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ABSTRACT/RÉSUMÉ 

Labour Market Mismatch and Labour Productivity: Evidence from PIAAC Data 

 This paper explores the link between skill and qualification mismatch and labour productivity 
using cross-country industry data for 19 OECD countries. Utilising mismatch indicators aggregated from 
micro-data sourced from the recent OECD Survey of Adult Skills (PIAAC), the main results suggest that 
higher skill and qualification mismatch is associated with lower labour productivity, with over-skilling and 
under-qualification accounting for most of these impacts. A novel result is that higher skill mismatch is 
associated with lower labour productivity through a less efficient allocation of resources, presumably 
because when the share of over-skilled workers is higher, more productive firms find it more difficult to 
attract skilled labour and gain market shares at the expense of less productive firms. At the same time, a 
higher share of under-qualified workers is associated with both lower allocative efficiency and within-firm 
productivity – i.e. a lower ratio of high productivity to low productivity firms. While differences in 
managerial quality can potentially account for the relationship between mismatch and within-firm 
productivity, the paper offers some preliminary insights into the policy factors that might explain the link 
between skill mismatch and resource allocation. 

JEL Classification: O40; I20; J20; J24. 

Keywords: Productivity, reallocation, human capital, skill mismatch, qualification mismatch, education, 
allocation of talent, managerial quality. 

******************** 

Inadéquation entre l’offre et la demande sur le marché du travail : observations à partir de l’étude 
PIAAC 

 Ce Document de travail analyse la relation entre inadéquation des compétences et des 
qualifications et productivité du travail, à l’aide de données sectorielles internationales pour 19 pays de 
l’OCDE. Calculés à l’aide d’indicateurs agrégés à partir de micro-données empruntées à l’enquête PIAAC 
(Programme de l’OCDE pour l'évaluation internationale des compétences des adultes), les principaux 
résultats donnent à penser qu’un plus haut niveau d’inadéquation des compétences et des qualifications va 
de pair avec une productivité plus faible du travail, la surqualification et la sous-qualification constituant 
l’essentiel des effets observés. La nouveauté dans ces résultats tient au fait qu’une plus forte inadéquation 
des compétences va de pair avec une plus faible productivité du travail par une moindre efficience 
allocative, peut-être parce que lorsque la proportion de travailleurs surqualifiés est plus élevée, les 
entreprises les plus productives éprouvent plus de difficultés à attirer des personnes qualifiées et gagner des 
parts de marché sur les entreprises moins productives. Parallèlement, une plus forte proportion de main-
d’œuvre sous-qualifiée va de pair avec une moindre efficience allocative, mais aussi une moindre 
productivité intra-entreprise (c’est-à-dire que le ratio entreprises très productives/entreprises peu 
productives diminue). Si des différences de qualité de gestion d’entreprise peuvent peut-être expliquer la 
relation entre inadéquation et productivité intra-entreprise, ce Document de travail présente une analyse 
préliminaire des facteurs de politique publique qui pourraient expliquer le lien entre inadéquation des 
compétences et allocation des ressources.  

Classification JEL : O40; I20; J20; J24. 

Mots-clés : productivité, redéploiement, capital humain, inadéquation des compétences, inadéquation des 
qualifications, éducation, distribution des compétences, qualité de gestion d’entreprise. 
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LABOUR MARKET MISMATCH AND LABOUR PRODUCTIVITY: EVIDENCE FROM PIAAC 
DATA 

By Müge Adalet McGowan and Dan Andrews1 

1. Introduction 

1. Cross-country differences in GDP per capita generally reflect differences in labour productivity 
(Figure 1). In turn, these labour productivity gaps are largely a function of differences in multi-factor 
productivity and the human capital pool that a country has at its disposal. While increases in the stock of 
highly educated workers have significantly boosted labour productivity over the past 50 years, the rate of 
increase in the stock of human capital is projected to slow (Braconier et al., 2014; Fernald and Jones, 
2014). At the same time, the increasing economic importance of knowledge is projected to raise the returns 
to skills, thus underpinning further increases in earning inequalities within countries over coming decades 
(Braconier et al., 2014). In this context, the ability of economies to efficiently deploy their existing stock of 
human capital will take on heightened significance in order to combat the slowing growth and rising 
inequality that these projections imply. 

