB for D 5 0.5–4.5 mm using
the formula of Jameson (1983) for semiempirical axis ratios (aW;
Pruppacher and Beard 1970), numerical equilibrium axis ratios (aN;
Beard and Chuang 1989), and present formula for average axis ratios
of oscillating raindrops (aave). Also shown is the difference in ZDR

between the emperical formula of Pruppacher and Beard and the
average axis ratios for oscillating raindrops: DZDR (dB) 5 ZDR (aW)
2 ZDR (aave) and DZDR (%) 5 100 DZDR (dB) / ZDR (aW).

D
(mm) ZDR (aW) ZDR (aN) ZDR (aave) dZDR (dB) DZDR (%)

0.5
1.0
1.5
2.0
2.5

0.01
0.33
0.68
1.00
1.35

0.02
0.16
0.41
0.76
1.15

—
0.13
0.34
0.60
0.93

—
0.20
0.34
0.40
0.42

—
61
50
40
31

3.0
3.5
4.0
4.5

1.71
2.09
2.48
2.89

1.61
2.07
2.54
3.01

1.34
1.82
2.38
—

0.37
0.27
0.10
—

22
13

4
—

TABLE 5. Drop diameters obtained using the 1970 empirical formula
[aW given by Eq. (2)] and the present average axis ratio for oscillating
raindrops [aA given by Eq. (3)]. The last row is the increase in drop
diameter, DD 5 DA (mm) 2 DW (mm), and represents the increase
in reflectivity mean drop size for ZDR estimate of axis ratio in using
the present formula (aA) compared to the previous formula (aW).

a 0.968 0.937 0.906 0.875 0.844 0.813 0.782

DW (mm)
DA (mm)
DD (mm)

1.0
1.5
0.5

1.5
2.1
0.6

2.0
2.6
0.6

2.5
3.0
0.5

3.0
3.4
0.4

3.5
3.3
0.3

4.0
4.1
0.1

e. Effect of raindrop oscillations on ZDR

Jameson (1983) developed the following equation to
evaluate the effect of changes in raindrop axis ratios on
ZDR:

ZDR (dB) 5 210.1 ln^a&, (4)

where ^a& is the reflectivity-weighted mean axis ratio
for an exponential, gamma, or Gaussian distribution of
raindrop size. This equation was verified for mean axis
ratios in the range from 0.66 to 0.91, corresponding to
reflectivity-weighted mean drop diameters of ^D& 5 2–6
mm. Note that raindrops larger than about 1.5-mm di-
ameter are major contributors to ZDR due to the sixth-
power weighting of the drop diameter in the radar re-
flectivity and the increase in raindrop distortion with
size.

Table 4 shows values of ZDR for ^D& 5 0.5–4.5 mm
calculated from (4) using empirical axis ratios (aW) and
numerical equilibrium axis ratios (aN), as well the av-
erage axis ratio for oscillating raindrops (aA). Estimates
of the ZDR signal based on axis ratios from Pruppacher
and Beard (aW) are reduced by 0.1–0.4 dB using the
average axis ratio for oscillating raindrops (aA) in the
range ^D& 5 1–4 mm (see DZDR, Table 4). For small
raindrops of ^D& ø 1–2.0 mm, the percentage reduction
in ZDR is 50%–60% when using aA instead of aW. God-
dard and Cherry (1984) proposed decreases of a few
tenths dB for smaller raindrops based on observed re-
ductions in ZDR using a radar with sampling errors for
ZDR of order 0.1 dB in spatially uniform rain (see dashed
curve in Fig. 5). According to Sachidananda and Zrnić
(1987) sampling errors as low as 0.1 dB can be achieved
with a 18 beamwidth S-band radar by averaging over
about 100 pulses. Application to ZDR is further restricted
to pulse volumes uniform enough to make a useful mea-
surement of the differential reflectivity (see Sachidan-
anda and Zrnić 1987).

