Laboratory wave generation

A second-order theory for regular and irregular waves in wave channels

H.A.H. Petit, G. Klopman & A.K. Otta

Report on desk study, 12316.20

June 1997




.
Wave generatlon

H1222 December 93

delft hydraulics

Executive's summary

The correct generation of a second order wave field in a laboratory wave tank is of
importance in several experimental investigations, particularly those of nounlinear evo-
lutions and sediment transport. In the present work, which was carried out under
the MLTP (medium long-term planning) of DELFT HYDRAULICS for improving exper-
imental techniques, expressions are found for the motion of a waveboard to generate
a correct second order wave field. These expressions are valid for both regular and
irregular waves. Two important features of the procedure adopted here are that the
computing time for the motion of the waveboard is signifcantly smaller compared to a
method based on the frequency domain and that the accuracy of the physical repre-
sentation increases with decreasing spectral width. The assumption of a narrow band
spectrum is sufficient for realistic sea states described by spectral shapes of JONSWAP
and Pierson-Moskowitz types.

Results of some experimental investigations into the performance of the software based
on the wave generation theory are also included in the report. Although the overall
agreement between the theory and the experiment is good, some discrepancies are
apparent from the limited analysis carried out so far, all of which cannot be attributed
to the wave generation theory. Further analysis (and possibly a set of new experiments)
is required in order to resolve all the discrepancies.
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1 Introduction

A wave generation theory correct up to second order is presented here for both regular
and irregular waves. Wave-board motion based only on the first order theory creates a
second order spectrum different from the one that exists in nature. The second order
spectrum referred to here consists of both the superharmonic and subharmonic parts.
In addition to the bound second order components (bound to the first order components
through the inherent free surface nonlinearity) spurious waves, termed also as the free
waves, are generated in the tank (see, for example, Buhr-Hansen & Svendsen, 1974;
Flick & Guza, 1980) unless the motion of the waveboard calculated from the first order
theory is corrected in order to minimize the generation of the spurious waves.

Second order corrections to the motion of a waveboard for reducing spurious waves
have been proposed by Barthel et. al (1983) at the subharmonic range and by Sand &
Mansard (1986) at the range of superharmonics. The analysis procedure used by them
is based on the frequency domain. In the approach based on the frequency domain,
the second order displacement x? for irregular waves is expressed as a sum of the terms
arising out of each combination of two first order components, z.e.,

N N N
2 2
“ X0(p.q) + Z Z X2(p,q) (1.1)

p=149=p

N-1
X =
p=1

q=p

where X%(p’q) and X%(p, 0) respectively represent the subharmonic and superharmonic
part associated with components p and ¢, N being the total number of components.
The required computing time for the generation of irregular waves (correct up to second
order) is proportional to the square of the number of components compared to the
time necessary for the first order signal. The computing time (specially on a PC)

for the generation of second-order waves can sometimes be a critical factor since the.

determination of the coefficients associated with each X%p 9 is time consuming.

The theory presented here is based on a different mathematical approach. Instead of
adopting a frequency domain analysis, we consider the time signal to be periodic with
a slowly varying amplitude. We make use of the concepts of multiple-scale variations
in space z and time ¢ which have been earlier illustrated by Agnon & Mei (1985) in
the study of the slow drift of an object subject to waves. Klopman and Van Leeuwen
(1990) have shown the relevance of this approach for realistic sea-spectrum of the
JONSWAP and Pierson-Moskowitz types in addition to presenting the subharmonic
correction to the waveboard based on the multiple-scale perturbation approach. In this
report, a complete second order solution (subharmonic, superharmonic and second
order modulation of the first order field) is presented based on the same approach.
The computing time necessary for the second order control signal is longer than that
necessary for the first order only by a fraction.

o T
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2 Basic formulations

We consider a wavemaker of the piston type in translatory motion near z = 0. The
waves are assumed to propagate from left to right over water of constant depth h.
The wave generation problem in the velocity potential ¢, surface elevation ¢ and the

wavemaker displacement X is given by the set: -

%4_227‘5:0 (ch<z<() (21)
2 =0 (z=-h)  (22)
gC+g—f+—;—Kg§>2+ (g—f)z} =0 (z=0) (2.4)
w0 (e=x(1)  (25)

requiring further that the waves are outgoing at infinity. The conditions, given by
(2.3)-(2.5), are satisfied on the instanteneous position of the boundary (the free surface
or the wave board). To express these conditions about the still water level and the

zero position of the waveboard, we assume an expansion in the form of a perturbation
series

(¢a Ca X):€(¢17 Clv X1)+82(¢27 C29 X2)+"' (26)

with the parameter ¢ = koa, ko and a being the typical wave number and amplitude
respectively. Taylor expansions about z = 0 of (2.3) and (2.4) gives:

0%¢ o9 0 1 [ /0¢\? AP\ ? 10¢ 8%
W“’%‘&("i((%) - (’a—> >+g'a7azat>

o (§¢ ) + 06 | (z=0) (2.7)
1( 42 2y _ L y =
(=2 (¢t 132+ ) g(qst%)) FOE) (=0 (28)

Taylor expansion about z = 0 of (2.5) gives

ax 0
& 2T o) (2

0) (2.9)
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We assume the motions to be nearly periodic of angular frequency w with slowly mod-
ulated amplitudes. The time and the length scales of the amplitude envelope are
assumed to be O(¢~!) times that of (27)/w and (27)/ko , with w? = gkotanh(koh).
Following a procedure similar to that in Agnon & Mei (1985) (here after referred to as

‘A & M), we define the variables
o=, Ty =€xT, g =1, 41 =gty
and express explicitly that
¢(n) = ¢(n)($0, z, 0, mlatl))

C(n) = C(n)(mﬂvzat()awl:tl)a
X(“) — X(")(to’tl)

From (2.1) we now find:

oy + 01 = 0
¢£,'%)1:0 + q‘sgz - ¢mo$1

At the bottom we find from (2.2) for alln € IVt :

o =0

At the free surface we get from (2.7) :

(2.10)

(2.11)

(z=0) (2.15)

ik + g8l =
&2+¢&@= ~ (3 (07 + &”ﬂ+~ (45)68) \
totg T Yz \2 Nt 0 Y/,
(¢> )65)) (z=0) (2.16)
o
At the wave board we find from (2.9)
x = Q) (x=0) (2.17)
Xt(ll) + Xt(:) - ¢§311) + ¢§c20) + X(1)¢>§§,)m (z =0) (2.18)
We seek solutions of the following form:
(6™, ¢, My = S (glrm), (), x ()Y exp(—imuto) (2.19)

m=-—n
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where the short scale temporal variation is expressed by exp (—iwtg). The long scale
temporal variation with respect to #; and the spatial variation, both short and long
scales, are contained in the terms ¢(“’m)’s. In expressing the series from m = —n to
m = n in (2.19), it is assumed that

H(™™) = conj (1/1(”’_m)> (2.20)

such that the resulting physical variable (™ ete. is real, where 1 represents ¢, ¢ or
X.

Using (2.19) in (2.8) and grouping together the terms of the same order ¢ and same
harmonic m, the following relations are established for ¢ (rom).

