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Abstract. The carbon kinetic isotope effects (KIEs) in the reactions of several 

unsaturated hydrocarbons with chlorine atoms were measured at room temperature and 

ambient pressure using gas chromatography combustion isotope ratio mass spectrometry 

(GCC-IRMS). All measured KIEs, defined as the ratio of the rate constants for the 

unlabeled and labeled hydrocarbon reaction k12/k13, are greater than unity or normal KIEs. 

The KIEs, reported in per mil according to Clε = (k12/k13 – 1) × 1000‰ with the number of 

experimental determinations in parenthesis, are as follows: ethene, 5.65 ± 0.34 (1); 

propene, 5.56 ± 0.18 (2); 1-butene, 5.93 ± 1.16 (1); 1-pentene, 4.86 ± 0.63 (1); 

cyclopentene, 3.75 ± 0.14 (1); toluene, 2.89 ± 0.31 (2); ethylbenzene, 2.17 ± 0.17 (2); 

o-xylene, 1.85 ± 0.54 (2). To our knowledge, these are the first reported KIE 

measurements for reactions of unsaturated NMHC with Cl atoms. Relative rate constants 

were determined concurrently to the KIE measurements. For the reactions of 

cyclopentene and ethylbenzene with Cl atoms, no rate constant has been reported in 

refereed literature. Our measured rate constants are: cyclopentene (7.32 ± 0.88) relative 

to propene (2.68 ± 0.32); ethylbenzene (1.15 ± 0.04) relative to o-xylene (1.35 ± 0.21), all 

× 10–10 cm3 molecule–1 s–1. The KIEs in reactions of aromatic hydrocarbons with Cl 

atoms are similar to previously reported KIEs in Cl-reactions of alkanes with the same 

numbers of carbon atoms. Unlike the KIEs for previously studied gas-phase hydrocarbon 

reactions, the KIEs for alkene–Cl reactions do not exhibit a simple inverse dependence on 

carbon number. This can be explained by competing contributions of normal and inverse 

isotope effects of individual steps in the reaction mechanism. Implications for the 

symmetries of the transition state structures in these reactions and the potential relevance 

of Cl-atom reactions on stable carbon isotope ratios of atmospheric NMHC are discussed. 



 3

Keywords: alkene; aromatic; chlorine atom; KIE; stable carbon isotopes; symmetry; 

transition state structure. 

 

1. Introduction 

The impact of chlorine atom chemistry on the removal of unsaturated hydrocarbons from 

the atmosphere has been studied in a significant number of publications (Boudries and 

Bottenheim, 2000; Jobson et al., 1994; Ramacher et al., 1999; Rudolph et al., 1999; 

Wingenter et al., 1999). Although reactions with hydroxyl radicals and ozone are far 

more important on the global scale, particularly in continental mid-latitudes, it is agreed 

that at high latitudes during Polar Sunrise and in coastal environments in the marine 

boundary layer, where concentrations of Cl atoms can reach levels of up to 105 cm–3 

(Chang et al., 2004; Singh et al., 1996), Cl-atom chemistry can significantly increase the 

removal rate of NMHC from the atmosphere. 

The usefulness of stable carbon isotope ratio measurements for investigating the 

OH chemistry of both saturated and unsaturated nonmethane hydrocarbons (NMHC) has 

been demonstrated recently (Rudolph et al., 2000; Rudolph et al., 2002; Rudolph et al., 

2003; Saito et al., 2002; Thompson et al., 2003; Tsunogai et al., 1999). To accurately 

interpret the isotope ratio measurements of unsaturated hydrocarbons, knowledge of the 

kinetic isotope fractionations associated with their chemical removal is necessary. 

Measurements have been reported of the 12C/13C-KIEs in the reactions of alkenes and 

aromatic hydrocarbons with OH radicals (Anderson et al., 2004a; Anderson et al., 2004b; 

Rudolph et al., 2000) and in the reactions of alkenes with ozone (Iannone et al., 2003). 

To best interpret measurements of NMHC from environments with elevated Cl-atom 
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concentrations, however, the kinetic isotope effects (KIEs) in the reactions with Cl atoms 

must also be known. Although theoretical calculations and laboratory measurements of 

the methane-Cl 12C/13C-KIE have been reported, (Crowley et al., 1999; Gupta et al., 

1997; Tanaka et al., 1996; Tyler et al., 2000) as have laboratory measurements of the 

H/D-KIEs of reactions of light alkenes with Cl atoms, (Stutz et al., 1998) and more 

recently, measurements of H/D- and 12C/13C-KIEs in reactions of alkanes with Cl atoms 

(Anderson et al., submitted 2006; Iannone et al., 2005), to our knowledge there are no 

published 12C/13C-KIE values for the reactions of unsaturated hydrocarbons with Cl 

atoms. In this paper we present measurements of the carbon KIEs for reactions of light 

alkenes and alkylbenzenes with Cl atoms.  

 

2. Experiment 

The method for measuring carbon KIEs for the reactions of NMHC + Cl is similar to the 

method used for measuring OH-reaction KIEs which has been described in detail in a 

previous publication (Anderson et al., 2003). The method required only a few minor 

changes to generate Cl atoms rather than OH radicals, described recently (Anderson et 

al., submitted 2006). The Cl-reactions of unsaturated hydrocarbons with naturally 

occurring isotope abundances (≥97% purity grade from Sigma Aldrich, Air Products and 

Matheson Gas) were studied in 30 L PTFE reaction chambers housed inside a converted 

drying oven. Continuous flow isotope ratio mass spectrometry (CF-IRMS) was used to 

measure concentrations and stable carbon isotope ratios. Initial hydrocarbon 

concentrations ranged from 75 to 300 parts per million by volume (ppmV). Between each 

measurement at time intervals of approximately 1.5 hours, molecular chlorine (≥99.5%, 
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Sigma-Aldrich) was injected into the reaction chamber. Then between 1 and 12 

fluorescent lights emitting in the UV range, λmax = 350 nm, were turned on to generate 

chlorine atoms with average concentrations between 105 and 106 atoms cm–3. 

Using an automated system, the hydrocarbons in 5-mL samples from the reaction 

chamber were separated by gas chromatography (GC0 on an HP1 column (Agilent 

Technologies, 60 m 0.32 mm I.D., 5 μm film thickness), and for experiments including 

ethene, a second column was also used (Poraplot Q, 60 m, 0.32 mm I.D.) for two 

dimensional separation. For experiments not including ethene, the GC temperature was 

held at 243 K for 2.5 minutes, increased 4 K min–1 to 303 K, 1.5 K min–1 to 453 K, and 

held until the last peak eluted. For experiments including ethene, the initial temperature 

was held for 30 minutes. Approximately 0.3 mL min–1 of the 1.5 mL min–1 GC effluent 

was split to a Saturn 2000 ion trap mass spectrometer for peak identification and to verify 

peak purity. The remaining portion of the effluent passed through a combustion interface 

for conversion of all carbon containing species to CO2, followed by water removal by a 

Nafion® permeation dryer. Of the remaining dried gas flow, approximately 0.4 mL min–1 

was then transferred through an open split interface to the ion source of a Finnigan MAT 

252 IRMS for stable carbon isotope ratio measurement.  

 For each experiment, before the Cl-atom reaction was initiated, two or three 

measurements of the reaction chamber contents were made to verify sufficient stability in 

both the concentration and stable isotope ratios of the hydrocarbons. From all of the 

hydrocarbons, the mean relative standard deviation of the individual hydrocarbon 

concentration measurements was 1.5%, with relative standard deviations ranging from 

0.5–3.0%. The mean standard deviation of the stable carbon isotope compositions (δ13C) 
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was 0.15‰, with standard deviations ranging from 0.04–0.40‰. Measurements of the 

contents of the reaction chamber were taken approximately once every 1.5 hours, 

depending on the time required for the GC separation. After the reaction initiation, 

measurements were made until less than 50% of each original hydrocarbon concentration 

remained. Generally at least three measurements were made following the reaction 

initiation, but for the first of the two experiments containing aromatic hydrocarbons, due 

to the rapid reaction with Cl atoms, only two measurements of each hydrocarbon were 

made following the reaction initiation. 

