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S U M M A R Y

We present laboratory and numerical models investigating the behavioural regimes of rapidly

rotating convection in high-latitude planetary core-style settings. Our combined laboratory-

numerical approach, utilizing simplified geometries, can access more extreme parameters (e.g.

Rayleigh numbers Ra � 1013; Nusselt numbers Nu � 103; Ekman numbers E � 3 × 10−8)

than current global-scale dynamo simulations. Using flow visualizations and heat transfer

measurements, we study the axialized flows that exist near the onset of rotating convection,

as well as the 3-D flows that develop with stronger forcing. With water as the working fluid

(Prandtl number Pr ≃ 7), we find a steep scaling trend for rapidly rotating convective heat

transfer, Nu ∼ (Ra/RaC)3.6, that is associated with the existence of coherent, axialized columns.

This rapidly rotating trend is steeper than the trends found at moderate values of the Ekman

number, and continues a trend of ever-steepening scalings as the rotation rate of the system is

increased. In contrast, in more strongly forced or lower rotation rate cases, the heat transfer

scaling consistently follows a shallower slope equivalent to that of non-rotating convection

systems. The steep heat transfer scaling in the columnar convection regime, corroborated by

our laboratory flow visualizations, imply that coherent, axial columns have a relatively narrow

range of stability. Thus, we hypothesize that coherent convection columns are not stable in

planetary core settings, where the Ekman number is estimated to be ∼10−15. As a consequence,

convective motions in the core may not be related to the columnar motions found in present-

day global-scale models. Instead, we hypothesize that turbulent rotating convection cascades

energy upwards from 3-D motions to large-scale quasi-2-D flow structures that are capable

of efficiently generating planetary-scale magnetic fields. We argue that the turbulent regimes

of rapidly rotating convection are essential aspects of core dynamics and will be necessary

components of robust, next-generation and multiscale dynamo models.

Key words: Dynamo: theories and simulations; Heat flow; Core, outer core and inner core;

Planetary interiors.

1 I N T RO D U C T I O N

In the investigation of planetary core physics, the current method-

ological paradigm depends primarily upon numerical dynamo mod-

els. These models strive to simulate the global scale processes oc-

curring in planetary interiors by solving the governing equations of

magnetohydrodynamic flow in a rotating spherical shell of electri-

cally conductive fluid (e.g. Kageyama & Sato 1995; Glatzmaier &

Roberts 1996; Christensen & Aubert 2006). The strength of these

models is that they are capable of reproducing some major features

of the geomagnetic field, including the dipolar morphology, flux

patches at high latitudes and polarity reversals (e.g. Christensen

2010; Olson et al. 2011).

However, these models are limited because they require overly

strong viscous diffusive effects. Over 10 orders of magnitude larger

than estimates for Earth’s core, the viscous diffusion in current nu-

merical dynamo models ultimately removes all but the largest scale

motions in the system (e.g. Soderlund et al. 2012). Small-scale

turbulence and turbulent fluxes between large- and small-scale pro-

cesses cannot exist in these models (cf. Braginsky & Meytlis 1990).

As such, the models are effectively laminar. However, turbulent fluid

systems, such as exist in planetary cores, are inherently multiscale:

a wide range of flow scales are expected to be active and interrelated

(Nataf & Schaeffer 2015). For example, convective energy is likely

injected at very small scales into the core fluid, whereas magnetic

fields are likely generated by larger-scale flows. In the long term, in

C© The Authors 2015. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1
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2 J. S. Cheng et al.

Figure 1. Image showing the conceptual relationship between a parcel of

core fluid and our laboratory rotating convection experiments. Gravitational

acceleration is represented by g and the angular rotation vector is represented

by �. In addition, the adverse density gradient is qualitatively represented by

the background colour scheme. Violet represents higher density fluid while

pink represents lower density fluid.

order to make accurate predictions of global scale observables, we

must understand the path by which small-scale convective energy is

transferred to the large-scale flows that effectively induce magnetic

fields.

To investigate the behaviour of rapidly rotating convection to-

ward the limit of core-style turbulence, we have used laboratory

simulations of rapidly rotating convection and high-resolution nu-

merical models in a complementary fashion. Here we present the

results of the combined approaches, which have allowed us to ac-

cess the axialized flows that exist near the onset of convection, as

well as the 3-D turbulent flows that develop with stronger forcing.

Together our combined laboratory-numerical approach provides a

broad view of the regimes that likely describe core-style rotating

convective motions. We do not include the effects of magnetic

fields on convection (cf. Cioni et al. 2000; Aurnou & Olson 2001;

Stellmach & Hansen 2004; Gillet et al. 2007; Hori et al. 2010; King

& Aurnou 2015; Ribeiro et al. 2015). In addition, we use simplified

geometries. Right cylinders are used in the laboratory experiments

and Cartesian domains are used in the numerical simulations, both

of which remove the effects of spherical shell curvature (see Fig. 1).

In these reduced geometries, we are able to reach more extreme pa-

rameter values than are accessible in current global-scale dynamo

models.

Our study then differs from the geophysical problem of rotating

magnetoconvection in a spherical shell. However, understanding

the reduced problem serves as an essential prerequisite to under-

standing planetary convection. In addition, our systematic approach

provides the opportunity to contextualize core fluid dynamics, using

the predictions derived in the well-established body of convection

physics literature (e.g. Malkus 1954; Kraichnan 1962; Julien et al.

1996; Grossmann & Lohse 2000; Sprague et al. 2006; Ahlers et al.

2009; Grooms & Whitehead 2015).

In the next section of this paper, we introduce the non-

dimensional parameters necessary to discuss the theoretically pre-

dicted behaviours of (non-rotating) Rayleigh-Bénard convection

and rotating convection. These simplified systems articulate the

underlying physical processes that are the basis of all convectively

driven dynamo models. In Section 3, we present our laboratory and

numerical set-ups, with which we make detailed measurements of

the convective heat transfer across a fluid layer and qualitative mea-

surements of the associated flow patterns. Our results are provided

in Section 4. In Section 5, we discuss the regime transitions that

exist in our heat transfer data, which provide important insight

about rotating convection systems: we find that axially invariant

rotating convection columns exist only over a very limited range

of parameter space. In Section 6, we consider the extrapolation of

our results to planetary core settings. Finally, in Section 7, we dis-

cuss how our findings better tie next-generation dynamo modelling

results to established theories of turbulent convection.

2 S Y S T E M PA R A M E T E R S A N D

S C A L I N G B E H AV I O U R S

2.1 Rayleigh-Bénard convection (RBC)

In order to investigate rotating convection systems, we first con-

sider the analogous non-rotating system. This non-rotating style of

convection, known as RBC, describes the thermally induced over-

turning of fluid in a plane layer geometry. Non-rotating convection

is relevant to planetary systems because it represents the limiting be-

haviour when convection overcomes rotational effects. We find that

convective heat transfer in RBC systems provides upper bounding

values on those that will be observed in rotating convection systems.

The effective strength of the thermal buoyancy force in RBC

systems is denoted by the Rayleigh number. This non-dimensional

number represents the ratio between thermally induced buoyancy

and the viscous and thermal diffusive effects:

Ra =
Buoyancy

Diffusion
=

γ g�T L3

νκ
, (1)

where γ is the thermal expansivity, g is gravitational acceleration,

�T is the temperature difference between the top and bottom hori-

zontal boundaries of the fluid layer, L is the distance between these

boundaries, ν is the viscous diffusivity and κ is the thermal dif-

fusivity. At a sufficiently high value of Ra, denoted as the critical

Rayleigh number RaC, buoyancy effects overcome diffusion and

the fluid layer becomes unstable to convective fluid motions. For

an infinite plane layer with rigid, non-slip boundaries, the critical

Rayleigh number in RBC has a constant value of RaC = 1708

(Pellew & Southwell 1940).

The other parameter describing RBC systems is the thermal

Prandtl number, Pr. This number is the ratio of the thermal and

viscous diffusion timescales in the system,

Pr =
ν

κ
, (2)

and, thus, describes the thermophysical properties of the working

fluid. For instance, in water, the working fluid used in our laboratory

experiments, Pr has a value of ≃7. Present-day dynamo studies typ-

ically use a Prandtl number of ≃1 (e.g. Olson et al. 2011; Soderlund

et al. 2013). In contrast, it is estimated that the Pr ∼ 10−2 in the

liquid metal that makes up Earth’s outer core (e.g. de Koker et al.

2012; Pozzo et al. 2012).

For any given set of Ra and Pr input parameters in an RBC

system, the non-dimensional heat transfer is expressed in terms of

the Nusselt number, Nu. The Nusselt number is the ratio of the total

heat flux through the system normalized by the conductive heat flux

in the absence of convection:

Nu =
Total heat flux

Conductive heat flux
=

q L

k�T
, (3)

where q is the total heat flux and k is the working fluid’s ther-

mal conductivity. Because the total (superadiabatic) heat flux is the
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Laboratory-numerical flow models 3

sum of convective and conductive components, the Nusselt num-

ber will have a fixed value of unity in the absence of convective

motions, and will reach higher values as the convective heat flux

increases in strength. (Unlike in planets, the adiabatic heat flux is

zero in our experiments.) In our laboratory-numerical RBC experi-

ments, the Nusselt number ranges from values of unity to just over

103, demonstrating that we can study the full range of behaviours

that exist between the onset of convection and fully developed,

convection-dominated heat transfer.