¢t =9 (z = 0) (2.21)
¢ = %qs(l,l) (z=0) (2.22)
1
((20) — - {¢>§}’°) + D12 4 VPR — o (|¢(1»1)12) J (z=0) (2.23)
¢ = 1 gD 4 A z=0 2.24
g "
¢ = —% [—2iwe?)+
F ({12 4 g(107) 4 ot gl Y] (z=0) (225
with
w2
g = —.
g
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3 Order (1,1) solution

For the first order and first harmonic we find:

¢

(D) + gkt = 0
—w2¢(1’1) + g¢£1’1? =0
pi =0

(-h < 2<0) (3.1)
(z=0) (3.2)
(z = —h) (3.3)
(z=0,-h<2<0) (3.4)

The disturbances generated by the wave maker must be outgoing at infinity. The
solution that satisfies equations (3.1)-(3.3) and the radiation condition can be expressed

as follows:

¢(171) = aOfo(Z) eXp(’ikOCUO) +

where

falz) =

_on=1

/2 cosh Qo

fo(z) =
\/h+ (9/w?) sinh? go

V2cos Qn
\/h — (g/w?)sin® q,)

with the definitions

Im
Qm

and the relations

kmh
km (2 4+ h)

w? = gkotanh ¢o

and for n > 0 with &k, > 0:

delft hydraulics

w? = —gk, tan g,

S b () exB(~ o)

(z>0) (3.5)

(3.6)
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The real valued functions (fo, f1, f2,-..-) constitute an orthonormal set with regard to
the inner product:

(5= [ fIg(2)dz (1)

Furthermore we have ag = ag(21,%1) and b, = by(z1,%1). From eq.(3.4) we can see that

delft hydraulics

20(13) = ~Ea(0,0)f(2) = L 3 kaba(0,8)70(2) (38)
n=1

Multiplication with f,,(2) and integrating from —h to 0 yields for m=0:

k
XD (4) = —ﬁ;ao(o,tl) (3.9)

and for m > 0

k

(1)) = —;
X (tl) Zme

where Fy = (1- fo) and F,, = (1 f,). This leads to the conclusion that

FnkO

b = im0
n(oatl) LFOkn

ao(0,t;) for ne IN¥ (3.11)

We note that ag is related to the 1st order complex surface amplitude A of the propa-
gating mode through the relation

ig
QLdfo(O)

ap = — A. (3.12)

Similarly, each b, is related to the surface amplitude of the evanescent mode n through

___ g
b = =5t P (3.13)

In terms of A and B,’s, (3.5) expressing the potential gb(l’l)(:z:o,z, z1,11) becomes

oD (zg, 2,01, 11) = —%%%A (z1,11) exp (ikoTo)
i —= COS Qp
L xp{—k,: 14
2 2 cosqn By, (z1,t1) exp (—kno) (3.14)
From (3.14) and (2.22), one has
1 } 1 &
¢t = -2—A (z1,t1) exp (1kozo) + 5 Z B, (z1,t1) exp (—knzo) (3.15)

n=1
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The slow variations of the variables A and By’s with respect to (z1,t1) in (3.14) are
still implicit. We postpone this discussion to a later section.

Equations (3.9) and (3.10) can be modified to express X1 in terms of A and By’s:

X0 = infa0n), | (3.16)
gk
= -LL2B.(0,1) (3.17)

where

fo%z
I = L () o ) a -1 [1 T ] (3.18)
o, f_z%dz 2 sinh 2¢o
S ( " g) dz 1 2g
0 fal2)
Y f ( )dz 2 sin 2qy,

e
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4 Order (2,1) problem

The equations are

g .
() = [ 4 ] CENE
and
V2¢(2v1) = _2¢(1v1) —h S z S 0 y 4.2)
o1
_w2¢(2v1) + g¢£2,1) = 22'(4.2(,‘[),(5}’1) (z=0), (4.3)
g3 =0 (z=—h), (4.4)
¢§fo’1) — _jwx(@1) _ ¢(x11,1) + Xt(ll,l) _ X(1,0)¢§c10,;3; (z=0) (4.5)

Only those solutions of #(21) which are outgoing are permitted.

The nonhomogenity introduced in (4.2) and (4.3) require that certain solvability con-
ditions be satisfied. This, in turn, determines the slow variation of $(11) with respect
to z; and ;. One may proceed to obtain the solvability conditions for the system (4.2)
- (4.5) by using Green’s theorem. However, this leads to a rather unwieldy form. Here,
a different procedure is followed. We consider the problem in two parts.

Part 1:
V2D = —2¢§0‘§3; [-h<2<0], (4.6)
—tgP) + g (40), = 2iwd s (=0, (&7
() =0; (2= —h) (4.8)

with no specified condition at z = 0.

Part 2:
vip = 0; [h<z<0], (49)
~? ¢ 4 g (V) =05 (z=0), (410
("), =0 (z==h),  (411)
a (2’1)
R
- (¢§L2»1)) — x00lD, (z = 0) (4.12)

zo
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It is immediately clear that (4.9)-(4.12) represent the usual linearised wave maker
problem and there exists a solution for any arbitrary function on the right hand of
(4.12). We further note that [qbﬁf’” + qb,()z’l)] satifies the complete problem given by
(4.2)-(4.5).

- 4.1 Solution of Part 1

delft hydraulics

From the first order solution one has

__ﬁ,:g_(zécosh ko(h + 2)
w Oz1 coshkoh
_ig 2. OB, cosky(h+ 2)
w nzz:i Fn 0z,  coskgyh

_2(;5(111) =

ToT1

exp(ikozo) +

exp(—krnZo). (4.13)

In order to facilitate the solution we consider qS((f’l) =Y, ¢>((12,,’11) where the mode
n = 0 satisfies the forcing due to the propagating mode of #(11) and each other mode
n, for n > 1, satisfies the corresponding evanescent mode of ¢(11),

The solution to q5((12,7’11) satisfying the bottom condition and the Poisson equation is

ey - __9 oA (Q(’SinhQO) ik =0): 4,14

¢a,n 2]300) 8:1:1 COShQ() eXP(l QCEO), (TL )’ ( )

= 3 S (L ) exp( ko), (n2 1) (4.15)
2“%&21’ k. Oz oS qp,

The solvability conditions can now be obtained by requiring (4.15) to satisfy the free

surface condition (4.7) for each n. The resulting conditions after some manipulations
are

9A dA

Oy = 4.16
0B, .., 0B +
n o, =2 = 0 417
51~ iCon g, 0; nelV (hpz

with C, as the group velocity [i.e., Cy = Clp, and C' = w/ ko) and

lw 2¢n
= —-— 4.18
Con 2 ky, [1 T Qqn] ' (4.18)

Expressions (4.16) and (4.17) govern the slow variations of A(z1,%1) and Bn(z1,t1)’s
respectively. We further note that the slow variations of A(zy,t) and Bp(®1,%1)’s at
¢ = 0 with respect to ¢, are also related to the first order wave maker motion & W(4)
through (3.16) and (3.17).

