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Abstract. Extreme waves play a crucial role in marine inun-

dation hazards and coastal erosion. Prediction of non-linear

wave–wave interactions is crucial in assessing the propaga-

tion of shallow water extreme waves in coastal regions. In

this article, we experimentally study non-linear wave–wave

interactions of large-amplitude focused wave groups prop-

agating in a two-dimensional wave flume over a mild slope

(β = 1 : 25). The influence of the frequency spectrum and the

steepness on the non-linear interactions of focused waves are

examined. The generated wave trains correspond to Pierson–

Moskowitz and JONSWAP (γ = 3.3 or γ = 7) spectra. Sub-

sequently, we experimentally approach this problem by the

use of a bispectral analysis applied on short time series,

via the wavelet-based bicoherence parameter, which identi-

fies and quantifies the phase coupling resulting from non-

resonant or bound triad interactions with the peak frequency.

The bispectral analysis shows that the phase coupling in-

creases gradually and approaches 1 just prior to breaking,

accordingly with the spectrum broadening and the energy

increase in high-frequency components. Downstream break-

ing, the values of phase coupling between the peak frequency

and its higher harmonics decrease drastically, and the bico-

herence spectrum becomes less structured.

1 Introduction

Extreme wave propagation is a highly non-linear process ob-

served in both open seas and coastal regions. The main phys-

ical mechanisms which may lead to an extreme wave event

are illustrated in Kharif and Pelinovsky (2003), Kharif et

al. (2009), Didenkulova and Anderson (2010) and Onorato

et al. (2013). Extreme waves may occur in deep or shal-

low water, in energetic storm sea state, or in a previously

calm sea state. In our opinion, spatio-temporal wave focus-

ing is one of the most important mechanisms in the extreme

wave formation for shallow and deep water (Kharif and Peli-

novsky, 2003). The spatio-temporal wave focusing is a classi-

cal mechanism giving rise to an important wave energy con-

centration in a small region. If the wave height of the focus-

ing group exceeds 2.2 times its significant wave height, it

can be defined as a rogue or freak wave (Dysthe et al., 2008).

For this reason, spatio-temporal wave focusing is often em-

ployed in laboratory wave flumes with a wide variation of

water depth (Merkoune et al., 2013), spectrum type (Tian et

al., 2011; Xu et al., 2019; Abroug et al., 2019, 2020) and

wavelength-to-depth ratio, in order to better understand the

generation process, the dynamic behaviour and the hydrody-

namic loads on ocean structures in extreme sea conditions.

Over the past years, several studies have attempted to

quantify the spatial evolution of spectral energy of unidi-

rectional wave groups in experimental wave flumes using a

classic Fourier analysis (Tian et al., 2011; Liang et al., 2017;

Abroug et al., 2020). The frequency spectrum only gives the

distribution of energy in the frequency domain; however, in-

formation about the phase coupling between different wave

components is unknown. Consequently, higher-order spec-

trum techniques should be adopted. A powerful tool to in-

vestigate the highly non-linear process is the wavelet-based

bispectral technique, which has been used in several works

to study the non-linear interactions and quadratic phase cou-

pling between wave components (Dong et al., 2008; Ma et

al., 2010). The need to detect and quantify second-order non-

linear interactions can be found in many disciplines, such as
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geophysics (Grinsted et al., 2004), plasma physics (Milligen

et al., 1995), fault diagnosis (Li et al., 2014), health-related

areas, neuroscience (Bai et al., 2017) and wave analysis (El-

deberky, 1996; Eldeberky and Madsen, 1999; Young et al.,

1996; Young and Eldeberky, 1998; Becq-Girard et al., 1999;

Huseni and Balaji, 2017; Zhang et al., 2019). In wave analy-

sis, the propagation of wave trains in the nearshore zone has

an exceptionally high spectral and temporal resolution.

The majority of previous works regarding the evolution

of unidirectional wave trains in numerical and experimen-

tal wave flumes have shown that spatio-temporal focusing

leads to a shape and elevation of a wave crest at focus that

cannot be predicted by either linear or second-order wave

theory. This is due to high-order non-linearities, called the

bound (harmonics) and resonant non-linearities (Vyzikas et

al., 2018). On the one hand, bound non-linearities are the re-

sult of non-linear harmonics that are phase locked to the wave

train and contribute in the sharpening of free surface eleva-

tion. On the other hand, resonant interactions contribute in

the redistribution of energy among different frequency com-

ponents. It is important to mention here that in shallow wa-

ter regions exact resonant interactions are hardly realised in

unidirectional propagation because the resonant conditions

cannot be satisfied in a small area. Therefore, we investi-

gate specifically the role of bound waves generated by non-

resonant three-wave coupling.

