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Freak or rogue waves are so called because of their unexpectedly large size relative
to the population of smaller waves in which they occur. The 25.6 m high Draupner
wave, observed in a sea state with a significant wave height of 12 m, was one of the
first confirmed field measurements of a freak wave. The physical mechanisms that give
rise to freak waves such as the Draupner wave are still contentious. Through physical
experiments carried out in a circular wave tank, we attempt to recreate the freak
wave measured at the Draupner platform and gain an understanding of the directional
conditions capable of supporting such a large and steep wave. Herein, we recreate
the full scaled crest amplitude and profile of the Draupner wave, including bound
set-up. We find that the onset and type of wave breaking play a significant role and
differ significantly for crossing and non-crossing waves. Crucially, breaking becomes
less crest-amplitude limiting for sufficiently large crossing angles and involves the
formation of near-vertical jets. In our experiments, we were only able to reproduce
the scaled crest and total wave height of the wave measured at the Draupner platform
for conditions where two wave systems cross at a large angle.

Key words: surface gravity waves, wave breaking, waves/free-surface flows

1. Introduction
The Draupner wave, recorded in the North Sea on 1 January 1995 (Haver 2004),

was one of the first verified measurements of a freak wave, making it a highly
seminal observation of a rare natural phenomenon. In the time since, other extremely
large freak waves such as the Andrea (Magnusson & Donelan 2013) and the Killard
(Flanagan et al. 2016) have also been recorded. However, the mechanism by which
such waves occur is still an open question. Of the possible mechanisms (see Kharif
& Pelinovsky 2003; Dysthe & Müller 2008; Onorato et al. 2013; Adcock & Taylor
2014), the two general theories that prevail in the absence of specific environmental
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forcing are random dispersive focusing enhanced by weak bound-wave nonlinearity
on the one hand and the modulational instability of waves trains in deep water
on the other. The latter applies most strongly to sea states that are narrow banded
in both frequency and direction and sufficiently deep (typically, kd � 1.36, where
k is the wavenumber and d the water depth) (Janssen 2003; Onorato et al. 2009;
Waseda, Kinoshita & Tamura 2009; Fedele et al. 2016). Modulational instability has
been observed in the real ocean (e.g. Tulin 1996). Studies based on observations
such as the Draupner wave (Clauss & Klein 2009; Adcock et al. 2011; Christou
& Ewans 2014; Fedele et al. 2016) suggest that dispersive focusing enhanced by
bound-wave nonlinearity, particularly for crossing wave systems, could provide a
sufficient explanation in some cases. It has also been shown that for certain angles,
crossing seas may also enhance the occurrence of modulational instability (Onorato,
Osborne & Serio 2006; Toffoli et al. 2011b; Cavaleri et al. 2012). For the Draupner
wave in a water depth d = 70 m and with a zero-crossing period Tz = 12.5 s,
the non-dimensional water depth kd = 1.6 (k is the wavenumber) is probably not
sufficiently above the limit of 1.36 for modulational stability to have played an
important role (Cavaleri et al. 2016)

Beyond its overall wave height of h = 25.6 m (height abnormality index h/Hs =

2.13, where Hs is the significant wave height, defined as four times the standard
deviation of the surface elevation) and crest height of a= 18.5 m (crest abnormality
index a/Hs = 1.55), the Draupner wave is exceptional in a number of other ways
(see Janssen 2015; Cavaleri et al. 2016; van Groesen, Turnip & Kurnia 2017, for a
discussion of its likelihood). First, the wave group itself was accompanied by what
is most probably a set-up of the wave-averaged free surface, whereas a set-down is
expected in the absence of crossing (Walker et al. 2004). The wave-averaged free
surface, represented spectrally by second-order difference waves, is the local mean
surface elevation formed by temporal averaging over the rapidly varying waves that
make up the slowly varying group. In the case of crossing wave systems, a set-down
of the wave-averaged free surface typically observed underneath a wave group can
turn into a set-up, enhancing the maximum crest amplitude. This can be theoretically
predicted (Okihiro, Guza & Seymour 1992; Herbers, Elgar & Guza 1994; Toffoli,
Onorato & Monbaliu 2006; Christou et al. 2009) based on second-order interaction
kernels (Hasselmann 1962; Sharma & Dean 1981; Dalzell 1999; Forristall 2000). A
set-up has been observed in field data (Walker et al. 2004; Toffoli et al. 2007; Santo
et al. 2013) and recently in detailed laboratory experiments (McAllister et al. 2018).
Second, when modelled numerically using a fully nonlinear potential flow model (Yan
& Ma 2010), a wave of comparable steepness could not be created without triggering
breaking in non-crossing-sea states (Adcock et al. 2011). Third, the structural loads
on the Draupner platform (Hansteen, Jostad & Tjelta 2003) were much smaller than
would be expected for such a large (non-crossing) wave (Adcock et al. 2011). All
of these properties suggest that the Draupner wave occurred when two smaller waves
systems crossed. Subsequent analysis using a higher-order spectral method performed
on the Draupner, Andrea and Killard waves also supports this finding (Fedele et al.
2016).