2. According to the OECD Survey of Adult Skills (PIAAC), however, roughly one-third of workers 
in OECD countries are over- or under-qualified for their job, while one-sixth report a mismatch between 
their existing skills and those required for their job (OECD, 2013). At a first glance, this implies that there 
is considerable scope to improve the efficiency of human capital allocation in OECD countries. The 
potential gain to aggregate productivity from doing so is unclear, however, given that the existing literature 
typically does not estimate the direct effect of mismatch on productivity, but rather infers it indirectly from 
wages, job satisfaction and other correlates of productivity (Hartog, 2000). Moreover, the few studies in 
the literature that directly examine the relationship between mismatch and productivity are country-specific 
(Mahy et al., 2013), and thus it is unclear how generalizable their conclusions are to other countries.  

3. Accordingly, this paper utilises cross-country data to explore the direct relationship between skill 
and qualification mismatch – aggregated from PIAAC micro-data – and industry-level labour productivity 
indicators, constructed from firm-level data. Another key novelty of the paper is that it studies the channels 
that link mismatch to productivity. To this end, it employs a decomposition which reveals that differences 
in aggregate labour productivity at any point in time will reflect two factors. First, average differences in 
within-firm productivity – measured by the unweighted average of firm productivity, irrespective of each 
firm’s relative size – which is increasing in the ratio of high productivity to low productivity firms within 

                                                      
1  Corresponding authors are: Müge Adalet McGowan (Muge.adaletmcgowan@oecd.org) and Dan Andrews 

(Dan.Andrews@oecd.org) at the OECD Economics Department. From the Economics Department, they 
would like to thank Christian Kastrop, Catherine L. Mann, Giuseppe Nicoletti, Alessandro Saia and 
Jean-Luc Schneider and participants at a departmental Brown Bag Seminar. From the Education and Skills 
Directorate, they would like to thank Stéphanie Jamet and participants at a PIAAC Brown Bag Seminar. 
From the Employment, Labour and Social Affairs, they would like to thank Glenda Quintini. Special 
thanks go to Veronica Borg (at the Education Directorate) and Paulina Granados Zambrano (at the 
Employment, Labour and Social Affairs Directorate) for help with data and Catherine Chapuis and 
Sarah Michelson for excellent statistical and editorial support. 

mailto:Muge.adaletmcgowan@oecd.org
mailto:Dan.Andrews@oecd.org
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an industry. Second, the extent to which, all else equal, it is the more productive firms that command a 
larger share of industry employment (i.e. allocative efficiency), which will be the outcome of the shift in 
resources across firms in previous periods (see Olley and Pakes, 1996). While the former component has 
been the subject of much research, reflecting a number of within-firm factors (e.g. managerial quality; 
intangible assets), researchers are increasingly linking the efficiency of resource allocation within 
industries to aggregate performance. 

Figure 1. Large differences in income per capita are mostly accounted for by labour productivity gaps  

OECD countries, 2013  

Panel A: % GDP per capita difference compared with the upper half of OECD countries (2013 PPPs) 

 

Panel B: % difference in labour resource utilisation and labour productivity 

  

Notes: The sum of the percentage difference in labour resource utilisation and labour productivity do not add up exactly to the GDP 
per capita difference since the decomposition is multiplicative. Labour productivity is measured as GDP per hour worked. Labour 
resource utilisation is measured as the total number of hours worked per capita. 

Source: OECD (2015), Going for Growth. 
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4. To the best of our knowledge, the existing literature only allows for the possibility for mismatch 
to affect within-firm productivity. From the perspective of any given firm, hiring an over-skilled and over-
qualified worker may be beneficial for productivity, assuming there are no adverse effects on job 
satisfaction and the higher wages do not more than offset any associated productivity gains. From the 
perspective of the economy as a whole, however, the impacts may be very different. Assuming that wages 
do not adjust to these frictions in the short-run, mismatch could have reallocation effects. This could be the 
case if there are other relatively more productive firms in the economy that could potentially employ the 
mismatched workers more efficiently, but these firms find it difficult to gain market shares due to lack of 
skilled and well-qualified labour. In this case, the more productive firms remain smaller than otherwise, 
lowering aggregate productivity relative to a situation where workers are reallocated to achieve a more 
efficient match. By allowing for the possibility that mismatch affects productivity through its impact on 
resource allocation, this paper connects research on mismatch to an emerging literature which focuses on 
resource misallocation as a potential explanation for why some countries are more productive than others.2  