The Nusselt number provides a globally integrated description

of the vigour of convective motions. As such, trends in the Nusselt

number reveal fundamental behaviours of the underlying convection

system (e.g. Spiegel 1971; Glazier et al. 1999). In the literature on

convective turbulence, heat transfer in RBC systems follows several

well known scaling laws of the form Nu ∼ RaαPrχ (e.g. Ahlers

et al. 2009). However, since we use a fixed Prandtl number in our

experiments, we will consider RBC scalings of the simpler form

Nu = c1 Raα, (4)

where c1 is the pre-factor and α is the scaling exponent. Such scal-

ings have been predicted theoretically and confirmed experimentally

over wide ranges of parameter space (e.g. Rossby 1969; Castaing

et al. 1989; Glazier et al. 1999; Funfschilling et al. 2005).

There are two well-known Nu ∼ Raα scaling regimes of RBC

heat transfer that are accessible with our experiments. One clas-

sical prediction, first theorized by Malkus (1954), is the α = 1/3

relation. Malkus’ arguments apply to systems containing vigor-

ous convective mixing, where the bulk fluid becomes isothermal

and the time-averaged temperature gradients are localized to thin

thermal boundary layers adjacent to the top and bottom of the

fluid layer. Conductive heat transport dominates in these quasi-

static boundary layers. The α = 1/3 law arises under conditions in

which the opposing boundary layers do not interact, and the fluid

layer height therefore does not enter into the heat transfer scaling.

This depth-independent heat transfer then leads to the following

scaling law:

Nu ∼ (Ra/RaC )1/3. (5)

This scaling law has been verified in a number of experiments

carried out at Ra � 1010 (Ahlers et al. 2009). It is often argued that

the α = 1/3 law is appropriate for geophysical systems in which

the boundary layers act in relative isolation, such as when they are

much thinner than the total thickness of the fluid layer (e.g. Castaing

et al. 1989).

In RBC laboratory and numerical experiments at moderate buoy-

ancy forcings (Ra � 1010), characteristic of values used in current-

day dynamo models, the α = 1/3 law is not typically observed.

Instead, experiments in this moderate Ra range find that the RBC

heat transfer follows a law closer to Nu ∼ Ra2/7 (Chillá et al. 1993;

Glazier et al. 1999; Ahlers & Xu 2001). In most Ra � 105 lab-

oratory and numerical experiments, a container scale overturning

circulation occurs in the bulk fluid, providing a shear flow across the

boundaries. The presence of this circulation implies communication

between the boundary layers and that the depth of the fluid layer is

a critical characteristic of the system. By including the effects of a

shear flow across the thermal boundary layers, Shraiman & Siggia

(1990) argue that an α = 2/7 heat transfer scaling develops.

At extremely high Ra, which presently exceed laboratory and

numerical experimental capabilities, an α = 1/2 scaling law has

been hypothesized (Kraichnan 1962; Spiegel 1971). In this regime,

the thermal boundary layers become fully turbulent. In the absence

of quasi-static boundary layers, the heat flux will be controlled

solely by turbulent flows occurring within the fluid bulk and the

microscopic, molecular properties of the fluid may cease to play a

role. This RBC heat transfer regime is represented by the scaling

law

Nu ∼ (Ra Pr )1/2. (6)

Although this scaling has yet to be observed experimentally (e.g.

Roche et al. 2010), it may ultimately apply to buoyancy-dominated

planetary and astrophysical convection systems. In our present

laboratory and numerical experiments, we are able to access the

α ≃ 2/7 and 1/3 regimes.

2.2 Rotating convection

With the inclusion of rotation in a given system, new modes of

convection can develop, associated with alternate regimes of con-

vective heat transfer. A new non-dimensional parameter, the Ekman

number E, is required to characterize the effect of the system’s rota-

tion. This parameter is defined by the ratio between the system-scale

viscous force and the Coriolis force:

E =
Viscosity

Coriolis
=

ν

2�L2
, (7)

where � is the system’s angular rotation rate. In many geophysi-

cal settings, the Ekman number is extremely small, implying that

rotational effects massively overwhelm global-scale viscous forces.

For instance, the Ekman number is estimated to be of order 10−15

in Earth’s core (Schubert & Soderlund 2011). At such low values,

the system-scale flows are expected to be essentially unaffected by

fluid viscosity (e.g. Roberts & King 2013).

The effect of rotation is strongly constraining and has the effect

of suppressing the onset of convection (e.g. Nakagawa & Frenzen

1955). The critical Rayleigh number in a rotating convection system

is no longer a constant for a given geometry. Instead, RaC grows

with the system’s rotation rate:

RaC = c2 E−4/3, (8)

where c2 is 8.696 for the onset of steady rotating convection as

E → 0 (Chandrasekhar 1961). At the onset of rotating convection,

fluid motions occur in the form of long, thin columns that are aligned

with the rotation axis (Grooms et al. 2010; King & Aurnou 2012).

The narrow horizontal width of these columns, ℓ, results in viscous

forces that locally relax the rotational constraint on fluid flow. The

width of the columns at the onset of convection scales as:

ℓ = c3 E1/3 L , (9)

where c3 = 4.8 as E → 0 (e.g. Julien & Knobloch 1998). This E1/3

scaling result appears to hold well past onset and thus likely char-

acterizes flow scales in a broad array of rapidly rotating convection

settings (e.g. Zhang & Schubert 2000; Stellmach & Hansen 2004;

King & Buffett 2013).

In spheres and spherical shells (with inner radius less than 3/4

of the outer shell radius), most of the fluid volume exists outside

of the tangent cylinder. These lower latitude convection columns

are generated by thermal Rossby waves and are not fully equivalent

to our Cartesian cases, which better simulate convection at higher

latitudes within the tangent cylinder (e.g. Busse & Cuong 1977;

Sreenivasan & Jones 2006a; Takehiro 2008; Calkins et al. 2013).

Because the vorticity changes sign across the mid-layer only in high

latitude columns, they have differing topologies (Chandrasekhar

1961), differing heat transfer behaviours (e.g. Aurnou et al. 2007)

and their vortex–vortex interactions are likely different. However,
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4 J. S. Cheng et al.

they have some important similarities. In particular, they repre-

sent strongly axialized vortices that have ℓ = O(E1/3) length scales

(Zhang & Schubert 2000; King & Buffett 2013).

The vast majority of planetary dynamo models are carried out

in the vicinity of E ∼ 10−4 (King & Buffett 2013) where these

axial columns, forming near the onset of convection, are the dom-

inant flow structures. The columns in these models typically have

widths that are large, in fact, close to the scale of the system,

ℓ/L ∼ E1/3 ≃ 0.1, and have been argued to be an essential feature

of Earth-like models (e.g. Christensen & Aubert 2006; Christensen

2010). The highly coherent axial flow structures are responsible

for generating dipolar magnetic fields that are well aligned with

the rotation axis. In fact, typical E ∼ 10−4 models cannot generate

Earth-like magnetic fields without the presence of axially coher-

ent columns (e.g. Sreenivasan & Jones 2006b; Christensen 2010;

Miyagoshi et al. 2010; Soderlund et al. 2012, 2013).

Even though dynamo models depend on columns as an essential

building block, the width of those that exist in present-day models

fundamentally differ from the columns that are presumed to exist in

the core. For instance, in Earth’s core, columns are not predicted to

be the system-scale in width, but instead are likely to be extremely

narrow with ℓ/L ∼ E1/3 ≃ 10−5. This corresponds to core columns

of order 1000 km high by 10 m wide. It is unlikely that such struc-

tures can induce magnetic fields or remain stable under turbulent

core conditions. Thus, lower E realizations of rotating convection

are necessary to determine the stability range of columnar-style

rotating convective flows as core-like parameters are approached.

Furthermore, accurate models of global heat transfer (eventually,

in spherical shell geometries) are also required in the regime in

which coherent rotating convection columns exist. By comparing

the heat flux estimates from a given planetary core, it should then

be possible to infer whether coherent columns will stably exist in

a given geophysical system (e.g. King & Aurnou 2012; Soderlund

et al. 2014).

King et al. (2012) argue that boundary layer physics controls

rotating convective heat transfer in water. By assuming that Malkus’

(1954) marginal boundary layer arguments hold in a rapidly rotating

system, they develop theoretical arguments predicting that rotating

convective heat transfer scales steeply:

Nu = (Ra/RaC )3. (10)

This steep, cubic scaling (10) is argued to hold from near the onset

of convection until the Ra value at which the thermal boundary layer

becomes nested within the mechanical Ekman layer:

RaT ∼ E−3/2. (11)

Furthermore, it is hypothesized that the columns will lose their axial

coherency in the vicinity of Ra/RaT ∼ 1. The Pr ≃ 7, E ≃ 10−7

numerical experiments carried out in this study reach lower values

of Ra/RaT than any previous studies and, thus, are the first to clearly

test the King et al. (2012) predictions.

3 M E T H O D S

Our investigation involves both laboratory experiments and numer-

ical simulations of convection in non-rotating and rotating systems.

