
Labora to ry wave generation 

A second-order theory for regular and irregular waves in wave channels 

H.A.H. Petit, G. Klopman & A.K. Otta 

Report on desk study, H2316.20 

June 1997 



Wave generation H1222 
December 93 

Executive's summary 

The correct generation of a second order wave field in a laboratory wave tank is of 
importance in several experimental investigations, particularly those of nonlinear evo
lutions and sediment transport. In the present work, which was carried out under 
the MLTP (medium long-term planning) of D E L F T HYDRAULICS for improving exper
imental techniques, expressions are found for the motion of a waveboard to generate 
a correct second order wave field. These expressions are valid for both regular and 
irregular waves. Two important features of the procedure adopted here are that the 
computing time for the motion of the waveboard is signifcantly smaller compared to a 
method based on the frequency domain and that the accuracy of the physical repre
sentation increases with decreasing spectral width. The assumption of a narrow band 
spectrum is sufficient for realistic sea states described by spectral shapes of JONSWAP 
and Pierson-Moskowitz types. 

Results of some experimental investigations into the performance of the software based 
on the wave generation theory are also included in the report. Although the overall 
agreement between the theory and the experiment is good, some discrepancies are 
apparent from the limited analysis carried out so far, all of which cannot be attributed 
to the wave generation theory. Further analysis (and possibly a set of new experiments) 
is required in order to resolve aH the discrepancies. 
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1 Introduction 

A wave generation theory correct up to second order is presented here for both regular 
and irregular waves. Wave-board motion based only on the first order theory creates a 
second order spectrum different from the one that exists in nature. The second order 
spectrum referred to here consists of both the superharmonic and subharmonic parts. 
In addition to the bound second order components (bound to the first order components 
through the inherent free surface nonlinearity) spurious waves, termed also as the free 
waves, are generated in the tanii (see, for example, Buhr-Hansen & Svendsen, 1974; 
Flick & Guza, 1980) unless the motion of the waveboard calculated from the first order 
theory is corrected in order to minimize the generation of the spurious waves. 

Second order corrections to the motion of a waveboard for reducing spurious waves 
have been proposed by Barthel et. al (1983) at the subharmonic range and by Sand & 
Mansard (1986) at the range of superharmonics. The analysis procedure used by them 
is based on the frequency domain. In the approach based on the frequency domain, 
the second order displacement for irregular waves is expressed as a sum of the terms 
arising out of each combination of two first order components, i.e., 

N-l N N N 

x' = E E xi^(.,) + E E x l ( , , ) (1-1) 
p = l g = p + l p = l q=p 

where Xo(pq) and X2{pq) respectively represent the subharmonic and superharmonic 
part associated with components p and q, N being the total number of components. 
The required computing time for the generation of irregular waves (correct up to second 
order) is proportional to the square of the number of components compared to the 
time necessary for the first order signal. The computing time (specially on a PC) 
for the generation of second-order waves can sometimes be a critical factor since the. 
determination of the coefficients associated with each xfp^g) is time consuming. 

The theory presented here is based on a different mathematical approach. Instead of 
adopting a frequency domain analysis, we consider the time signal to be periodic with 
a slowly varying amplitude. We make use of the concepts of multiple-scale variations 
in space x and time t which have been earlier illustrated by Agnon & Mei (1985) in 
the study of the slow drift of an object subject to waves. Klopman and Van Leeuwen 
(1990) have shown the relevance of this approach for realistic sea-spectrum of the 
JONSWAP and Pierson-Moskowitz types in addition to presenting the subharmonic 
correction to the waveboard based on the multiple-scale perturbation approach. In this 
report, a complete second order solution (subharmonic, superharmonic and second 
order modulation of the first order field) is presented based on the same approach. 
The computing time necessary for the second order control signal is longer than that 
necessary for the first order only by a fraction. 
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2 Basic formulations 

We consider a wavemaker of tire piston type in translatory motion near a; = 0. The 
waves are assumed to propagate from left to right over water of constant depth h. 
The wave generation problem in the velocity potential (j), surface elevation ( and the 
wavemaker displacement X is given by the set: 

dcf> 

dz 
0 

dt dx dx ~ dz 

. d(l> 1 

d^_d^ 

dt dx 

d^ 

dx + 
d f \ ' 

dz J 
= 0 

-h<z<0 (2.1) 

z = -h) 

z = 0 

z = 0 

(2.2) 

(2.3) 

(2.4) 

X = :Y{t)) (2.5) 

requiring further that the waves are outgoing at infinity. The conditions, given by 
(2.3)-(2.5), are satisfied on the instanteneous position ofthe boundary (the free surface 
or the wave board). To express these conditions about the stiU water level and the 
zero position of the waveboard, we assume an expansion in the form of a perturbation 
series 

(2.6)-

with the parameter e = koa, ko and a being the typical wave number and amplitude 
r o s n o r + i V o l v T a v l n r pYnanslons about z = 0 of f2.3) and (2.4) eives: 

dt^ dz~ d t \ 2 \ \ d x ) 

dx \dx d t j ^ ^ ' 

dz 

1 
+ -

d^ 

g dt dzdt J 

{z = 0) 

Taylor expansion about a; = 0 of (2.5) gives 

(x = 0) 

(2.7) 

(2.8) 

(2.9) 
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We assume the motions to be nearly periodic of angular frequency u with slowly mod

ulated amplitudes. The time and the length scales of the amplitude envelope are 

assumed to be 0(£~^) times that of (27r)/w and (27r)/feo , with = gkoia.nh.{koh). 

FoUowing a procedure similar to that in Agnon & Mei (1985) (here after referred to as 

'A & M ' ) , we define the variables 

a-'o = X, Xl = ex, to = t, ti = st, - • • (2.10) 

and express explicitly that 

cf>(^) =(t>^^\xo,Z,to,Xi,ti), 

&) = C^^\xo,z,to,xi,ti), 

A'^") = A ' W ( i o , i i ) 
(2.11) 

From (2.1) we now find: 

4 1 + 4'.̂  = 0 < ^ < 0) ^2.12) 

4!' +4̂ ; = -241 {-h<z<0) (2.13) 

At the bottom we find from (2.2) for all n G : 

= 0 {z = -h) (2.14) 

At the free surface we get from (2.7) : 

4li + 9<t>^P = 0 (^ = 0) (2.15) 

4 1 + ..4^) = - 2 4 1 - (h + 4 ^ ^ ) + - ( 4 ' 4 ' ) . ^ + 
y - V - ' y ' ' " 0 / to 

At the wave board we find f rom (2.9) 

X}^^ = 4V (•- = 0) (2-17) 

^i!^ + = 4V + 4? + '^^^vaio (- = 0) (2-18) 

We seek solutions of the foUowing form: 

(<^("\C^"\'^^"^) = {4)^'^''^\&''^\X^''''^^)Q-x.^{-imutQ) (2.19) 
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where the short scale temporal variation is expressed by exp(-ia;^o). The long scale 
temporal variation with respect to ii and the spatial variation, both short and long 
scales, are contained in the terms 9!>("''")'s. In expressing the series from m = -n to 
m = n in (2.19), i t is assumed that 

conj (2.20) 

such that the resulting physical variable ^("^ etc. is real, where tj) represents (f), ( or 

X. 