Hindcast predictions of the local wave climate surrounding the Draupner event
can give an indication of the presence of crossing wave systems. There have been a
number of attempts to hindcast the sea state, including Adcock et al. (2011), Cavaleri
et al. (2016) and Fedele et al. (2016). The former two studies do suggest a secondary
wave system; Adcock et al. (2011) only found this when resolution of the model was
increased above that used as standard in such simulations. The hindcasts in Fedele
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et al. (2016) do not indicate crossing, but this may be due to low resolution as stated
by the authors. Haver (2004) described the meteorological conditions at the time as
a combination of large winter depression and short duration ‘Arctic bomb’: a much
smaller but more violent wind field with a significantly different mean direction. This
is a very difficult scenario to hindcast accurately: the sea state is steep with all the
source terms in the wind–wave model large and with conditions changing over a
time scale of tens of minutes. Notwithstanding the difficulty of modelling this rapidly
evolving sea state, hindcasts consistently provide evidence that suggests separate wind
and swell systems were present at different angles (Adcock et al. 2011; Cavaleri et al.
2016).

Independent of the focussing mechanism (linear or nonlinear) that created it,
perhaps the most important question is under which directional conditions a waveform
as steep as was observed at Draupner can be created without crest-amplitude-limiting
breaking. Although fully nonlinear simulations can provide guidance, such approaches
have limited capability to predict breaking unequivocally (see Barthelemy et al. 2018,
for a recent discussion of a unified kinematic breaking criterion). Detecting the
occurrence of wave breaking in field measurements of the free surface is also
non-trivial (Perlin, Choi & Tian 2013). Albeit always at reduced scale, physical
laboratory experiments have an important role to play. The most successful previous
attempt to experimentally reproduce the Draupner wave under unidirectional
conditions by Clauss & Klein (2009) has not fully reproduced the steepness of
the wave observed in the field nor the observed set-up.

Herein, we present a series of physical experiments carried out in the FloWave
Ocean Energy Research Facility; this circular wave tank surrounded by 168
wavemakers allows for the creation of waves travelling in all directions. Using
this capability, we recreate a wave of equal and greater steepness to the Draupner
event with an equivalent surface elevation time series and demonstrate the directional
conditions necessary for it to exist. In doing so, we also show that the breaking
mechanism can be fundamentally altered in crossing seas: breaking no longer acts to
limit amplitude in the same way, but results in upward, jet-like behaviour. We thus
propose an additional fundamental process to be taken into account when seeking
explanation of rogue waves in highly directional seas such as at Draupner: directional
breaking for crossing seas.

This paper is laid out as follows. First, details of our experimental and analysis
methods are given in § 2. Results of our experiments are laid out in § 3, addressing
the effects of directional spreading and wave breaking. A direct comparison with
previous experimental results by Clauss & Klein (2009) is provided in § 3.4. Finally,
conclusions are drawn in § 4.

2. Methods
2.1. Experimental set-up

Experiments were conducted in the FloWave Ocean Energy Research Facility
(www.flowave.eng.ed.ac.uk), based at the University of Edinburgh, UK. The facility
consists of a 25 m diameter circular wave basin, surrounded by 168 active-absorbing
force-feedback wavemakers, with a water depth of 2 m. This circular geometry
enables the creation of waves in all directions, and thus facilitates the generation
of crossing wave groups at arbitrary angles. A linear array of eight multiplexed
resistance-type wave gauges were installed along the tank centreline (x-axis) and
sampled at 128 Hz. All measurements presented are at the intended point of focus at
the centre of the tank (x= 0, y= 0), unless stated otherwise.
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FIGURE 1. Decomposition of the Draupner event into two crossing systems, where the
main wave train ηM(t) (grey dashed lines), and the transverse waves ηT(t) (grey solid lines)
combine to give the linearised Draupner time series η(1)D (t) = ηM(t) + ηT(t) (black lines).
Panel (a) shows the decomposition in the time domain, and (b) shows the corresponding
amplitude distributions in frequency. The amplitude distribution in frequency A( f ), shown
on the y-axis of (b), is obtained by taking the discrete Fourier transform of η(t) in (a).

1θ σθ hd (m) hu (m) a (m) a(2)− (m) kdd kud

Expt. 1 0◦ 30◦ 24.2 (23.7) 23.5 (24.0) 16.6 (17.2) −0.014 (−0.046) 1.68 1.85
Expt. 2 60◦ 30◦ 23.9 (24.3) 23.9 (25.5) 18.0 (18.4) 0.069 (0.050) 1.76 1.87
Expt. 3 120◦ 30◦ 25.4 (25.5) 24.5 (25.7) 17.9 (18.9) 0.27 (0.31) 1.76 1.89
Draupner — — 25.0 25.6 18.5 0.26 1.74 1.91

TABLE 1. Recreation of the Draupner wave for three crossing angles 1θ = 0, 60 and 120◦.
Values given are measured at the intended point of focus (x= 0, y= 0) with largest values
measured at adjacent probes (x=±0.1, y= 0 m at laboratory scale) given in brackets.

To match the water depth at the Draupner platform of 70 m and ensure similitude of
wave kinematics, a Froude length scaling factor of 35 was implemented (kd= 1.7–1.9,
see table 1). A test duration of 16 s (94.7 s at field scale) was chosen to minimise the
effects of tank reflections whilst allowing for sufficient time to reproduce the Draupner
wave group (see appendix A).