Over the past few decades, various experimental studies

have investigated the spatial evolution of non-linear coupling

between wave components. Dong et al. (2008) studied the

spatial evolution of non-linear interactions between differ-

ent wave components in the shoaling and de-shoaling re-

gion by carrying out two random wave experiments based

on JONSWAP spectra with varying peak wave periods and

root-mean-square wave heights. They showed that the de-

gree of quadratic phase coupling increases in the shoaling

region and achieves its highest level prior to wave break-

ing. Ma et al. (2010) studied experimentally JONSWAP wave

trains propagating in intermediate water depth. Recently,

non-linear transformation of unidirectional irregular waves

propagating over a complex bathymetry (1.06< kph < 2.2;

where kp is the peak wavenumber and h denotes the water

depth) was performed in Zhang et al. (2019), who studied

the triad wave–wave non-linear interactions in the case of

long records of JONSWAP irregular waves (1200 Tp, where

Tp is the peak period) using a Fourier-based bispectral anal-

ysis. They found that the phase coupling is strong near the

end of the slope, where second and third harmonics be-

come more important. They also noticed the appearance

of low-frequency waves generated by the difference inter-

actions during wave propagation. We must note here that

the main difference between Fourier-based bicoherence and

wavelet-based bicoherence is the number of degrees of free-

dom (Dong et al., 2008). Wavelet-based bicoherence is a suit-

able tool to detect non-linear wave–wave interactions occur-

ring in relatively short data sequences and can be used to

analyse data collected in laboratory flumes (Elsayed, 2006).

Most of the aforementioned studies were conducted in ran-

dom wave conditions based on JONSWAP spectra. To the

authors’ knowledge, few studies have attempted to quantify

the degree of phase coupling resulting from the propagation

of realistic spectrum wave trains in the nearshore zone using

wavelet-based bicoherence. Experiments are performed on

numerous Pierson–Moskowitz and JONSWAP wave trains

propagating from a constant intermediate water depth to

shoaling and breaking zones.

The paper is outlined as follows. The experimental set-up

and test conditions are illustrated in Sect. 2. In Sect. 3, a short

formal description of wavelet analysis and wavelet-based

bicoherence is provided. The spatial evolution of wavelet-

based bicoherence is discussed in Sect. 4. Section 5 is de-

voted to conclusions and perspectives.

2 Experimental set-up and wave train parameters

The following is a brief consideration of present wave trains

generation; more details of the experiments can be found

in Abroug et al., 2020. The experiments were conducted

in a two-dimensional wave flume of the M2C (Morphody-

namique Continentale et Côtière) laboratory at Caen Uni-

versity, France. The flume is 22 m long, 0.8 wide and the

water depth is h0 = 0.3 m (Fig. 1). In this study, the rela-

tive water depth kph0 < 1.363 is verified, which means that

the modulation instability effect can be neglected (Janssen

and Onorato, 2007; Fedele et al., 2019). An Edinburgh De-

signs Ltd piston type wave maker is located at one end of the

flume to implement wave trains using linear wave generation

signal. Wave trains are generated with almost no reflection

at the end of the flume, since measurements are performed

before reflected waves travel back to the measurement loca-

tion. Thus, the occurrence of resonant interactions potentially

driven by reflected waves is limited, and we only focus on

bound waves.

The data used in this work are issued from Abroug et

al. (2020). The present study relates to seven wave train sim-

ulations based on the averaged JONSWAP spectra (i.e. with

peak factor γ = 3.3 or 7) or Pierson–Moskowitz spectra

with varied peak wave periods fp and wave steepnesses S0

(i.e. non-linearity). The linear NewWave theory (Tromans et

al., 1991), which is able to generate targeted waves at a pre-

scribed location and time by combining sinusoidal compo-

nents of different frequencies, is used as input for the gener-

ated focused wave trains. This theory was validated at deep

water locations, at intermediate water depth locations (Tay-

lor and Williams, 2004) and at coastal regions (Whittaker et

al., 2016); for kh < 0.5). In NewWave theory, the expected

shape of a wave train is the autocorrelation function (Fourier

transform of the spectral density).
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Figure 1. Schematic experimental set-up: WG1 and WG2 denote wave gauge no. 1 and wave gauge no. 2 respectively.