Using (2.19) in (2.8) and grouping together the terms of the same order s and same 

harmonic m, the following relations are established for : 

(̂1-0) ^ 0 

(̂1,1) ^ 
9 

(̂2,1) = _ i 
•ILOC (2,1) (1,1) 

(^ = 0) 

{z = Q) 

( . = 0) 

(.- = 0) 

(z = 0) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

with 
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3 Order (1,1) solution 

For the first order and first harmonic we find: 

= ^ ( - / . < . < 0 ) (3.1) 

- a ; V i ' i ) + # p ) = 0 (^ = 0) (3-2) 

41.1) = 0 iz = -h) (3.3) 

-iuX^'''^ = (a; = 0, - / i < 2 < 0) (3.4) 

The disturbances generated by the wave maker must be outgoing at infinity. The 

solution that satisfies equations (3.1)-(3.3) and the radiation condition can be expressed 

as follows: 

C O 

</,(i.i) = aofo{z) eMikoXo) + J2 ^nfn{z) exp(-fc„.To) {x > 0) (3.5) 
- n = l 

where 

V^coshQo 

U z ) = 

y ' / i + (Sf/cj2)sinh2go 

\/2cos Qn 

with the definitions 

Qm = k„,{z + h) 

and the relations 

(3.6) 

o;̂  = Éffeotanhgo 

and for n > 0 with kn > 0: 

= —£ffcntang„ 
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The real valued functions {fo, f i , h, ••••) constitute an orthonormal set with regard to 
the inner product: 

if-9)= f f { z ) 9 { z ) d z (3.7) 

Furthermore we have ao = ao{xi,tx) and &„ = hn{xi,ti). From eq.(3.4) we can see that 

; f ( i . i ) ( f i ) = -^-lao{Q,h)fo{z) - - E hnbn{^,h)Uz) (3.8) 

Multiplication with fm{z) and integrating from — / i to 0 yields for m=0: 

X^'^'\h) = -^ao{Q,h) (3.9) 

and for m > 0 

A'(i . i )( t i ) = - i ^ & ™ ( 0 , t i ) (3.10) 

where Fo = {I • fo) and = {1 • fm)- This leads to the conclusion that 

bn{0,h) = -i^aoiO,h) f o r n G - £ V + (3.11) 

We note that ao is related to the 1st order complex surface amplitude A of the propa

gating mode through the relation 

ao '9 A. (3.12) 
2a;/o(0) 

Similarly, each 6„ is related to the surface amplitude of the evanescent mode n through 

^9 -Bn. (3.13) 
2a;/„(0) 

In terms of A and 5 „ ' s , (3.5) expressing the potential ^(^'^'(so, 2, ."Ci, ^ i ) becomes 

ci>i^'^\xo,z,xi,ti) = - i ^ 2 ! ^ A ( a ; a , i i ) e x p ( i t o ) 
2u) cosn qo 

C O 

_ » ^ ^ c o s g ^ ^ ^ (3.14) 
2w cos qn 

From (3.14) and (2.22), one has 

((^•1) = ^A(xi,ix)exp(ifcoa;o) + ^ E 5 n ( a ; i , i i ) e x p ( - f c „ a ; o ) (3.15) 
^ ^ n = l 
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The slow variations of the variables A and 5 „ ' s with respect to {xi,ti) in (3.14) are 

StiU impUcit. We postpone this discussion to a later section. 

Equations (3.9) and (3.10) can be modified to express A'^^-^) in terms of A and 5 „ ' s : 

- J „ 0 5 „ ( O , t O 

(3.16) 

(3.17) 

where 

1 + 
2qo 

ƒ -
0 hMj 

h fn[or^ 

sinh2go. 

2gn 
1 + 

sin 2qn. 

(3.18) 

(3.19) 
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4 Order (2,1) proble m 

The equations are 

and 

9 2=0 
(4.1) 

{z = 0), (4.3) 

{z = -h), (4.4) 

{x = 0) (4.5) 

v V 2 ' ^ ) = -24a [-h<z<0], (4.2) 

4 ' ^ ) = 0; 

Only those solutions of c?!)̂ '̂̂ ' which are outgoing are permitted. 

The nonhomogenity introduced in (4.2) and (4.3) require that certain solvabihty con

ditions be satisfied. This, in turn, determines the slow variation of (p^^'^' with respect 

to Xl and h. One may proceed to obtain the solvability conditions for the system (4.2) 

- (4.5) by using Green's theorem. However, this leads to a rather unwieldy form. Here, 

a different procedure is foUowed. We consider the problem in two parts. 

Part 1: 

- u ; V ^ ^ ' + 5 ( 4 ' ^ ) ) ^ = 2 ia ;4 '^) ; 

p ) ) ^ = 0; 

with no specified condition at a- = 0. 

Part 2: 

[-h<z< 0], (4.6) 

{z = 0), (4.7) 

{z = -h) (4.8) 

V ^ ? ' ^ ) = 0; 

OXq 

[-h<z< 0], (4.9) 

{z = 0), (4.10) 

{z = -h), (4.11) 

delft hydraulics 
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It is immediately clear that (4.9)-(4.12) represent the usual Hnearised wave maker 

problem and there exists a solution for any arbitrary function on the right hand of 

(4.12). We further note that [4 ' ' ^^ + 4 ' ^ ^ ] satifies the complete problem given by 

(4.2)-(4.5). 

4.1 Solution of Part 1 

From the first order solution one has 

.24i,i) = _ ^ | £ £ 2 Ë ^ M ^ e x p ( i t o ) + 
^^0^1 u dxi coshfco/i 

Ul ^ OXi cos fc-n 
(4.13) 

In order to facihtate the solution we consider 0 ^ ^ ^ = E ~ = o <^a!n ^ ^ 1 ^ ^ ^ ^ "^"^^ 
n = 0 satisfies the forcing due to the propagating mode of (j)^^'^^ and each other mode 
n, for n>l, satisfies the corresponding evanescent mode of (t>^'^''^\ 

The solution to 4>''a,n^ satisfying the bottom condition and the Poisson equation is 

exp(-A;„a;o), (ra > 1). 

2koUJ dxi \ cosh go 

ig -^'l 1 dBn (Qn sin Qr 

cosgn 

(4.14) 

(4.15) 

The solvabihty conditions can now be obtained by requiring (4.15) to satisfy the free 
surface condition (4.7) for each n. The resulting conditions after some manipulations 

< 

are 

dA 

dx] 

dB. 
^ - i C — 
dh dxi 

= 0; n G W + 

with Cg as the group velocity [i.e., Cg = d o , and C = oj/ko] and 

2g„ 
C - ^ - - 1 + 

sin2q„J 

(4.16) 

(4.17) X 

(4.18) 

Expressions (4.16) and (4.17) govern the slow variations of A{xi,h) and 5„ (a ; i , t i ) ' s 
respectively. We further note that the slow variations of A{xi,h) and 5n(a;i,^i)'s at 
a; = 0 with respect to h are also related to the first order wave maker motion X^^''^\h) 

through (3.16) and (3.17). 

delft hydraulics 
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4.2 Solution of Part 2 