2.2. Input conditions
In order to recreate a directional signal corresponding to the time series measured
at Draupner (Haver 2004), assumptions need to be made, as directional information
cannot be directly inferred from these measurements. We adopt the decomposition
of the linearised Draupner time series into two crossing systems in Adcock et al.
(2011), which is based on the observation of a transient bimodal peak in the spectrum
measured immediately surrounding the large crest. Adcock et al. (2011) carried out
an approximate linearisation of the free surface elevation measured at Draupner, first
by high-pass filtering to remove second-order difference waves, then by minimising
the skewness of the resulting signal to remove the effects of second-order sum waves.
Then, the linearised spectrum was divided into two parts: the main wave train ηM,
based on the assumption of an underlying Joint North Sea Wave Project (JONSWAP)
(Hasselmann et al. 1973) spectrum, and a transient group ηT. Together, these two
parts combined to give the original linearised spectrum (see figure 1). We use this
decomposition as input to the wavemakers.
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FIGURE 2. (Colour online) Recreation of the Draupner wave for three crossing angles
1θ = 0◦, 60◦, 120◦ and directional spreading σθ = 30◦: polar plots of input directional
spectra S(θ, f ) (a–c), free surface elevation η(t) (d–f ) and second-order difference waves
η
(2)
− (t) (g–i). The black lines denote measurements made at the Draupner platform, the red

lines our experimental measurements at the intended point of focus (x= 0, y= 0) and the
blue dotted lines our experimental measurements at an adjacent probe (x=±0.1, y= 0 m
at laboratory scale). The shaded areas in (g–i) show estimated measurement errors, and
the grey dashed lines theoretical predictions of η(2)− (t). The left-hand axis shows field scale,
and the right-hand axis laboratory scale (in red).

Both systems are also spread about their mean directions based on a wrapped-
normal amplitude distribution in θ with standard deviation σθ . We set σθ = 30◦.
Noting that our σθ corresponds to the standard deviation of the amplitude distribution,
σθ = 30◦ corresponds to a standard deviation of 30/

√
2 ≈ 21◦ for the equivalent

power spectrum, which is consistent with estimates in both Adcock et al. (2011) and
Cavaleri et al. (2016). In all cases the main wave train (ηM) has been generated with
a mean direction of propagation along the tank’s x-axis, with the mean direction of
the transverse group (ηT) altered to provide the desired crossing angle 1θ . We set
the crossing angle 1θ between the two systems to 0, 60, and 120◦, illustrated in
figure 2(a–c) and corresponding to experiments 1–3 (see table 1). The case 1θ = 0◦

corresponds to a so-called ‘following’ sea state.
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2.3. Iterative procedure
To achieve the best recreation of the Draupner time series we adopt an iterative
experimental approach. For each set of directional conditions, we iterate the
components of the amplitude distribution (amplitude and phase) input to the
wavemakers to achieve the target Draupner waveform at the point of intended focus
at the centre of the tank (x = 0, y = 0). The details of the procedure we adopt are
mostly motivated by practical considerations. The decomposition above defines the
relative amplitude AT( fn)/AM( fn) and phase ϕT( fn)−ϕM( fn) at each discrete frequency
fn for the two systems. These relative amplitudes and phases are fixed throughout the
iterative procedure, and hence the directional spreading and angle between the two
systems is maintained. At each iteration, we applied corrections to the total input
amplitude Ainput( fn) and phase ϕinput( fn) for each frequency in order to achieve the
original Draupner measurement AD( fn) and ϕD( fn) as the target. For each frequency
component fn, we computed the amplitude and phase inputs for iteration j+ 1 based
on the observed amplitude Aobserved,j( fn) and phase ϕobserved,j( fn) at iteration j:

Ainput,j+1( fn)=

[
AD( fn)

Aobserved,j( fn)

]
Ainput,j( fn) and (2.1)

ϕinput,j+1( fn)= ϕinput,j( fn)+ β
[
ϕD( fn)− ϕobserved,j( fn)

]
, (2.2)

where we use β = 1/j as an effective way to achieve convergence. Typically, 7–8
iterations were required to achieve the optimal reproduction of the crest height and
surrounding waveform (details of the iterations are given in appendix B).

3. Results
3.1. Experimental recreation of the Draupner wave

Figure 2(d–f ) shows the achieved reconstruction of the Draupner wave for the three
crossing angles 1θ = 0, 60 and 120◦. To compare, we present the experimental
results at field scale using a Froude scaling, by scaling up length scales by a factor
35 (the ratio of water depths at Draupner of 70 m and in the laboratory of 2 m) and
time scales up by a factor