 Using the mass 44, 45 and 46 traces generated by the IRMS software, the stable 

carbon isotope ratio and concentration for each hydrocarbon measurement were 

determined. The mass 44 trace, measuring 12C16O2, was used to directly monitor the 

changes in concentration with time, as the abundance of 12C in the sample is proportional 

to hydrocarbon concentration. The relationship between the changes in stable carbon 

isotope ratio and the changes in concentration has been described previously (Anderson 

et al., 2003) as 
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where Ct and C0 are the abundances of carbon atoms at time t and t = 0, respectively. 

Cl-reaction KIEs, defined as Clk12/Clk13, the ratio of the rate constants for the reactions of 

Cl atoms with hydrocarbons containing only 12C and compounds containing a 13C atom, 

were determined from the slope of the linear least-squares fit of a plot according to 

Equation (1). The average of the pre-reaction measurements was used as the initial point 
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for the plot. The experimental uncertainty for each KIE measurement was determined 

using the standard error of the slope of the plot. 

 To confirm that the change in hydrocarbon concentration was due primarily to 

reaction with Cl atoms, a relative rate analysis was performed for each compound and, 

using one of the other hydrocarbons present in the experiment as a reference, 

experimental rate constants were calculated. Experimental rate constants were then 

compared to literature values. 

 

3. Results 

In four experiments with between two and four hydrocarbons each, the Cl-reaction KIEs 

of 5 alkenes and 3 aromatic hydrocarbons were measured in synthetic air at atmospheric 

pressure at 298 ± 3 K. A summary of the individual KIE measurements is given in Table 

I, with the KIE in epsilon notation: Clε (‰) = (k12/k13 – 1) × 1000. Included in Table I are 

the experimental rate constants. The results for each hydrocarbon reaction were averaged 

and are reported in Table II along with published OH- and O3-reaction 12C/13C-KIEs, 

where available. Also included in Table II are published rate constants for each 

hydrocarbon studied. 

 

4. Discussion 

From the relative rate analyses, all experimentally determined rate constants are within 

±10% of the average of the previously reported rate constants (Table II). From the 

relative rate analyses, we conclude that the changes in hydrocarbon concentration during 

the KIE experiments were primarily due to reaction with Cl atoms. Furthermore, the very 
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good agreement for the compounds where literature values are available gives credibility 

to the rate constant determined for the reaction of cyclopentene, for which no value has 

been published to our knowledge. Similarly, our results confirm the reliability of the 

ethylbenzene rate constant, for which the presently available information is limited to two 

measured values published in conference proceedings (Chadwick et al., 2001). 

For all the unsaturated hydrocarbons studied in this work, the KIE in the reaction 

with Cl atoms is significantly smaller than previously measured KIEs for reactions with 

OH radicals (Anderson et al., 2004a; Anderson et al., 2004b; Rudolph et al., 2000) and 

ozone (Iannone et al., 2003). Of particular interest is the 12C/13C-KIEs for the reaction of 

ethene + Cl, (5.65 ± 0.34)‰. This is significantly lower than the 12C/13C-KIE for ethane 

+ Cl (10.7 ± 0.2)‰ (Anderson et al., submitted 2006), which is in strong contrast to the 

OH-reaction KIEs: ethane + OH (8.6 ± 2.0)‰ and ethene + OH (19 ± 3)‰ (Anderson et 

al., 2004a), in which the KIE for the unsaturated reaction is significantly higher. 

For every compound-reactant combination previously studied, a clear inverse 

dependence on the number of carbon atoms in the hydrocarbon NC was found (Anderson 

et al., 2004a; Anderson et al., 2004b; Anderson et al., submitted 2006; Iannone et al., 

2003; Iannone et al., 2004; Iannone et al., 2005; Rudolph et al., 2000). In contrast to this, 

there is no straightforward NC
–1 dependence for the reactions of alkenes with Cl atoms. 

For the hydrocarbons measured, a plot of the Cl-reaction KIE against NC
–1 is shown in 

Figure 1. The linear best fit to the KIE data gives a relationship of ε (‰) = (3.8 ± 3.3) × 

NC
–1 + (4.01 ± 1.06) and an R2 value of 0.303. Obviously, for the alkene–Cl KIEs, a 

dependence on NC
–1 does not provide a useful approximation. The exclusion of the ethene 

and propene data results in more reasonable NC
–1 dependence for the remaining alkenes, 



 9

with ε (‰) = (22.5 ± 1.6) × NC
–1 and an R2 value of 0.672. However, since this 

approximation includes only C4 and C5 KIE data, its applicability for a description of 

KIEs for reaction of C6 and heavier alkenes with Cl atoms is very uncertain. Similarly, 

for the aromatic compounds KIE data is only available for C7 and C8 compounds. 

Consequently the general validity of the approximation of ε (‰) = (17.7 ± 1.6) × NC
–1 

with an R2 value of 0.534 is also very uncertain. However, it is worth noting that the 

aromatic–Cl KIE approximation is closer to previously reported alkane–OH and alkane–

Cl approximations, ε (‰) = (16.6 ± 1.0) × NC
–1 (Anderson et al., 2004a) and ε (‰) = 

(18.3 ± 1.2) × NC
–1 (Anderson et al., submitted 2006), respectively, than it is to the 

reported aromatic–OH approximation, ε (‰) = (40.6 ± 1.4) × NC
–1 (Anderson et al., 

2004b).  

The kinetics of the reactions of chlorine atoms with many simple alkenes have 

been well studied, including ethene, propene, 1-butene, and 1-pentene (Coquet and Ariya, 

2000; Ezell et al., 2002; Iyer et al., 1983; Kaiser and Wallington, 1996; Pilgrim et al., 

1997; Stutz et al., 1997; Stutz et al., 1998; Wallington et al., 1989; Wallington et al., 

1990). In general, these reactions occur via multiple reaction channels. For example, the 

reaction of propene with Cl atoms may occur via abstraction: 

 

H2C=CH–CH3 + Cl· → H2C=CH–ĊH2 + HCl (2) 

 

addition: 

 

CH3–HC=CH2 + Cl· + M → CH3–HĊ–CH2Cl + M (3) 
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or addition-elimination: 

 

ka kb    
C3H6 + Cl· ↔ (C3H6Cl)* → C3H5· + HCl. (4) 

 

Thus, the overall second order rate constant will be k2 + k3[M] + k4, where the rate 

constant k4 = kakb/(k-a + kb). Similar to reaction (4), reaction (3) proceeds in two steps: 

 

CH3–HC=CH2 + Cl· ↔ (CH3–HĊ–CH2Cl)* (5, –5) 

(CH3–HĊ–CH2Cl)* + M → CH3–HĊ–CH2Cl + M. (6) 

 

Thus we obtain k3 = k5k6[M]/(k-5 + k6[M]). At the high pressure limit where [M] is 

sufficiently large, k–5 << k6[M] such that k3 = k5 and the overall rate constant is 

determined by the first reaction step. This is the case for most alkene–OH reactions at 

ambient pressure, but for the reactions of small alkenes with Cl, the high-pressure limit is 

typically greater than one atmosphere (Stutz et al., 1998). 