5. We analyse both skill and qualification mismatch since their determinants and impact on 
productivity may be different (Allen and Van der Velden, 2001). Specifically, we employ two main 
approaches: i) consider qualification and skill mismatch and their components separately; and ii) take into 
account the overlap between the types of mismatch, to allow for the possibility that some workers that are 
over-skilled might also be over-qualified, for example. The first approach is possible since the overlap 
between qualification and skill mismatch is low, with on average only one-tenth of workers mismatched in 
terms of both. The second approach is useful as it paints a more nuanced picture of the links between 
mismatch and productivity, although the results should be treated with caution as the additional categories 
create additional pressure from a degrees of freedom perspective, given the relatively small sample size. 

6. To summarise, using both approaches, we find that higher qualification and skill mismatch is 
associated with lower labour productivity, although the exact channel varies across the different types of 
mismatch. The results are consistent with a body of existing evidence which emphasises that under-
qualification and under-skilling are associated with lower productivity within the affected firms. At the 
same time, however, new insights emerge, which suggests that mismatch can adversely affect labour 
productivity via the allocation of employment across firms of varying productivity levels.  

7. While higher skill mismatch is associated with lower productivity, this largely reflects the strong 
negative correlation between over-skilling and productivity; by contrast, the under-skilled component of 
mismatch – assuming that the worker is well-matched in terms of qualifications – does not appear to bear 
on productivity. Furthermore, the negative correlation between over-skilling and labour productivity results 
from its effect on allocative efficiency; that is, in industries with a higher share of over-skilled workers, the 
more productive firms find it more difficult to attract suitable labour, in order to expand their operations. 
The effect is also economically significant. For example, if interpreted causally, the estimates suggest that 
Italy – a country with high skill mismatch and low allocative efficiency – could potentially close one-fifth 
of its gap in allocative efficiency with the United States if it were to reduce its level of mismatch within 
each industry to that corresponding to the OECD best practice. Hence, the allocation of skills can 
potentially account for a non-trivial share of cross-country labour productivity gaps, which provides a 
complement to recent analysis finding that the level of skill use (constructed from PIAAC data) can explain 
30-40% of the cross country variation in aggregate labour productivity (OECD, 2013). 

  

                                                      
2  See Hsieh and Klenow (2009); Bartelsman et al. (2013) and Andrews and Cingano (2014). 
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8. The paper also explores the link between qualification mismatch and productivity, although this 
type of mismatch may be somewhat less relevant to the extent that it does not take into account skills 
gained or lost beyond the formal qualifications (Desjardins and Rubenson, 2011). In contrast to skills, the 
negative relationship between qualification mismatch and productivity is largely driven by the under-
qualified component of mismatch, while over-qualification by itself – assuming that the worker is well-
matched in terms of skills – is not statistically significant. Furthermore, under-qualification is related to 
productivity through both lower allocative efficiency and within-firm productivity – that is, a higher share 
of under-qualified workers is associated with a lower ratio of high productivity firms to low productivity 
firms, within an industry.  

9.  Controlling for the overlap between skill and qualification mismatch yields two main additional 
insights. First, a higher share of workers who are both over-qualified and over-skilled is positively 
associated with within-firm productivity, but negatively correlated with allocative efficiency. These 
findings imply that while having workers with a combination of over-skilling and over-qualification might 
be good for the firms who employ these workers, this does not necessarily translate into higher aggregate 
productivity because it may constrain the growth of other relatively more productive firms that could more 
efficiently utilise these workers. Second, the negative relationship between under-qualification and within-

firm productivity is entirely driven by workers who are both under-qualified and under-skilled. However, 
additional analysis suggests that differences in managerial quality can potentially account for this 
relationship between under-qualification and under-skilling, and within-firm productivity. This suggests 
that a more efficient matching of qualifications and skills to jobs is one of the possible channels through 
which higher managerial quality increases productivity, as shown in the seminal work of Bloom and Van 
Reenen (2007). 

10. These results are suggestive, but should be treated with caution because they are based on a 
relatively small sample size. Moreover, they only identify correlations, as opposed to causal effects, and it 
is possible that there may be more scope to reduce mismatch in industries with more efficient reallocation. 
While further research is clearly required, the analysis nonetheless highlights a number of important policy 
issues. First, given its correlation with productivity, mismatch is a relevant structural indicator that should 
be monitored in cross-country structural surveillance exercises. Second, policymakers should be concerned 
with not only increasing the stock of human capital, but also allocating the existing pool more efficiently. 
This is particularly important given the benefits of human capital-augmenting policies take a long time to 
be realised, while improving the allocation of human capital will enhance the ‘bang-for-the-buck’ (i.e. 
productivity impact) of such policies.  