L e
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4.2 Solution of Part 2

The solution to ¢g2’1) is forced by ¢(1'D) and ¢>£2*1) and the wave maker motions A'(1%)
and X1 The complete solution is of the form:

s = _EA(z,l)(ml',tl)COSh ko(h + z)-

2w cosh koh exp(ikzo) -
ig_ i (2.1) cos kn(h + 2) L
50 n; B); (a:l,tl)————-———cos Pk exp(—kno). } (4.19)

A®1)(0,1;) and B.,g’l)((),tl)’s are explicitly obtained from the condition (4.12) at the
wave maker, i.e.,

o A cosh QO Z B (2,1) €08 @n Qn _ P +
cosh qo COS Gy -
2iw

[ lX(21)+,\_/( )]+9%[ - +X(10)k2A}+
Ty -

g sh qo -
Qosinh Qo [ GA] c0s Gn [ 9Bn ,v(l,omiBn] + X
cosh qo Jwy cosgn | Omy
Z @n sin On [ ] (4.20)
—  COS{¢p dzy

A1) and BZYs can be obtained from (4.20) by utilizing the orthogonalities of cosh Qo
and cos Q,’s over the interval [-h < z < 0]. An interesting feature of (4.20) is that
the amplitude of the propagating mode . A depends on the slow variation of the

evanescent modes By(l b s (since cosh Qg and @ sin @y are not orthogonal). Explicitly,
one has

C dA 1
(1) — (2,1) (1 1)] [ (1,012
A 2Cg tanh go [ 94 + % | "o, + X oAl +

0A C 0B,
= = T, —, =0) (4.21
e {1 + < (g tanhao - )} 2T E G (=) ()
where
In kn knki  tang,
ET, = ———=|kotang, — -
" k2 + k2 ( otang tanh qo> (k2 + k%)Q tanh g
2L 3
12 kiko - ks i tan g,
(3 + k27 (5 + K) b
ko w?h 2k2
= - .22
k3 + k2 [1 g ( (4.22)

delft hydraulics 10
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It is convenient to express A1) in terms of A;, . This is done as follows. The solvability
condition (4.17) gives

0B, _ i 9B, (4.23)

dzq Cyq, 0t
and from the conditions (3.16) and (3.17) we have

ko e

Ba(0, 1) = —i2 7740, 1) (24)
Using (4.23) and (4.24) one gets

3B, _koly wCy /

=n = ,t 4.25

5a, M = TR 8t1( N N ng 8t1( ) (4.25)
Thus, in terms of Ay, (4.21) becomes

C Iy 0A i | 104
@1 — Y |_o (20) ;004 X102 4
A G [ 2i(tanh o)X "™ + 1 atl] To {C (‘)7?1 +

i %
< Z 4.26
~2C ko [H ¢, (aotanhqo - 1)] T koat k I c » (2=0) (4.26)

The expression for the term [ET,] / (knlnCy,) in (4.26) can be simplified to be

[ETn] 2h qo -
= —_—— 4.2 ()
knI.Cp.  w In (g2 + ¢2) (

It is numerically more accurate to compute [ET,]/(knInCy,) through (4.27) than
through computing [ET,] and (k,I,Cj,) separately. :

=N
w
-Mn
Q)
-t
=-h
M,
[}
w
o
ce
:'l"
(@]
=3

The complete far field solution to ¢(>1) is

520 = _ <£> [4(2 gycoshko(h+2) 1 4 04 Qosinh Qo

xp(ikox 4.28
2w cosh koh " koOz,; coshqo ]QKP(L ozo) )

where A1) is given by (4.26). From (4.1), the second order surface elevation ¢ (21) far
away from the wavemaker is

1 i 0A i 0A
(2,1) — = | q21) _ 2 2
¢ 5 [A Fo 21 go tanh qg] exp (tkozo) + — o Bt exp (thozo)  (4.29)

11
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4.4 Determination of X1

Since the free surface shape near the carrier frequency is assumed to be given by ¢ 1),
we set the far-field condition

(@ =0. (4.30)

With (4.30), (4.29) gives
A(Q’l) = —qu tanh do — ;—— (431)

A1) can be expressed in terms of A, by using (4.16) in (4.31):

0A

o (4.32)

| C
A1) “% {E;qo tanh qo + 1}

The wave maker motion A1) is now determined by using the condition (4.32) in
(4.26):

22'2 tanh qu(Q'l) =

Cg
i[c 0A 104 i [104
RS 1 (1,02
% [cgqotanhq"“] o lwdt ke [c ot A}
i DA
_ < = 0Y4.33
2C'gk0 [ + (QO tanh qg — 1)1\ at + 2 koat Z T I an 0)4.33)

Or, in a slightly modified form as

(2’1) _ a . R _ 5\ _ a . . -+ R
w0 = [ b= 3= gt
gCy gC' s OA
tcr s (Z A )] 7
__g% (10 4 (4.34)

delft hydraulics 12
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4.5 Surface elevation (21

Surface elevation ((21) is governed by (4.1). Because of the condition of (2.1) yanishing

in the far-field, the coefficient of the term exp(ikozo) is identically zero. From (4.1)
one thus has

&) : 2
ey -5~ |Lgen o & (@h ) 9Bn _ > 4.35
¢ > [QBn + 355 (gfn +1 7 exp(—knzo), = 20. (4.35)

n=0

The coefficient B,(0,%;) is known in terms of A at the wave maker. The coefficient

B{*Y can be determined from (4.20) using the orthogonality of cos @n’s and cosh Qo
over [—h < z < 0]. After long, but fairly straightforward, operations one gets

BEY = liwx®h - x{Y] 2i tangy | 1 [——i—aB n X(lvo)kiBn}

b 10y, kn kn | Cg, Ot
7 1’( __Ci_ 1 k?o ! 1t h2 ?—é
= AC / kn Cy4Cly, tan gy, k2 + k2 [tan 1 g0 + o an (10)] %
1 Z o
% Uco -#1(;1 > ! - i w Cbpm 0Bm (4.36)
A k.Cg, tangq, — Com Ot
where
1
Cbam = = [~an(1 - tan? gu) + tan tw]; (m=n) (4.37)
n
and
Cbum = —Uc—m%k:ﬁ [km + kn tan g, tan gm] +
ko,
Y [(kfn + k2) tan gm — 2kmkn tan qn] i (m#n). (4.38)

Using the relations (3.16) and (3.17), X1 and B, can be expressed in terms of A
respectively in the form

1 _ ;9% _i_l 4.39

X 1 902 I()A(O, t]_) 2 tanh o A(O, tl) ( )
Iy tang,

B, =t——— 1 4.40

n ZIn tanh Q'OA(O, 1) ( )

delft hydraulics 13
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Substitutions of the above two expressions in (4.36) lead to

B@D(0,4) = P dn 1,(2,1) _ ikoz‘l/y(l»O)A
I’ﬂ In

Jhob (11 )04
ann W kann 8t1

kowlIp X1 Cbyp | 04
o0 - Znm ) 72 A1
knCy, tan g <m=1 kpIm Com ) oty (441)