At low temperatures and moderate pressures, the reactions of alkenes with Cl 

atoms proceed largely through the addition pathway. The additions are exothermic, with 

ΔH values typically in the range of –80 kJ mol–1 (Taatjes, 1999), as the formation of the 

C-Cl bond provides more energy than the difference between the C=C double bond and 

the C-C single bond of the chloroalkyl radical. Under tropospheric conditions, the 

reaction of ethene + Cl largely favours the addition pathway due to the large activation 

energy of the H-atom abstraction channel. However, for other alkenes, the abstraction 
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and addition-elimination channels (2) and (4) can have a significant impact on the overall 

reaction (Taatjes, 1999).  

In the work by Stutz et al. (1998), it was shown that the H/D-KIE (kH/kD) for the 

reaction of Cl atoms with an alkene may be either normal (>1) or inverse (<1). In general, 

they suggest that the abstraction of a hydrogen atom from an alkene by a chlorine atom 

has a normal H/D-KIE (>1), while the addition of Cl atoms to a double bond contributes 

an inverse H/D-KIE (<1). This is explained by the excited adduct in Reaction (5) having 

an increased lifetime due to deuteration and thereby an increased density of vibrational 

states, which results in lower excess energy and a slower decomposition rate back to 

reactants. This increase in lifetime increases the likelihood that the adduct will be 

stabilized by the third-body Reaction (6) rather than decompose back to the reactants, via 

Reaction (–5). This inverse effect is more significant for the KIEs of smaller alkenes. At 

100 kPa, the H/D-KIE for propene + Cl is close to unity, while the H/D-KIEs in the Cl-

reactions of ethene and 1-butene are 0.74 and 1.1, respectively (Stutz et al., 1998). 

There is likely a similar increase in the lifetime of the excited adduct formed in 

Reaction (5) due to the presence of a 13C atom, which would contribute an inverse effect 

to the overall KIE. This inverse effect would be smaller than the impact of deuteration 

because the differences in zero-point energy would be smaller with 13C-labeling. The 

difference between the ethene-Cl and ethane-Cl KIEs in comparison to the OH-reaction 

KIEs corresponds with a lowered ethene-Cl KIE due to the inverse isotope effect 

contribution of Reaction (–5). Unlike the inverse H/D-KIE measured by Stutz et al. 

(1998), however, the measured 12C/13C-KIEs for alkene-Cl reactions are greater than 
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unity. This indicates that there are other contributing isotope effects that result in overall 

normal KIEs, such as the collision frequencies for Reactions (5) and (6). 

For the simplest case, the reaction of ethene with Cl atoms, there is little impact at 

tropospheric conditions from the abstraction and addition-elimination channels (Taatjes, 

1999). Thus, the overall rate constant k is primarily dictated by the addition channel. By 

writing the overall rate constant k as k12 and k13, the KIE can be written as: 
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In principle, there are three regimes. For situations where k–5 >> k6[M], the overall KIE is 

the product of the equilibrium isotope effect for Reaction (5) and the KIE for Reaction 

(6). Where k–5 << k6[M], the overall KIE is the KIE of Reaction (5). Finally, there is the 

transition range, where k–5 ~ k6[M]. In these situations, the isotope effects for each 

reaction step can influence the overall KIE. At ambient pressure, the ethene + Cl reaction 

is below the high-pressure limit (Stutz et al., 1998) and is therefore in the first regime 

where the overall KIE is strongly influenced by Reactions (-5) and (6). The reactions of 

1-butene and 1-pentene with Cl atoms fall into the second regime, where the KIE is 

primarily determined by Reaction (5). The reaction of propene + Cl falls into the 

transitional third regime where the contribution of the equilibrium KIE for Reaction (5) 

to the overall KIE is not as pronounced as it is for ethene.  

 As demonstrated previously, these small 12C/13C-KIEs are not only dependent on 

differences in the zero-point energies of the isotopologues, but also in differences in the 

reaction entropies, for which individual partition functions can be analyzed separately 
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(Anderson et al., submitted 2006). For the addition step in Reaction (5), the ratio of the 

differences in collision frequencies for the unlabeled and labeled ethene isotopologues 

contributes a normal isotope effect of 1.0098 for the ethene-Cl reaction. Using transition 

state theory, factors such as the vibrational and rotational partition functions can be 

estimated. The contribution to the KIE from the vibrational entropy partition function 

 can be determined for each vibrational degree of freedom using the following 

equation (Benson, 1976): 

‡
vibS

 

ReRS Thc‡
vib +−= −− ])1ln[( 1κν  (8) 

 

where κ and h are Boltzmann’s and Planck’s constants, respectively, R is the gas 

constant, c is the speed of light in vacuum and T is the temperature. Generally, all bonds 

with carbon atoms can contribute to the vibration partition function. For most bonds, 

however, the contribution from Equation (8) from the two isotopologues to the overall 

KIE will be near unity due to the magnitude of the vibration frequencies. It is only from ν 

values of weak bonds that the differences in Equation (8) will contribute a significant 

factor to the overall KIE. Thus, the vibrational partition function likely has only a very 

small contribution to the KIE of Reaction (5), as the vibration frequencies of the newly 

formed C–Cl bonds would be too large to have a significant impact. There is likely a 

significant difference, however, between the changes in zero-point energies of the two 

isotopologues due to the formation of the new C–Cl bond. 

As previously discussed, the intermediate formed by Reaction (5) is more stable if 

the double bond contains a 13C atom than the 12C isotopologue intermediate. Therefore 
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Reaction (–5) contributes an inverse KIE with 12k–5 > 13k–5, contributing 13C-enrichment 

to the addition adduct. For Reaction (6), collision frequency suggests that the ratio of 

collisional stabilization 12k6/13k6 = 1.0025, using the molecular mass M = 28.8 g mol–1 for 

ethene. From the latter term in Equation (7), (13k–5 + 13k6[M])/(12k–5 + 12k6[M]), the overall 

KIE is dependent on the rate constant of decomposition back to the reactants in Reaction 

(–5), provided k6[M] is not large compared to k–5, and on the product of the overall 

pressure and the rate constant for the stabilization of the intermediate in Reaction (6). 

 As alkene size increases, the fractionation between isotopologues due to the 

adduct stabilization becomes less important, and the overall KIE is affected to a lesser 

extent by the inverse KIE of the reversible addition step in the mechanism. Thus, initially 

the overall KIEs increase with increasing alkene size. Once the dependence on reaction 

(-5) subsides, the resultant KIEs will likely return to the same NC
–1 dependence seen in 

published alkene–OH 12C/13C-KIEs since then the reaction rate will primarily depend on 

k5. 