11.  While the paper primarily focuses on the establishing a link between mismatch and productivity, 
the question of what drives mismatch remains. The link between managerial quality, mismatch and within-
firm productivity uncovered in this paper reaffirms the importance of policies that improve managerial 
performance, such as pro-competitive product market regulations. That mismatch is also linked to 
productivity through the reallocation channel, however, suggests that a broader set of policies also warrant 
consideration. 

12. The paper proceeds as follows. The next section defines the mismatch indicators and discusses 
the channels that link mismatch to productivity. Section 3 discusses data measuring productivity and 
mismatch and presents some descriptive cross-country evidence on differences in skill and qualification 
mismatch across industries. Section 4 outlines the empirical methodology used to estimate the relationship 
between productivity and mismatch, and then discusses the baseline results, robustness tests and extensions 
to the analysis. Section 5 identifies some potential policy factors that may shape mismatch, while the final 
section offers some concluding thoughts.  
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2. Mismatch and labour productivity 

13. While the centrality of human capital accumulation for economic growth has been firmly 
established (Romer, 1989), evidence on the importance of the efficient allocation of human resources to 
jobs is only beginning to emerge. One strand of research takes a broad perspective, emphasising the 
adverse effects of gender and racial discrimination and lack of equality of opportunity for the allocation of 
talent and ultimately productivity performance (see Box 1 for details). While the consequences for 
productivity of discrimination, for example, are relatively clear to the extent that it can result in blatant 
occupational mismatch – such as restrictions on women entering certain professions – human capital 
misallocation can also take more subtle forms, such as a mismatch of worker’s skills and/or qualifications 
to jobs. 

Box 1. Talent allocation and growth 

A recent literature has highlighted the negative effects on productivity of labour market discrimination 
restricting the allocation of talent. Hsieh et al. (2013) augment the traditional Roy (1951) model of occupational 
choice such that barriers to occupational choice, relative mobility across occupations and relative returns to 
occupational skills affect the occupational distribution. They find that reductions in barriers to occupational choice 
facing women and racial minorities in the United States can explain 15-20% of growth in aggregate output per 
worker over the period 1960 to 2008. Using a cross-country approach, Cuberes and Teignier (2014) find that the 
exclusion of females from entrepreneurship leads to a 12% drop in average output per worker.  

Barriers to equality of opportunity, reflected in low intergenerational mobility, are another potential source of 
talent misallocation to the extent that talented children of poor parents may never reach their full potential. The 
relationship between parental or socio-economic background and offsprings’ educational and wage outcomes is 
positive and significant (Causa and Johannson, 2009). Using PIAAC data, OECD (2014a) finds that despite some 
improvements in access to education, in most countries, 40-50% of adults have the same educational attainment 
as their parents. Furthermore, skill proficiency levels are also correlated with the education of the parents (Huber 
and Stephens, 2014). An example of such barriers causing a misallocation of talent and inefficiency is family 
firms, where the person who inherits the firm might not be a good manager (Pica and Rodriguez Mora, 2005), 
while Hassler and Rodriguez Mora (2000) show that management driven by talent instead of inheritance improves 
the allocation of talent, resulting in higher innovation and growth. Indeed, Bloom and Van Reenen (2007) show 
that family-owned firms are typically less well-managed, particularly those managed by the oldest son of the 
founder. 

Financial market frictions can also affect the allocation of talent. Caselli and Gennailoi (2005) show that 
credit market imperfections may prevent the transfer of control of productive assets from the untalented rich to the 
talented poor and the severity of the misallocation of talent will depend on the degree of concentration on the 
goods market such that increased competition would improve the allocation of talent. Other barriers to 
misallocation of talent include lack of competition and restrictions on firm size. Furthermore, factors that might 
influence the occupational choice of talented people such that they are skewed towards rent-seeking sectors at 
the expense of research or entrepreneurship may also engender a misallocation of talent.  