3.1 Laboratory experiments

We perform RBC and rotating convection experiments in an axially

aligned cylindrical container with water as the working fluid. The top

and bottom of the container are made of aluminum, which provides

nearly isothermal boundary conditions in all our laboratory experi-

ments. We maintain a Biot number Bi ≤ 0.1, implying that thermal

gradients in the boundaries are negligible compared to those in the

fluid. The cylindrical sidewall is made of Reynolds Polymer acrylic,

which has a low thermal conductivity of k = 0.19 W m−1 K−1 and

is optically clear. The sidewall has a thickness of 0.635 cm and

an inner diameter of 19 cm. We are able to vary the height of the

container, here using 40, 80 or 160 cm tall sidewalls (Fig. 2). A

brushless servomotor rotates the device at rates between 0 and 60

revolutions per minute (rpm).

The fluid layer is heated from below by a non-inductively wound,

electrical resistance element that applies between 10 and 600 W of

power. Following Rossby (1969), the experiment is cooled from

above via a double-spiral wound heat exchanger maintained at a

constant temperature by a precision thermal bath. Temperature mea-

surements are made by 12 temperature sensors located within 2 mm

of the top and bottom boundaries of the fluid layer, providing accu-

rate measurement of the vertical temperature difference across the

fluid layer, �T. The minimum �T that can be measured is approxi-

mately 0.25 K, which sets the minimum Ra that we can access with

any given tank. The combination of applied heating power and re-

sultant temperature drop measured across the fluid layer allows us to

calculate the Nusselt and Rayleigh numbers for each experimental

case.

These geometrically narrow tanks require careful treatment of

potential thermal losses through the sidewalls. To minimize these

losses, the temperature of the room is set as closely as possible to

the mean temperature of the working fluid. Furthermore, the device

is wrapped in a 10-cm-thick layer of Insulfrax insulation. The room

and mean fluid temperatures are continually measured, allowing

us to estimate horizontal conductive, convective and radiative heat

losses from the device. For all cases above 30 W of input heating

power, sidewall heat losses account for less than 5 per cent of the

total.

In every Nu–Ra case, the experiment is allowed to equilibrate

until the mean temperature on each thermal sensor does not change

by more than ∼1 per cent over the course of 2 hr. This process

usually takes approximately 8–12 hr. We then collect data for

2–3 hr per case at a data rate of 10 samples per second.

A suite of experiments that omit the sidewall insulation has also

been made in order to make qualitative optical characterizations of

the flow fields in our experiments. Without sidewall insulation, it is

possible to pass a vertical laser light sheet through the optically clear

sidewalls. By seeding the working fluid with reflective Kalliroscope

flakes, we are able to visualize the pattern of differential shear within

the fluid. These patterns are recorded with the use of a digital camera

situated in the laboratory frame.

3.2 Numerical simulations

While laboratory experiments enable us to characterize rapidly ro-

tating turbulent convection at high Rayleigh and low Ekman num-

bers (5 � Ra/RaC � 60 at E = 10−7), our laboratory system can-

not reach low enough Ra values to investigate the physics between

RaC and RaT for E � 3 × 10−4. Numerical simulations, in contrast,

allow us to study the behaviour of rotating convection at the low Ra

values inaccessible in the laboratory. The combination of laboratory

and numerical methods provides a complementary characterization

of rotating convection physics, accessing the full range from weakly

supercritical to fully turbulent flows.
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Laboratory-numerical flow models 5

Figure 2. Experimental set-up: (a) a schematized image of the 40-cm-high by 20-cm-wide tank. An electrical heater provides a constant heat flux q to the

base of the experiment. A water-cooled heat exchanger maintains a fixed temperature at the top of the system. A servomotor rotates the tank about a vertical

axis at up to 60 revolutions per minute (rpm). All laboratory experiments have a fixed diameter of 20 cm. However, the heights of the tanks can be varied.

(b) Preceding laboratory studies have employed 5, 10 and 20 cm high tanks (King et al. 2009, 2012; King & Aurnou 2012, 2013). (c) In this study, laboratory

experiments are carried out in 40, 80 and 160 cm high tanks in order to reach more extreme ranges of parameter space. For example, in a 160-cm-high tank of

water it is possible to attain E � 3 × 10−8 and Ra � 1013.

The numerical models solve the Boussinesq momentum, energy

and mass conservation equations in a rotating, Cartesian fluid layer.

The top and bottom fluid layer boundaries are isothermal, rigid and

non-slip. The solutions are periodic in the horizontal directions.

Chebyshev polynomials are employed in the vertical direction and

Fourier expansions in the horizontal directions. The vertical reso-

lution is set in order to maintain at least 10 gridpoints within the

Ekman boundary layer. The code has been validated in prior studies

by Stellmach & Hansen (2008) and King et al. (2012).

4 R E S U LT S

Here, we briefly summarize our essential findings. First, we find in

RBC experiments that a Nu–Ra scaling of α = 0.284 describes the

heat transfer for Ra � 1010 and a scaling of α = 0.322 develops at

roughly Ra � 1010, corresponding closely to the predicted 1/3 law.

In rotating convection experiments, we find a steep heat transfer

scaling law in the region where coherent convection columns exist.

By comparing laboratory visualizations and heat transfer measure-

ments, we show that this steep heat transfer scaling manifests when

convection occurs in the form of axially invariant columns; when the

columns become unstable to 3-D motions, the heat transfer becomes

less efficient, trending back toward the non-rotating scaling. These

results indicate that rotating convection columns, which form the

conceptual underpinning for current Earth-like planetary dynamo

models, exist only over a limited range of parameter space.

4.1 Laboratory flow visualizations

Fig. 3 shows Kalliroscope images of shear patterns in an 80-cm-

high tank of convecting water for a fixed heating power of 10 W,

corresponding to a fixed flux-based Rayleigh number

RaF = Ra Nu =
γ gL4q

ρC pκ2ν
= 4.0 × 1012. (12)

In each experiment we test a different rate of rotation, ranging from

60 rpm down to 0 rpm. As the rotation rate is decreased, we see the

organizing effect of Coriolis force weaken and give way to small-

scale turbulence in the bulk fluid.

The image in Fig. 3(a), displaying a snapshot of the cylinder rotat-

ing at 60 rpm, shows the columnar convective regime. The strongly

coherent columns extend between the bottom to the top boundary

with almost no variation along the axial direction. Fig. 3(b) shows

the flow field in a case rotating at 10 rpm (E = 7.5 × 10−7). With

this decrease in rotation rate, the columns become wavy and begin

to lose their axial invariance. Fig. 3(c) shows the development of

3-D, anisotropic flows. Figs 3(d) and (e) show 3-D turbulence that

appears to be isotropic in nature and is likely unaffected by rotation.

In addition, in Fig. 3, we estimate the strength of buoyancy effects

for each of the five cases, but normalized in different ways. The

first row gives the Rayleigh number normalized by the value at

which bulk convection onsets, Ra/RaC (following eq. 8). The second

row gives the Rayleigh number normalized by the boundary layer

transition value, RaT, predicted in King et al. (2012). The third row

gives the system-scale buoyancy force normalized by the Coriolis

force, called the convective Rossby number Roc. The convective

Rossby number can be written as:

Roc =
Buoyancy

Coriolis
=

(
RaE2

Pr

)1/2

, (13)

where the buoyancy and inertial terms have been set equal, and the

inertial term can then be written in terms of the convective free-fall
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6 J. S. Cheng et al.

Figure 3. Laboratory visualizations of rotating convection in water at fixed heat flux. Panels (a) through (e) correspond to Ekman number values of

E = 1.2 × 10−7, 7.5 × 10−7, 1.9 × 10−6, 1.9 × 10−5 and ∞, respectively. All cases are carried out in an 80-cm-high by 20-cm-wide tank and at fixed flux

Rayleigh number RaF0
= 4.0 × 1012. Dimensionally, the rotation rates translate to 60, 10, 4, 0.4 and 0 revolutions per minute (rpm) and a constant heating

power of 10 W. At E = 1.2 × 10−7, the flow is comprised of coherent, axialized convection columns. As E increases, the flow transitions to wavy plumes,

then geostrophic turbulence, then homogenous turbulence (cf. Julien et al. 2012a, fig. 1). The Nu–Ra–E data from these visualization cases are demarcated by

black-bordered yellow stars in heat transfer plots (Figs 4, 5 and 7), allowing us to qualitatively relate changes in flow morphology to changes in convective heat

transfer regime. Movies corresponding to these cases can be found online at: www.youtube.com/watch?v=p01r6l71ELA.

velocity, Uf ∼
√

γ g�T L . The convective Rossby number is related

to the modified Rayleigh number Ra∗ defined in Christensen (2002)

by RoC = Ra∗.

We argue that the case visualized in Fig. 3(c) corresponds to

the geostrophic turbulence regime, where flows exhibit small-scale

3-D structure at convective Rossby number Roc ≪ 1 (cf. Sprague

et al. 2006; Julien et al. 2012a). The flows in Figs 3(a)–(c), then,

are in good agreement with the convective Taylor column, plume,

and geostrophic turbulence regimes, respectively, found in asymp-

totically reduced rotating convection models of Julien et al. (2012a)

and in direct numerical simulations conducted by Stellmach et al.

(2014).