Replacing the term containing B, in (4.35) an expression for ¢ (2.1) at 2 = 0 is obtained

as

(e = Y [3BE00.0)
n=1
1 koly [w?h 0A

or equivalently,

c@D0,4) = (Z ta}”ﬂ) p@1) i’:;ﬁ (Z _I}_> p(10) 4

n=1

oA & 1 Ipw Wy
tog & {‘5 (‘ Ty vanhgo | K2 tanb 0oy L

n=1

kmIm Com ) 20 knIn \ gIn

wlp ({2 1 Cbnm> . 1 kolo (cf_hH)] (4.43)

~ 2tanh qoCy,

m=1

delft hydraulics
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5 Subharmonic solution

Because ¢(1®) satisfies

B0+ 400 =0 (ch<z<0) (5.1)
¢ =0 (z=0,-h)  (5.2)
$00 =0 (z = 0) (5.3)

we conclude that ¢(10) = ¢(19(z, ;) is independent of short scales. For the second
order, zeroth harmonic we find the equations

B2 + 429 = (-h<z<0) (54)
489 = ¢ (s = ) (55)
g0 = w(i¢(1’1)*¢>(1’1) + %)y (z= (5.6)
X(lO)_q/)(lO +¢20)+(X11*¢z0x0+*) (z = ) (5.7)

Our interest is the description of correct Xt(ll’o) which is related to ¢z_§511’0) and ¢>g(v%’0)

addition to the first order quantities through (5.7). It is shown in Appendix B that an
alternative formulation for &, ( ) i possible without explicit dependence on P2 0);

B = g0 + (4 4 4)

(5.8)

z==0,xg9—00

The solution of the long scale variation of #(1:0) is discussed in Appendix A. Allowing

only the form that corresponds to a propagating bound long wave (i.e. we assume the

motion of the waveboard is such that spurious long waves are absent), we get

¢)(170) = iQWkO + Cg (k% - 02) 0/

AN L G e — (O Y1 P (5.9
2 2 _ [P el T ger) T v AL Vgl v 4 g \HeE
dw C?—gh

where
4
B(6) = | 1)y (510)

and S and P are constants. After substituting (5.9) and (3.14) in (5.8) and integrating
with respect to t1, an expression for & (1,0) results:

2 3 2 _ 2
xuog) = (9 [2wko + Cy (k§ = 0?)] MLYAN [_—LB(—CgtlH K}
dw? (C’g - gh) 2wh Cy

92 [2wko + C,lk2 - o2

1l
402 (C2 - gh) ot (6.11)

delft hydraulics 15
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with two unknown constants S and K.

We set K to be zero corresponding to the initial position of the waveboard being at
zero and determine § such that the the time average of X(1%) tends to zero. We
recognize that |A(¥)| is a slowly modulated function makmg B(8) to be oscillating
about a linearly increasing function of time:

B(=Cyt1)=-< }A}Z > C,t1 + oscillating function ' (5.12)

where < )AF > denotes the time average of ]AF We require therefore that

2w (02 - gh) k
T (1 * Bake T G, (5= 7] zm) <M (519

The subharmonic waveboard motion is then given by

X(l’o)(tl) — ___}_ <g2 [2wk0 + Cg[k% — 0'2]] 4 k‘oQ) .

Cy dw?(Cz-gh) b ,
/ o (A%(6)- < JiP >) a0 (5.14)
- < > .
0
The constant P in (5.9) can remain as an arbitrary additive constant. Using * 7 to

indicate that the expression is taken at z = 0, we find from eqs.(2.23) and (3.2) that

e = ~Lgf10 4 [g[ o [0
leading finally to
oo = L[ g, (o120 + Cylt ) (147 - <l >) +
g{ gk 4w2(cg—gh) )
g;”Oil <p> T2 2(k2 — %) |A|2} (5.15)
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6  Order (2,2) solution

The equations for ¢(*?) are

(6.2)

(6.3)
(6.4)

(6.5)

622 1 ¢22) = g (=h < z<0) (6.1)
—4w2¢(2'2) + g¢.2'2 — W (¢ (1,1)2 ¢(1 1)2)
5 .
w .
zzg‘ﬁb(l’l)qsgl’l) + W (¢(1’1)¢£3]6’1))x0 (Z = 0)
¢g2,2) =0 (z=—h)
920 — i) — 0D (©=0
If we write (1) = S°% ¢, with
) z .
co(mo,z,xl,tl) = QQ?((O))A( 1— C'gtl)exp(zkomo)
and
kOg Fn
en(zo,2,00) = —WA(—C’QH)an(z) exp(—kno)
ne Nt
Cozy = ikoco
Crzg = —knCn ne Nt
0z = kotanh Qoco
Cny = —kntan (Qn) ¢ nelNt
Coxgzg = —kgco
Crzgry = Koln neNT

The expression for the second equation for #(22) becomes:

—3iwk? (1 — tanh? qo> CooA? (21 — Cyt1) exp(2ikozo)
tiw S [k2 — dikokn — kG + 60%] ConA (~Cyt) -
n=1

A (w1 — Cytr) exp ((—kn + iko) o)

i 32 3 [2haky + k2 + 307 CopA? (=Ctr) exp (= (hn + kp) 20)

n=1p=1

delft hydraulics

(6.6)
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with

2
-9

Coo = T
o ig%k3 (h + o~ 1sinh? qo) cos? g,

T T3 (h— o~1sin? g,) cosh® qo

: 2

o - g%kS (h + o~ !sinh? q0> cos? g, cos? g,

np =

6.7
4w2k3k3 (h — o~ 1sin® g,) (A — 0! sin? gp) cosh®qo (61)

Where f and F have been eliminated using definition (3.6) and the relations

Fo=(1-fo)= "f(’( ) (6.8)
S f)= ‘“,f’g(o) neNt(69)

Functions that satisfy both eq.(6.1) and (6.3) look like:

Swp = (exp (ictnp (2 + h)) + exp (—icnp (2 + h))) -
(Dup1 exp (@np20) + Dnp2 €Xp (—@npo)) (6.10)

where Dpp1 and Dppp can be arbitrary functions of the slow vama.bles Qpp is a constant.
Let us assume that for the particular solution we have ¢> = ¢22Q 4 p(22AR
where ¢(22F satisfies eqs.(6.1),(6.2) and (6.3), and ¢{*)? satlsﬁes the following four
equations, given by (6.1), (6.3) and

— 4?2229 4 g4(22)Q = g (z=10), (6.11)
229 = _24u,x(22) _ y(1 (1 L) _ p2R (z =0) (6.12)
With
SR = GR 1 Z SR 4 Z Z Sk (6.13)
n=1 n=1p=1

From eq.(6.6) we see that the choice:

afl = —kn — kp (n>0,p>0)
ol = off = iko — &y, (n > 0)

oft = 2ikg

Dw2 =0 (i,7 € {0,1,2,..})

is imperative.

delft hydraulics 18
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Substitution in eq.(6.6) yields:

31 (kg ad 04) CO()A2 ((131 - Cgtl)