For hydrocarbons with allylic hydrogen atoms, abstraction may occur as a 

competing reaction to a small degree, although the overall impact on the KIE from this 

pathway is likely small, as in general the 12C/13C-KIEs for H-atom abstractions are small 

in comparison to addition reactions (Anderson et al., 2004a; Anderson et al., 2004b; 

Rudolph et al., 2000). The impact from the addition-elimination pathway in Reaction (4) 

on alkenes with three or more carbon atoms will also likely contribute a normal KIE, as 

the secondary step involving the decomposition of the chloroalkyl radical and the 

elimination of the HCl group would most likely have k12 > k13 due to the increased 
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stability of the 13C transition state isotopologue, also lessening the contribution of the 

inverse KIE of the addition mechanism with increasing NC. 

 For the ethene reaction, depending on the symmetry of the transition state, there 

could theoretically be a significant change in the external rotation partition function due 

to 13C-labeling. According to basic quantum mechanics (Benson, 1976), the external 

rotational entropy of a nonlinear molecule can be described as: 
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where IM
3 is the product of the three principle moments of inertia around the center of 

mass, and σe is the external symmetry number of the molecule. The differences between 

the changes in the external rotational entropy partition functions for stable carbon 

isotopologues are thus dependent on the ratios of the moments of inertia of the 

isotopologues and their transition states and on the external symmetries of the 

isotopologues and their transition states, such that: 
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 In general for hydrocarbons, the ratio 13IM
3/12IM

3 is greater than unity and is in 

magnitude in the range of per mil effects. For example, the ratio is 1.02 for ethene. The 

ratio of the moments of inertia of the transition states will generally be slightly larger 



 16

than those of the reactants due to increased mass and increased distances to the centres of 

mass such that 13IM
3/12IM

3 < 13IM,TS
3/12IM,TS

3. This results in overall small inverse effects 

for compounds that experience no change in symmetry due to 13C-labeling, both as the 

reactant NMHC and in the transition state. 

 However, for molecules where there is a change in external symmetry between 

the reactants and the transition state, such as ethene, symmetry effects could be large, 

depending on the symmetry of the transition state. 12CH2
12CH2 has a symmetry number of 

4 while 13CH2
12CH2 has a symmetry number of 2. If all symmetry is lost during the 

formation of the transition state, the ratio of the changes in symmetry for the two 

isotopologues would be 2 and the corresponding contribution to the KIE would be a 

factor of approximately 1.4 (21/2). Because the overall KIE for the Cl-reaction of ethene is 

very close to 1 and not near 1.4, we conclude that there must not be significant change in 

the symmetry of the ethene molecule in the formation of the transition state. Thus, the 

difference in symmetry between labeled and unlabeled transition state also must be a 

factor of two. The most likely explanation is that the Cl atom is located symmetrically to 

the two carbon atoms, and not yet predisposed to addition to a specific carbon atom.  

Reactions between aromatic compounds and Cl atoms occur almost exclusively as 

hydrogen atom abstractions from an alkyl group (Fantechi et al., 1998; Markert and 

Pagsberg, 1993). For this reason, we expect the KIEs for reactions of aromatics with Cl 

atoms to be similar in magnitude to the reactions of Cl atoms with saturated hydrocarbons 

of the same size, in contrast to the large difference between the KIEs for OH-reactions of 

alkanes and aromatic hydrocarbons.(Anderson et al., 2004a; Anderson et al., 2004b) 

Indeed, as shown in Table III, the KIEs in Cl-atom reactions with aromatic compounds 
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are close to the corresponding KIEs for reactions of n-alkanes having equal numbers of 

carbon atoms. Nevertheless, there are indications that they are somewhat higher. 

Although the difference is statistically significant only in the case of ethylbenzene, the 

fact that all three Cl-reaction KIEs are higher for the aromatic compounds suggests that 

this difference is systematic. This may be due to the aromatic ring system, such that 13C 

atoms present in the phenyl group may contribute enhanced secondary isotope effects to 

the overall KIE. This would suggest that not only is a 13C atom present at the reaction site 

on an alkyl group significant, but that a 13C atom at any location in the aromatic structure 

may contribute to a small extent to the isotope effect. The higher KIEs for aromatic-Cl 

reactions may also be due to differences in rotational partition functions. However, from 

the only slight difference in KIEs between alkanes and aromatic compounds, it can be 

concluded that these contributions are likely small. 

 
5. Atmospheric Relevance 

There are two major considerations for the impact of Cl-atom reactions on stable carbon 

isotope ratios of ambient light hydrocarbons. By what magnitude will Cl-atom reactions 

contribute to changes in stable carbon isotope ratios, and is it possible to use isotope 

ratios to differentiate between the impacts of Cl-atom chemistry and OH-radical 

chemistry? For the former to be significant, Cl-atom chemistry has to contribute 

significantly to changes in concentration. For the latter to be possible, the KIEs for OH 

and Cl chemistry have to be different. 

For example, if the propane mixing ratio in an air mass was observed to decrease 

from 2 ppbV to 200 pptV, because the KIEs for the reactions of propane with Cl atoms 

and OH radicals are very similar, (5.46 ± 0.35)‰ (Anderson et al., submitted 2006) and 
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(6.44 ± 0.14)‰ (Anderson et al., 2004a) respectively, it would be difficult to use the 

change in stable carbon isotope ratio distinguish between the Cl- and OH-reactions 

without outside information regarding the radical concentrations. However, for a similar 

tenfold change in the mixing ratio of toluene, the change in stable carbon isotope ratio 

due to solely OH-radical reaction (ε = 5.95 ± 0.28) (Anderson et al., 2004b) would be 

14‰, whereas the change in isotope ratio due to only Cl-atom reaction (ε = 2.89 ± 0.31) 

would be 7‰. 

The change of the stable carbon isotope ratio of hydrocarbon z due to reaction 

with oxidants i and j can be described using the following general equation, similar to the 

equation used by Iannone at al. to describe the contributions by OH and O3 reactions 

(Iannone et al., 2003): 
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where δz and 0δz are the average ambient stable isotope ratio and the average stable 

isotope ratio of the emission for hydrocarbon z, t is the average age of hydrocarbon z, and 

[i]av and [j]av are the average concentrations over time t according to: 
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Thus, assuming only reaction with OH and Cl, the relative impact of the reaction with Cl 

atoms on the overall isotope ratio change is dependent on the magnitude of the KIEs, the 
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rate constants and the atmospheric concentration of Cl atoms and OH radicals. The 

percentage of the overall isotope ratio change of a hydrocarbon z due to reaction with Cl 

atoms, Δδ13CCl/Δδ13Ctotal (%) where Δδ13CCl + Δδ13COH = Δδ13Ctotal = δz – 0δz, depends on 

the ratio of the concentrations of the Cl atoms and OH radicals, [Cl]/[OH] such that: 
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For most hydrocarbons, because the magnitude of the KIEs for reactions with Cl 

atoms and OH radicals are similar, the impact of chlorine atom reactions will be 

insignificant under continental background conditions where Cl-atom concentrations are 

less than 102 cm–3 (Figure 2) and OH-radical concentrations are 105 cm–3 or greater. 