The solution to (?i>p'-̂ ^ is forced by <?!>(̂ '̂ ) and ^ ' '^^ and the wave maimer motions X'^^'°^ 

and The complete solution is of the form: 

4 " ' = 2uj 

g_ 

2oj 

cosh koh 

(4.19) 

A(2-i)(0,ii) and ^l^'^^^O, t i ) 's are explicitly obtained from the condition (4.12) at the 

wave maker, i.e., 

( , , , ) C O s h g o _ g ( 2 , 1 ) ^ = 
cosh go cosg„ 

"b 

n = l 

2iu 

9 
+ 

cosh-(^o 

jshgo 

dA 

' dxi + 

QosinhQo • dA- ^ cos<5„ [ dBn 

cosh go dxi. dxi 
- X(^'')klBn + 

E cosg„ 

dBn 

dxi 
(4.20) 

and ^ i ^ ' ^ ' 's can be obtained from (4.20) by utilizing the orthogonalities of cosh Qo 

and cosg„ ' s over the interval [-h < z < 0]. An interesting feature of (4.20) is that 

the amplitude of the propagating mode A^^.i) depends on the slow variation of the 

evanescent modes M^'^^'s (since coshQo and Q „ s i n Q „ are not orthogonal). ExpHcitly, 

one has 

^(2,1) = 2 ^ t a n h 90 (2,1) + î i.i) 

2ko 

C 
1 + TT (gotanhgo - 1) 

dA 

•I 
ko 

dA 

dxi + 

^^EPT„,| | . (. = 0,(4.21) 

where 

ET„ A;otangn — 
kn 

+2 
klka 

+ 

knkp tangn 

tanhgo; ' [k^ + fc2)2tanhgo 

tan g„ 

{kl + klf (fc2 + fc2)2 tanhgo 

^0 kn 

21,2' 
1 + 

g'k (4.22) 

deift hydraulics 
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I t is convenient to express A^^-i) in terms of At,. This is done as foUows. The solvabihty 

condition (4.17) gives 

dBn ^ i dBn 

dxi ~ Cg„ dh 

and from the conditions (3.16) and (3.17) we have 

Bn{0,h) = - i ^ T ^ { 0 , h ) -
Un -tn 

Using (4.23) and (4.24) one gets 

dB 

00; ;^° '^ '^ 'knlnCg^^dh 

Thus, in terms of At,, (4.21) becomes 

1 dA 

C2 knInCgr, dh (O.ii) 

(4.23) 

(4.24) K 

(4.25) 

-2i(tanhgo)A'(^''^ + i - — 
a; 9^1 J fco Cn dh 

2Cqko 

C' A dA d A ^ [ETn] , . . 
1 -b ^ (.0 tanh .0 - 1)J ^ + ^ ^ 0 ^ E Ĉ- = 0) (4-26) 

The expression for the term [ET„] / (fc„J„Cg„) in (4.26) can be simpHhed to be 

[ET„] ^ 2h go (4 27) 

knInCg,, OJ In (̂ o + l l ) ' 

It is numericaUy more accurate to compute [ET„] / (fcn4Cg J through (4.27) than 

through computing [ETn] and (knlnCg,,) separately. 

t . O 1 d l IICIU 3UIULHJU 

The complete far field solution to <f>^'^''^^ is 

0(2.1) = -
2w 

^̂ (2.1) cosh ko{h + 3:) _ i dA QpsinhQo 

cosh koh ko dxi cosh qo 
exp{ikoxo) (4.28) 

where A^^.i) is given by (4.26). From (4.1), the second order surface elevation C^ '̂̂ ' far 

away from the wavemaker is 

^(2,1) ^ i 
^ 2 

A(24) _ i dA 

ko dx\ 
qo tanh qo 

i dA 
exp {ikoxo) + — j ^ exp {ikoxo) (4.29) 

deift hydraulics 
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4.4 Determination of A'̂ '̂̂ ^ 

Since the free surface shape near the carrier frequency is assumed to be given by C^ '̂̂ ^ 

we set the far-field condition 

((2.1) = 0. 

Wi th (4.30), (4.29) gives 

r2iN i dA ^ . i dA 
^ = i - ^ ? o t a n h g o -

ko dxi OJ oil 

A(2.I) can be expressed in terms of At, by using (4.16) in (4.31): 

(4.30) 

(4.31) 

A(2.I) = 
Ca 

qo tanh go + 1 
dA 

dh 
(4.32) 

The wave maker motion X^"^'^^ is now determined by using the condition (4.32) in 

(4.26): 

2i-£tanhgo'Y^^'^^ = 
Ca 

•I 
UJ 

C_ 

Ca 
qo tanh go + 1 

C 

dA_ .Id A i 

dh^^Lodh ko 

l_dA 

Cgdh 

2Cgko 
1 + TT (gotanhgo - 1) 

dA ., dA ^ [ETn] . ^Y.. QQ̂  

Or, in a sUghtly modified form as 

3. 
^ ( g o t a n h g o - - ) - ^ l g o t a n n g o - i ; 

2Q2 ' 

[ETn] ' 

dh 

(4.34) 

delft hydraulics 
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4.5 Surface elevation ((^'^^ 

Surface elevation Ĉ '̂̂ ^ is governed by (4.1). Because of the condition of ((^'i) vanishing 

in the far-field, the coefficient of the term exp(ifcoXo) is identically zero. From (4.1) 

one thus has 

((2,1) . ^ 

n=0 

exp(-fcna;o), a; > 0. (4.35) 

The coefficient Bn{0,h) is known in terms of A at the wave maker.- The coefficient 

B^n'^^ can be determined from (4.20) using the orthogonality of cosQ„'s and coshQo 

over [-h< z < 0]. After long, but fairly straightforward, operations one gets 

5(2,1) ^ U A ' ( 2 . I ) - 4^'^^ 

UJ 
^ kn CgCg„ tan g„ k^ + kl 

2i tan g„ ^ 1 

^° '̂ tanh go + go( 1 - tanh^ go) 

Cg„ C/Ï1 

ÖÏ1 

+i 
m 

E fcnCg„ tan g „ ^ ^ Cg^ öii 
(4.36) 

where 

CKm = -TT- [ - ^ " ( 1 - tan2 qn) + tan g„] ; (m = n) (4.37) 

and 

Cb„ ^"^ [A;^ -b fcn tan g„ tan g„i] -f-

(A;^ + kl) tang™ - 2A;™A;n tan qn] ; (m ^ n). (4.38) 

Using the relations (3.16) and (3.17), A'(i.i) and 5 „ can be expressed in terms of A 

respectively in the form 

A'( i ' i : = i ^ j M = \ ^ m H ) 

Bn = i ' - ^ ^ A { ^ M ) 
In tanh go 

(4.39) 

(4.40) 

delft hydraulics 
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Substitutions of the above two expressions in (4.36) lead to 

In J-n 

+ 
A;o/o / 1 dA 

knln\^ knCgJ dh 

kotolo 

knCg„ta.nqn \^^kmlm Cg„, 

dA_ 

dh 
(4.41) 

Replacing the term containing Bn in (4.35) an expression for Ĉ '̂̂ ^ at a: = 0 is obtained 

as 

((2.1) = ^ i5(2-i)(0,^a) 

n=l 

1 fcpJo / u 2 / i ^ \ dA_ 

^2uknln [gin / ^ i l 
a; = 0. (4.42) 

or equivalently, 

((^•^^0,^1) 
^ tangn \ ^(2,1) _ '^kplp I' g A:'(i.o) A 

- I n ; 