For each wave train, a large number of wave signals were

recorded along the flume to accurately follow the wave evo-

lution in space. The surface elevation is measured by two

aligned wave gauges located from the longitudinal coordi-

nate xmin = 4 m to xmax = 14 m, where x = 0 is defined as

the mean position of the wave maker. The positions of these

wave gauges are clearly delineated in Fig. 1. The sampling

rate is 50 Hz and each record duration is 35 s with a sam-

ple interval of 0.02 s. The fast Fourier transform (FFT) was

applied to each signal, resulting in 1750 frequency compo-

nents over the range [0, 3fp] and with a spectral resolution

1f = 0.023 Hz. The distance from the wave maker for the

focusing point was set to 12 m from the wave maker.

Using linear NewWave theory, the free surface elevation

of a wave train at a distance x from the wave maker can be

written as follows:

η(x, t)=

N
∑

i=1

ai cos[ki (x− x0)−ωi (t − t0)] , (1)

ai = A0
S (fi)1f

N
∑

i=1

S (fi)1f

, (2)

where ai (Eq. 2) is the amplitude of each component, i varies

from 1 to N (number of waves), x0 and t0 denote respec-

tively the predefined focal location and focal time, ki =

ωi/g tanh(kih) is the wavenumber, ωi = 2πfi is the angu-

lar frequency, h is the water depth, A0 represents the theo-

retical linear crest amplitude of the wave train, S(fi) is the

spectral density, and 1f =
fmax−fmin

N−1
is the frequency step.

JONSWAP and Pierson–Moskowitz are the two spectra used

to represent the sea state. All generated waves are crested fo-

cused waves; i.e. the phase angle of the wave group within

its envelope at the focus position is equal to zero.

Based on Eq. (1), the varied parameters during these ex-

periments were the spectrum type (S(fi)) and the wave steep-

ness S0. The peak frequency parameter was chosen in order

to have a relative depth kph0 varying between 0.79 and 0.92

(deep side in Table 1). Deep and shallow sides in Table 1 rep-

resent respectively the flat bottom depth (4 m<x < 9.5 m)

and the shallowest studied depth (x = 14 m). Five of the stud-

ied wave trains have more than one breaking, and breaking

locations xb are indicated as bracketed intervals in Table 1.

3 Wavelet-based analysis

The free surface elevation of each wave train was studied

through the bispectral analysis applied on short time series,

via the wavelet-based bicoherence. The detailed characteris-

tics of the wavelet-based bicoherence can be found in Milli-

gen et al. (1995), and a brief introduction of this technique is

given below. The continuous wavelet transform WT(a, τ ) of

a time series f (t) is calculated as

WT (aτ)=

+∞
∫

−∞

f (t)ψ∗
a,τdt, (3)

ψa,τ (t)= |a|−0.5ψ

(

t − τ

a

)

, (4)

where the asterisk denotes the complex conjugate and

ψa,τ (Eq. 4) represents the mother wavelet function dilated

by a factor τ and scaled by a factor a, a > 0. The latter pa-

rameter can be interpreted as the frequency inverse; i.e. f =

1/a. The wavelet transform can be interpreted as a series of

bandpass filter of the time series with a mother wavelet func-

tion. We have chosen the Morlet wavelet as a mother wavelet

function because it provides information about phase and

amplitude, and it is adapted for capturing coherence between

harmonic components. The Morlet wavelet can be consid-

ered as a modulated Gaussian waveform and is defined as

ψ(t)= π−1/4e−
t2

2 e(iω0t), (5)

where ω0 denotes the dimensionless frequency and t is the

dimensionless time. The Morlet wavelet with ω0 = 6 is a

good choice, since it ensures a good balance between time

and frequency localisation (Grinsted et al., 2004; Dong et al.,

2008). For the Morlet wavelet the scale a is almost equal to

the Fourier period T (T = 1.03a). As mentioned in Dong et

al. (2008), it is convenient to write the scales a as fractional

powers of two (Torrence and Compo, 1998):

https://doi.org/10.5194/nhess-20-3279-2020 Nat. Hazards Earth Syst. Sci., 20, 3279–3291, 2020



3282 I. Abroug et al.: Laboratory study of non-linear wave–wave interactions of extreme focused waves

Table 1. Wave train key parameters.