E 6.14
Doon 8wo? cosh (2¢p) (6.14)
DR = —ikokn [k2 — k& + 602 — dikokn] Cond (—=Cyt1) A (w1 — Cyth)
mot 2w [2koky, + i (k& — k2 — 40?2)] cos ¢, cosh o
' o o (n>0) (6.15)"
iknky |2knky + B2 + 30%| CrpA? (~Cyty)
Dy = p ks + 2] d - (n>0,p>0) (6.16)
2w [402 + (kn — kp) ] COS ¢y, COS gy "
If we take:
[ee]
¢(2)2)Q — Z SS
n=0
with

89 = (exp (icn (2 + h)) + exp (—ian (2 + h))) (Df;)1 exp (anzo) + DY, exp (—anrco)) ,

we find that in order to satisfy eqs.(6.1), (6.11) and (6.3) combined with a radiation
condition at infinity we must require:

40 = —ay tan (aph) and D% =0 forn >0
ao = iy with 4o = o tanh (Boh) and D, = 0

Together with the boundednes of the solutions and the radiation condition at infinity.
this yields:

o
(229 = Q.DGQ1 cosh (Bq (z + h)) exp (ifpzo) + 2 Z DS?. cos (an (2 + h)) exp (—ano)

n=1

From eq.(6.12) we now find in z = 0:

q‘)g’z)Q = 2z'ﬂoD0Q1 cosh (Bo (2 + b)) — Z 20:an2 cos(an, (z+h)) =

n=1
k3g? (h + o~ 1sinh? qo> A(=Cyt) [

4w cosh? ¢g

—2iwx(22) _

—-kgco + Z kicn]

n=1

—dikoDE | cosh (2ko (2 + h)) +

[ee]
- Z 2 (iko — kn) DI, [cos Q@ cosh Qo + i 5in Q@ sinh Qo] +

n=1
£ 30502 (ko 4 k) DR cos (k4 ) (= + 1) (6.17)
n=1p=1

delft hydraulics 19
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After multiplication of this equation with cosh (8o (z + h)) and integrating from -h
to 0 we find after some manipulations where we make use of the integrals given in

Appendix C:

iBo (h + — sinh (Qﬁoh)> D = —2iwx @D L ginn (Boh) +
260 Bo

k§g* (h — o~ lsinh? qo) A(=Cyt1)

—1

4w cosh? go
3 k3 (h + o~ sinh? qo)
2 cosh? qo

k2
[ 3 }c2 2cosh(ﬂol‘z)wz-l( Cyt1) +

cosh (Boh)wA (—Cyt1) X

cos® qp, .
% Z n (k2 + B2) (h— o1 sin? qn)} ’

. —403
- {4Zk0D(I){Ol mo—) cosh (ﬂoh) COSh2 qo +

llu() l\, Qkokn + 1 (k% e kg + 40‘2)
DnOl

o R = KL= B2 1 2ikoky T

20
+—k—— cosh gg cosh {Boh) 2
0 n=1

kn + kp kn — k) + 40?
420 cosh (Boh) Z Z npl ((k " Z))2 e COS Gp, COS (p (6.18)
n T Fp 0

n=1 p=1
forz =0

From this expression we can directly find DQ In order to avoid the occurance of waves
with frequency 2w we should choose A (2.2) such that D = 0. This yields in 2 = 0:

(2 2) — BO
2iw sinh (ﬂoh)

{_kog (h—{—o 1 ginh? qo> (=Cyt1)
i

3, ki
pu— h _
4w cosh? go [Qlk% — B2 cosh (Boh) wA (=Cyt1) +

3 kS (h +o7! sinl.l2 qo)

cosh (Boh) wA (—Cyt1) X

2 cosh? ¢o
cos? g,
X . +
L T - o)

—40°

— [4Zk0D§01 W cosh (ﬂoh) COSh2 (Jo+
Lko kn - —2kokn + 1 (k2 — k3 4+ 40?)
DnOl 2 .2 . 2 1o s
kn, k% — k2 — B§ + 2ikoky,

COS Gn,

+2— cosh gg cosh (Boh) Z

k‘o n=1

& kn + kp (kn — kp)? + 402
+20 cosh (Boh E E DR L4 2 COS ¢y, COS 6.19
( 0 ) pl knkp (kn + kp)2 + ,Bg P ( )

n=1p=1

20
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Multiplication of equation (6.17) with cos (am (2 + h)) where m € IV *, and integrating
from —h to 0 (again making use of Appendix C), yields in & = 0:

— Qi (h + L sin (Qamh)> DY, = —2in(2’2)—1— sin (@mh) —
200,

O,
kS (h 4 o~ sinh? qo) A(=Cyt1) k2
' 2 k:2 +a

A(-Cyt mh
402 cosh? go WA (= 1) cos (emh) +

+§wk8 (h + o~ sinh go)
2 cosh? go

i cos? q, N
= Fkn (k2 —a2)(h—0o"! sin® qy,)

160° 9
- [zDOOIk—@—m cos (e h) cosh” g0 +

A (=Cyty) cos (amh) -

20 >\ tho — kn —~2koky + 1 (k2 — k& + 40?)
. cos (@ h) cosh qo Z - ~phR, W~ K2+ a2, + 2ikok,

n=1 n

cos g, +

kn +k 402 + (ky — ky)"
—20 cos (amh EDR Ky 5 COS , COS ¢ (6.20)
)ZZ Pad, — (kn + kp)’ ’

This yields an explicit expression for Dm?’ for m = 1(1)oo. With equation (6.17) we
can now determine ¢(22%, from (6.13) we find #2DEF; the sum of both should satisfy
egs. (6.1) to (6.4). Solutlons of the homogeneous equatlons

gd) + 92" =0 (—=h < z<0) (621)
—dw?p®D 4 g¢*?) = 0 (z=0) (6.22)
¢ =0 (z=-h)  (6.23)
¢{2%) =0 (z = 0) (6.24)

with

= (exp (icrn (2 + h)) + exp (—icy (2 + 1)) (DI exp (anzo) + Dr exp (—anzo))

satisfy (6.21) and (3.5). Equation (6.22) supplies us with the conditions:

40 = aptan (axh),DE =0 for n=1(1)c0

delft hydraulics 21
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and

oo = ifo, 40 = fo tanh (Boh) , D& = 0

Furthermore we assume a radiation condition at infinity as well as boundednes of the
solution for all zg > 0, whence:

¢>DH = 9 DH cosh (8o (2 + h)) exp (380%0) + 2 Z DE cos(an (z + h)) exp (—an2o)
n=1

From boundary condition (6.24) we find:

¢g20’2)HL=0 = 2iBoDEL cosh (fo (z + h)) —2 ) anDE, cos (an (2 +h)) =0

n=1

By making use of the orthogonality of the functions cosh (8o (# + h}) and cos (an(z+h))
for n = 1(1)co on the interval from —h to 0, as given in Appendix C, we find that:

¢(2,2)H =0

for all zg and z.