9A ^ 1 
+ 

g \ Inkn taxikqo klta.nhqoCg„In 

~ 1 C b „ „ \ , 1 kolo f^^h 
E 

2tanhgoCgn VT Î ^"^-^^ '^^m 

+ 2uknln \9l 
+ 1 

n 

(4.43) 

delft hydraulics 
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5 Subharmonic solution 

Because <^(i'°) satisfies 

0(i'O) = 0 

4V°^ = 0 

{-h<z< 0) (5.1) 

(z = 0,-/1) (5.2) 

(a; =,0) (5.3) 

we conclude that (pi^'^") = (p^^'^Kxi^h) is independent of short scales. For the second 

order, zeroth harmonic we find the equations 

,(2,0) = 0 

1.1) + *) 

{-h<z< 0) (5.4) 

{z=-h) (5.5) 

{z = 0) (5.6) 

{x = 0) (5.7) 

Our interest is the description of correct which is related to <piV°̂  and 4o'°^ in 

addition to the first order quantities through (5.7). I t is shown in Appendix B that an 

alternative formulation for X^^'°^ is possible without explicit dependence on <?!)(2.°); 

4 ' " ^ = + ^ (^4o'^)*<^'^'^^ + *) 
{5.i 

The solution of the long scale variation of 0 (^ ' ° ) is discussed in Appendix A. Allowing 
only the form that corresponds to a propagating bound long wave {i.e. we assume the. 
motion of the waveboard is such that spurious long waves are absent), we get 

ifi.O^ ff2 2u;fco + Cg (fcg - CT^) ̂ ^^^ n Q . - n -I. P] (!^.Ct\ 

Cl-gh 

where 

B{e) = / ' \ A { ^ ) ? d ^ 
Jo 

(5.10) 

and S and P are constants. After substituting (5.9) and (3.14) in (5.8) and integrating 

with respect to ti, an expression for /^(i.") results: 

A'(i.°)(^i) = 
ff2 [2uh:Q + Cg (fcg - (T^)] _̂  fco5_ 

4^2 (C2 - ff/i) 2tu/i 

ff2 [2cufco + C,[fc2-a2]] 
-I r i t l 

4a;2 - gh) 

-^B{-Cgh) + K 

(5.11) 

delft hydraulics 15 
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with two unlinown constants S and K. 

We set K to be zero corresponding to the initial position of the waveboard being at 

zero and determine S such that the the time average of tends to zero. We 

recognize that \A{ijj)\ is a slowly modulated function making B{9) to be oscillating 

about a Hnearly increasing function of time: 

B{-Cgh) = - < >Cgh + osciUating function (5.12) 

where < ^ > denotes the time average of | 4 ' . We require therefore that 

2^ {c'g - gh) ko 
S = - \ l + 

'2uko + Cg {kl - cr2)] gh 

The subharmonic waveboard motion is then given by 

(5.13) 

A'(i'°)(ti) = -
1_ {ff2 [2u;fco + Cjfcg - cr2]] ^ kog_ 

Ca 
a 

-Cgh 

4u^C^-ghj 2w/i 

( ^ 2 ( 0 ) - <'l^>)d0 (5.14) 

The constant P in (5.9) can remain as an arbitrary additive constant. Using ' • ' to 

indicate that the expression is taken at ^ = 0, we find f rom eqs.(2.23) and (3.2) that 

g 
A(I-O) + — <T 

(1,1) 

leading finally to 

^(2,0) = _ i -Ca 
V ^-'[Cl-gh) ) ^ 

l ^ f > + ' C ^ < 
g\kl-a^) a 

-^2 1̂ 1 
(5.15) 
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6 Order (2,2) solution 

The equations for ^(2,2) ^^.Q 

-40.^(2-2) + 5^2,2) ^ (^(1,1)2 ^ ^(1,1)2) + 

g \ ^ XQ 

4 . 2 ) ^ 0 

I f we write (̂ (̂ '̂ ^ = E~=o Cn with 

co(a;o,^,a;a,ii) = ' ^ ^ ^ M ^ ^ ' C.^i)exp(iM-o) (6-5) 

( - / l < .2 < 0) (6.1) 

( . = 0) (6.2) 

{z = (6.3) 

(x = 0) (6.4) 

and 

CQZ = fcotanhQoCo 

= -A;„ tan ( g „ ) c „ n £ N+ 

CQXQXO — ~koCQ 

The expression for the second equation for <p(2>2) becomes: 

_4^2^(2,2) ^ ^^(2,2) ^ 

-3ia;fc^ ( l - tanh^ go) CQQA^ ( x i - Cg^i) exp(2ifcoa;o) 

CO 
+iu E [kl - '^ikoK -kl + 6CT2] C O „ A ( - Q i i ) • 

n=l 
A (»! - Cgii) exp ((-A;„ + ikp) XQ) 

C O C O 

+iw Ë E [2̂ n̂A;p + fc^ + 3cr2] ^^^^2 (_c,ti) exp ( - (A;„ + fcp) .̂ o) (6.6) 
n=l p=l 
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with 

°° - 4u;2' 
ig'^kl (h + sinh^ go) cos^ g„ 

°" iw'^kl [h - a--^ sixi^ qn) cosh"^ qo 

g'^kl (h + cr-i sinh^ go)^ cos^ g„ cos^ g^ 

" 4a;2fc3A;3 {h - a'^ sin^ g„) {h - a'^ sin^ gp) cosh-* go 

Where ƒ and F have been eUminated using definition (3.6) and the relations 

i.o = ( l . / o ) = ^ (6.8) 
KQ 

Fn = {l- fn) n G JV+ (6.9) 

fc2 
Functions that satisfy both eq.(6.1) and (6.3) look Uke: 

Snp = {ex^{ianp{z + h)) + ex^{-ianp{z + h)))-

{Dnpi exp (Q„p.To) + Dnp2 exp {-anpXo)) (6.10) 

where Dnpi and Dnp2 can be arbitrary functions of the slow variables, a„p is a constant. 