√
35. Where a larger wave crest was observed at either

of two probes immediately adjacent to the intended point of focus (x = ±0.1 m,
y = 0 m at laboratory scale, which corresponds to ≈ 1 % of a wavelength), the
free surface elevations measured there are also presented (blue dashed lines). In
the following-sea state (1θ = 0◦, figure 2a,d), it was not possible to reproduce the
total amplitude, as crest-amplitude-limiting breaking occurred at a= 17.2 m (relative
to a target of 18.5 m). When we increase the crossing angle to 60◦ (figure 2b,e),
better reproduction of the crest amplitude is observed (with a slight underproduction
of 0.1 m). Finally, for a crossing angle of 120◦, we observe an 18.9 m wave
crest, slightly larger than at Draupner (figure 2c,f ). Table 1 details the achieved
reconstruction of the Draupner wave, including the down- and up-crossing wave
heights hd and hu, the total crest height above still water a and the magnitude
of the second-order difference components a(2)− discussed hereafter. In addition to
reproducing scaled crest height, it is also necessary to reproduce steepness kh/2 to
correctly scale the waves. Table 2 compares the up- and down-crossing steepness of
the waves produced in our experiments to measurements at Draupner. Only the waves
produced for crossing angle 1θ = 120◦ achieve equivalent steepness.
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Laboratory recreation of the Draupner wave 773

1θ σθ kdhd/2 kuhu/2 Observed breaking type

Expt. 1 0◦ 30◦ 0.29 (0.28) 0.31 (0.32) Plunging
Expt. 2 60◦ 30◦ 0.30 (0.32) 0.32 (0.34) Plunging + upward jet
Expt. 3 120◦ 30◦ 0.32 (0.32) 0.33 (0.35) Upward jet
Draupner — — 0.31 0.35 Unknown

TABLE 2. Achieved steepnesses and types of breaking observed for three crossing angles
1θ = 0, 60 and 120◦. Values given are measured at the intended point of focus (x =
0, y = 0) with the largest values measured at adjacent probes (x = ±0.1, y = 0 m
at laboratory scale) given in brackets. Values of the wavenumber are calculated using
the linear dispersion relationship ω2

= gk tanh(kd) and based on individual up- and
down-crossing wave periods.

3.2. Second-order bound harmonics
Underlying our laboratory reproduction of the maximum crest amplitude in the
original Draupner time series before crest-amplitude-limiting wave breaking, at a
crossing angle of 120◦, is our assumed directional decomposition. Since the actual
directional decomposition during Draupner cannot be directly inferred from available
field measurements, any such decomposition will remain somewhat arbitrary. We
can gain further confidence in our results by examining the frequency-difference
components of the second-order bound waves. In order to extract the bound waves
contained within our measurements, we repeat each experiment with a phase shift
of 180◦. By subtracting the out-of-phase tests, it is then possible to separate the
second-order sum and difference bound waves after filtering (Baldock, Swan &
Taylor 1996; Fitzgerald et al. 2014; Mai et al. 2016; Zhao et al. 2017). Evidently, this
technique cannot be applied to field measurements of the Draupner wave. Instead, we
extract bound difference waves in the infra-gravity regime through low-pass filtering
only (at a 0.5fp cutoff), making the assumption that in this range of frequencies
bound-wave interactions dominate. Any free waves that exist in the infra-gravity
range in our experiments will be removed by the phase inversion process.

In figure 2(g–i), we compare the second-order difference waves (η(2)− ) thus extracted
from the Draupner time series (black lines) and our experiments (red and blue lines).
Initially, when 1θ = 0◦, a small set-down is observed, which becomes positive when
the crossing angle 1θ is increased to 60◦. Finally, when 1θ = 120◦, a large set-up
forms with a similar amplitude (0.27 m) to the set-up observed under the Draupner
wave (0.26 m). The confidence bands around the red and blue lines correspond to
±2 standard deviations, resulting from measurement errors only (see appendix C). At
field scale, the confidence bands have a magnitude of 0.035 m. From comparison
between the maximum amplitude of the second-order difference waves at Draupner
and in experiments, noting the confidence bands, we thus find good agreement only
for large crossing angles (cf. figure 2g–i).

Although the widely used (Mai et al. 2016; Zhao et al. 2017; McAllister et al.
2018) method of harmonic extraction (Baldock et al. 1996; Fitzgerald et al. 2014)
we use relies on a generalised Stokes expansion and is thus not affected by cubic
interactions, it cannot be fully relied on in the event of wave breaking. In our
experiments, wave breaking occurs at the crest and not at the corresponding 180◦
phase-inverted trough. This may lead to overestimation of the vertical asymmetry
of the wave group and hence of the second-order difference waves. Predictions
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(a) (b) (c)

(d) (e) (f)

FIGURE 3. (Colour online) Still images of the free surface taken at intervals of 100 ms
(0.6 s at field scale), showing the most successful reconstruction of the Draupner wave
for 1θ = 0◦. Plunging breaking is observed, which provides an upper limit to wave crest
amplitude under these following-sea conditions.

of the second-order difference waves based on second-order theory (Dalzell 1999),
taking the linear part of the spectrum as an input, are also presented as the grey
dashed lines in figure 2(g–i) (see appendix D for details of the calculation). The
predicted second-order difference waves match our experimental observations well,
giving confidence that we have correctly extracted the second-order bound long wave
components.