Test fp S0 Spectrum type xb kph0 kph

(Hz) (m) Deep Shallow

side side

1 0.70 0.19 Gaussian [11.85; 12.55] 0.84 0.34

2 0.66 0.14 Pierson–Moskowitz 12.9 0.79 0.31

3 0.66 0.28 Pierson–Moskowitz [11.09; 11.82] 0.79 0.31

4 0.75 0.25 JONSWAP (γ = 3.3) [12.13; 12.81] 0.92 0.37

5 0.75 0.38 JONSWAP (γ = 3.3) [10.5; 11.61] 0.92 0.37

6 0.75 0.11 JONSWAP (γ = 7) 13.5 0.92 0.37

7 0.75 0.23 JONSWAP (γ = 7) [12.07; 12.69] 0.92 0.37

ai = a02iδ, i = 0,1,2, . . ., M, (6)

M =
1

δ
log2

(

N1t

a0

)

, (7)

where a0 is the smallest resolvable scale, M represents the

largest scale and δ denotes the scale factor. The a0 parame-

ter should be chosen equal to 2 ×1t (Torrence and Compo,

1998; Dong et al., 2008).N and1t represent respectively the

number of points in the times series and the time sampling.

The scale factor δ should be sufficiently small to provide

high resolution and adequate sampling in scale. Moreover,

for the Morlet wavelet, a scale factor δ = 0.5 is the largest

value that gives adequate sampling (Dong et al., 2008). It is

for that reason that we opted for a scale factor δ = 0.02, giv-

ing a total of 395 scales ranging from 0.04 up to 11.83 for

respectively high and low frequency. The wavelet-based bis-

pectrum (Eq. 8) measures the phase coupling in the interval

1T = 35 s that occurs between f1, f2 and f3 where the lat-

ter parameters must satisfy the frequency sum rule (Eq. 9).

Quadratic non-linear coupling occurs between f1 and f2,

generating a third component at the sum frequency f3.

The bispectrum (Eq. 8), which is the double Fourier trans-

form of the third-order moment, measures the extent of phase

coherence due to the non-linear triad interaction between

three waves that satisfy the frequency and phases matching

criteria (Eqs. 9 and 10). The estimation of wavelet-based bis-

pectrum in the whole bifrequency plan can be based on its

values in the intervalψ : {[f1 > f2 > 0, f1+f2 = fs = 25 Hz

(Nyquist sampling frequency)}.

B (a1,a2)=

∫

WTx (f1,τ )WTx (f2τ)WT∗
x (f3τ)dτ (8)

f3 = f1 + f2 (9)

ϕ3 = ϕ1 +ϕ2 (10)

The wavelet-based bicoherence (Eq. 11), which can be de-

fined as the normalised wavelet bispectrum, is used in prac-

tice to measure the degree of phase coupling (Larsen et al.,

2001) and is bounded by 0 and 1 by the Schwarz inequality. A

Figure 2. The wavelet-based bicoherence of a narrow-banded Gaus-

sian wave train (Test 1) at x = 4 m.

value close to unity reveals a maximum amount of coupling,

and a value close to zero corresponds to a random phase re-

lation.

b2 (a1a2)=

|B (a1,a2)|
2

[

t=35
∫

t=0

|WTx (a1,τ )WTx (a2,τ )|
2dτ

]

t=35
∫

t=0

|WTx (a3,τ )|
2dτ

(11)

Figure 2 exhibits a simple illustration of the wavelet-based

bicoherence of a narrow-banded Gaussian wave train (Test 1)

recorded at x = 4 m from the wave maker. The shading in-

dicates the strength of non-linear coupling, with dark red

(b2(f1, f2)= 1) being totally coupled and dark blue (b2(f1,

f2)= 0) completely uncoupled. The degree of phase cou-

pling is represented by the colour bar indicating the sum in-

teractions between two frequencies. In this manner, a visual-

isation of the non-linear activity across the wave train prop-

agation is feasible, detecting the frequency sections of the

signal that contribute the most to the non-linear activity. The

two frequencies f1 and f2 are normalised by the peak fre-

quency fp. Red (b2(fp, fp)) and yellow peaks represent the

phase coupling of the primary frequency component with its

harmonic. In general, a non-null bicoherence b2(f1, f2) > 0

means that the f3 = f1 + f2 component gains energy from

the f1 and f2 components.
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Figure 3. Three sets of time series of Pierson–Moskowitz (Test 3), JONSWAP (γ = 3.3) (Test 4) and JONSWAP (γ = 7) (Test 7) wave

trains.