4.2 Rayleigh-Bénard convection

Fig. 4 shows RBC heat transfer data. The effective buoyancy force,

Ra, is plotted on the x-axis; the resulting convective heat trans-

fer, Nu, is plotted on the y-axis. Data from our 80 and 160 cm tall

tank experiments are shown as purple-filled circles and diamonds,

respectively, and are shown in comparison with data sets from pre-

vious RBC studies of Rossby (1969), Funfschilling et al. (2005)

and King et al. (2012). The dashed green line

Nu = (0.162 ± 0.006)Ra0.284±0.002 (14)

Figure 4. Laboratory Rayleigh-Bénard convection (RBC) heat transfer data alongside earlier data from Rossby (1969), Funfschilling et al. (2005) and King

et al. (2012). The black-bordered yellow star denotes case V shown in Fig. 3, made at RaF = NuRa = 4 × 1012. For our present experiments (4 � Pr � 7) in

80 and 160 cm tall tanks, the best-fitting heat transfer trend is Nu = (0.075 ± 0.005)Ra0.322±0.003, in approximate agreement with the theoretically predicted

Nu ∼ Ra1/3 law of Malkus (1954). At lower Rayleigh number experiments (4 � Pr � 10) the best-fitting trend is Nu = (0.162 ± 0.006)Ra0.284±0.002, in

agreement with the Nu ∼ Ra2/7 law theorized in Shraiman & Siggia (1990) and observed in other laboratory experiments (e.g. Wu & Libchaber 1992; Chillá

et al. 1993; Liu & Ecke 1997; Glazier et al. 1999).
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Laboratory-numerical flow models 7

is the best fit to the Rossby (1969) and King et al. (2012) data in

the range 105 < Ra < 1010. This scaling exponent of α = 0.284 is

in good agreement with a 2/7 law.

Beyond Ra = 1010, the data from the 80 and 160 cm tanks and

Funfschilling et al. (2005) rise more sharply than the α ≃ 2/7

green-dashed line. Instead, our 80 and 160 cm tank data then give a

best-fitting scaling law of

Nu = (0.075 ± 0.005)Ra0.322±0.003, (15)

which is statistically well outside the range of the 2/7 law, and in

better agreement with Malkus’ (1954) α = 1/3 law. This scaling is

robust over several decades, from Ra ∼ 1010 to 1013. Thus, we argue

that the α = 1/3 law is affirmed in our laboratory RBC experiments.

4.3 Rotating convection

Fig. 5 shows rotating convection heat transfer data from our current

laboratory and numerical experiments as well as the laboratory data

from Rossby (1969) and the laboratory-numerical data from King

et al. (2012). The colour coding denotes the Ekman number used

in each experiment. Filled-in symbols indicate laboratory experi-

ments, and open symbols indicate numerical simulations. The data

show that, at each given rotation rate, convection onsets at different

Rayleigh numbers, in good agreement with the prediction for the

onset of convection in a rotating fluid layer (8). Once convection

onsets, Nu increases more steeply with Ra than in non-rotating con-

vection experiments (we refer to this steeper slope as β). However,

at high enough Ra, the rotating heat transfer data conforms to the

non-rotating 2/7 scaling trend.

Thus, RBC scalings provide the effective upper bounds for heat

transfer in rotating convection systems. The RBC heat transfer data

acts as a ceiling, which the rotating heat transfer data either meets

or falls beneath. There is a slight overshoot of rotating heat transfer

beyond the RBC scalings for Ra � RaT (cf. Niiler & Bisshopp

Table 1. Critical Rayleigh number estimates

for no-slip boundaries, following Chandrasekhar

(1961, section 27b).

E RaC

10−3 7.159 × 104

10−4 1.544 × 106

10−5 3.482 × 107

10−6 7.825 × 108

10−7 1.741 × 1010

1965; Julien et al. 1996; Kunnen et al. 2008). However, this effect

is strong only at relatively high E. In fact, our data shows that the

overshoot becomes small for E � 10−5.

The slope of the steep scaling regime changes as a function of

E. At the highest E values (E ≃ 10−3), the data conform to a β ≃
6/5 law (Christensen 2002; Aurnou 2007; King et al. 2009, 2010;

Schmitz & Tilgner 2009). At lower E values in the vicinity of 10−5,

the data fit a steeper, roughly cubic scaling law in agreement with

King et al. (2012). However, for even more rapidly rotating cases,

with data lying in the range 1010 � Ra � 1011, the best-fitting trend

to the predominantly numerical E = 10−7 data is:

Nu = (0.71 ± 0.09)(Ra/RaC )3.56±0.08. (16)

Here, RaC is estimated following Chandrasekhar (1961) (Table 1).

This β ≃ 3.6 trend is significantly steeper than any previous rotat-

ing convection experiments, exceeding even the cubic heat transfer

scaling of King et al. (2012). Although we have carried out a lim-

ited number of numerical simulations in this low E, steep scaling

regime, the best-fitting trend is statistically distinct from a cubic law.

Julien et al. (2012b) argue that the β = 3 law is among a family of

plausible solutions for rapidly rotating convection, found to contain

marginally unstable thermal boundary layers. However, our β = 3.6

result implies that the marginal rotating boundary layer mechanism

Figure 5. Laboratory (Pr ≃ 7) and numerical (Pr = 7) rotating convection heat transfer data from this study, Rossby (1969) and King et al. (2012). The

black-bordered yellow stars denote cases I–IV shown in Fig. 3, made at fixed RaF = NuRa = 4 × 1012. This RaF value is denoted by the grey dashed

line behind the stars. Critical Rayleigh number values from Table A2 are plotted as coloured stars along the x-axis. The best-fitting heat transfer trend of

Nu ≃ (Ra/RaC)3.6 is plotted for E ∼ 10−7. For comparison, Nu = (Ra/RaC)3 (King et al. 2012) is plotted for E ∼ 10−5 and Nu = (Ra/RaC)6/5 (King et al.

2009, 2010) for E ∼ 10−3. Note that with each study at lower E, the scaling exponent becomes larger. This implies that the behaviour of rotating convection is

not yet asymptotic in the presently accessible range of Nu–Ra–E space.
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8 J. S. Cheng et al.

Figure 6. Heat transfer scaling exponents as a function of Ekman number. (a) Solid lines show the best-fitting Nu ∼ Raβ trends to combined laboratory and

numerical data sets at E = 10−3, 10−4, 10−5, 10−6 and 10−7 in the steep heat transfer scaling regime. Data points used in the fits are selected to lie above

Nu = 1.3, represented by the grey dashed line, and below the RBC trend of Nu = 0.16Ra0.284, represented by the green dashed line. Symbols are as defined in

Fig. 5. (b) Plot of β versus inverse E from the fits shown in panel (a). No clear asymptotic scaling behaviour has been found in our experiments: the values of

β continually increases as a function of E−1 (cf. Julien et al. 2012b; Grooms & Whitehead 2015).

put forth in King et al. (2012) does not control the convective

heat transfer at very low E. Clearly, though, the robustness of this

β ≃ 3.6 trend must be confirmed with more Ra ≪ RaT data (see

data Tables A1 and A2 in the Appendix).

Fig. 6 shows the best-fitting values for β as a function of the

inverse Ekman number. Data points below Nu = 1.3 are not consid-

ered in these fits, as they correspond to a shallower Nu–Ra near onset

(e.g. Julien et al. 2012b). For the steep scaling regime, we find that

β monotonically increases with decreasing E, with a roughly linear

trend between log (E) and β. This suggests that in the presence of

no-slip boundaries the heat transfer scaling will continue to steepen

as E is further decreased towards geophysically realistic values (cf.

Grooms & Whitehead 2015). Our heat transfer measurements show

that no clear asymptotic behaviour has been found in the rapidly

rotating, steep scaling regime.

In rotating convection experiments, we find a shallow RBC-style

heat transfer scaling (independent of E) with α ≃ 2/7 at our highest

Ra values (cf. Liu & Ecke 1997). In contrast, we find an α ≃ 1/3

scaling in the RBC experiments for Ra � 1010. We postulate that

this high Ra rotating 2/7 scaling is a byproduct of finite centrifu-

gation effects in our present laboratory set-up. In our 80-cm-tank

experiments, the Froude number, which is the ratio of centrifugal

force and laboratory gravity, Fr = �2r/g, is approximately 0.4

in the E ≃ 10−7 experiments. The strong centrifugal buoyancy in

these cases likely drives a mean meridional circulation across the

tank boundaries (e.g. Marques et al. 2007) which we argue modifies

the heat transfer to a 2/7 scaling, in accordance with the arguments

of Shraiman & Siggia (1990). To test this hypothesis, we doubled

the height of the tank (160 cm) while fixing the Ekman number

(E ≃ 10−7), which decreases the strength of centrifugation by a
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Laboratory-numerical flow models 9

factor of 16. This yields a Froude number of 0.025. In Fig. 5, we

show that the highest Ra data in the 160 cm tank have higher Nu

values that appear to be trending toward a 1/3 law. The effects

of centrifugation will be studied in detail in a following suite of

experiments.

In our rotating convection experiments, the RBC scaling—in par-

ticular, the 2/7 law—is observed to form the upper bound for heat

transfer. Thus, the RBC and rotating convection (RC) scaling be-

haviours are deeply connected; knowledge of the RBC scalings is

pertinent to our understanding of both systems. We hypothesize then

that rotating convection and dynamo studies, carried out at suffi-

ciently extreme parameter values, will also be able to access theoret-

ically predicted regimes of behaviour (e.g. Soderlund et al. 2012).

In particular, asymptotically reduced rotating convection models by

Julien et al. (2012a) predict distinct heat transfer scalings corre-

sponding to each of the regimes visualized in Figs 3(b)–(d). In our

E ≥ 3 × 10−8 data, we can unambiguously detect a steep and a

shallow Nu–Ra scaling, but even lower values of E are required to

differentiate the independent scalings for intermediate regimes (cf.

Ecke & Niemela 2014).