3.3. Wave breaking
In the ocean, breaking provides the uppermost limit to wave steepness. In its most
basic form, breaking is assumed to occur when the particle velocity at the crest
exceeds the phase velocity, causing fluid in the crest to overtake the wave (Barthelemy
et al. 2018). In deep to intermediate water depths, this can occur as a gentle local
spilling motion or a violent jet that emanates horizontally from the crest and plunges
into the forward face of the wave (Cokelet 1977). Figure 3(a–c) shows the onset
of such a plunging breaker for following-sea conditions (1θ = 0◦), where, as the
wave focuses, a near-vertical wall of water forms on the forward face of the wave,
from which a plunging jet emerges (figure 3d–f ). The measured time series at each
probe are included in appendix E. In following-sea conditions, wave energy is spread
about a single mean direction. As waves focus, large horizontal particle velocities
are generated about the mean direction and waves may break. When the spread of
energy about a single mean direction is large or when energy is spread over multiple
directions (i.e. crossing waves), as opposed to focusing, the horizontal particle velocity
of components normal to the mean direction under a wave crest begin to cancel out.
This reduction in horizontal particle velocity affects the onset of wave breaking,
as addressed explicitly in Latheef, Swan & Spinneken (2017), who found that the
maximum wave steepness for a given sea state was proportional to spreading width
in following-sea conditions. Earlier, She, Greated & Easson (1994), Nepf, Wu &
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(a) (b) (c)

(d) (e) (f)

FIGURE 4. (Colour online) Still images of the free surface taken at intervals of 100 ms
(0.6 s at field scale), showing the most successful reconstruction of the Draupner wave
for 1θ = 120◦. Breaking is observed in from of an upward projected jet, which does not
limit wave crest height under these crossing-sea conditions.

Chan (1998) and Babanin et al. (2011) have also observed that breaking waves may
be larger and have steeper fronts as directional spreading is increased.

To examine breaking for crossing waves, we attempted recreation of the Draupner
wave under following-sea conditions for increasing degrees of directional spreading
20◦, 30◦ and 40◦. In all three cases, as observed in figure 3 for σθ = 30◦, plunging
breaking occurred, limiting the wave height that could be achieved. As the degree
of spreading was increased, the maximum achievable wave height did increase, with
respective crest heights of 16.57 m, 17.20 m and 17.22 m. However, these tests still
failed to reproduce the full crest of the Draupner wave by 1.9–1.3 m. Increasing
the degree of spreading further would potentially result in larger crest heights before
breaking. In reality, steep following-sea states with such broad spreading are unlikely
in extra-tropical storms.

Under crossing conditions, the breaking mechanism observed became fundamentally
different. Figure 4 shows the onset of breaking when 1θ = 120◦. As the crossing
waves combine, a jet forms that propels the water upwards. In this case, much of
the horizontal motion is cancelled out at the point of focus and this results in a
partial standing wave. Typical plunging-type breaking is not observed. The formation
of vertical jets on standing waves, which has parallels with wave impact on walls
(Boccotti et al. 1993; Peregrine 2003), has been examined by a number of authors
(Longuet-Higgins 1983; Zeff et al. 2000; Longuet-Higgins 2001; Longuet-Higgins &
Dommermuth 2001). Its occurrence is significant for two reasons. First, this form
of wave breaking can be associated with extremely large fluid accelerations of the
order of 10−100×g (Longuet-Higgins 2001; Longuet-Higgins & Dommermuth 2001).
Second, this breaking mechanism does not directly limit the achievable wave height.
In figure 5, the onset of breaking is shown for 1θ = 60◦. Here, as the waves combine,
breaking occurs along the confluence of the two crests. A mixture of horizontal and
vertical motion is observed in a combination of the effects observed in figures 3
(1θ = 0◦) and 4 (1θ = 120◦). The spray that can be observed in figures 4 and 5,
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(a) (b) (c)

(d) (e) (f)

FIGURE 5. (Colour online) Still images of the free surface taken at intervals of 100 ms
(0.6 s at field scale), showing the most successful reconstruction of the Draupner wave
for 1θ = 60◦. Breaking is observed along the confluence of the crossing waves producing
a jet with both horizontal (plunging) and jet-like upwards motion.

occurs in the foreground (in front of the gauges) and thus will not affect the maximum
surface elevation measured by the gauges.

Local wave steepness is a common indicator used to predict the onset of wave
breaking for Eulerian measurements. A maximum steepness of kh/2 = 0.44 is often
used (Michell 1893), which is based on the limiting steepness of a regular Stokes
wave in deep water (Stokes 1847). Plunging breaking waves generated by dispersive
focusing have been produced in experiments (Tian, Perlin & Choi 2008) at steepnesses
as low as kh/2= 0.28. For irregular waves the width of the underlying spectrum has a
significant effect on wave breaking steepness (Rapp & Melville 1990), and, in general,
geometric criteria vary significantly from study to study (Perlin et al. 2013), perhaps
illustrating the inadequacy of such overly simplified criteria. Based on observations,
Wu & Yao (2004) proposed the following relationship for limiting wave steepness (on
a water depth of approximately kd= 1.3 and for unidirectional waves):

kh/2= 0.44e3.0v2
−3.9v, (3.1)