However, as previously discussed, under Polar sunrise conditions and in the marine 

boundary layer Cl atom concentrations may reach concentrations as high as 105 cm–3. 

With a typical average OH radical concentration of 106 cm–3, it is thus plausible that the 

ratio of Cl atoms to OH radicals may exceed 0.1. Table IV shows the percentage impact 

of the Cl-atom reaction on the overall change in stable carbon isotope ratio for [Cl]/[OH] 

ratios ranging from 0.0001 to 0.1 using Equation (13) for saturated and unsaturated 

hydrocarbons where KIE data is available for both OH and Cl reactions. 

For most hydrocarbons, the reaction with Cl atoms has little impact on the overall 

change in stable carbon isotope ratio from chemical reaction when the ratio of Cl atoms 

to OH radicals is less than 0.001. For light alkenes, there may be an additional impact on 

δ13C due to reaction with ozone (Iannone et al., 2003); this would further decrease the 

relative importance of the Cl reaction for the overall isotope ratio change. For ethane, 
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however, even at a [Cl]/[OH] ratio of 0.001 the reaction with Cl accounts for almost one-

quarter of the overall isotope change. For [Cl]/[OH] values closer to the levels possible at 

Polar sunrise and in early morning marine boundary layers, the impact of the reactions 

with Cl atoms can be significant for all of the hydrocarbons studied. This indicates that 

both reactions with Cl and OH should be considered when interpreting isotope ratio data 

from these types of locations. 
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6. Conclusions 

The 12C/13C-KIEs in all studied reactions of unsaturated hydrocarbons with 

chlorine atoms are normal KIEs. For the reactions of aromatic hydrocarbons with Cl 

atoms, the measured KIEs are all significantly lower than the previously reported KIEs in 

the reactions of aromatic hydrocarbons with OH radicals. The aromatic-Cl KIEs are 

similar in magnitude to previously reported KIEs for the reactions of alkanes with OH 

radicals when comparing compounds with the same numbers of carbon atoms. This is 

consistent with the knowledge that Cl-reactions of aromatic hydrocarbons occur via 

hydrogen atom abstractions from an alkyl group rather than via additions to the aromatic 

ring. It would be interesting to contrast the KIEs reported here for the reactions of 

alkylbenzenes with Cl against the KIE for benzene + Cl. However, because the rate 

coefficient for the latter is on the order of 10-15 cm3 molecule–1 s–1 (Shi and Bernhard, 

1997), the KIE measurement method used in this work is not suitable for this reaction. 

The measured carbon KIEs for the reactions of alkenes with Cl atoms do not have 

the NC
–1 dependence that has been observed in all other measured hydrocarbon-radical 

reactions studied to date. There are strong indications of inverse effects for individual 

steps of the reaction sequence resulting from the stabilization of the intermediate in the 

reaction mechanism. However, these effects are smaller in magnitude than the sum of the 

normal KIE components. Due to the pressure-dependent competition between the 

stabilization and decay of the intermediate, the impact of the inverse effect is largest for 

the KIE of ethene + Cl, for which the reaction is below the high-pressure limit under 

tropospheric conditions. The impact of the inverse effect on the overall KIE decreases 

with increasing alkene mass. This is compatible with the decrease of the high-pressure 
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limit for the addition reaction of alkenes with increasing carbon number. A pressure of 

one atmosphere of air is close to the high pressure limit for alkene-Cl reactions. For 

heavier alkenes the high-pressure limit is reached at one atmosphere. With increasing 

carbon number there is also an increasing contribution of abstraction and addition-

elimination channels to the overall reaction. This is in contrast to the 12C/13C-KIEs for the 

reactions of alkenes with OH radicals. For these reactions the addition pathway 

dominates under tropospheric conditions. Furthermore, for the addition of OH to carbon-

carbon double bonds, the high-pressure limit is reached for tropospheric conditions. The 

differences in the carbon number dependence of the KIEs between reactions of alkenes 

with Cl-atoms and OH-radicals are therefore fully compatible with our understanding of 

the reaction mechanisms. 

Because the KIE for the reaction of ethene + Cl was on the order of 1.01, and not 

near 1.4, we conclude that for unlabeled ethene the transition state has a symmetry 

number of 2, which is the case if the Cl atom in the transition state is positioned 

symmetrically to the two carbon atoms, not yet predisposed to reaction at either atom. 

This conclusion also applies to the transition states of the ethene-OH and benzene-OH 

reactions, as the KIEs for these reactions are also not large with respect to the potential 

changes in symmetry. 

Reactions of light NMHC with Cl atoms can have a significant impact on the 

stable carbon isotope ratios of these compounds in regions where the Cl atom to OH ratio 

reaches levels of 0.01 or greater, which is possible in both arctic and marine 

environments. These reactions may not have a large impact on the average stable carbon 

isotope ratio for long-lived species in marine environments where episodes of elevated Cl 
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atoms are short in comparison to the lifetime of the species. In arctic conditions at Polar 

sunrise, however, the impact on the isotope ratios of both long-lived and short-lived 

species could be significant. Thus, for more accurate interpretation of stable carbon 

isotope data in these regions, both OH and Cl chemistry should be taken into account. 

More importantly, due to the differences between the 12C/13C-KIEs for the reactions of 

unsaturated hydrocarbons with Cl atoms and OH radicals, particularly for the aromatic 

compounds which are relatively unaffected by O3 chemistry, we predict that based on the 

KIEs reported in this work, isotope ratio measurements will be a valuable indicator for 

differentiating between Cl and OH chemistry. 

 

Acknowledgements 

The authors sincerely thank D. Ernst and A. Chivulescu from the Science and 

Technology Branch, Environment Canada for technical support and isotope standard 

preparation. This research was supported financially by the Natural Sciences and 

Engineering Research Council of Canada (NSERC) and the Canadian Foundation for 

Climate and Atmospheric Sciences (CFCAS). 

 

References 

Anderson, R. S., Huang, L., Iannone, R., and Rudolph, J.: Measurements of the 12C/13C Kinetic Isotope 

Effects in the Gas-Phase Reactions of Light Alkanes with Chlorine Atoms, J. Phys. Chem. A, 

submitted July 2006.  

Anderson, R. S. Huang, L., Iannone, R., Thompson, A. E., and Rudolph, J., 2004a: Carbon kinetic isotope 

effects in the gas phase reactions of light alkanes and ethene with the OH radical at 296 ± 4 K, J. 

Phys. Chem. A 108, 11537-11544.  



 24

Anderson, R. S., Thompson, A. E., Iannone, R., Rudolph, J., and Huang, L., 2004b: Carbon kinetic isotope 

effects in the gas-phase reactions of aromatic hydrocarbons with the OH radical at 296 ± 4 K, 

Geophys. Res. Lett. 31, L15108.  

Anderson, R. S., Czuba, E., Ernst, D., Huang, L., Thompson, A. E., and Rudolph, J., 2003: Method for 

measuring carbon kinetic isotope effects of gas-phase reactions of light hydrocarbons with the 

hydroxyl radical, J. Phys. Chem. A 107, 6191-6199.  

Aschmann, S. M. and Atkinson, R., 1995: Rate Constants for the Gas-Phase Reactions of Alkanes with Cl 

Atoms at 296 ± 2 K, Int. J. Chem. Kinet. 27, 613-622.  