4 Results and discussions

Figure 3 shows three sets of time series of three wave

trains with approximately the same steepness S0 and de-

rived from Pierson–Moskowitz (Test 3; xb ∈ [11.09; 11.82]),

JONSWAP (γ = 3.3) (Test 4; xb ∈ [12.13; 12.81]) and JON-

SWAP (γ = 7) (Test 7; xb ∈ [12.07; 12.69]) spectra at eight

different locations along the flume. This preliminary fig-

ure shows surface elevation time histories including the first

measurement (x = 4 m), the propagation along the flat bot-

tom, the shoaling and the breaking of the focused wave

group. It should be noted here that the seven studied wave

trains are crest-focused wave groups (8= 0).

Figure 4 shows, in a log scale, the spatial evolution of

the Fourier spectra of the same three wave trains (Test 3,

4 and 7). A spatial downshift of the spectral peak (Test 4

and 7), a steepening of the low-frequency side and a widen-

ing of the high-frequency side are illustrated. These spectral

variations, identified and quantified in Abroug et al. (2020),

concern high- and low-frequency components. The shift of

energy is essentially due to non-linear wave–wave interac-

tions among wave frequency components during the focalisa-

tion process. Nevertheless, we do not distinguish which wave

components participate in the wave–wave interactions, nor

do we distinguish the wave modes that undergo the strongest

non-linear interactions. Consequently, the wavelet-based bi-

coherence is used herein to provide information about the

non-linear triad wave interactions that cannot be easily ob-

tained from the Fourier analysis which was used in Abroug

et al. (2020).

Figure 5 presents the spatial evolution of the wavelet-

based bicoherence of a Pierson–Moskowitz wave train

(Test 3; xb ∈ [11.09; 11.82]) along the flat bottom. This fig-

ure shows that wave–wave interactions between different

modes are weak on flat bottom (4 m<x < 9.5 m; kph0 =

0.79), and few frequency components participate in the

focusing process. In the intermediate water depth region

(4 m<x < 9.5 m), the sea state is almost Gaussian, and for

that reason non-linear wave–wave interactions are relatively

moderate. For example, b2(fp, fp)= 0.1 and b2(fp, 3fp)=

0.065 at x = 4 m indicate respectively a weak self–self wave

interaction at the energy-frequency peak coupled with the en-

ergy at 2fp and a very weak wave interaction at the peak fre-

quency coupled with the energy at 4fp (Fig. 5a). A significant

bicoherence magnitude band ranging from 0.5fp to fp is ob-

served, i.e. b2(0.5fp−fp, 0.5fp−fp), which indicates an en-

ergy transfer from low-frequency components to the spectral

peak. This partially explains the spatial evolution of the spec-

trum, namely the increase in energy in the peak region, which

is potentially a way of compensating for the energy dissipa-

tion in the transfer region, i.e. the region between the spectral

peak and high-frequency regions (Abroug et al., 2020; Liang

https://doi.org/10.5194/nhess-20-3279-2020 Nat. Hazards Earth Syst. Sci., 20, 3279–3291, 2020
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Figure 4. Spatial evolution of normalised amplitude spectra in a log scale for Test 3, 4 and 7.

et al., 2017). Note that the magnitude of the bicoherence is

consistent with the fact that spectrum shape does not vary

substantially along the flat bottom (4 m<x < 9.5 m) (Fig. 4).

As the wave train approaches the toe of the slope (x ∼

9.5 m), more and more wave components are involved in

the non-linear phase coupling, and the bicoherence values

increase progressively. For x = 9.6 m, just a little over the

toe of the slope, the bicoherence magnitude among primary

components increases slightly, i.e. b2(fp, fp)= 0.24 and

b2(3fp, fp)= 0.15, which is consistent with the small energy

increase in the high-frequency region (Abroug et al., 2020).

As the wave train propagates in the shallower region

(9.5 m<x <xb ∈ [11.09; 11.82]), the degree of phase cou-

pling is seen to increase rapidly (Fig. 6a). The degree of

phase coupling within the peak frequency increases consider-

ably at shallower regions compared to deeper regions. Wave

energy transfers increase in the high-frequency region, and as

a result, the spectrum broadens. In the vicinity of the break-

ing location (xb ∈ [11.09; 11.82]), the non-linear coupling

spreads over most of the wave components. The increase in

the second and third harmonic is clearly noticeable in Fig. 6b.

The values of bicoherence for approximately all frequency

pairs are greater than 0.13, indicating that the non-linear cou-

pling reaches its maximum level, which means that almost all

of the higher harmonic waves are involved in the propagation

process.

Downstream of the breaking location (x > xb ∈

[11.09; 11.82]), the degree of phase coupling between

frequency components decreases drastically, and the bico-

herence becomes less structured (Fig. 6d). This result is

consistent with the decreasing trend of energy in higher-
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Figure 5. The wavelet-based bicoherence spatial evolution on the flat bottom for a Pierson–Moskowitz wave train (Test 3). (a) x = 4 m;

(b) x = 5 m; (c) x = 8 m; (d) x = 9.6 m.