where v =
√

m2m0/m2
1 − 1 is the spectral bandwidth with mn representing the nth

spectral moment taken over the interval 0.5 − 1.5fp, where fp is the peak frequency.
Using (3.1) to predict a maximum steepness based on the bandwidth of our spectrum,
we obtain kh/2 = 0.22. This relationship is based on unidirectional experiments,
which will break at lower steepness. Nevertheless, we use this regression to provide a
qualitative description of how the onset of breaking may be affected by bandwidth in
our experiments. It serves as a lower bound for our directionally spread experiments.
Other geometric criteria, such as crest-front steepness and horizontal asymmetry, may
also be used to predict the onset of breaking (e.g. Perlin et al. 2013). A disadvantage
of using geometric criteria based on temporal measurements is the need to assume a
dispersion relationship, which can lead to variations in the estimated parameters as
large as 50 % (Yao & Wu 2006). Although perhaps more accurate (see Barthelemy
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1θ σθ hd (m) hu (m) a (m) a(2)− (m) kdhd/2 kuhu/2 v

Expt. 3 120◦ 30◦ 25.4 (25.5) 24.5 (25.7) 17.9 (18.9) 0.27 (0.31) 0.32 (0.32) 0.33 (0.35) 0.21
CK09 0◦ 0◦ 23.38 26.64 18.32 -0.45 0.25 0.31 0.18
Draupner — — 25.0 25.6 18.5 0.26 0.31 0.35 0.21

TABLE 3. Comparison of our experimental reproduction (Expt. 3), the experimental
reproduction of CK09 and the field measurements at the Draupner platform. Values given
are measured at the intended point of focus (x= 0, y= 0) with largest values measured at
adjacent probes (x=±0.1, y= 0 m at laboratory scale) given in brackets.

et al. 2018), dynamic and kinematic criteria require accurate measurements of surface
velocities, which are non-trivial to obtain experimentally (e.g. Saket et al. 2017). The
approximate local steepness of the waves created in our experiments is presented in
table 2. For all cases, the steepness of our waves lies between 0.22 and 0.44.

3.4. Comparison with Clauss & Klein (2009)
Previously, Clauss & Klein (2009) (CK09) have set out to reproduce the Draupner
wave under unidirectional conditions in a 110 m long seakeeping basin. The scaled
wave height h and amplitude a are reproduced well in CK09, despite being slightly
smaller than measurements made at the Draupner platform with the exception of up-
crossing wave height hu, which is 1.1 m larger (see table 3). However, the actual
waveform shows less good agreement with measurements at Draupner, as reflected
by the lower r2 values for CK09 compared to our experiments (see figure 6(a,b);
r2 values are calculated over time window presented). As evident from figure 6(a,b),
the period of the wave produced in CK09 is longer than that observed at Draupner,
as also evident from the spectra in figure 6(e, f ). This gives the wave a different
shape and ultimately reduces its steepness (see table 3). In the case of single Eulerian
measurements, both wave height and period need to be matched in order to achieve
the correct steepness and thus scaling of the wave. Furthermore, the waves in CK09
do not show a set-up but a considerable set-down of amplitude −0.45 m, which is
expected for unidirectional waves (figure 6c,d).

The steepness of the waves in CK09 is comparable to the steepness at which
our experiments for following, yet directionally spread, conditions displayed crest-
amplitude-limiting breaking (our Expt. 1). This difference in the onset of crest-
amplitude-limiting breaking may be explained by looking at the spectra of the waves
in both sets of experiments. Considering the spectra for each set of experiments
in figure 6(e, f ) (here the spectral window is set to match the duration of our
experiments), the results of CK09 are more narrow banded and have a lower spectral
bandwidth parameter v (see table 3), meaning they will break at a higher steepness
following the regression of Wu & Yao (2004) given in (3.1), which parametrises how
the steepness at which breaking occurs is inversely proportional to spectral bandwidth.
In Clauss & Klein (2011) a breather-type wave with larger height and somewhat
similar profile to the Draupner wave is also produced; such waves may also have
very narrow underlying spectra, and waves generated through modulational instability
have also been shown to break at higher steepness (Perlin et al. 2013). Hence, it may
be possible to achieve waves of comparable steepness under unidirectional conditions
using nonlinear focusing.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

88
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.886


778 M. L. McAllister and others

-10

-5

0

5

10

15

20

-10

-5

0

5

10

15

20

-0.4

-0.2

0

0.2

0.4

-0.4

-0.2

0

0.2

0.4

0

5

10

15

0

5

10

15

17.5
18.0
18.5
19.0

-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30

-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
t (s)

f/fp f/fp

t (s)

0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0

˙ -(2
)  (m

)
S(

f)
 (m

2  s)
˙ 

(m
)

r2 = 0.95 r2 = 0.75
r2 = 0.94

-1 0 1
17.5
18.0
18.5
19.0

-1 0 1

Expt. 3
Îœ = 120°, ßœ = 30°

Clauss & Klein (2009)
Îœ = 0°, ßœ = 0°

(a) (b)

(c) (d)

(e) (f)

FIGURE 6. (Colour online) Comparison of our experimental reproduction, the experimental
reproduction of CK09 and field measurements at the Draupner platform. The column on
the left shows our Expt. 3 with red lines corresponding to measurements at the intended
point of focus (x = 0, y = 0) and blue dotted lines measurements at an adjacent probe
(x=±0.1, y= 0 m at laboratory scale). The column on the right shows the experimental
results of CK09 (green lines). The black lines denote measurements made at the Draupner
platform. Panels (a,b) show the measured signals, (c,d) second-order difference waves
η
(2)
− (t) and (e,f ) spectra of the free surface elevation.