Atkinson, R., 1997: Gas-phase tropospheric chemistry of volatile organic compounds .1. Alkanes and 

alkenes, J. Phys. Chem. Ref. Data 26, 215-290.  

Atkinson, R. and Arey, J., 2003: Atmospheric degradation of volatile organic compounds, Chem. Rev. 103, 

4605-4638.  

Atkinson, R. and Aschmann, S.M., 1985: Kinetics of the Gas-Phase Reaction of Cl Atoms with a Series of 

Organics at 296 ± 2K and Atmospheric-Pressure, Int. J. Chem. Kinet. 17, 33-41.  

Benson, S.W., 1976: Thermochemical Kinetics, 2nd Ed., Wiley: New York. 

Boudries, H. and Bottenheim, J. W., 2000: Cl and Br atom concentrations during a surface boundary layer 

ozone depletion event in the Canadian high Arctic, Geophys. Res. Lett. 27, 517-520.  

Chadwick, P., O'Leary, B., Treacy, J., Notario, A., Mellouki, A., Le Bras, G., Wenger, J., and Sidebottom, 

H., 2001: Kinetic Studies on the Reactions of Hydroxyl Radicals and Chlorine Atoms with Aromatic 

Compounds, presented at A Changing Atmosphere: 8th European Symposium on the Physio-

Chemical Behaviour of Atmospheric Pollutants, Torino, Italy.  

Chang, C. T., Liu, T. H., and Jeng, F. T., 2004: Atmospheric concentrations of the Cl atom, CIO radical, 

and HO radical in the coastal marine boundary layer, Environ. Res. 94, 67-74.  



 25

Coquet, S. and Ariya, P. A., 2000: Kinetics of the gas-phase reactions of Cl atom with selected C2-C5 

unsaturated hydrocarbons at 283 < T < 323 K, Int. J. Chem. Kinet. 32, 478-484.  

Crowley, J. N., Saueressig, G., Bergamaschi, P., Fischer, H., and Harris, G. W., 1999: Carbon kinetic 

isotope effect in the reaction CH4+Cl: a relative rate study using FTIR spectroscopy, Chem. Phys. 

Lett. 303, 268-274.  

Ezell, M. J., Wang, W. H., Ezell, A. A., Soskin, G., and Finlayson-Pitts, B. J., 2002: Kinetics of reactions 

of chlorine atoms with a series of alkenes at 1 atm and 298 K: structure and reactivity, Phys. Chem. 

Chem. Phys. 4, 5813-5820.  

Fantechi, G., Jensen, N. R., Saastad, O., Hjorth, J., and Peeters, J., 1998: Reactions of Cl atoms with 

selected VOCs: Kinetics, products and mechanisms, J. Atmos. Chem. 31, 247-267.  

Gupta, M. L., McGrath, M. P., Cicerone, R. J., Rowland F. S., and Wolfsberg, M., 1997: 12C/13C kinetic 

isotope effects in the reactions of CH4 with OH and Cl, Geophys. Res. Lett. 24, 2761-2764.  

Hooshiyar, P. A. and Niki, H., 1995: Rate Constants for the Gas-Phase Reactions of Cl-Atoms with C2-C8 

Alkanes at T=296±2K, Int. J. Chem. Kinet. 27, 1197-1206.  

Iannone, R., Anderson, R. S., Vogel, A., Eby, P. S., Whiticar, M. J., and Rudolph, J., 2005: The hydrogen 

kinetic isotope effects of the reactions of n-alkanes with chlorine atoms in the gas phase, J. Atmos. 

Chem. 50, 121-138.  

Iannone, R., Anderson, R. S., Rudolph, J., Huang, L., and Ernst, D., 2003: The carbon kinetic isotope 

effects of ozone-alkene reactions in the gas-phase and the impact of ozone reactions on the stable 

carbon isotope ratios of alkenes in the atmosphere, Geophys. Res. Lett. 30, 1684.  

Iannone, R., Anderson, R. S., Vogel, A., Rudolph, J., Eby, P., and Whiticar, M. J., 2004: Laboratory studies 

of the hydrogen kinetic isotope effects (KIEs) of the reaction of non-methane hydrocarbons with the 

OH radical in the gas phase, J. Atmos. Chem. 47, 191-208.  



 26

Iyer, R. S., Rogers, P. J., and Rowland, F. S., 1983: Thermal Rate-Constant for Addition of Chlorine Atoms 

to Ethylene, J. Phys. Chem. 87, 3799-3801.  

Jobson, B. T., Niki, H., Yokouchi, Y., Bottenheim, J., Hopper, F., and Leaitch, R., 1994: Measurements of 

C2-C6 Hydrocarbons during the Polar Sunrise 1992 Experiment - Evidence for Cl Atom and Br Atom 

Chemistry, J. Geophys. Res. [Atmos. ] 99, 25355-25368.  

Kaiser, E. W. and Wallington, T. J., 1996: Kinetics of the reactions of chlorine atoms with C2H4 (k1) and 

C2H2 (k2): A determination of ΔHf,298° for C2H3, J. Phys. Chem. 100, 4111-4119.  

Markert, F. and Pagsberg, P., 1993: UV Spectra and Kinetics of Radicals Produced in the Gas-Phase 

Reactions of Cl, F and OH with Toluene, Chem. Phys. Lett. 209, 445-454.  

Pilgrim, J. S., McIlroy, A., and Taatjes, C. A., 1997: Kinetics of Cl atom reactions with methane, ethane, 

and propane from 292 to 800 K, J Phys Chem A 101, 1873-1880.  

Ramacher, B., Rudolph, J., and Koppmann, R., 1999: Hydrocarbon measurements during tropospheric 

ozone depletion events: Evidence for halogen atom chemistry, J. Geophys. Res. [Atmos. ] 104, 3633-

3653.  

Rudolph, J., Anderson, R. S., von Czapiewski, K., Czuba, E., Ernst, D., Gillespie, T., Huang, L., Rigby, C., 

and Thompson, A. E., 2003: The stable carbon isotope ratio of biogenic emissions of isoprene and the 

potential use of stable isotope ratio measurements to study photochemical processing of isoprene in 

the atmosphere, J. Atmos. Chem. 44, 39-55.  

Rudolph, J., Czuba, E., and Huang, L., 2000: The stable carbon isotope fractionation for reactions of 

selected hydrocarbons with OH-radicals and its relevance for atmospheric chemistry, J. Geophys. Res. 

[Atmos. ] 105, 29329-29346.  

Rudolph, J., Czuba, E., Norman, A. L., Huang L., and Ernst, D., 2002: Stable carbon isotope composition 

of nonmethane hydrocarbons in emissions from transportation related sources and atmospheric 

observations in an urban atmosphere, Atmos. Environ. 36, 1173-1181.  



 27

Rudolph, J., Fu, B. R., Thompson, A., Anlauf K., and Bottenheim, J., 1999: Halogen atom concentrations 

in the Arctic troposphere derived from hydrocarbon measurements: Impact on the budget of 

formaldehyde, Geophys. Res. Lett. 26, 2941-2944.  

Saito, T., Tsunogai, U., Kawamura, K., Nakatsuka, T. and Yoshida, N., 2002: Stable carbon isotopic 

compositions of light hydrocarbons over the western North Pacific and implication for their 

photochemical ages, J. Geophys. Res. [Atmos. ] 107, 4040.  