5 C O M PA R I N G R E G I M E T R A N S I T I O N

H Y P O T H E S E S

Our rotating convective heat transfer data shows a clear transi-

tion from a steep scaling regime near the onset of convection to

a shallower heat transfer scaling at strongly supercritical Rayleigh

numbers. The data appears to deviate away from the steep scaling

law near to where rotating convection columns lose their strong ax-

ial coherence. This is relevant to our understanding of present-day

(E ∼ 10−4) planetary dynamo models because Earth-like dipolar

dynamo action has been shown to fail in the vicinity of the heat

transfer transition in these models (King et al. 2012), where rotat-

ing convection columns also lose their axial coherency (Soderlund

et al. 2012). Thus, we hypothesize that the heat transfer transition

in our extreme rotating convection data will provide a proxy for

behavioural transitions in more extreme dynamo models.

The transition Rayleigh number, RaT, is defined empirically

here to be the intersection between the steep heat transfer scaling

Nu = (Ra/RaC)β , and the shallow, RBC-style scaling Nu = c1Raα .

Setting these heat transfer trends equal and using (8) yields:

RaT = c
1/(β−α)

1 Ra
β/(β−α)
C = c

1/(β−α)

1 c
β/(β−α)

2 E4β/3(α−β). (17)

The supercriticality at which this transition occurs can then be

written as:

RaT

RaC

= c
1/(β−α)

1 c
α/(β−α)

2 E4α/3(α−β). (18)

By applying (17) to the best-fitting scaling laws (15) and (16), we

find:

RaT = (5.4 ± 0.1)E−1.466±0.005. (19)

The steep heat transfer scaling exponent β = 3.6 differs from a cubic

law by about 16 per cent. However, the exponent in RaT differs from

(11) by only about 2 per cent. This small 2 per cent difference arises

because of the limited range between RaC and RaT:

RaT

RaC

= 144E−0.14 ∼ E−1/7 (20)

at E = 10−7. At presently accessible Ekman numbers, the β = 3.6

slope and the cubic slope correspond to very similar intersec-

tions with the RBC trend. The weak E−1/7 dependence in (20)

also implies that the steep scaling regime occupies a limited

range of parameter space even when extrapolated to planetary

conditions.

In Fig. 7, we collapse the laboratory-numerical data from the

present study and King et al. (2012) using the best-fit scaling

for the majority of the non-rotating data, (14), to compensate the

Nusselt number data on the y-axis and using our best-fitting transi-

tion scaling (19) to compensate the Rayleigh number on the x-axis.

The mean Prandtl number in laboratory cases is 6.8 and the numeri-

cal cases employ a Prandtl number of 7. The black-bordered yellow

stars correspond to the visualization cases shown in Fig. 3. The loca-

tions of the black-bordered yellow stars demonstrate that columnar

flows are associated solely with the steep heat transfer scaling: only

the E = 1.2 × 10−7 visualization case (I) has a Rayleigh number

value that is less than RaT. This shows, in our Pr ≃ 7 experiments,

that the efficiency of heat transfer greatly lessens and transitions

over to the RBC scaling trend once convection columns lose their

axial coherency.

In Fig. 8, we test the ability of a number of mechanistic (non-

empirical) rotating convection transition hypotheses available in

the literature to collapse our heat transfer data. In panel (a) of

Fig. 8, the x-axis is normalized by the convective Rossby number

(13). It has been argued that the convection regime dominated by

rotation extends from the onset of rotating convection at RaC near to

where the convective Rossby number is of order unity, Roc � 1 (e.g.

Gilman 1977; Aurnou et al. 2007; Zhong & Ahlers 2010; Gastine

et al. 2013, 2014; Stevens et al. 2013). This predicts that the steep

heat transfer scaling regime will extend over the range RaC � Ra �

E−2 Pr . This Rayleigh number range has a width of ∼E−2/3Pr.

However, Fig. 8(a) shows that the Roc normalization greatly spreads

our heat transfer data and, therefore, does not correctly define the

transition. Our results from Fig. 7 instead imply that the steep scaling

regime—where we find that columns are stable—is a factor of ∼E3/5

narrower than the Roc ∼ 1 prediction.

It should be noted, however, that Roc ∼ 1 does provide an ad-

equate transition prediction for zonal flow behaviour in rotating

spherical shells because these flows occur on the system’s global

scale (e.g. Aurnou 2007; Gastine et al. 2013, 2014). However, in our

rotating convection experiments, in which convective heat transfer

is controlled by distinctly smaller scale motions, the data are not

well collapsed by this system-scale parameter.

Fig. 8(b) shows a test of the local convective Rossby number,

Roℓ. This parameter has been proposed in a number of previous

dynamo studies (e.g. Christensen & Aubert 2006; Sreenivasan &

Jones 2006b) to control the transition between dipolar and multi-

polar magnetic field generation, with a critical value of Roℓ ≃ 0.1.

Here we write Roℓ as

Roℓ =
U

2�ℓ
=

U L

ν

ν

2�L2

L

ℓ
= ReE

L

ℓ
, (21)

where the Reynolds number, Re, is defined as:

Re =
Inertia

Viscosity
=

U L

ν
. (22)

We cannot directly measure velocities in our laboratory experi-

ments. In order, then, to express the local Rossby number in terms

of our heat transfer data, we must make two assumptions. First,

we replace L/ℓ with (c3E1/3)−1 using (9), an approximation rel-

evant to present-day dynamo studies following the arguments of

King & Buffett (2013). Secondly, we give an approximate value of
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10 J. S. Cheng et al.

Figure 7. Test of the heat transfer transition argument based on our most extreme data. Data are from laboratory (Pr ≃ 7) and numerical (Pr = 7) rotating

convection experiments with E ≤ 10−4. Symbols are as defined in Fig. 5. The y-axis is the non-dimensional heat transfer normalized by the non-rotating scaling

Nu/Nu0, where Nu0 = 0.16Ra0.284 (14). The x-axis is the Rayleigh number normalized by the transition value RaT. This transition is empirically defined

here as the intersection between the non-rotating heat transfer trend, Nu = 0.075Ra0.32, and the rapidly rotating trend, Nu = 0.71(Ra/RaC)3.6, and occurs at

RaT = 5.4E−1.47 (19). The data from Fig. 3 have been included as black-bordered yellow stars in the collapse. These demonstrate that only the 60 rpm case (I)

with coherent axial columns is found to plot within the steep heat transfer scaling regime.

the Reynolds number, R̃e, using the visco-Archimedean-Coriolis

(VAC) second-order balance arguments in King et al. (2013):

R̃e =
c3(Nu − 1)1/2 Ra1/2 E1/3

Pr
. (23)

Substituting R̃e into (21), gives

R̃oℓ = c−1
3 R̃eE2/3. (24)

We find that the Roℓ parametrization adequately collapses our Pr ≃
7 heat transfer data.

The inset in Fig. 8(b) tests another estimate for the local Rossby

number, Ro∗
ℓ = (γ g�T )/(�L1/2), based on the free-fall velocity

Uf. This estimate does not collapse the data as well as the Roℓ

estimate derived from the VAC balance arguments presented in

(23) and (24).

In Fig. 8(c), we test the transition arguments of King et al.

(2009), which rely on the empirical Nu ∼ (Ra/RaC)6/5 steep scaling

regime and the Nu ∼ Ra2/7 shallow scaling regime. The resulting

transition scaling, RaT ∼ E−7/4, does not strongly collapse our

present, lower E heat transfer data. However, the essential con-

cept posited in King et al. (2009)—that boundary layer processes

underly the heat transfer transition—are not refuted (Niemela &

Sreenivasan 2006; Cébron et al. 2010; Julien et al. 2012b).

Fig. 8(d) tests the RaT ∼ E−3/2 transition argument from King

et al. (2012). This transition parametrization collapses the data com-

parably well to that of Fig. 7. This agreement is expected since the

present best-fit transition scaling and King et al.’s transition scaling

differ only by a factor of ∼E1/50.

In sum, there is great variance in the mechanistic arguments

which seek to parametrize the behavioural regimes of rotating con-

vective heat transfer, implying that our understanding of this sys-

tem is still far from complete. Thus, further data sets that extend

well below E = 10−7 are needed to determine an unambiguous,

asymptotically robust, mechanistic transition argument that may be

extrapolated to planetary conditions with confidence.

6 E X T R A P O L AT I O N T O P L A N E TA RY

C O R E S E T T I N G S

Our mixed heat transfer-visualization data, shown in Fig. 7, forms

the basis of our assumption that axially coherent columns exist

in rotating convection over the range RaC < Ra < RaT. Fig. 9

graphically represents this by plotting RaT/RaC as a function of

inverse E for various transition scalings. Table 2 lists values of RaT

and RaT/RaC extrapolated to E = 10−15. The classical transition

estimate of Roc ∼ 1 suggests that convection columns will be stable

over 8 orders of magnitude in Ra. However, this scaling fails to

meaningfully collapse the available data, as shown in Fig. 8. Our

present results and other recent studies all estimate significantly

smaller RaC < Ra < RaT ranges under which columns will be stable

in the core. The RaT/RaC estimates in Table 2 show that, irrespective

of the convection column breakdown mechanism, it is likely that

traditional columns are unstable in core-like environments.