4. Conclusions

The experimental results presented herein provide physical evidence that a wave
of the same and greater steepness than the Draupner wave can arise as a result of
crossing at large angles (between 60 and 120◦). The presence of a set-up in the
second-order difference waves, observed in both measurements made at the Draupner
platform and in our experiments, further supports the hypothesis of Adcock et al.
(2011) and Cavaleri et al. (2016) that crossing conditions created the Draupner wave.
The set-down we observe under following-sea conditions provides confidence that the
set-up measured at the Draupner platform was in fact probably a result of crossing
waves and not an artefact of wave breaking.
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4.1. The crossing angle
Evidently, complete confidence in the directional distribution of energy underlying
the historical wave Draupner wave cannot be attained. We have found that a crossing
angle between 60 and 120◦ is needed to reproduce the wave form, full crest amplitude
and set-up of the wave-averaged free surface. Our finding is consistent with the
hindcast results in Adcock et al. (2011), who find a crossing angle of approximately
80◦, but probably somewhat higher than the more recent hindcasts by Cavaleri et al.
(2016), who suggest a main peak with two low-frequency lobes at angles of 20◦ above
and 60◦ below the wind-generated peak. The hindcasts in Fedele et al. (2016) do not
indicate crossing, but these authors indicate the need for a higher resolution hindcast.
We emphasise the difficulty of accurately predicting the directional distribution for
crossing seas in hindcasts, especially in rapidly evolving sea states.

4.2. Confidence in the field record
The results presented herein compare measurements made at the Draupner platform
during a severe North Sea storm to experiments carried out in a wave tank. These
two environments differ in several ways. Our measurements were recorded using
wave gauges, whereas the Draupner wave was measured with a downward pointing
laser. Optical devices react differently to the presence of spray (see Toffoli et al.
2011a; Magnusson & Donelan 2013). Therefore, although here we have assumed
the Draupner measurement to be correct, it should be associated with a level of
uncertainty. Magnusson & Donelan (2013) have used the backscatter intensity of four
measurements of the 2007 Andrea wave to confirm the reliability of this measurement
and demonstrate the likely absence of spray of foam from the highest crest itself. For
the Draupner wave, such a detailed examination of the (single) laser measurement
has not been undertaken. We have found a difference between the maximum crest
amplitudes we can achieve for following and crossing-sea conditions of 1.3–1.7 m
at field scale. A measurement error of this magnitude in the 1995 field record is
unlikely for a green-water wave but is not inconceivable for a breaking wave. Some
assurance of the fidelity of this measurement can be gained from anecdotal reports of
damage to equipment below deck level consistent with the measurement (Haver 2004)
and, more importantly, from the set-up of the wave-averaged free surface. High wind
speeds and surface currents, not accounted for in our experiments, may have also
influenced the formation of the Draupner wave. Such conditions may also affect the
formation of near-vertical jets observed in our experiments. In this study, we show
that the Draupner wave could not have occurred for following-sea conditions in the
absence of such external forcing.

4.3. The role of wave breaking
Wave breaking plays a key role in these experiments, and, as predicted by numerical
modelling (Adcock et al. 2011), limits the maximum achievable wave height under
following-sea conditions. In crossing conditions, the mechanism of breaking changes
fundamentally; we observe the formation of near-vertical jets of green water. For
our experiments this mechanism does not limit wave height in the same manner as
plunging breaking. This behaviour was also observed for waves of reduced steepness.
These observations are of significance to the design of offshore structures, in particular
to ships and other floating bodies, where the impact of green water on deck can be
catastrophic. Prior to the onset of breaking, the free surface likely behaves as in an
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FIGURE 7. (Colour online) Arrival times of incident (blue line) and reflected waves (red
line) at the intended point of focus at the centre of the tank (x= 0, y= 0) as a function
of frequency. For reference the input amplitude distribution in frequency is shown on the
right.

irrotational potential flow. The jet that forms at the onset of breaking will ultimately
be subject to viscous and capillary effects and may thus not be follow the same
scaling laws between laboratory and field scales. In the formation of vertical jets, the
distinction between the wave crest and the jet is perhaps less clear than for a plunging
breaker, thus making it more difficult to assess the scalability of these results. A new
body of empirical research should address wave breaking in crossing-sea conditions
to fully understand these results, and to complement the established literature on
breaking in directionally spread following seas.
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Appendix A. Reflections
To define the test duration and focus time, it was necessary to consider the

propagation and resulting arrival times of both the incident and reflected wave systems.
It is desired to ensure all key wave components have arrived to the measurement
location, yet reflections are kept at a minimum. In an attempt to optimise this, a total
test duration of 32 s was chosen (test scale), consisting of a 16 s ramp up period
followed by the 16 s duration experiment. Figure 7 illustrates the expected arrival
times of the incident and reflected frequency components, assuming linear dispersion.
The duration of our measurements is indicated by the vertical dashed lines (−8 s to
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FIGURE 8. (Colour online) Iterative recreation of the Draupner wave for three crossing
angles 1θ = 0, 60, 120◦: free surface elevation η(t) (a–c), and corresponding amplitude
distributions in frequency (d–f ). The black lines denote measurements made at the
Draupner platform, the red dashed lines our final experimental measurements at the
intended point of focus (x = 0, y = 0) and the first and fourth iterations are shown by
the purple and blue lines, respectively.