Let us assume that for the particular solution we have (̂ (2,2)P ^ (̂2,2)Q ^ (̂ (2,2)R 
where (/>(2.2)̂? satisfies eqs.(6.1),(6.2) and (6.3), and <?̂(2,2)Q satisfies the following four 

equations, given by (6.1), (6.3) and 

_4̂ 2̂ (2,2)Q ^ ^̂ (2,2)Q ^ 0 = 0), (6.11) 

42,2)Q ^ _2ic.A'(2.2) - - 4f (•- = 0) (6-12) 

Wi th 

C O C O C O 

4'')^ = 5ô o + Ê .1) + EE^5,- (6-13) 
n = l n = l p = l 

From eq.(6.6) we see that the choice: 

'^np ~ kn kp 

"nO = (^On = - kn 

a^o = 2iko 

(n > 0 , p > 0) 

{n > 0) 

( i , i G { 0 , l , 2 , . . . } ) 

is imperative. 
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Substitution in eq.(6.6) yields: 

R 
001 

(6.14) 

D R 
nOl 

ScuCT̂  cosh (2go) 

-ikpkn [kl -kl + 6(7̂  - iikokn] Con A {-Cgti)A {xi - Cgh) 

2u [2kokn + i {kl - kl - 4a'^)] cos g„ cosh 50 
( n > 0 ) (6.15) 

CnpA^-Cgh) (^>o,p>0) (6.16) 2knkp + kl + 3(72 

COS gn cos gp 

I f we take: 

2u [4(T2 + {kn - A;p) 

^(2,2)Q ^ ^ 

n=0 

with 

= (exp ( i a „ {z + h)) + exp {-ian {z + /i))) ( i ^ ^ i exp (a„.To) + i^^2 exp (-o;„.-Co)) , 

we find that in order to satisfy eqs.(6.1), (6 .11) and (6 .3) combined with a radiation 

condition at infinity we must require: 

4(7 = -an tan (a„/i) and D'^^ = 0 for n > 0 

ao = iPo with 4cr = /?o tanh {f3oh) and I?^2 = 0 

Together with the boundednes of the solutions and the radiation condition at infinity 

this yields: 

^(2,2)Q _ 9̂  j-)Q__ pQĵ l̂ ^ (Bn(z A- h)) exD (i3nxn) 4- 2 T D?o cos (an (z + h)) exp {-anXo) 
nz=l 

From eq.(6.12) we now find in a; = 0: 

-2ia;r%'(2.2) _ 

^(2,2)Q ^ 2i/3oi^gL cosh (^0 {z + h))-Y^ 2a„i?^2 cos (a„ {z + /i)) = 
n=l 

klg^ [h + cr-1 sinh2 go) A {-Cgh) 

4u>'^ cosh2 go 

-AikoD^^i cosh (2A;o (2: + h)) + 
C O 

- ^ 2 ( jfco - fcn) I ' S J I [COS Qn cosh Qo + i sin Qn sinh Qo] + 

fcoCo + E ^nCn 
n=l 

71=1 
0 0 0 0 

+ E E 2 (^n + fcp) 1^5,1 cos ((fc„ + Â p) {z + h)) (6 .17) 
n=l p=l 
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After multiplication of this equation with cosh (^0(2 + h)) and integrating from -h 

to 0 we find after some manipulations where we make use of the integrals given in 

Appendix C: 

Po (h + : ^ sinh {2^oh)] D^^ = -2iuX^^'^^^sm)i {(3oh) + 
\ 2po J po 

klq" (h-a-^ sinh^go) A ( - C , i i ) 

4a;'* cosh^ go 

3 A;g ( / i + c T - i sinh^ go) 

- I 

2 cosh^ go 
•cosh {l3oh)uA{-Cgti)x 

cos^ ĝ  

R _zl^!_ 
4ï^^0i?001^,2 ( 4 f c 2 _ ^ 2 ) 

+ 

cosh {Poh) cosh^ go + 

fco „=1 «n k l - k l - f 3 l + 2ikokn 

2 , , _2 
(6.18) 

for a- = 0 

From this expression we can directly find D^-^. In order to avoid the occurance of waves 

with frequency 2u we should choose -Y^ .̂̂ ) such that D -̂̂  = 0. This yields in x = 0: 

Po 

2iu sinh {(ioh) 

klg^ (h + C7-1 sinh^ go) ^ ( - C g i i ) 

4a;'' cosh^ go 
^' ^° cos}x{Boh)LüA{-Cgh) + —•I 
2 kp — I3Q 

•ik?,(h + c r ~ l sinh^ go) 

. i ^ V _ 11 ,osh (/3o/i)u;A ( - C g i i ) X cosh go 

cos^ g„ 

(A;2+/32) (/i - a - i s z V g n ) 

-4CT3 

+ 

4ifco-D^oi m - Pl) kl 
cosh (/3o/i) cosh'' go+ 

+ ^ cosh go cosh (Poh) E —^j—^^noi—.o ","t ' ̂  "9 , ^-i T_ ^ cos g^ 
fco - -Po + 2ifcofcn 

(6.19) 
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Multiplication of equation (6.17) with cos ( a „ {z + h)) where me]N+, and integrating 
from -h to 0 (again making use of Appendix C), yields in x = 0: 

kl (h + a-^ sinh^ qo) A {-Cgh) 

4cr2 cosh^ go 

3 ojkp {h + <T"i sinh go) 

3 . kp 

2~kl + al 

A{-Cgh)(^os{amh) 
2 cosh^ go 

ojA{-Cgh)^o^{amh) + 

cos^ g„ 

]^,kn{kl-al){h-a-Um^qn)\ + 

cos (a^ / i ) cosh go + 

2a °° ika-kn^n -2kokn + i {kl - kl+ Aa^ 

ko {4kl + al) 

LCf / I N r -^'iko-Krij^R — ^ i v u - v n I - - U I / „ I 

- COS (a . / . ) cost fc, I fcj , fc; + + 2it„*„ + 

- 2 . cos ( a „ k , E £ ^ Z ) « . + - * - J («-2°) 

This yields an expUcit expression for D^^^^ for m = l ( l )oo . Wi th equation (6.17) we 
can now determine (̂ (2,2)Q^ fj-om (6.13) we find (/>(2-2)«; the sum of both should satisfy 
eqs. (6.1) to (6.4). Solutions of the homogeneous equations: 

4a + 4'/' = 0 

-4cu2</,(2.2)+5<^(2.2)=:0 

<̂ 12'2) = 0 

{-h<z< 0) (6.21) 

{z = 0) (6.22) 

( : J = -h) (6.23)-

(x = 0) (6.24) 

with 

n=0 

5 f = (exp {ian {z + h)) + exp ( - j a „ (z + li))) [d^I exp (c^„a;o) + -D^2 exp (-OnXo)) 

satisfy (6.21) and (3.5). Equation (6.22) supplies us with the conditions: 

4(7 = an tan ( a „ / i ) , -D^i = 0 for n = l ( l ) co 

delft hydraulics 
21 



Wave generation H1222 December 93 

and 

ao = ipo, 4<T = Po tanh (Poh) ,Dg = Q 

Furthermore we assume a radiation condition at infinity as well as boundednes of the 

solution for aR xo > 0, whence: 

^(2,2)H ^ 2Dg cosh {Po {z + h)) exp {iPoXo) + 2 f ^ D g cos ( a„ {z + fi)) exp {-a^xo) 

From boundary condition (6.24) we find: 

C O 

= 2ipoDg cosh {Po {z + fl)) - 2 E (^nDn2 COS (a„ (̂ r + /l)) = 0 
^(2,2)i? 
•'XQ 

71=1 

By making use ofthe orthogonality of the functions cosh (^o {z + h)) and cos («„ {z + /i)) 
for ra = l ( l )oo on the interval from - / i to 0, as given in Appendix C, we find that: 

for aU XQ and z. 
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7 Summary of the first- and second-order solution 

The waveboard displacement X is given by 

X = [[X^^''^ + A-^^.D) ex^i-iuot) + *] + [x^'''^hx^{-2iuot) + *](7.1) 

where 

;^(2,2) 

1 / g2 [2a;A;o + Cg[kl - a^]] ^ kog_ 

Cg \ 4a;2 (C2 - gh) 