Shi, J. C. and Bernhard, M. J., 1997: Kinetic studies of Cl-atom reactions with selected aromatic 

compounds using the photochemical reactor-FTIR spectroscopy technique, Int. J. Chem. Kinet. 29, 

349-358.  

Singh, H. B., Gregory, G. L., Anderson, B., Browell, E., Sachse, G. W., Davis, D. D., Crawford, J., 

Bradshaw, J. D., Talbot, R., Blake, D. R., Thornton, D., Newell R., and Merrill, J., 1996: Low ozone 

in the marine boundary payer of the tropical Pacific Ocean: Photochemical loss, chlorine atoms, and 

entrainment, J. Geophys. Res. [Atmos. ] 101, 1907-1917.  

Smith, J. D., DeSain, J. D., and Taatjes, C. A., 2002: Infrared laser absorption measurements of HCl(υ=1) 

production in reactions of Cl atoms with isobutane, methanol, acetaldehyde, and toluene at 295 K, 

Chem. Phys. Lett. 366, 417-425.  

Stutz, J., Ezell, M. J., Ezell, A. A., and Finlayson-Pitts, B. J., 1998: Rate constants and kinetic isotope 

effects in the reactions of atomic chlorine with n-butane and simple alkenes at room temperature, J. 

Phys. Chem. A 102, 8510-8519.  

Stutz, J., Ezell, M. J., and Finlayson-Pitts, B. J., 1997: Inverse kinetic isotope effect in the reaction of 

atomic chlorine with C2H4 and C2D4, J. Phys. Chem. A 101, 9187-9190.  

Taatjes, C. A., 1999: Time-resolved infrared absorption measurements of product formation in Cl atom 

reactions with alkenes and alkynes, Int. Rev. Phys. Chem. 18, 419-458.  



 28

Tanaka, N., Xiao, Y. T., and Lasaga, A. C., 1996: Ab initio study on carbon Kinetic Isotope Effect (KIE) in 

the reaction of CH4+Cl·, J. Atmos. Chem. 23, 37-49.  

Thompson, A., Rudolph, J., Rohrer F., and Stein, O., 2003: Concentration and stable carbon isotopic 

composition of ethane and benzene using a global three-dimensional isotope inclusive chemical tracer 

model, J. Geophys. Res. [Atmos. ] 108, 4373.  

Tsunogai, U., Yoshida, N., and Gamo, T., 1999: Carbon isotopic compositions of C2-C5 hydrocarbons and 

methyl chloride in urban, coastal, and maritime atmospheres over the western North Pacific, J. 

Geophys. Res. [Atmos. ] 104, 16033-16039.  

Tyler, S. C., Ajie, H. O, Rice, A. L., Cicerone, R. J., and Tuazon, E. C., 2000: Experimentally determined 

kinetic isotope effects in the reaction of CH4 with Cl: Implications for atmospheric CH4, Geophys. 

Res. Lett. 27, 1715-1718.  

Wallington, T. J., Andino, J. M., Lorkovic, I. M., Kaiser, E. W., and Marston, G., 1990: Pressure-

Dependence of the Reaction of Chlorine Atoms with Ethene and Acetylene in Air at 295-K, J. Phys. 

Chem. 94, 3644-3648.  

Wallington, T. J., Skewes, L. M., and Siegl, W. O., 1989: A Relative Rate Study of the Reaction of Cl 

Atoms with a Series of Chloroalkanes at 295-K, J. Phys. Chem. 93, 3649-3651.  

Wingenter, O. W., Blake, D. R., Blake, N. J., Sive, B. C., Rowland, F. S., Atlas, E. and Flocke, F., 1999: 

Tropospheric hydroxyl and atomic chlorine concentrations, and mixing timescales determined from 

hydrocarbon and halocarbon measurements made over the Southern Ocean, J. Geophys. Res. [Atmos. 

] 104, 21819-21828.  



 29

 
 
 

Figure 1. Plot of the mean carbon kinetic isotope effects (KIEs) for the reactions of Cl 

atoms with unsaturated hydrocarbons against the inverse of the number of carbon atoms, 

NC. Error bars show the error of the KIE as shown in Table 2. The curves are reported 

carbon KIE least squares best-fits for sets of different reaction types: alkane–OH 

(Anderson et al., 2004a); alkane–Cl KIEs (Anderson et al., submitted 2006); alkene–OH 

(Anderson et al., 2004a); alkene-O3 (Iannone et al., 2003); and aromatic-OH (Anderson 

et al., 2004b). 

 

Figure 2. The rate of change of stable carbon isotope ratios of four unsaturated 

hydrocarbons due to reaction with Cl atoms at three different Cl-atom concentrations in 

units of atoms cm–3. Also shown is the rate of change of the isotope ratio for these 

hydrocarbons due to reaction with 105 OH radicals cm–3. 
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Table I. Measurements of the carbon kinetic isotope effects in the reactions of 

unsaturated hydrocarbons with Cl atoms at 298 ± 3 K and 100 kPa total pressure in air. 

Hydrocarbon 
Reaction 
Temperature, K Clε,a ‰ R2

1011k,b cm3 
molecule–1 s–1

Ethene 298 5.65 ± 0.34 0.983 10.0 ± 1.2c

Propene 298 5.69 ± 0.12 0.998 27.9 ± 4.1d

Propene 299 5.44 ± 0.22 0.994 24.7 ± 6.0e

1-Butene 299 5.93 ± 1.16 0.868 32.6 ± 4.2c

1-Pentene 299 4.86 ± 0.63 0.937 42.2 ± 5.0c

Cyclopentene 299 3.75 ± 0.14 0.996 73.2 ± 8.8c

Toluene 299 2.67 ± 0.19 0.964 6.5 ± 0.5f

Toluene 301 3.11 ± 0.18 0.997 6.9 ± 0.6f

Ethylbenzene 299 2.05 ± 0.09 0.988 11.2 ± 0.8f

Ethylbenzene 301 2.29 ± 0.02 1.000 11.7 ± 0.8f

o-Xylene 299 2.23 ± 0.07 0.995 13.4 ± 1.2g

o-Xylene 301 1.46 ±0.22 0.977 12.8 ± 1.1g

aError shown is calculated from the standard error in the plot of Equation (1).  
bExperimental rate constant calculated using literature rate constants and uncertainties for 
the reference compound (Atkinson and Aschmann, 1985; Coquet and Ariya, 2000; Ezell 
et al., 2002; Fantechi et al., 1998; Shi and Bernhard, 1997; Smith et al., 2002; Stutz et al., 
1998; Wallington et al., 1989) and the standard error of the relative rate analysis. 
cPropene used as reference compound. 
dEthene used as reference compound. 
e1-Butene used as reference compound. 
fo-Xylene used as reference compound. 
gToluene used as reference compound. 
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Table II. Summary of the carbon kinetic isotope effects in the reactions of unsaturated 

hydrocarbons with Cl atoms, OH radicals and O3 at 298 ± 3 K and 100 kPa total pressure 

in air.  