8 s), with the Draupner wave crest occurring at t= 0, as indicated by the dot-dashed
line. Importantly, at t=0 all incident waves of frequency below 3fp have had sufficient
time to arrive at the centre of the tank and can contribute to the recreation of the
Draupner crest. At the start of the experiments, reflected wave frequencies below 0.8fp
are present at the measurement location, with higher-frequency components arriving
during the measurement period. Although this creates a non-stationary wave field and
limits the ability to perform frequency domain reflection analysis, this experimental
design limits the total influence of reflections significantly and thus improves the
Draupner wave recreation.

From previous studies on the FloWave tank (Draycott et al. 2016), along with
knowledge of fp and steepness of the Draupner input spectrum, it is expected that
amplitude based reflection coefficients (Ar/Ai) will be less than 10 %. At t= 0, where
only frequency components below fp are influencing the measurement, the effective
overall influence of reflections is expected to be less than 5 % by amplitude.

Appendix B. Iterative procedure
Figure 8 illustrates the iterative process for the results presented in figure 2 and

table 1. Figure 8(a–c) shows the free surface elevation for consecutive iterations for
the three crossing angles considered, whilst (d–f ) show the corresponding amplitude
distributions in frequency. All the cases converge well upon the target free surface
elevation with r2 values greater than 0.95. In the following-sea state (1θ = 0◦,
figure 8a), the first iteration produces a wave which is of similar crest height
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to measurements at Draupner and larger than subsequent iterations. It is evident
from figure 8(d), however, that the generated amplitude distribution does not agree
well with the target. In addition, the period of this wave is also longer giving
the wave down- and up-crossing steepnesses of kdhd/2 = 0.26 and kuhu/2 = 0.29,
respectively. Subsequent iterations, although smaller, are steeper and thus represent
a more accurate recreation of the Draupner waveform. Assessing the amplitude
distributions (figure 8d–f ), it is clear that frequencies of above approximately 2fp

are not as well reproduced as the lower frequencies. At these higher frequencies,
achieving the desired focusing can be problematic as small errors in wavemaker
inputs or motions correspond to large errors in phase for these relatively short waves.
However, as these waves are small in amplitude, this does not result in a significant
underproduction of the desired waveform as seen in (a–c).

Appendix C. Measurement error
To estimate the measurement uncertainty, the error associated with wave gauge

calibration is calculated. The gauges were calibrated daily by positioning them at
known heights in still water and fitting a linear relationship to the resulting measured
voltage. The calibration error is taken as two times the standard deviation of the
difference in predicted and known values of height. At test scale this represented an
absolute error of ±0.5 mm, which corresponds to ±0.0175 m at field scale. Noting
the difference between the maximum crest amplitudes in our results is 1.3–1.7 m
at field scale, these results are unlikely to be significantly affected by laboratory
measurement error.

Appendix D. Second-order calculations
With knowledge of the linear free waves it is possible to predict the resulting

second-order bound waves. If the linear free surface elevation is considered as a
double summation of Nω discrete components travelling in Nθ discrete directions,
then

η(1) =

Nω∑
n=1

Nω∑
i=1

an,i cos(ϕn,i), (D 1)

where each discrete wave component has amplitude an,i and phase ϕn,i, then the
resulting second-order difference terms are given by the quadruple sum (Dalzell
1999)

η(2)
−
=

Nω∑
n=1

Nω∑
m=1

Nθ∑
i=1

Nθ∑
j=1

B−an,iam,j cos(ϕn,i − ϕm,j), (D 2)

where we take expressions for the second-order interaction kernels from B− from
Dalzell (1999). Second-order calculations are performed using (D 2), based on the
input linear free surface elevation and spreading distribution for each test.

Appendix E. Measured time series
Figure 9 shows the measured time series of the free surface elevation at the different

probes along the x-axis for the three experiments (1–3), thus illustrating the spatial
and temporal evolution around focus. It should be noted that gauges are located along
the x-axis and thus only along the mean direction of propagation for 1θ = 0◦. It
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FIGURE 9. (Colour online) Measured time series of the free surface elevation at the
different gauges along the x-axis for the three experiments (1–3). The horizontal dashed
lines represent z= 0, the black lines denote measurements made at the Draupner platform,
the red lines our experimental measurements at the intended point of focus (x= 0, y= 0)
and the blue dotted lines our experimental measurements at an adjacent probe (x=±0.1,
y= 0 m at laboratory scale). The values of t, x and η are at full scale.

is evident from this figure that the main wave is more localised in space for large
crossing angles. The sharp spike observed for large x at 1θ = 120◦ likely corresponds
to the formation of a jet and will be explored in more detail in future work.
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