Fig. 10 displays, in the lower left-hand corner, all the rotating

convection data from Fig. 5. On the right-hand side of the figure, we

extrapolate our most extreme, steep heat transfer scaling, β = 3.6,

from E = 10−7 to the typical estimate for the Ekman number in the
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Laboratory-numerical flow models 11

Figure 8. Tests of various heat transfer transition arguments. Data are from laboratory (Pr ≃ 7) and numerical (Pr = 7) rotating convection experiments with

E ≤ 10−4. Symbols are as defined in Fig. 5. The non-dimensional heat transfer, normalized by the weakly rotating trend Nu0 = 0.16Ra0.284, is plotted against

several proposed transition parameters. (a) Convective Rossby transition, RoC = (RaE2/Pr)1/2. (b) Local Rossby transition (e.g. Sreenivasan & Jones 2006b)

estimated using heat transfer parameters, R̃oℓ = c−1
3 R̃eE2/3 based upon the velocity scaling from King et al. (2013) (see text for details). The inset figure

tests a different estimate for local Rossby, Ro∗
ℓ = (γ g�T )/(�L1/2), where the free-fall velocity scaling is assumed. (c) Boundary layer crossing transition

proposed by King et al. (2009), RaE7/4. (d) Boundary layer crossing transition proposed by King et al. (2012), RaE3/2.

Earth’s core, E = 10−15. Here, we do not consider magnetic field ef-

fects, geometrical effects and differences in fluid Pr values. We also

extrapolate our best-fitting RBC scaling law, Nu = 0.075Ra0.322, to

represent an upper bound for the rapidly rotating regime at planetary

conditions. Another RBC scaling that may apply at such extreme

Nu–Ra values is the Nu = c4Ra1/2 law (Kraichnan 1962), where

c4 is an undetermined pre-factor. Here we suppose that the 1/2 law

branches off from the 1/3 law at Ra � 1017 (cf. Niemela et al.

2000), giving c4 = 1.1 × 10−4. From (18), columnar convection is

estimated to be stable for RaT1
� 60RaC using the α = 1/3 RBC

law and RaT2
� 150RaC using the α = 1/2 RBC law.

Fig. 10 shows both of these transition estimates in the context of

Nu–Ra approximations for the Earth’s core. The values of RaT/RaC

presented here may represent an upper bound on the extent of the

columnar regime. First, the slope of the rapidly rotating regime con-

tinues to steepen with decreasing Ekman number for our available

data (Fig. 6). If this trend continues, then the columnar regime is sta-

ble for an even smaller region than indicated on Fig. 10. Secondly,

the E → 0 models of Julien et al. (2012a,b) show that columnar con-

vection can break down into geostrophic turbulence well before the

intersection of the steep scaling trend with the RBC trend, further

implying a limited range of stability for columns.

Although experimental studies utilize Ra and Nu to characterize

rotating convection systems, these quantities are nearly impossi-

ble to accurately determine in Earth’s core. Typical estimates of

the core Rayleigh number range between 1020 � Ra � 1030 (e.g.

Gubbins 2001; Kono & Roberts 2002; Aurnou et al. 2003; Schu-

bert & Soderlund 2011; Roberts & King 2013). However, some

estimates are as low as 1015 (Roberts & Aurnou 2012) while others

are as high as 1038 (Gubbins 2001). The (superadiabatic) Nusselt

number in the core is also very poorly constrained. In contrast, the

flux Rayleigh number,

RaF = Ra Nu =
γ gL4qsa

kκν
, (25)

can be directly estimated in Earth’s core, because it depends only on

physical and chemical properties and the superadiabatic heat flux

from the core, qsa. These values can, in turn, be estimated based

on observable quantities. A broad range of upper and lower bound

estimates for each of these quantities are given in Table 3.
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The associated range of RaF is far more tightly constrained than

estimates of Ra in Earth’s core: 6 × 1027 � RaF � 3 × 1032. This

RaF range is shown as the diagonal grey stripe on the figure’s

right-hand side in Fig. 10. Using only the recent thermal conductiv-

ity estimate from Pozzo et al. (2012) would yield a slightly lower

upper bounding value for RaF of 2 × 1031. The dashed line con-

necting RaC ≃ 1021 to RaT1
≃ 6 × 1022 and RaT2

≃ 1.5 × 1023 is

the extrapolation of our laboratory-numerical findings to Earth’s

core parameters. We find that our heat transfer extrapolations

predominantly intersect core RaF estimates such that Ra � RaT ,

suggesting that rotating convective flows in the core will not be

columnar and are instead likely to be comprised of more complex

motions.

7 D I S C U S S I O N

The results of our suite of laboratory-numerical Rayleigh-Bénard

and rotating convection experiments show the overarching be-

haviours of Boussinesq convection in right cylindrical tanks

(laboratory) and in doubly periodic Cartesian domains (numerical).

We find that RBC physics is essential to our understanding of

rotating convection systems. At low Ekman numbers, as are relevant

to planets and stars, the RBC trend provides the upper bound for

heat transfer in our rotating convection experiments. In addition,

at high Ra, our results show that the RBC heat transfer follows

predictions from turbulent convection theory (e.g. Malkus 1954;

Ahlers et al. 2009) providing an important tie between RBC and the

Figure 9. Estimated values of RaT/RaC for E ranging from 10−3 to 10−15.

These values approximate the range, RaC < Ra < RaT, over which different

models predict the existence of axially coherent convection columns. For

E � 10−6, the King et al. (2012) transition of RaT ∼ E−3/2 is nearly in-

distinguishable from the present fit of RaT ∼ E−1.47. The light blue curve

is terminated above E = 10−6 because Julien et al.’s (2012b) asymptotic

model is valid in the limit of low E. In calculating the Roc ∼ 1 and R̃oℓ ∼ 1

curves, we assume Pr = 10−1 (Table 3).

Table 2. Estimates under Earth-like conditions (E = 10−15; Pr = 10−1) for

the transition Rayleigh number (RaT) at which columns become unstable as

well as the predicted range of column stability (RaT/RaC).

Transition argument Reference RaT RaT/RaC

Roc ∼ 1 Gilman (1977) ∼1029 ∼108

R̃oℓ ∼ 1 Sreenivasan & Jones (2006b) ∼1025 ∼104

RaE8/5 ∼ 1 Julien et al. (2012b) ∼1024 ≃1100

RaE3/2 ∼ 1 King et al. (2012) ∼1023 ≃120

RaE1.47 ∼ 1 This study ∼1023 ≃60

behavioural regimes of rotating convection and convection-driven

dynamo systems.

Our experiments show that rotating convection columns carry

heat with great efficiency. In particular, our Pr ≃ 7, E ≃ 10−7 data

provides a heat transfer scaling exponent of β ≃ 3.6, which exceeds

even the cubic predictions of King et al. (2012). Furthermore, Fig. 6

yields an ever-steepening β value as Ekman is decreased, suggesting

that the convection physics of rapidly rotating systems has not yet

been fully described. An open question remains whether, and to

what extent, the scaling exponent in the steep scaling regime will

continue to steepen with decreasing E (cf. Stellmach et al. 2014;

Grooms & Whitehead 2015).

The question also remains how the change in heat transfer scal-

ings and the breakdown in coherent columns are mechanistically

connected. For instance, do boundary layer nesting phenomena

break the columns or vice versa? Further, does the steep heat trans-

fer scaling break down due to the boundary layer physics (e.g. King

et al. 2012) or due to changes in the interior flow patterns (e.g.

Julien et al. 2012b)?

Our present study only considers the hydrodynamic behaviour

of core-style convection. Theoretical studies predict that the

presence of magnetic fields will destabilize columnar convective

flows (Chandrasekhar 1961; Eltayeb & Roberts 1970; Roberts &

King 2013). In that case, our present hydrodynamic results may pro-

vide an upper bound on the stability range of local-scale columns.

However, it still remains to be directly determined how strong mag-

netic fields affect the heat transfer and stability of high Ra flows in

low E, low Pr core settings (cf. Aurnou & Olson 2001; Jones et al.

2003; Gillet et al. 2007).

In spherical shell geometries, low latitude convection columns

(outside the tangent cylinder) substantively differ from colum-

nar flows at high latitudes (as simulated in our cylindrical and

Cartesian experiments) (e.g. Busse & Cuong 1977; cf. Calkins et al.

2013). While specific heat transfer scalings will likely differ at lower

latitudes, we predict the same fundamental physical behaviours as

found here: a regime of steep convective heat transfer affiliated with

the existence of coherent, axial columns that merges with the RBC

heat transfer trend at high Ra, where rotating fluid motions lose

their axial coherency. The specific differences between high and

low latitude rotating convection behaviours provide an open topic

for future research.