Figure 6. The wavelet-based bicoherence spatial evolution on the sloping bottom for a Pierson–Moskowitz wave train (Test 3). (a) x = 11 m;

(b) x = 12 m; (c) x = 13 m; (d) x = 13.8 m.

frequency components downstream of the breaking location

(Tian et al., 2011; Abroug et al., 2020).

In Figs. 7 and 8, a JONSWAP (γ = 3.3) wave train (Test 5;

xb ∈ [10.5; 11.61]) is chosen to illustrate the spatial evolution

of the wavelet-based bicoherence of a narrower wave train

propagating over the flat and the sloping bottom. Wave–wave

interactions evolve qualitatively in the same way compared to

the case of Pierson–Moskowitz. Figure 7a (x = 4 m) shows

that the two dominant phase coupling peaks appear at the

bifrequencies (fp, fp) and (0.5fp, 0–0.5fp), which illustrates

that the quadratic non-linear interactions only occur between

the peak and low-frequency modes. Note that no other peak

was found to be significant. As the wave train propagates

over the shallower region (x > 9.5 m), new phase couplings

appear at the bifrequencies (2fp, fp), (3fp, fp) and (2fp, 3fp)

(Fig. 8). This finding illustrates that quadratic non-linear in-

teractions between the peak frequency, the first harmonic,

and the second harmonic and third harmonic result from the

gradual broadening of the spectrum. It is in accordance with

previous studies demonstrating that energy is mainly trans-

ferred to high frequencies during the shoaling process (Tian

et al., 2011; Liang et al., 2017; Abroug et al., 2020). For this

https://doi.org/10.5194/nhess-20-3279-2020 Nat. Hazards Earth Syst. Sci., 20, 3279–3291, 2020
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Figure 7. The wavelet-based bicoherence spatial evolution on the flat bottom for the JONSWAP (γ = 3.3) wave train (Test 5). (a) x = 4 m;

(b) x = 6 m; (c) x = 8 m; (d) x = 9.6.

Figure 8. The wavelet-based bicoherence spatial evolution on the sloping bottom for the JONSWAP (γ = 3.3) wave train (Test 5). (a) x =

10.20 m; (b) x = 11.20 m; (c) x = 12.40 m; (d) x = 13.60 m.

wave train (Test 5), the wavelet-based bicoherence reaches its

maximum shortly after the breaking (xb ∈ [10.5; 11.61]) at

x = 12 m. For example, b2(fp, fp)= 0.7, b2(2fp, fp)= 0.53

and b2(2fp, 2fp)= 0.16. Triad interactions lead to skewed

wave profiles and can characterise the near-breaking condi-

tions (Fig. 3 for x > 10.6 m).

Beyond the breaking location (x > xb ∈ [10.5; 11.61]),

the bicoherence decreases sharply and becomes less struc-

tured. For example b2(fp, fp)= 0.52, b2(2fp, fp)= 0.31

and b2(2fp, 2fp)= 0.004 at x = 13.6 m; i.e. h= 0.13 m.

This pattern is qualitatively similar to that obtained in the

case of a Pierson–Moskowitz wave train. This indicates that

the increasing trend of the phase coupling is one of the more

important reasons for the wave train breaking in shallow wa-

ter.

Figures 9 and 10 depict the wavelet-based bicoherence

spectra for the case of a JONSWAP (γ = 7) wave train

(Test 7; xb ∈ [12.07; 12.69]) at eight locations along the

wave flume. No bispectral peak appears at b2(2fp, fp), and

this is maybe not surprising as no clear third harmonic 3fp

is present in the frequency spectrum (Fig. 4). Furthermore,

wavelet-based bicoherence diagrams show that the phase

Nat. Hazards Earth Syst. Sci., 20, 3279–3291, 2020 https://doi.org/10.5194/nhess-20-3279-2020



I. Abroug et al.: Laboratory study of non-linear wave–wave interactions of extreme focused waves 3287

Figure 9. The wavelet-based bicoherence spatial evolution on the flat bottom for the JONSWAP (γ = 7) wave train (Test 7). (a) x = 4 m;

(b) x = 6.4 m; (c) x = 8 m; (d) x = 9.6 m.