2.1 Measuring mismatch    

14. A good match between the skills demanded by firms and those acquired in education and on the 
job is important for promoting strong and inclusive growth. While there is a variety of approaches to 
measuring qualification and skill mismatch in the literature (see Box 2), in this paper we adopt the 
following definitions based on data from the OECD Survey of Adult Skills (see Section 3.2): 

 Qualification mismatch: a benchmark of “appropriate” qualifications required to get the job is 
created, based on the following question: “If applying today, what would be the usual 
qualifications, if any, that someone would need to get this type of job?”. If the person has a 
qualification (measured by the International Standard Classification of Education (ISCED) level 
corresponding to their highest qualification) above (below) this benchmark, they are classified as 
over-qualified (under-qualified). 
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 The measure of skill mismatch is based on qualitative information – i.e. a self-assessment of 
mismatch – that is verified by quantitative information on skill proficiency. This approach  – 
adopted in OECD (2013) – involves three steps: 

 First, the (literacy) proficiency scores of workers who report themselves as well-matched – 

i.e. those who neither feel they have the skills to perform a more demanding job nor feel the 
need for further training in order to be able to perform their current job satisfactorily – are 
used to create a quantitative scale of the skills required to perform the job for each occupation 
(based on 1-digit ISCO codes). 

 Second, using this scale of proficiency scores of well-matched workers, minimum and 
maximum threshold values – based on the 5th and 95th percentile, for example – are identified, 
which effectively provide the bounds that define what it is to be a well-matched worker. 

 Third, respondents whose scores are lower (higher) than this minimum (maximum) threshold 
in their occupation and country, are classified as under- (over-) skilled. By contrast, 
respondents whose proficiency scores reside within these bounds are not counted as 
mismatched, regardless of whether they self-report as being well-matched or mismatched. 

Box 2. Alternate approaches to measuring mismatch 

Qualification mismatch 

There are several approaches to measuring qualification mismatch. One is to compare the qualification level 
of a worker according to the International Standard Classification of Education (ISCED) level and the required 
qualification level corresponding to his/her occupation code according to the International Standard Classification 
of Occupations (ISCO) (Chevalier, 2003). A second approach is to calculate the modal qualification of workers in 
each occupation and country (Mendes de Oliveira et al., 2000). This measure has some drawbacks as it assumes 
that all jobs within an occupation have the same education requirements and combines current and past 
qualification requirements, suffering from cohort effects.  

A final approach is based on workers’ opinions on the match between their jobs and education, which is the 
definition used in this paper (Battu et al., 2000; Dorn and Sousa-Poza, 2005). This type of self-reported measures 
can be subject to biases due to the wording of the question or the impact of external variables, some of which 
may be country-specific (Dumont and Monso, 2007). However, they have the advantage of being job-specific 
rather than suffering from the caveats associated with the other measures.

1 

Skill mismatch 

There are also several ways to measure skill mismatch. One is to ask workers to assess themselves on their 
skill level and that required for their job. While this self-assessment method addresses the issue of partial 
measurement of skills (such as those based only on numeracy or literacy), it does not identify specific skill deficits 
or excesses. Furthermore, there is some evidence that skill deficits are hard to measure using this method (Allen 
and van der Velden, 2001). Indeed, PIAAC data show that the incidence of under-skilling is much lower than that 
of over-skilling (Table A1 in Appendix A). Another approach is to directly measure the skills of individual workers, 
most commonly, literacy and numeracy, and to compare them with skill use at work (CEDEFOP, 2010; Desjardins 
and Rubenson, 2011). Such measures are subject to two main drawbacks. First, they assume that skill use can 
be a proxy for job requirements. Second, skill proficiency and skill use are based on different theoretical concepts 
and are hard to measure on the same scale. In fact, skill proficiency and skill use are calculated by using 
structurally different types of information as the indicators of skill proficiency are based on cognitive tests, 
whereas those of skill use exploit survey questions on the frequency with which specific tasks are carried out.  

A final approach is to combine information on self-reported skill mismatch and skill proficiency as developed 
in OECD (2013) – which is exploited in this paper. The main limitation of this measure is that it uses 1-digit 
occupation codes because of sample size, thus assuming that all jobs with the same occupation code have the 
same skill requirements. However, it does carry a number of advantages, to the extent that it addresses the 
drawbacks associated with the other approaches outlined above.

2
  

1. OECD (2014b), which also utilises the definition adopted in this paper, reports that qualification mismatch indicators 
calculated using the other two approaches yield similar country rankings and incidences of mismatch of the same magnitude. 