Our combination of laboratory-numerical and theoretical models

affords a novel view of rapidly rotating (non-magnetic) convection

as planetary conditions are approached. As the Ekman number is

decreased through larger-scale laboratory experiments and better-

resolved computations, the parameter space in which coherent con-

vection columns exist is found to dwindle. Because columns exist

only in a limited range of Ra before they break down, coherent

columns as found in present-day models may not be stable at core

conditions. We hypothesize, then, that large-scale flow structures in

planetary cores, such as system-scale columns, are not a direct re-

sult of rotating convection. Instead, we hypothesize that convection

occurs in the form of 3-D geostrophic turbulence on smaller scales,

whose energy then cascades upwards to larger-scale quasi-2-D flows

(e.g. Mininni & Pouquet, 2010; Käpylä et al. 2011; Chan & Mayr

2013; Favier et al. 2014; Guervilly et al. 2014; Rubio et al. 2014;

Stellmach et al. 2014; Nataf & Schaeffer 2015), which are capa-

ble of efficiently generating observable magnetic fields. Ultimately,

our findings suggest the need to revise current planetary dynamo

models to include the effects of multiscale rotating convection dy-

namics and to determine how such flows produce planetary dynamo

action.
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Figure 10. Comparison between laboratory-numerical heat transfer data (predominantly at Pr ≃ 7) and estimated ranges of heat transfer parameters in Earth’s

core (Pr ≃ 10−1 to 10−2). In the lower left hand corner of this figure, we plot all our Nu–Ra data as well as the best-fitting trends discussed in Figs 4

and 5. Here, we show the Nu ∼ Ra1/3 and Nu ∼ Ra1/2 scalings for Ra � 1013 since centrifugal effects are not relevant in the core. The range of accessible

Nu–Ra space for convection in Earth’s core is denoted by the diagonal grey stripe on the figure’s right side. The bounds on this diagonal stripe are defined by

the maximum and minimum possible values of the superadiabatic flux Rayleigh number in Earth’s core, 6 × 1027 � RaF � 3 × 1032 (see text for details).

Extrapolating our lowest available Ekman number results to core conditions, we find that our heat transfer scalings (thick dashed lines) intersect core Nu–Ra

estimates predominantly in the vicinity of and beyond the transition Rayleigh number, RaT. Since columnar convection breaks down near RaT, we hypothesize

that local-scale columnar convection structures are not likely to exist in Earth’s core.

Table 3. Core property estimates used in calculating the bounding flux Rayleigh number values shown in Fig. 10.

Symbol Parameter Lower bound Upper bound Sources (lower bound; upper bound)

γ Thermal expansivity [K−1] 10−5 1.8 × 10−5 Buffett (2000); Stacey (2007)

g Gravitational acceleration [ms−2] 5 11 g at ICB; g at CMB (Dziewonski & Anderson 1981)

L Layer thickness [m] 2.3 × 106 3.5 × 106 Thickness of outer core; diameter of outer core (Dziewonski & Anderson 1981)

ν Viscosity [m2s−1] 10−7 10−6 Buffett (2000); Roberts & King (2013)

k Thermal conductivity [W m−1 K−1] 30 100 Stacey & Davis (2008); Pozzo et al. (2012)

ρ Density [kg m−3] 9 × 103 1.2 × 104 ρ at CMB; ρ at ICB (Stacey 2007)

Cp Specific heat [JK−1kg−1] 790 815 Cp at CMB; Cp at ICB (Stacey 2007)

κ Thermal diffusivity [m2s−1] 3 × 10−6 10−5 Estimated using above values of k, ρ and Cp

qsa Superadiabatic heat flux [W m−2] 6.5 × 10−3 6.5 × 10−2 1–10 TW of total heating power (Buffett 2003)
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mous referee for constructive reviews that greatly improved this

manuscript. The authors also thank Michael Calkins, Keith Julien

and Krista Soderlund for fruitful scientific discussions. JSC, AR,

AG and JMA gratefully acknowledge the financial support of the

NSF Geophysics Program. EMK acknowledges the support of the

Miller Institute for Basic Research in Science. SS carried out numer-

ical simulations via the support of the John von Neuman Institute

for Computing in Jülich, Germany.
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A P P E N D I X

Table A1. Laboratory convection data. Here, τ denotes the averaging time in thermal diffusion time scale units L2/κ . Note that

τ ≪ 1 in all our experiments. However, the time series data have reached a statistical steady state prior to the start of data acquisition

in all the cases. Before acquisition, each case is allowed to equilibrate for approximately 12 hr until the variation in mean temperature

is less than 1 per cent. Data is then acquired for at least 2 hr per case (see Section 3.1).

Height (m) rpm Power (W) Mean T (◦C) �T (◦C) Pr E Ra Nu τ̄

0.798 0 9.58 23.31 2.88 6.338 ∞ 2.626 × 1010 166.85 2.25 × 10−3

0.798 0 9.83 23.12 2.60 6.370 ∞ 2.341 × 1010 166.89 1.31 × 10−3

0.798 0 14.87 23.52 3.82 6.301 ∞ 3.529 × 1010 176.49 2.29 × 10−3

0.798 0 19.72 24.39 4.56 6.159 ∞ 4.430 × 1010 193.42 8.72 × 10−4

0.798 0 30.05 23.14 6.49 6.365 ∞ 5.851 × 1010 210.89 1.44 × 10−3

0.798 0 39.18 22.81 7.76 6.422 ∞ 6.847 × 1010 230.07 1.51 × 10−3

0.798 0 49.42 22.87 9.32 6.412 ∞ 8.260 × 1010 242.17 1.66 × 10−3

0.798 0 69.10 23.60 11.75 6.288 ∞ 1.090 × 1011 264.23 1.70 × 10−3

0.798 0 98.52 24.57 14.90 6.129 ∞ 1.464 × 1011 294.33 2.07 × 10−3

0.798 0 149.26 23.15 21.17 6.365 ∞ 1.908 × 1011 316.30 1.04 × 10−3

0.798 0 197.37 26.12 24.60 5.889 ∞ 2.639 × 1011 353.37 1.54 × 10−3

0.798 0 244.96 26.30 29.11 5.861 ∞ 3.155 × 1011 374.03 1.71 × 10−3

0.798 0 294.56 28.60 31.94 5.531 ∞ 3.905 × 1011 401.58 1.20 × 10−3

0.798 0 341.22 31.01 35.02 5.214 ∞ 4.807 × 1011 424.39 1.64 × 10−3

0.798 0 394.31 33.40 37.72 4.926 ∞ 5.757 × 1011 448.27 1.17 × 10−3

0.798 0 495.68 39.41 41.57 4.299 ∞ 8.047 × 1011 503.15 1.77 × 10−3

0.798 0 495.56 39.42 41.58 4.298 ∞ 8.053 × 1011 503.19 1.61 × 10−3

0.798 0 543.07 41.51 43.61 4.108 ∞ 9.100 × 1011 520.14 1.87 × 10−3

0.798 2 14.70 23.47 3.24 6.311 3.43 × 10−6 2.976 × 1010 200.34 1.91 × 10−3
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Table A1 (Continued.)