Figure 10. The wavelet-based bicoherence spatial evolution on the sloping bottom for the JONSWAP (γ = 7) wave train (Test 7). (a) x =

10.2 m; (b) x = 11 m; (c) x = 12.4 m; (d) x = 13.8 m.

coupling reaches its maximum level at frequencies slightly

higher than the exact harmonics (2fp, 3fp . . . ). This result is

consistent with the results of Ma et al. (2010), who explained

this process by the slight upshift of peak values in spectrum

at higher harmonics, which is readily seen in Fig. 4. The fact

that clear first, second and third harmonics are not present is

possibly due to other mechanisms such as quadruplet inter-

actions (f1 + f2 = f3 + f4, Elgar et al., 1995), which have a

shape-stabilising impact on the spectrum and are confined to

free waves. This result is consistent with the peak frequency

downshift demonstrated experimentally in Stansberg (1994)

and Abroug et al. (2020), where it was interpreted as a self-

stabilising feature.

Figure 11 summarises the variability in the location and

intensity of the wavelet-based bicoherence between the bifre-

quency pairs (fp, fp), (2fp, fp), (3fp, fp), (4fp, fp) and

(2fp, 2fp) for several tests. The two vertical solid lines and

the dotted line respectively indicate the breaking region and

the toe of the slope. This figure indicates that the steep-

ness has a strong influence on the non-linear phase cou-

pling between harmonics in intermediate water depth (h0 =

0.3 m). Non-linear wave–wave interactions and their increas-
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Figure 11. Spatial variation of the wavelet-based bicoherence among harmonics. The two vertical solid lines and the dotted line respectively

indicate the breaking region and the toe of the slope.

ing trend is more important for wave trains having strong

non-linearities. Beyond the wave breaking (x > xb), the de-

creasing trend of the phase coupling between harmonics is

also more significant in the case of strong steepness S0. This

result is in accordance with the dissipation related to break-

ing, which is particularly noticeable when the wave steepness

is high (Abroug et al., 2020).

An important similarity between different spectra is that

important wave–wave interactions are mostly limited to the

first harmonics of primary waves (fp, fp) and (2fp, fp).

This finding is consistent with the energetic behaviour of

wave trains downstream of the wave breaking (Abroug et al.,

2020). Moreover, in the case of small and moderate wave

steepness (Test 2; xb = 12.9 and Test 6; xb = 13.5), the phase

coupling varies slightly downstream of the wave breaking

compared to that found prior to the breaking, suggesting that

a small energy transfer happens downstream of the breaking

location.

It can be concluded that bound or non-resonant interac-

tions play an important role in the evolution and breaking

of wave trains in shallow water depth. Although the bound

waves are not supposed to contribute to the energy redistri-

bution, our experimental observations raise the question of

the impact of bound interactions on dissipation and energy

transfers among different frequency components.

5 Conclusions and perspectives

An experimental approach is proposed for determining the

non-linear wave–wave interactions, which accompany the

propagation of large amplitude wave trains, that might cause

damage to coastal zones, marine structures and navigation

vessels. We investigate seven focused wave trains derived

from JONSWAP (γ = 3.3 or 7) and Pierson–Moskowitz

spectra propagating from intermediate water depth to the in-

ner surf zone. The results presented in this study extend the

parameter range of observations of triad interactions. The ex-

perimental conditions were selected based on two parame-

ters: the wave steepness and the spectrum type. The present

data were collected in intermediate water with a kph0 vary-

ing between 0.92 and 0.79. A typical wave train consists of a

large number of waves interacting with one another. Wavelet-

based bicoherence is used to investigate the phase coupling

between frequency components of short time series. Some

consequences of non-linear transfer are briefly discussed –

in particular the role played by non-linear interactions in
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shaping the high-frequency part of the spectrum, the rela-

tive contribution of each harmonic and the downshifting of

the peak spectrum demonstrated in previous studies. Note

that our experimental study is different from previous experi-

ments (Dong et al., 2008; Ma et al., 2010) regarding the slope

geometry and, most importantly, the use of three different

spectral types.

Along the flat bottom (4 m<x < 9.5 m), one might as-

sume that the influence of triad interactions is very weak for

the three considered spectra. The bispectral analysis of the

data shows that as the waves propagate along the flat bot-

tom, the magnitude of the bicoherence increases slightly (be-

tween 0 % and 20 % of its initial value). Moreover, this is

foreseeable because the spectrum and the wave train shape

do not substantially change along the flat bottom, and a small

amount of energy is transferred from the peak region to high-

frequency components.