In using values of ZDR to estimate reflectivity-weight-
ed mean drop diameters from ^a&, the axis ratio formulas

can be inverted to solve for the reflectivity-weighted
mean raindrop diameter for a specified ^a&. This is il-
lustrated in Table 5 where the drop sizes are given for
the same axis ratios using the 1970 empirical formula
of Pruppacher and Beard (aW) and the present average
axis ratio for oscillating raindrops (aA). The last row is
the difference in drop diameter in using these formulas
at the same axis ratio, DD 5 DA (mm) 2 DW (mm).
This difference in D can be verified from Fig. 5 at the
same axis ratio for the plots of aW and aA. It represents
the increase in reflectivity-weighted mean drop size for
a ZDR estimate of axis ratio for the present formula com-
pared to the previous formula. Based on Table 5, in-
ferred diameters using aA for oscillating raindrops are
about 0.1–0.6 mm larger than when using the earlier
empirical formula given by Eq. (2). The biggest in-
creases in size of 0.4–0.6 mm are for axis ratios from
0.97 to 0.84 where reflectivity-weighted mean sizes are
from 1- to 3-mm diameter. Therefore, the diameter in-
creases by about 0.5 mm when using the axis ratio for-
mula for oscillating raindrops to interpret a measure-
ment of ZDR for a reflectivity-weighted mean drop size
of less than about 3 mm.

6. Conclusions

Although there remains some uncertainty in utilizing
raindrop axis ratios to interpret ZDR, as seen by the large
standard deviations in axis ratios in Fig. 5, it is readily
apparent that the empirical formula (2) from Pruppacher
and Beard (1970) is not the best choice to represent
mean axis ratios. It is also apparent that the average axis
ratios of raindrops are generally higher than the equi-
librium axis ratios as represented by Eq. (1) from the
numerical results of Beard and Chuang (1987), or by
the hydrostatic model of Green (1975). The range for
the calculations of equilibrium axis ratios, represented
by the shaded region in Fig. 4, lies generally below the
mean from the observations of Chandrasekar et al.
(1988), Beard et al. (1989), Kubesh and Beard (1992),
and the present experiment.

The formula for aA given by Eq. (3) should be useful
for estimates of average axis ratios in light to heavy
rainfall where raindrop oscillations produced by rain-
drop collisions are a small fraction of the oscillations
produced intrinsically by vortex shedding (see restric-
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tions in section 5d). The size range for applying Eq. (3)
for average axis ratio of raindrops is D 5 1.1–4.4 mm.
At smaller sizes, equilibrium axis ratios can be used as
calculated from the Eq. (1) fit to the numerical results
of Beard and Chuang (1987).

For diameters larger than about 4 mm, the axis ratio
of raindrops remains uncertain. In aircraft measurements
in high plains showers, Chandrasekar et al. (1988) found
equilibrium axis ratios for D 5 4.1, 4.6, and 5.1 mm.
The suppression of oscillations by unmelted ice cores
was suggested as a possible cause of equilibrium axis
ratios. For the largest size measured (D 5 5.6 mm) they
found a large shift of 0.07 above equilibrium, but the
uncertainty in the mean axis ratio was relatively large
because of the limited number of measurements. Jones
(1959) obtained axis ratios in heavy rainfall at the
ground that were above equilibrium axis ratios by 0.13–
0.20 for D 5 4–5.6 mm. Turbulence in the surface layer
may have been a factor in causing these raindrop os-
cillations (e.g., see Tokay and Beard 1993). The present
measurement of a shift of 0.04 above equilibrium axis
ratios at D 5 4.0 mm indicates that intrinsic oscillations
induced by vortex shedding may be factor in raindrop
shape for sizes above 4-mm diameter. Resolution of the
axis ratio for very large raindrops now awaits further
measurements where the influences of drop collisions,
air turbulence, and ice cores can be adequately distin-
guished from intrinsic oscillations caused by vortex
shedding.
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