Height (m) rpm Power (W) Mean T (◦C) �T (◦C) Pr E Ra Nu τ̄

0.798 2 19.76 23.92 3.95 6.235 3.39 × 10−6 3.739 × 1010 210.25 1.74 × 10−3

0.798 2 29.41 25.01 5.58 6.060 3.31 × 10−6 5.628 × 1010 233.18 1.58 × 10−3

0.798 2 49.60 24.13 8.78 6.201 3.37 × 10−6 8.405 × 1010 253.79 1.52 × 10−3

0.798 2 68.94 24.01 11.52 6.221 3.38 × 10−6 1.095 × 1011 269.80 1.43 × 10−3

0.798 2 99.61 23.81 15.54 6.254 3.40 × 10−6 1.459 × 1011 287.72 1.74 × 10−3

0.798 2 149.13 23.34 20.07 6.332 3.44 × 10−6 1.831 × 1011 331.53 1.41 × 10−3

0.798 2 248.44 26.96 28.07 5.764 3.16 × 10−6 3.152 × 1011 386.23 1.89 × 10−3

0.798 2 493.03 39.39 41.63 4.301 2.44 × 10−6 8.053 × 1011 499.11 1.88 × 10−3

0.798 2 543.30 41.59 43.86 4.101 2.34 × 10−6 9.178 × 1011 516.85 1.90 × 10−3

0.798 2 495.68 39.41 41.57 4.299 2.44 × 10−6 8.047 × 1011 503.15 1.87 × 10−3

0.798 60 9.80 24.95 6.19 6.069 1.10 × 10−7 6.215 × 1010 69.62 1.41 × 10−3

0.798 60 20.09 26.77 8.66 5.792 1.06 × 10−7 9.629 × 1010 105.48 1.92 × 10−3

0.798 60 49.76 24.16 13.79 6.197 1.12 × 10−7 1.322 × 1011 163.69 1.30 × 10−3

0.798 60 69.74 24.78 16.41 6.096 1.11 × 10−7 1.633 × 1011 190.77 1.93 × 10−3

0.798 60 98.31 26.25 19.95 5.868 1.07 × 10−7 2.157 × 1011 220.40 1.93 × 10−3

0.798 60 147.93 25.27 26.04 6.018 1.10 × 10−7 2.666 × 1011 254.53 1.79 × 10−3

0.798 60 201.56 28.36 31.47 5.565 1.02 × 10−7 3.801 × 1011 284.21 1.79 × 10−3

0.798 60 244.13 29.41 35.80 5.421 9.99 × 10−8 4.556 × 1011 301.29 1.79 × 10−3

0.798 60 297.83 32.56 39.86 5.024 9.34 × 10−8 5.868 × 1011 325.33 1.80 × 10−3

0.798 60 491.88 42.77 52.19 4.000 7.64 × 10−8 1.137 × 1012 395.55 1.80 × 10−3

0.798 60 347.30 38.06 41.70 4.429 8.36 × 10−8 7.677 × 1011 350.05 1.80 × 10−3

0.798 60 394.65 40.79 44.51 4.172 7.93 × 10−8 9.056 × 1011 369.48 1.79 × 10−3

0.798 60 544.15 46.43 53.95 3.708 7.14 × 10−8 1.326 × 1012 416.00 1.77 × 10−3

0.798 60 544.12 46.47 54.07 3.705 7.13 × 10−8 1.330 × 1012 414.93 1.58 × 10−3

0.798 60 597.12 48.42 55.80 3.563 6.89 × 10−8 1.459 × 1012 438.69 1.61 × 10−3

0.798 60 597.11 48.52 56.16 3.556 6.88 × 10−8 1.473 × 1012 435.82 1.63 × 10−3

1.595 0 29.56 24.71 5.92 6.107 ∞ 4.689 × 1011 406.83 4.54 × 10−4

1.595 0 49.74 23.88 9.18 6.241 ∞ 6.913 × 1011 466.58 3.20 × 10−4

1.595 0 70.12 23.80 11.91 6.255 ∞ 8.930 × 1011 544.63 4.52 × 10−4

1.595 0 98.01 23.56 15.68 6.295 ∞ 1.158 × 1012 598.38 4.52 × 10−4

1.595 0 98.12 23.53 15.68 6.301 ∞ 1.155 × 1012 597.24 4.51 × 10−4

1.595 0 149.08 23.66 21.25 6.278 ∞ 1.579 × 1012 654.58 4.52 × 10−4

1.595 0 149.18 23.66 21.31 6.279 ∞ 1.583 × 1012 647.18 4.51 × 10−4

1.595 0 198.79 24.53 26.16 6.136 ∞ 2.048 × 1012 693.79 4.54 × 10−4

1.595 0 198.82 24.37 26.36 6.163 ∞ 2.044 × 1012 689.03 4.52 × 10−4

1.595 0 248.39 27.33 29.61 5.710 ∞ 2.708 × 1012 753.64 4.57 × 10−4

1.595 0 247.77 27.24 29.54 5.723 ∞ 2.689 × 1012 747.77 4.55 × 10−4

1.595 0 299.24 30.14 32.77 5.326 ∞ 3.448 × 1012 794.43 4.61 × 10−4

1.595 0 299.26 29.97 32.91 5.347 ∞ 3.435 × 1012 790.69 4.60 × 10−4

1.595 0 299.30 29.91 32.91 5.355 ∞ 3.425 × 1012 790.40 4.59 × 10−4

1.595 0 346.29 32.48 35.27 5.034 ∞ 4.130 × 1012 848.01 4.65 × 10−4

1.595 0 346.28 32.47 35.23 5.035 ∞ 4.125 × 1012 847.02 4.64 × 10−4

1.595 0 397.08 35.17 38.35 4.727 ∞ 5.033 × 1012 884.01 4.69 × 10−4

1.595 0 396.82 35.17 38.28 4.728 ∞ 5.023 × 1012 885.88 4.26 × 10−4

1.595 0 495.21 39.79 43.07 4.264 ∞ 6.749 × 1012 969.87 4.73 × 10−4

1.595 0 495.15 39.87 43.20 4.256 ∞ 6.789 × 1012 965.78 3.83 × 10−4

1.595 15 9.98 23.27 3.79 6.344 1.15 × 10−7 2.750 × 1011 250.91 2.92 × 10−4

1.595 15 19.61 24.30 5.46 6.174 1.12 × 10−7 4.215 × 1011 298.44 4.53 × 10−4

1.595 15 19.62 24.28 5.43 6.177 1.12 × 10−7 4.188 × 1011 288.29 4.54 × 10−4

1.595 15 19.62 24.23 5.34 6.185 1.12 × 10−7 4.107 × 1011 290.43 4.53 × 10−4

1.595 15 19.64 24.25 5.37 6.182 1.12 × 10−7 4.134 × 1011 289.31 1.67 × 10−4

1.595 15 29.87 25.20 6.86 6.031 1.10 × 10−7 5.578 × 1011 355.63 4.55 × 10−4

1.595 15 50.04 24.39 10.15 6.159 1.12 × 10−7 7.879 × 1011 433.43 4.51 × 10−4

1.595 15 98.90 24.04 16.96 6.216 1.13 × 10−7 1.290 × 1012 529.05 4.51 × 10−4

1.595 15 150.02 24.46 23.17 6.148 1.12 × 10−7 1.806 × 1012 581.76 4.54 × 10−4

1.595 15 199.44 25.78 28.82 5.940 1.08 × 10−7 2.424 × 1012 628.86 4.55 × 10−4

1.595 15 249.44 28.55 32.39 5.538 1.02 × 10−7 3.154 × 1012 669.95 4.59 × 10−4

1.595 15 249.22 28.59 32.41 5.533 1.02 × 10−7 3.162 × 1012 671.16 4.57 × 10−4

1.595 15 296.54 31.46 35.83 5.157 9.57 × 10−8 4.009 × 1012 713.01 4.63 × 10−4

1.595 15 393.91 36.72 41.65 4.564 8.59 × 10−8 5.816 × 1012 792.88 4.68 × 10−4

1.595 15 481.66 40.87 45.97 4.165 7.93 × 10−8 7.489 × 1012 868.14 4.73 × 10−4

1.595 60 9.88 24.89 6.94 6.079 2.77 × 10−8 5.545 × 1011 142.27 4.56 × 10−4

1.595 60 20.54 26.13 9.09 5.888 2.69 × 10−8 7.792 × 1011 189.83 2.37 × 10−4
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Table A1 (Continued.)

Height (m) rpm Power (W) Mean T (◦C) �T (◦C) Pr E Ra Nu τ̄

1.595 60 29.55 26.82 10.33 5.784 2.65 × 10−8 9.201 × 1011 233.33 4.41 × 10−4

1.595 60 49.54 26.87 15.27 5.777 2.65 × 10−8 1.362 × 1012 279.36 1.66 × 10−4

1.595 60 68.79 27.18 18.93 5.732 2.63 × 10−8 1.717 × 1012 312.75 2.27 × 10−4

1.595 60 148.93 28.27 31.03 5.577 2.56 × 10−8 2.979 × 1012 421.33 1.92 × 10−4

1.595 60 248.21 32.28 40.44 5.058 2.35 × 10−8 4.695 × 1012 526.35 2.32 × 10−4

1.595 60 247.53 32.32 40.44 5.053 2.35 × 10−8 4.703 × 1012 523.84 2.32 × 10−4

1.595 60 395.75 41.11 51.11 4.143 1.97 × 10−8 8.398 × 1012 636.53 2.38 × 10−4

1.595 60 488.78 46.37 57.66 3.713 1.79 × 10−8 1.129 × 1013 686.70 2.41 × 10−4

Table A2. Numerical rotating convection data. Here, τ denotes the time over which

the diagnostics have been averaged in thermal diffusion time scale units L2/κ . Even

though millions of time steps were performed, τ < 1 in all our simulations, such that

the quoted temporal averages may not be fully accurate (see e.g. Julien et al. 2012a for

a discussion of the broad range of timescales involved in rapidly rotating convection).

In general however, the averaging times are comparable to or even exceed those used

in the laboratory experiments (Table A1).

Pr E Ra Nu τ̄

7 1.00 × 10−5 4.18 × 107 1.73 1.05

7 1.00 × 10−5 4.64 × 107 2.51 5.31 × 10−1

7 1.00 × 10−5 5.57 × 107 5.17 3.42 × 10−1

7 1.00 × 10−5 6.96 × 107 9.75 1.85 × 10−1

7 1.00 × 10−5 9.28 × 107 16.1 1.06 × 10−1

7 1.00 × 10−5 1.16 × 108 21.9 7.69 × 10−2

7 1.00 × 10−5 1.39 × 108 27.1 6.17 × 10−2

7 1.00 × 10−5 1.86 × 108 35.7 4.56 × 10−2

7 1.00 × 10−5 2.32 × 108 42.2 3.66 × 10−2

7 1.00 × 10−5 3.25 × 108 50.7 2.82 × 10−2

7 1.00 × 10−6 9.00 × 108 1.44 1.79 × 10−1

7 1.00 × 10−6 1.00 × 109 1.94 4.30 × 10−1

7 1.00 × 10−6 1.20 × 109 3.81 1.15 × 10−1

7 1.00 × 10−6 1.50 × 109 8.90 8.73 × 10−2

7 1.00 × 10−6 2.00 × 109 18.6 4.07 × 10−2

7 1.00 × 10−6 2.50 × 109 28.7 2.39 × 10−2

7 1.00 × 10−6 3.00 × 109 39.7 1.92 × 10−2

7 1.00 × 10−6 4.00 × 109 58.5 1.28 × 10−2

7 1.00 × 10−6 5.00 × 109 71.9 1.00 × 10−2

7 1.00 × 10−6 7.00 × 109 88.0 7.30 × 10−3

7 1.00 × 10−7 2.15 × 1010 16.8 7.09 × 10−2

7 1.00 × 10−7 2.59 × 1010 27.6 6.90 × 10−2

7 1.00 × 10−7 3.23 × 1010 58.4 3.64 × 10−2

7 1.00 × 10−7 4.31 × 1010 16.9 1.06 × 10−2

7 1.00 × 10−7 5.39 × 1010 42.2 1.05 × 10−2

7 1.00 × 10−7 6.46 × 1010 72.9 4.95 × 10−3

7 1.00 × 10−7 8.62 × 1010 77.1 2.79 × 10−3

7 1.00 × 10−7 1.08 × 1011 88.4 1.24 × 10−3

7 1.00 × 10−7 1.51 × 1011 122.0 9.65 × 10−4
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