Hydrocarbon 
Average 
Clε,a ‰ OHε, ‰ O3ε,b ‰ 

Clkexperimental,c     
10–11 cm3

molecule–1 s–1

Clkliterature,d     
10–11 cm3

molecule–1 s–1

Ethene 5.65 ± 0.34 18.6 ± 2.9e 18.9 ± 2.8 10.0 ± 1.2 9.9 ± 1.1f

             9.3 ± 0.6g

12.1 ± 0.7h

             10.4 ± 1.5i

Propene 5.56 ± 0.18 11.70 ± 0.19j 9.5 ± 2.5 26.3 ± 2.2 23 ± 3f

             27.6 ± 0.6g

             32.2 ± 1.3h

             24.4 ± 0.7k

26.4 ± 2.1l

             26.8 ± 3.2i

1-Butene 5.93 ± 1.16 7.40 ± 0.32j 8.7 ± 1.0 32.6 ± 4.2 22 ± 3f

             35.2 ± 0.7g

33.8 ± 4.8l

             30.3 ± 7.3i

1-Pentene 4.86 ± 0.63    6.7 ± 0.9 42.2 ± 5.0 48 ± 8g

39.7 ± 3.6l

             44.0 ± 6.1i

Cyclopentene 3.75 ± 0.14    6.7 ± 0.7 73.2 ± 8.8    
Toluene 2.89 ± 0.31 5.95 ± 0.28m  6.7 ± 0.3 5.9 ± 0.5n

             5.6 ± 1.3p

             6.1 ± 2.0q

             5.9 ± 0.3i

Ethylbenzene 2.17 ± 0.17 4.34 ± 0.28m  11.5 ± 0.4 10.9 ± 0.3r

             13.4 ± 0.6r

             12.2 ± 1.8i

o-Xylene 1.85 ± 0.54 4.27 ± 0.05m  13.1 ± 0.5 12 ± 1h

             15 ± 1n

             13.5 ± 2.1i
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aUncertainty shown is the error of the mean KIE value for compounds with two KIE 
measurements, and the uncertainty from the standard error of the plot of Equation (1) for 
compounds with only one KIE measurement. 
bIannone et al., (2003) 
cMean Clk value with 1σ standard error of the k values determined using relative rate 
analysis for compounds measured more than once. For identification of the reference 
substances used in the relative rate measurements see Table I. 
dFor comparison, literature rate constants for the reaction with Cl atoms are included. 
eAnderson et al., (2004a). 
fStutz et al., (1998). 
gCoquet and Ariya, (2000). 
hWallington et al., (1989). 
iMean literature rate constant with 1σ standard error. 
jRudolph et al., (2000). 
kAtkinson and Aschmann, (1985). 
lEzell et al., (2002). 
mAnderson et al., (2004b). 
nShi and Bernhard, (1997). 
pFantechi et al., (1998). 
qSmith et al., (2002). 
rChadwick et al., (2001). 
 

 

Table III. Comparison of the rate constants and carbon kinetic isotope effects for the 

reactions of Cl atoms and OH radicals with C7 and C8 alkane and aromatic hydrocarbons. 

Hydrocarbon Clε, ‰ 
1010 Clk, 
cm3 molecule–1 s–1 OHε, ‰ 

1012 OHk,g 
cm3 molecule–1 s–1 

n-Heptane 2.06 ± 0.33a 36.5 ± 0.7b 1.96 ± 0.26e 6.8 ± 1.4 
Toluene 2.89 ± 0.31 5.9 ± 0.3c 5.95 ± 0.28f 5.6 ± 1.1 
n-Octane 1.54 ± 0.26a 41.0 ± 0.1b 2.13 ± 0.39e 8.1 ± 1.6 
Ethylbenzene 2.17 ± 0.17 12.2 ± 1.8d 4.34 ± 0.28f 7.0 ± 1.8 
o-Xylene 1.85 ± 0.54 13.5 ± 2.1c 4.27 ± 0.05f 13.6 ± 3.4 
aAnderson et al., (Anderson et al., submitted 2006) 
bHooshiyar and Niki, (Hooshiyar and Niki, 1995) 
cShi and Bernhard, (Shi and Bernhard, 1997) 
dChatwick et al., (Chadwick et al., 2001) 
eAnderson et al., (Anderson et al., 2004a) 
fAnderson et al., (Anderson et al., 2004b) 
gAtkinson and Arey, (Atkinson and Arey, 2003) 
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Table IV. Dependence of the relative impact on the stable carbon isotope ratios of 

nonmethane hydrocarbons due to reaction with Cl atoms on the ratio of Cl atoms to OH 

radicals. 

Δδ13CCl/ Δδ13Ctotal,a,b % 
Hydrocarbon [Cl]/[OH] = 

0.0001 
[Cl]/[OH] = 

0.001 
[Cl]/[OH] = 

0.01 
[Cl]/[OH] = 

0.1 
Ethane 2.9 ± 0.9 23 ± 6 75 ± 8 97 ± 9 
Propane 1.5 ± 0.3 13 ± 3 60 ± 7 94 ± 8 
Methylpropane 0.45 ± 0.12 4.3 ± 1.1 31 ± 6 82 ± 5 
n-Butane 0.66 ± 0.16 6.2 ± 1.4 40 ± 6 87 ± 7 
Methylbutane 0.33 ± 0.14 3.2 ± 1.3 25 ± 9 77 ± 24 
n-Pentane 0.74 ± 0.28 6.9 ± 2.4 43 ± 9 88 ± 7 
n-Hexane 0.53 ± 0.16 5.1 ± 1.4 35 ± 9 84 ± 23 
n-Heptane 0.56 ± 0.14 5.3 ± 1.3 36 ± 7 85 ± 11 
n-Octane 0.36 ± 0.10 3.5 ± 1.0 27 ± 6 78 ± 11 
Cyclopentane 1.1 ± 0.3 9.8 ± 2.3 52 ± 7 92 ± 6 
Cyclohexane 0.23 ± 0.05 2.2 ± 0.5 19 ± 4 69 ± 7 
Methylcyclopentane 0.77 ± 0.59 7.2 ± 5.3 44 ± 28 89 ± 61 
Ethene 0.04 ± 0.01 0.35 ± 0.07 3.4 ± 0.7 26 ± 4 
Propene 0.04 ± 0.01 0.41 ± 0.08 4.0 ± 0.8 29 ± 5 
1-Butene 0.06 ± 0.02 0.56 ± 0.17 5.3 ± 1.6 36 ± 10 
Toluene 0.05 ± 0.01 0.51 ± 0.13 4.9 ± 1.2 34 ± 7 
Ethylbenzene 0.09 ± 0.03 0.86 ± 0.27 8.0 ± 2.4 47 ± 11 
o-Xylene 0.05 ± 0.02 0.47 ± 0.19 4.5 ± 1.8 32 ± 12 
aCalculated using Cl-reaction KIE values from this work, literature OH-reaction KIE 
values (Anderson et al., 2004a; Anderson et al., 2004b; Rudolph et al., 2000), literature 
Cl-reaction KIE values (Anderson et al., submitted 2006), and literature rate constant 
data (Aschmann and Atkinson, 1995; Atkinson and Arey, 2003; Atkinson, 1997; 
Chadwick et al., 2001; Coquet and Ariya, 2000; Hooshiyar and Niki, 1995; Shi and 
Bernhard, 1997; Stutz et al., 1998; Wallington et al., 1989). 
bUncertainties are the standard deviations determined using the reported uncertainties in 
the literature data and in the KIEs from this work.  
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