22
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7 Summary of the first- and second-order solution

The waveboard displacement X is given by

X =x004 [(X(l'l) + x3Y) ) exp(—iwot) + *] [X(2’2) exp(—2iwgt) + *](7.1)

where

yao _ _L1 g* [2wko + Cy[k] — o7]] + kog \
Cy 402 (C;z _ gh) 2wh
—Cygt
/ " (4%0)- < 47 >) db, (7.2)
0
) [OQEA(() t), (7.3)
, g 3
x@D = [m(qo tanh go — 2) 4w26' ——(gotanhgo — 1) +
gCy > 0A  9Cy L1,0) ~
22 229 pUb) A4
+w202+203 (Zuc ﬂ 5t ~a2cet (74)
x(22) Po
2iw sinh (Boh)

{_kgg2 (h+o~tsinh? o) A(~Cyt) {3. 2
e 8t

—j2 h(Boh)wA (—Cyt
4w cosh? go QZk%_I@(Q) cosh (Boh)wA (=Cyt) +

cosh (Boh) wA (—Cyt) X

cosh? qo
> cos? gy,
X ;
,; kn (k2 + B2) (b — a‘lszn:zqn)}

, —40°
- 42]\70D§31W cosh (ﬂoh) COSh2 q0+

iko — kn n DR —2koky + 1 (k2 — k3 + 40?)
kn ™0V k2 — k2 — BE 4+ 2ikok,

20
T cosh gg cosh (Boh) Z

‘n._

COS ¢p,

S kn + kp (kp — kp)? + 402
+20 cosh (foh) DE £ L COS G, COS qp | ¢ - (7.5)
L 2P (ot b '
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The surface elevation ¢ at z = 0 is given by

(= C(Z’O) + [(C(l’l) + 4(2'1)) exp(—iwot) + *] + [C(m) exp(—2iwot) + *] (7.6)

where

C(é'o) - 1 {_Cg (92 [2wko + Cy[kE — 02]]) (|A|2 _ < A? >)

g 4? (C’g - gh)
k 2 k2 a2
+Cg% < A?> +-g—(—272—0—) lAlﬂ , (7.7)
,C(l,l) = lA 1 li B and (7.8)
2 24~
<ol 1 koly [w?h oA
(21) = pl21) - Moso p 7 e
¢ n; an (0,1) + RN <gfn + 1) 64 : (7.9)
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8  Experimental measurements

A series of tests were performed to verify the second order wave generation theory as
described earlier in this report. Two different sets of experiments (similar to those
reported in Kostense, 1984) were performed, the first set to analyse the generated
subharmonic motion due to a bichromatic signal and the second to analyse the super-
harmonic elevation due to a monochromatic incident field.

The experiments were conducted in a flume (Scheldegoot) which is-lm wide, 1.2m
deep and 55m long. During the experiments a beach of slope 1 : 5 existed with its
toe about 43m away from the mean position of the wave maker. Maximum value of
the reflection coefficient of the primary waves was found to be 20% over the entire
range of the frequencies tested. Resistance-type wave gauges were used to collect the
time record of the surface elevation and a probe was fixed near the wave maker to
record the displacement of the wave maker. The wave gauges and the data-acquistion
system were tested prior to the experiments to ascertain their reliability. In all cases,
waves were generated for sufficiently long time (for about 5 minutes) and the reflection
compensation mechanism was activated to reduce reflections from the waveboard.

Detailed measurements of surface elevation were also done during a later test (Klopman;
1993) using the second order wave generation theory. The results of subharmonic
analyses of these tests are also included in this report.

8.1 Measurements and analyses: Subharmonic elevation

The experiments are described in three groups: ‘ba’, ‘be’ and ‘4twbo, #wbn’. Surface
elevation was recorded at four locations (table 8.1) during the ‘ba’ and ‘be’ tests and’

at six locations (table 8.2) during the ‘#wbo, #wbn’ tests. The analysis procedure is
as follows:

1. Amplitudes and phases at the primary frequencies f1, f2 and the subharmonic
excitation |f; — f2| at each location are obtained from the time record of the
measured elevation by Fourier analysis.

2. The incident and reflected amplitudes of the carrier waves are determined from
the amplitudes at two ‘suitably’ chosen wave gauges. (‘Suitably’ chosen wave
gauges mean that the relative locations of these wave gauges give the best
resolution of the different components). These measured amplitudes of the

z1(m) 22(m) 2s(m) w4(m) | Test
7.00 11.25 1550 12.50 | ba-1, ba-2
7.00 15.00 23.00 16.25 | ba-3, ba-4
7.00 11.25 15.50 12.00 | be-1, be-2, be-3
7.00 15.00 23.00 15.75 | bed

Table 8.1; Locations of the wave gauges from the wave maker for the ‘ba’ and the ‘be’ tests.
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z1(m) z2(m) z3(m) w4(m) ws(m) x6(m) | Test
12.50 18.50 22.15 22.85 26.32 34.50 | #wbo
10.50 16.50 22.15 22.85 28.50 34.50 | #wbn01-19

Table 8.2: Locations of the wave gauges from the wave maker for the ‘F#wbo’ and ‘#wbn’ tests.

incident carrier waves are used in getting the theoretical amplitudes of the
bound long waves.

3. The harmonic amplitudes at Af = |f; — f2| are analysed to give amplitudes of
free long waves and bound long waves assuming that the subharmonic surface
elevation consists of the following components:

(a) incident bound wave
(b) incident free wave
(c) reflected free wave

Three wave gauges are needed for the analysis. These three wave gauges are
‘suitably’ chosen out of the four or six wave gauges used during the experiments.

Bound long waves associated with the reflected primary waves are assumed to be neg-
ligible in the present analysis. This is based on the ground that the amplitude of the
bound waves under a group is proportional to the product of the 1st-harmonic ampli-
tudes of the carrier waves. Thus, the bound long waves associated with a maximum of
20% reflection of the primary waves can only be as large as 4% of the incident bound
long waves. Results of the analyses are shown in tables 8.3 and 8.4. a;; represents

(expt. measurements) (mm) | al
test  f1, fo a1 a4y ap aly (mm)
ba-1 0.48,0.33 | 54.4 11.4 4.7 14 5.9
ba-2 0.48,0.36 | 54.7 11.1 4.7 1.1 5.3
ba-3 0.48,0.39 | 54.3 124 4.7 1.6 5.3
ba-4 0.48,0.42 | 54.3 11.8 5.3 1.7 4.7
be-1 0.69,0.54 | 34.7 28.2 3.8 0.2 3.9
be-2 0.69,0.57 | 344 28.2 3.6 0.3 3.7
be-3 0.69,0.60 | 34.5 28.4 3.8 0.3 3.5
be-4 0.69,0.63 | 34.1 28.3 3.1 0.6 3.3

Table 8.3: Measured amplitudes of subharmonic waves due to a bichromatic signal. A = 0.5m.
all' denotes the theoretical value of the amplitude of the bound long waves (Laing, 1986).

the amplitude of the free long waves propagating away from the wavemaker. The am-
plitudes of the free long waves from the beach are not shown in the tables. In the
series ‘ba’ and ‘be’, wave gauge 4 was optimally located relative to gauge 2 in order
to analyse the the carrier waves. The incident and reflected amplitudes of the carrier
waves in table 8.3 are obtained from these two gauges. The amplitudes of the subhar-

monic surface elevations are obtained from three wave gauges which give the largest
determinant of the sytem of equations.
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Comments on the results

Two aspects of interest in tables 8.3 and 8.4 are the comparison of the analysed and
the predicted value of the bound long waves and the amplitude of the incident free long
waves. The ratio of amplitude of free waves to that of bound waves is largest in the
ba-tests, being about 29%, and smallest in the be-tests, being about 6%. There are
a few factors which can contribute to the deviations of the analysed results from the
expected values, i.e. amplitude of the bound long wave is as predicted by the second
order Laing theory and the incident free wave is zero. These factors are:

1. difficulty in the analysis of long waves.