When the wave train reaches the slope (9.5 m<x <xb),

wave–wave interactions among high-order harmonics in-

crease rapidly and reach the maximum degree in the break-

ing/focus location. In line with previous studies (Elsayed,

2006; Dong et al., 2008; Ma et al., 2010), strong non-linear

interactions were predominantly observed in the shallower

region. The analysis showed a gradual broadening of the

bicoherence spectrum, which is in accordance with previ-

ous studies that demonstrated that the energy is transferred

mainly to high-frequency regions (Tian et al., 2011; Abroug

et al., 2020). This is partly due to significant spectral transfor-

mations which are more important during the shoaling pro-

cess. Particularly, this analysis showed a considerable con-

tribution of second and third harmonics for unidirectional

steep wave trains, and the spectral components at the sec-

ond harmonic 2fp have increased substantially (6 times its

initial value). The bispectral analysis results show that the

wave non-linearity S0 plays an important role in the increas-

ing trend of phase coupling, which is more important for

wave trains having strong non-linearities. This last finding

agrees well with the conclusions made by Ma et al. (2010).

An innovative aspect of this paper is presenting wavelet-

based bispectral analysis for highly non-linear intermedi-

ate water waves with different spectral types. If we com-

pare the three spectra, we can see that all non-linear inter-

actions on the flat bottom (x < 9.5 m) are weak (b2 < 0.15)

in the case of wide spectrum wave trains (Test 2 and 3

Fig. 11). However, in the case of narrower spectra, more

frequencies (e.g. fp, 2fp and 3fp) are implicated in the

focusing process (Test 4–7 Fig. 11), and the correspond-

ing phase coupling is higher (b2 > 0.2). This finding is in

agreement with the stable behaviour of wide spectrum wave

trains, which was demonstrated experimentally in Abroug

et al. (2019) and Stansberg (1994). In intermediate water

depth (0.79< kph < 0.92), wide spectrum harmonics (fp,

2fp, 3fp . . . ) are less implicated in the focusing process com-

pared to narrow-spectrum harmonics. In shallow water re-

gions (9.5 m<x <xb) and after breaking (xb < x), the spa-

tial evolution of the phase coupling is qualitatively similar

for the three spectra.

The results obtained in this study show important features

in wave–wave interactions during the propagation of focused

waves. This study strengthens the usefulness of wavelet-

based analysis in detecting features that are hidden in a

Fourier-based analysis and in explaining a number of phe-

nomena, such as the process leading to wave breaking and

the energy transfer between wave components. Nevertheless,

in order to confirm the use of wavelet-based bicoherence

for more realistic 3D studies with structures, efforts should

be made to expand this study for example by investigating

greater water depths, higher steepness and wider spectra.

Furthermore, the observed evolution of bicoherence for fo-

cused waves should be compared to that of waves with sim-

ilar steepness and bandwidth but with initial random distri-

bution of phase. In other words, efforts should be made to

identify and quantify the phase coupling differences between

focusing wave trains and non-focusing waves. Information

concerning the phase coherence can be obtained by calcu-

lating the biphase parameter (β(a1, a2), Ma et al., 2010).

It will be interesting to quantitatively measure the deviation

of biphase values between primary waves/higher harmonics

and to analyse their spatial evolution through different spec-

tra to distinguish differences. Finally, a detailed study of how

bound energy at harmonics would be influenced by quadru-

plet interactions should be performed.

Shallow water extreme waves are a major threat to off-

shore structures and ships. Findings in this study would im-

prove our understanding of the propagation and breaking

of extreme wave trains and help engineers in monitoring

the wave propagation in coastal regions. The experimen-

tally measured wave signals are highly non-linear, unsteady

and nonstationary. Consequently, the application of time-

localised bicoherence analysis is shown to be a powerful ap-

proach. This study shows that an extreme wave can be read-

ily identified from the wavelet-based bicoherence spectrum,

in which strong energy is transferred to high-frequency com-

ponents during the shoaling process. Such a detailed exami-

nation of individual non-linear interactions is useful for prac-

tical applications such as investigating non-linear responses

of high-frequency loads observed in severe sea conditions

(e.g. springing and ringing, which are excited by the sum-

frequency components of irregular waves). By identifying

which wave components are the most involved in the propa-

gation process, this study may provide a complementary ap-

proach to existing experimental and field studies for deter-

mining extreme wave group run-up and overtopping.

Data availability. The free surface elevation of the seven wave

trains used in this work is available in the Supplement. The seven

files are named in the same way as in the paper. Each file consti-

tutes the source file describing the evolution of free surface eleva-

tion along the flume from x = 4 m (first column) to x = 14 m (last
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