[ A \ e y < A2 > ) de, 

2uh 

(7.2) 

(7.3) 

^ ( ^ 0 tanhgo - 2 ) " l ^ i l o tanhgo - 1) + 

I gCg gCg 
^W2C2 ^ 2C3 

2ia; sinh (Poh) 

[ETn] \1 Ö A _ gCg_ M)A 
ttknInCgJ\dt 2C3 

(7.4) 

. ^oö ' + sinh2 go) A {-Cgt) 

Auj'^ cosh2 go 
l i ^ - : , ^ cosh {f3oh)uA i-Cgt) + 
2 fc2-/32 

2 cosh2 go 

yo j 
- ^ c o s h ( / J o ' i ) i j A ( - C j i ) x 

E 
cos2 g„ 

b l ^ n ( f c 2 + ; 9 2 ) ( / ^ - ^ - ' ^ ^ « ' 5 n ) 
+ 

- 4 ^ 2 
'^ikoDgij—^ -r^^ cosh (/5o/i) cosh2 go+ 

2^ 1, . . . . . ^ ifeo - fc„ -2feofcn + i {kl - fcp + 4cT̂ ) 
- cosh go cosh {Poh) X, - fc;^^noi ^2 _ kl-f3l + 2ikokn 

+2a cosh (/3o/.) E E î Si T X " ? r 4 - y f + t 2 ' 

„=1 p _ l «^n/Jp (fc„ + Kp j + Po 

cosg„ 

(7.5) 
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The surface elevation ( at a; = 0 is given by 

^ = ^(2,0) ^ [(^^(1,1) + ^(2,1)^ ex^i-iuot) + *] + [C^ '̂̂ ^ exp(-22u;o^) + *] (7.6) 

where 

((2,0) = _ i 

V 4cu2 (C2 - gh) j 

((1.1) 

((2,1) 

'2uh 

1 1 

n=:l 

4u;2 

and 

= E 
71=1 

dt 

(7.7) 

(7.8) 

(7.9) 
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8 Experimental measurements 

A series of tests were performed to verify tlie second order wave generation theory as 
described earlier in this report. Two different sets of experiments (similar to those 
reported in Kostense, 1984) were performed, the first set to analyse the generated 
subharmonic motion due to a bichromatic signal and the second to analyse the super
harmonic elevation due to a monochromatic incident field. 

The experiments were conducted in a flume (Scheldegoot) which is l m wide, 1.2m 
deep and 55m long. During the experiments a beach of slope 1 : 5 existed with its 
toe about 43m away from the mean position of the wave maker. Maximum value of 
the refiection coefficient of the primary waves was found to be 20% over the entire 
range of the frequencies tested. Resistance-type wave gauges were used to collect the 
time record of the surface elevation and a probe was fixed near the wave maker^ to 
record the displacement of the wave maker. The wave gauges and the data-acquistion 
system were tested prior to the experiments to ascertain their reliabihty. In all cases, 
waves were generated for sufficiently long time (for about 5 minutes) and the reflection 
compensation mechanism was activated to reduce reflections from the waveboard. 

Detailed measurements of surface elevation were also done during a later test (Klopman; 
1993) using the second order wave generation theory. The results of subharmonic 
analyses of these tests are also included in this report. 

8.1 Measurements and analyses: Subharmonic elevation 

The experiments are described in three groups: 'ba', 'be' and '#wbo, #wbn ' . Surface 
elevation was recorded at four locations (table 8.1) during the 'ba' and 'be' tests and 
at six locations (table 8.2) during the '#wbo, #wbn ' tests. The analysis procedure is 
as follows: 

1. Amphtudes and phases at the primary frequencies / i , ƒ2 and the subharmonic 
excitation 1A - ƒ21 at each location are obtained from the time record of the 
measured elevation by Fourier analysis. 

2. The incident and reflected amplitudes of the carrier waves are determined from 
the amplitudes at two 'suitably' chosen wave gauges. ('Suitably' chosen wave 
gauges mean that the relative locations of these wave gauges give the best 
resolution of the different components). These measured amplitudes of the 

a;i(m) X2{m.) xs{m.) X4{m) Test 

7.00 11.25 15.50 12.50 
7.00 15.00 23.00 16.25 
7.00 11.25 15.50 12.00 
7.00 15.00 23.00 15.75 

ba-1, ba-2 
ba-3, ba-4 
be-1, be-2, be-3 
be-4 

Table 8.1: Locations of the wave gauges from the wave maker for the 'ba' and the 'be' tests. 
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a;i(m) X2{m) 0:3(111) a;4(m) a;5(m) a;6(m) Test 

12.50 18.50 22.15 22.85 26.32 34.50 
10.50 16.50 22.15 22.85 28.50 34.50 

#wbo 

#wbn01-19 

Table 8.2: Locations ofthe wave gauges from the wave maker for the '#\vbo' and '#wbn' tests. 

incident carrier waves are used in getting the theoretical amplitudes of the 

bound long waves. 

3. The harmonic amplitudes at A / = \ f i - ƒ21 are analysed to give amphtudes of 

free long waves and bound long waves assuming that the subharmonic surface 

elevation consists of the following components: 

(a) incident bound wave 
(b) incident free wave 

(c) reflected free wave 

Three wave gauges are needed for the analysis. These three wave gauges are 

'suitably' chosen out of the four or six wave gauges used during the experiments. 

Bound long waves associated with the reflected primary waves are assumed to be neg
hgible in the present analysis. This is based on the ground that the amplitude of the 
bound waves under a group is proportional to the product of the Ist-harmonic amph
tudes of the carrier waves. Thus, the bound long waves associated with a maximum of 
20% reflection of the primary waves can only be as large as 4% of the incident bound 
long waves. Results of the analyses are shown in tables 8.3 and 8.4. a;/ represents 

(expt. measurements) (mm) th 
"•lb 

test f l , f2 ai aib (mm) 

ba-1 0.48, 0.33 54.4 11.4 4.7 1.4 5.9 

ba-2 0.48, 0.36 54.7 11.1 4.7 1.1 5.3 

ba-3 0.48, 0.39 54.3 12.4 4.7 1.6 5.3 

ba-4 0.48, 0.42 54.3 11.8 5.3 1.7 4.7 

be-1 0.69, 0.54 .34.7 28.2 3.8 0.2 3.9 

be-2 0.69, 0.57 34.4 28.2 3.6 0.3 3.7 

be-3 0.69, 0.60 34.5 28.4 3.8 0.3 3.5 

be-4 0.69, 0.63 34.1 28.3 3.1 0.6 3.3 

Table 8.3: Measured amplitudes of subharmonic waves due to a bichromatic signal, h = 0.5m. 
ajj* denotes the theoretical value of the amplitude of the bound long waves (Laing, 1986). 

the ampHtude of the free long waves propagating away from the wavemaker. The am
phtudes of the free long waves from the beach are not shown in the tables. In the 
series 'ba' and 'be', wave gauge 4 was optimally located relative to gauge 2 in order 
to analyse the the carrier waves. The incident and reflected ampUtudes of the carrier 
waves in table 8.3 are obtained from these two gauges. The amphtudes of the subhar
monic surface elevations are obtained from three wave gauges which give the largest 
determinant of the sytem of equations. 
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Comments on the results 

Two aspects of interest in tables 8.3 and 8.4 are the comparison of the analysed and 

the predicted value of the bound long waves and the ampHtude of the incident free long 

waves. The ratio of ampHtude of free waves to that of bound waves is largest in the 

ba-tests, being about 29%, and smallest in the be-tests, being about 6%. There are 

a few factors which can contribute to the deviations of the analysed results from the 

expected values, i.e. ampHtude of the bound long wave is as predicted by the second 

order Laing theory and the incident free wave is zero. These factors are: 

1. 
2. 