2. the amplitude of the incident free wave is not only a result of the second order
wave-generation, but also depends on the reflection compensation mechanism
of the waveboard.

3. higher order effects, more pronounced in ba-tests.

The difficulty in the analysis of long waves in a wave flume can be explained by con-
sidering the length scales of modulation L4, Lz, L3 associated with the components
to be anlysed, i.e.;

o IL; = \j/4 (long free waves from the wavemaker + beach)
e Lo = Msdn/{2(Mif + A)} (long free waves from the beach + incident long
bound waves)

o L3 = MNsA/{2|\if — M|} (incident long free waves + incident long bound
waves)

where A\;; and A; denote respectively the lengths of the long free waves and the long
bound waves. The wave gauges should have separation distances of roughly L1, Lo and
Ls for a good resolution of the subharmonic components. These length scales for the

series ‘ba’, ‘be’ and ‘#who, #wbn’ are presented in table 8.5. It is clear that the wave

gauges cannot be ideally located in a wave flume of effective length less than 43m to
resolve the free and bound components for quite a few of the conditions in ‘ba’ and
‘be’, A measure of the soundness of the analysis for various separation distances of the
wave gauges can be given by the determinant of the system. We show in table 8.6 the
values of the determinant D for a few specific cases.

(expt. measurements) (mm) | af}
test f1, fa ay Gz ap alf (mm)
#wbo03 0.588,0.735 | 48.8 35.0 5.1 0.6 5.9
#wbnl7 0.606,0.758 | 48.4 35.1 5.1 0.4 5.5

Table 8.4: Measured amplitudes of subharmonic waves due to a bichromatic signal. A = 0.5m.
alf denotes the theoretical value of the amplitude of the bound long waves (Laing, 1986).
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series Ly (m) | Ly (m) | L3 (m)
ba-1 3.7 3.4 42.2
ba-4 9.2 8.3 80.5
be-1 3.7 3.0 15.7
be-4 9.2 7.2 32.7
#wbo, #wbn 3.7 2.9 13.8

Table 8.5: Length scales of modulations of subharmonic surface elevation for the series ‘ba’,
‘be’, ‘Hwbo’, '#wbn’.

test gauge 1 | gauge 2 | gauge 3 | D
ba-1 7 11.25 15.5 1.14
ba-1 7 11.25 12.5 0.49
ba-1 11.25 12.5 15.5 0.35
ba-1 (*) 7 10.6 49.0 1} 4.25
be-1 7 11.25 15.5 2.5
be-1 (*) 7 10.0 20.0 4.6
be-4 7 15.0 23.0 2.9
be-4 (*) 7 15.0 33.0 4.6

Table 8.6: Values of the determinant D depending on the locations of the wave gaues (in meters
from the wavemaker). The ‘(*)’ denotes a sort of ideal configuraton of the gauges based on the
length scales of modulations.

8.2 Measurements and analyses: Superharmonic elevation

In the tests conducted to analyze the performance of the generated superharmonic
field, only monochromatic incident wave field is considered. The nondimensional wave
number kh ranges from 2.7 (deep) till 0.5 (intermediate depth). Surface elevation is
again recorded at four locations as shown in table 8.7. Amplitudes of the incident and

=
~—
3

=2 (m) (m) _a(m) | Test no.
14.16 15.0 15.92  15.46 | sh-1
14.58 15.00 16.30 15.65 | sh-2
14.16 15.00 17.10 16.05 | sh-3

14.30  15.00 16.40 15.70 | sh-4

of
AN

Table 8.7: Locations of the wave gauges from the wavemaker for the ‘sh’-tests.

reflected carrier waves are analyzed from surface elevation at stations 1 & 2. Table 8.8
shows the analyzed values of the superharmonic amplitudes, the bound component az,
and the incident free component aqy, for a given first order amplitude a. Magnitudes
of the components ags & aqf show slight variations depending on which three gauges
are considered for the analysis. The listed values of the superharmonic components are
based on the three locations for which the determinant D of the system is the largest.
It is seen from table 8.8 that the wave gauge locations are far from ideal, particularly
for the test case sh-4. Further, there is no clear trend of reduction of the amplitude of
the free waves. Besides the location of the wave gauges there are a few factors which
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(expt. measurements) (m) (theoretical) (m) | D
kh a Qs asf ath atl
sh-1 | 2.7 10.04878 0.008582 0.001105 | 0.007423 0.002722 | 3.6
sh-2 | 2 0.04981 0.006472 0.002133 | 0.006172 0.002263 | 4.3
sh-3 | 1.1 | 0.04091 0.004099 0.000598 | 0.004125 0.001925 | 1.4
sh-4 | 0.5 | 0.02981 0.005428 0.005310 | 0.005849 0.004679 | 0.9

delft hydraulics

Table 8.8: Measurement of the superharmonic components. az; denotes the measured am-
plitude of the superharmonic free waves from the wavemaker and ag’} denotes the amplitude
produced by a sinusoidally moving piston wavemaker (Flick & Guza, 1980)..

can contribute to this problem:
1. actual superharmonic correction to the waveboard in the the ‘wave generation’
software may not have been updated from the old version to the one described

in this report.

9. amplitude of the incident free wave depends not only on the wave generation
theory, but also on the reflection compensation mechanism.
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A Derivation of ¢(10)

Up to the third order in €, we find:

¢ 0 ¢ . P
/ udz:/ ¢mdz+/ (¢r + 25 )dz =
~h —h 0
[ (0 + 202 4 262 + 20 + 29z +
(ML) + (MR + 2D + e3P + 16576, + 0"

where ’ ° ’ indicates that the expression is taken in z = 0. This implies that the

continuity equation

0 g rs
— _ = Al
70+ 5 [ udz=0 (A1)

can, up to third order in ¢, be written as:

/_ (e, + 262680, + 262, + 266, + %9, + %ol )dz +
DI + 2O, + (D + 27D, + <o) +
E(DHY + (D0, + (WD + eI, + (I +
1
S Wt ech) + 2 + %) + Sl +e°0) = 0(Y)

We now have for the first order, zeroth harmonic:

/ $10 g = 0

as was to be expected from egs.(5.1) to (5.3). For the second order zeroth harmonic
we find:

[ 609+ (G173 410 + (008 4 = 0 (4.2)
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as (10 = 0, and for the third order zeroth harmonic:

0 1 [ (2629 + 982z + bl + (A 40+

2(C(1 1)*¢:(010;1 + *) + (C(l 1)*¢ (1,1) + *) + (4(2 1)*¢(1 ,1) + *) +
(C(2 DD 4 4) + (CODGE) + ) + (C(l g G +)=0 (A3)

because ¢(10) is independent of the short scales. With the use of eq.(2.23) we find the
following wave equation for ¢(1:0):

oD - gholl) = - (185F),, - (B0F), + o (18°F)

2zt

vo [ (90 + 98z + g((EIGY + )+

29(CIGEE) + ) + g(Cy U +0) + g (BB + )+

g(c 21)¢$10%3x+ *) ( (1,1) x¢$%%g +*) +9(C(1 1)*¢ 21)+ *)

== (1I8%18), = (18001), +o (1600F), +

o [ (638 + 65 ds - 2 FE ) =iV IED +)

—w (iR 4wy 4 g(¢BDGLN 4 4

After the terms in the right-hand side that are third order in the wave height have
been neglected, the wave equation becomes:

(10) (1,00 — _ (12002 _ (1402 7(1,1)12
S0~ ghaB0) = - (1B4VE), - (18VE), +o (80UF), +
—2w (it 1*GLD + 4)

By neglecting the higher order terms in the wave height, we have reintroduced the zg
dependence of the right-hand side. In order to restore this we only take that part that
does not depend on zg, so we leave out the influence of the evanescent modes. The
equation now becomes with the use of (3.14):

g [cg(kg ~ o))+ 2ka] (|A|2)m1 : (A4)

(1,0)
¢t1t1 ) ¢$1$1 T 42
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To find the solutions of this equation that only depend on (z1 — Cyt1) we can use the
fact that the right-hand side is a function of (21 — Cyt1). We find: )

(03~ 1) 439 = L5 [Cofh3 - o%) 4 20ke] (1), (45)

4w T

With the definition B(6) = f¢ | A(%)[?d%, we find the following expression:

$10) = g% 2whko + C, (K - o?)
4w? CZ - gh

(B(ﬂ?l - Cgt]_) + S - ((131 - Cgt]_) + P) (AS)

where S and P are constants.
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B Derivation of X(10)

If we apply Green’s theorem on ¢(1%) and ¢(2?) we find, with

G = {(z0,2) € Ro]0 < wg < LA —h < 2 <0}

and V as the gradient operator in zo and z:

// SLOT24(20) _ 32072410 dzdz =
G
¢(1,0)_@_¢(2,0) _ ¢(2,0)§_¢(1,0)dl
n

an
L 9p(20) 0 9¢(2,0)
(1,0) R (1,0)
qs v/x 2=0 dlo + ¢ ./,;:—h a"l;o

0=0 (92’

_ 410 / ° 92
z=—h a$0
ro=0
10 /o dp(2:0) dz_/o d¢p(2:0)
z=—h a"EO = z=—h 8~730 £0=0

L
H L )| )
zo=0 01z=0

dz+

o=L

resulting in

0 a¢(2,0)
/;':—h 63:0

z=0,z9=0

o =0

FYRNFCRIY

4 |z=0,r0=L

dz %( HLD)x ¢(11)+*>
“o
g

after we discarded fo_ 94(2.9) dz for L — co.

=—h 3xg zo=
This is allowed as for large @¢ we have

PplLt) — ikopMt)  for zg — oo

This implies

(1D gD 4 ) = 2k |¢(1,1>‘2 for 2 — 00

and this is a function of ¢, and t; only! From egs. (5.4), (5.5) and (5.6) we no

for zg — oo we have ¢(2,0) = qs(?yo)(g;l,tl) and this implies that fzoz_h ‘g(;oo)

0 for zg — oo.

(B.1)

(B.2)

(B.3)

w find that

dz —

co=L
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Integration of eq.(5.7) yields using egs. (3.4) and (3.2)

d(2:0)

z=—h a(l}o

hal®) = hgl(0 + AR

z=0,20=0

zo=0
with eq.(B.1) we can now find

Xt(ll 0) ¢(1 0) " (i(/)glo,l)*d)(l»l) + %)

(B.4)

2z=0,29 —00

yielding with eqgs. (5.9), (3.14) and (4.16)

10y _ 8% 20k + CyiR3

t1

=] ko!]
(o) O +8) 4 5o ACCt)P

With this result we can find an expression for & (1,0),

X0y = g° [2wko + Cylk§ — o?]] + kog .
A2 (ng _ gh) 2wh

2 A 2 2
(_._1_B(__C'gt1) + .K) + g [20.)]»0 + CQU"O a ]] S t
Cy 4w? (C; - gh)
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C  Some integral expressions

In the derivation of the expression for #(2:2) the several integrals have to be determined.
With the relations

= kptanhq

= —k,tang,
do = Potanh(Boh)
40 = —aytan(anh)

the integrals become:

/O cosh (fBo(z+ h))dz = L sinh (Boh)
h Bo

0 1 1
/ ) cosh? (Bo (2 + h))dz = 5 <h + T sinh (250h)>

/_.Oh cosh (Bo (2 + h))cos (ap (2 + h))dz =0 (ne IN7T)

0
/ cosh (B (z + h)) cos Qrdz = Iz 3_{_ 5 cosh (Boh) cos g,
N 2

- 0

(neINT)

0
/ cosh (Bg (2 + h)) cosh Qodz = -5——=5 cosh (Boh) cosh go
—h

ﬁo
_ e 2
T RZ(4kE-p2) ‘

0
/ , cosh (8o (2 4 h)) [cosh Qo cos @, + isinh Qo sin Qn)dz =

o —2kokn + i (k2 — k% + 40?)
Tobn K2 — K2 — 2 1 2ikoky

cosh gg cos g, cosh (fBoh)
(ne IN')

/Oh cosh (Bo(z + h))cos (Qn + Qp)dz =

o (k- kp)? + do?
knk? (kn + kp)2 + ﬂg

cosh (Boh) cos gn, cos g, (n,pe INT)
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0 1 .
/ cos (an (2 + h))dz = —sin (anh) (n€INT)
~h n
0 2 1 : +
/ cos” (an (2 + h))dz = = (h + - sm(2anh)) (neNT)
—_h 2 20,
0
/ cos (n (= + h)) cos (ap (2 + B)) dz = 0 (n,p€ IN*,n # p)
-k
’ (z 4 h))cosh @ 37 cos (aph) cosh g
n (2 cos = — n 0
/_hcos(a 0 oy |
(ne N%)

deift hydraulics

n

0 3
/ cos (an (2 + h))cos Qpdz = E%x_{ cos (aph) cos gp

(n,pe NV)

—403

= 7% nh) cosh?
AR + o) cos (aph) cosh” go

[Oh cos (@, (z + h)) cosh (2Q0) dz
(ne INT)

0
/ cos (e (2 + h)) [cosh Qo cos @ + ¢ sinh Qo sin @] dz =
—h

o —2koky, +i (K2 = K + 40?)
kok,p kg - k% + a% + 22k0kp

cos (aph) cosh gg cos g,
(n,p € INF)
0
/ €08 (am (z + h))cos (Qn + @p)dz =

o 402+ (kn — kp)?
knkp a2, — (kn + kp)?

cos (amh) cos gn cOS ¢p (n,m,pé€ NT)
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