3. 

difficulty in the analysis of long waves. 
the ampHtude of the incident free wave is not only a result of the second order 

wave-generation, but also depends on the reflection compensation mechanism 

of the waveboard. 
higher order effects, more pronounced in ba-tests. 

The diflaculty in the analysis of long waves in a wave flume can be explained by con

sidering the length scales of modulation i i , L2, £ 3 associated with the components 

to be anlysed, i.e.; 

• Ll = Xif/4: (long free waves from the wavemaker -|- beach) 

• L2 = Xi}Xib/{2{Xif + A/6)} (long free waves from the beach + incident long 

bound waves) 

. £ 3 = A ; / A ; 6 / { 2 | A ; / - A(6|} (incident long free waves + incident long bound 

waves) 

where Xif and A(6 denote respectively the lengths of the long free waves and the long 
bound waves. The wave gauges should have separation distances of roughly X i , £ 2 and 
Ls for a good resolution of the subharmonic components. These length scales for the 
series 'ba', 'be' and '#wbo, #wbn ' are presented in table 8.5. I t is clear that the wave 
gauges cannot be ideaUy located in a wave flume of effective length less than 43m to 
resolve the free and bound components for quite a few of the conditions in 'ba' and 
i t , _ ) A , „ .F4 .1 ,„ „„„^A^^^r, ^-f+V,r> -sTiol-rreio fz-iT i r a T i m i a c o n p r n t i n n r l i s ta .Tir . f iS n f t h e 

ut: . .rt. l i i C d D U i C W i t f X l C ö W U . l J . U . X i c : o o \ J i V±L^ t^xi^Aji-J iv-.-!. T ^ A - i i ^ ^ . . - ^ . ^ j ; . ^ ^ ^ 

wave gauges can be given by the determinant of the system. We show in table 8.6 the 

values of the determinant D for a few speciflc cases. 

test f l , f2 

(expt. measurements) (mm) 

ai a2 aib aif 

tk 

(mm) 

#wbo03 0.588, 0.735 

#wbn l7 0.606, 0.758 

48.8 35.0 5.1 0.6 

48.4 35.1 5.1 0.4 

5.9 

5.5 

Table 8.4: Measured amplitudes of subharmonic waves due to a bichromatic signal, h - 0.5m. 
-,ih denotes the theoretical value of the amplitude of the bound long waves (Laing, 1986). 
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series Ll (m) L2 (m) L3 (m) 

ba-1 3.7 3.4 42.2 

ba-4 9.2 8.3 80.5 

be-1 3.7 3.0 15.7 

be-4 9.2 7.2 32.7 

#wbo, #wbi i 3.7 2.9 13.8 

Table 8.5: Length scales of modulations of subharmonic surface elevation for the series 'ba', 
'be', '#wbo', '#wbn'. 

test gauge 1 gauge 2 gauge 3 D 

ba-1 7 11.25 15.5 1.14 

ba-1 7 11.25 12.5 0.49 

ba-1 11.25 12.5 15.5 0.35 

ba-1 (*) 7 10.6 49.0 4.25 

be-1 7 11.25 15.5 2.5 

be-1 (*) 7 10.0 20.0 4.6 

be-4 7 15.0 23.0 2.9 

be-4 (*) 7 15.0 33.0 4.6 

Table 8.6: Values of the determinant D depending on the locations of the wave gaues (in meters 
from the wavemaker). The '(*) ' denotes a sort of ideal configuraton ofthe gauges based on the 
length scales of modulations. 

8.2 Measurements and analyses: Superharmonic elevation 

In the tests conducted to analyze the performance of the generated superharmonic 
held, only monochromatic incident wave field is considered. The nondimensional wave 
number kh ranges from 2.7 (deep) t i l l 0.5 (intermediate depth). Surface elevation is' 
again recorded at four locations as shown in table 8.7. Amphtudes of the incident and 

0'-. '̂m ^ 
w 1 v"*y 

T r , f -m ^ 
~ J V — / 

x.ifm) 
•- V — / 

Test no. 

14.16 15.00 15.92 15.46 sh-1 

14.58 15.00 16.30 15.65 sh-2 

14.16 15.00 17.10 16.05 sh-3 

14.30 15.00 16.40 15.70 sh-4 

Table 8.7: Locations of the wave gauges from the wavemaker for the 'sh'-tests. 

reflected carrier waves are analyzed from surface elevation at stations 1 & 2. Table 8.8 
shows the analyzed values of the superharmonic amphtudes, the bound component a2s 
and the incident free component a2f, for a given first order ampHtude a. Magnitudes 
of the components a2s k a2f show sHght variations depending on which three gauges 
are considered for the analysis. The Hsted values of the superharmonic components are 
based on the three locations for which the determinant D o f the system is the largest. 
I t is seen f rom table 8.8 that the wave gauge locations are far from ideal, particularly 
for the test case sh-4. Further, there is no clear trend of reduction of the ampHtude of 
the free waves. Besides the location of the wave gauges there are a few factors which 
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(expt. measurements) (m) (theoretical) (m) 
„th „th 
^•23 °'2f 

D 

kh a 

(theoretical) (m) 
„th „th 
^•23 °'2f 

sk-1 2.7 0.04878 0.008582 0.001105 0.007423 0.002722 3.6 

sh-2 2 0.04981 0.006472 0.002133 0.006172 0.002263 4.3 

sh-3 1.1 0.04091 0.004099 0.000598 0.004125 0.001925 1.4 

sh-4 0.5 0.02981 0.005428 0.005310 0.005849 0.004679 0.9 

Table 8.8: Measurement of the superharmonic components. 02 / denotes the measured am
plitude of the superharmonic free waves from the wavemaker and at,) denotes the amplitude 
produced by a sinusoidally moving piston wavemaker (FUck & Guza, 1980)... 

can contribute to this problem: 
1. actual superharmonic correction to the waveboard in the the 'wave generation' 

software may not have been updated from the old version to the one described 

in this report. 

2. amplitude of the incident free wave depends not only on the wave generation 

theory, but also on the reflection compensation mechanism. 
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A Derivation of (j)^^^^^ 

Up to the third order in £, we find: 

udz = I (j>xdz + + z^^z)dz = 
J-h J-h Jo 

f + eVl? + e^^f} + eViV + ̂ Vi?)^- + 
J—h 

where ' • ' indicates that the expression is talcen in z = 0. This imphes that the 

continuity equation 

can, up to third order in s, be written as: 

J —h 

We now have for the fi.rst order, zeroth harmonic: 

as was to be expected from eqs.(5.1) to (5.3). For the second order zeroth harmonic 

we find: 

/° &ldz + (CiJ'^^V&^) + *) + (C(^'^)*4o'ii + *) = 0 (A.2) 
J—h 
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as ( ( 1 ' ° ' = 0, and for the third order zeroth harmonic: 

d f ' ° ^ + / ° + « J ) ^ ^ ~ + h & + + *) + 

2{ó'''H^J^ll + *) + ic&'H^^'^ + *) + i&*4>g''^ + *) + 

( d ^ ' ^ ) > i a + * ) + ( c ^ ^ ' ^ ' v i a + * ) + ( c S ' ^ ^ v i f ) + * ) = 0 (A.3) 

because (f>^^'°^ is independent of the short scales. Wi th the use of eq.(2.23) we find the 

following wave equation for (p^^'^"^: 

J — h 

Mc^'''^*& + * ) + K d V ^ ^ ^ i V ^ ' + *) + ^ ( d f + *) + 

K c ( ^ ' ^ ) & t + *) + + * )+^(cS ' ' )*4f ^ + *) 

r (24ÏÏ + & ) d z - 2a;(i^(^-^)>iÏÏ + *) " + *) 
J —h 

After the terms in the right-hand side that are third order in the wave height have 

been neglected, the wave equation becomes: 

-2a;(i(^(i- i)>io'S + *) 

By neglecting the higher order terms in the wave height, we have reintroduced the XQ 
dependence of the right-hand side. In order to restore this we only take that part that 
does not depend on XQ, SO we leave out the influence of the evanescent modes. The 
equation now becomes with the use of (3.14): 

C - . / ^ « ] = [Cgikl - + 2-fco] . (A.4) 
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To find the solutions of this equation that only depend on {xi - Cgh) we can use the 
fact that the right-hand side is a function of (a;i - Cgh)- We find: 

With the definition B{e) = Jp |A(V>)p#, we find the foUowing expression: 

(A.5) 

(,,0) ^ j^2uko + Cg{kl -<r') _ ^^^^^ + 5 . _ Cgh) + P) (A.6) 
4cj2 Cl - gh 

where S and P are constants. 
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B Derivation of X^^^^^ 

I f we apply Green's theorem on (p^'^'^'i and fli^^.o) f i ^d , with 

G = {(a;o, z) 6 iR2lO < xo < i A - / i < ^ < 0} 

and V as the gradient operator in XQ and z: 

1,0)^0(2,0) . 

(1,0) 

2=0 

(1,0) 

xo=0 

' 0 9<^(2,0) 

2,0) iL<^(l ,0)^; ^ 
on 

0 0(^(2,0) 

;i dxQ 

dxo + </>(^'°) £ dz + 

0< (̂2,0) 

dxo 

=-h dxQ 

0 

+-
L 

dz 

£)< (̂2,0) 

370=0 

dxo 
070=0 

dxc 
2=0 

resulting in 

0 90(2,0) 

a;o=0 
z=0,a;o=0 

r , - A ( l , l ) * A ( l - l ) ^ 

2,0) 
after we discarded - 5 ^ 

This is allowed as for large XQ we have 
xii=L 

dz for i CO. 

^ L a ^ « f c o 4 ' ^ ^ for x-o -^o) 

This imphes 

for -+ 00 

(B.2) 

(B.3) 

and this is afunction of x i and only! From eqs. (5.4), (5.5) and (5.6) we nowfind that 

for So ^ 00 we have ^^( ,̂0) = 0(2,0)^2.^^-^^^ ^j^jg imphes that 

0 for .To —^ CO. 
\xo=L 

dz 
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Integration of eq.(5.7) yields using eqs. (3.4) and (3.2) 

dz + ( i ^ o ' ^ ' V ^ ^ - ^ ^ + * ) 

1 0 = 0 

z=0,a;o=0 

with eq.(B.l) we can now find 

4'^ = ^ + ^ + *) 

yielding with eqs. (5.9), (3.14) and (4.16) 

2=0,a;o—*co 
(B.4) 

(1,0) ^ Nfco + CM - (^^^_Cght + 5 ) + \A{-Cghf 

W i t h this result we can find an expression for X^^'^^: 

.Y(^'° ) ( i i ) 
' [2cufco + Cjfcg - 0-2]] hQg_ 

4a;2 q - g/i 2a; 
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C Some integral expressions 

In the derivation of the expression for (j)^^'^^ the several integrals have to be determined. 

Wi th the relations 

a = ko tanh qo 

= —knt&nqn 

4cr = (3o tanh {(3oh) 

4a = - a :„ t an ( a„ / i ) 

the integrals become: 

C cosh (/3o {z + h)) dz = sinh {(ioh) 
J-h Po 

1° cosh^ {Po {z + h))dz = Uh + ̂  sinh{2Poh)) 
J-h ^ \ ^Po / 

C cosh (po {z + h)) cos (an {z + h)) dz = 0 {ne 
J-h 

/

o 3o-
cosh (^0 {z + h)) cos Qndz = cosh (Poh) cos q„ 

(n G i V + ) 

/ ° cosh (/5o + /i)) cosh Qodz = y y - ^ cosh (/?o/i) cosh go 
J-h '̂ o ~ Po 

j-O —4(7'̂  O 
/ t , / /3 t . ,„„1, /'0/n-^ W~ msh (R^h\ rm^h^ nr^ 

J "'^' ^'^'^ ^ k'^ {ik'^ — P"^) 

fO 

j cosh {Po {z + h)) [cosh QQ cos Q„ + i sinh Qo sin Q„] dz = 

<T -2kokn + i (fcH - fco + 417^) t, 1, /-fl ^̂  
fco/sn '̂ o - - /9o + 2̂ A;ô •„ 

(n G 

/-O 

y cosh (/?o + / i ) ) cos (Q„ + Qp)(i2; = 

_ a ( k n - k p f + Aa^ ^^^^ ^^^^^ ^^^p g 

^ ^ n ^ {kn + kpY + Pl 
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r cos (an {z + h)) dz = — sin (a„/i) {n G 1N+) 
J-h 

r cos^ (a„ {z + h))dz=l(h+ sin (2a„/i)') (n G iV+) 
J-/! 2 \ 2an / 

r cos ( a „ ( ^ + /i)) cos (ap ( 2 + /i))(i^r = 0 {n,p E M+,n p) 
J-h 

I cos ( a„ {z + /i)) cosh Qo = 0 "^ ,̂2 ( " " ^ ) 
7-/1 Cïn + ^0 

(n G iV+) 

ƒ cos (a„ (.2 + /),)) cos Qpdz = ,^"^2 {^nh) cos gp 
7-/i fep — C^n 

(n,pG iV+) 

cos (an {z + /i)) cosh (2Qo) dz = , ^ " t " ^ , ' ^ « ^ ( " " ^ ) "^^^^^^ ^0 

«0 l^^O I '^n! 

{n G iV+) 

/ C O S (an (^ + h)) [cosh Qo cos Qp + i sinh Qo sin Qp] di: = 
—h 

^ -2kokp + i(kl-kl + ia^) 

A;ô > fc5 - kj + al + 2tkokp 

{n,pelN+) 

/ cos (a„^ ( 2 + cos (Qn + Qp)d^ = 
J-h 

a 4cr̂  + (fen - fcpf m, p G W + ) 

KnKp a^ - {kn + kp) 
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