2. See Pelizzari and Fichen (2013) for a more detailed description of the construction of this skill mismatch indicator and Allen et 
al. (2013) and Levels et al. (2014) for a criticism and an analysis based on an alternative skill mismatch indicator using skill use 
and proficiency data from PIAAC. 
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15. Qualification mismatch may not reflect skill mismatch, even though qualifications have been 
extensively used as a proxy for skills. Although qualification mismatch is easier to measure and broader in 
its coverage of skills (even though it is measured indirectly), it does not take into account: i) skills gained 
or lost beyond the formal qualifications (Desjardins and Rubenson, 2011); ii) differences in the quality and 
orientation of various education and training systems; and iii) on-the-job learning or adult 
learning/training. Hence, using qualification mismatch as an indicator of skill mismatch has been criticised 
(Green and McIntosh, 2007; Mavromaras et al., 2009). Skill mismatch is more precise as it takes into 
account skill gain or loss, but its definition is narrower as it concentrates on one aspect of skills such as 
literacy or numeracy.  

16. With these definitions in mind, roughly one-third of workers in OECD countries experience 
qualification mismatch, while one-sixth of workers are affected by skill mismatch calculated using the 5th 
percentile thresholds (OECD, 2013) – a figure that rises to one-fourth when we consider a 10th percentile 
threshold. While we interpret this as evidence of inefficiencies in the allocation of skills and qualifications, 
it is important to recognise that some of this mismatch reflects temporary factors that will not necessarily 
carry important implications for productivity. Indeed, imbalances between the demand for and supply of 
different skills will inevitably arise, due to economic shocks, imperfect information about opportunities in 
the labour market and improvements in technology and organisational practices (Robst, 1995; Sicherman, 
1991). While this implies that the natural rate of mismatch will be above zero, empirical evidence suggests 
that mismatch is relatively persistent (Mavromaras et al., 2012 and 2013), possibly reflecting frictions 
affecting: i) the response of the supply of skills to demand; ii) firms’ recruitment and training; and iii) 
intergenerational and geographical mobility. Moreover, persistent differences in the incidence of mismatch 
across socio-demographic characteristics might suggest that there are barriers to allocating at least part of 
the labour force more efficiently. In this context, these measures of mismatch are potentially important 
structural indicators, and it is thus natural to relate them to productivity. 

2.2 Mismatch and productivity 

17. The existing literature on the impact of mismatch on productivity draws on two main approaches, 
which can yield varying conclusions. The first strand of research relies on human capital theory – and more 
specifically, the observation that wages equal marginal productivity in competitive equilibrium – and thus 
infers the impact of mismatch on productivity through its estimated effect on wages. The second strand of 
the literature focuses on the impact of mismatch on job satisfaction in order to indirectly estimate the 
productivity impact of mismatch. In both cases, the effect of mismatch on productivity is not directly 
estimated. Furthermore, the existing research tends to be country-specific and ignores some of the possible 
channels that link mismatch to aggregate productivity. 

2.2.1 Indirect evidence of the impact of mismatch on productivity is inconclusive 

18. The first approach, based on human capital theory, posits that over- (under-) qualified/skilled 
workers should be inherently more (less) productive at their jobs and that the associated gap in wages 
should reflect these different levels of productivity. Indeed, these predictions are generally borne out in the 
research that studies the impact of mismatch on wages (see Mahy et al., 2013 for a summary). For instance, 
across a sample of OECD countries, Quintini (2011a) estimates that over-qualified workers earn around 
4% more than well-matched workers in similar jobs. In other words, a tertiary graduate who holds a job 
requiring only an upper secondary qualification will earn less than if he were in a job requiring a tertiary 
qualification, but more than an upper secondary graduate in a job requiring upper secondary qualifications. 
Similarly, under-qualified workers earn on average around 17% less than workers who are well-matched in 
similar jobs.3 Recent analysis based on PIAAC data has shown that skill levels can explain part of the wage 

                                                      
3  Hence, an upper secondary graduate in a job requiring tertiary qualifications will earn more than an upper 

secondary graduate in a job requiring upper secondary qualifications but less than a tertiary graduate in a 
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effects of qualification mismatch, but the extent depends on the institutional setting, for example, in 
countries with weak employment protection legislation, a larger part of the observed effects can be 
accounted for by skills (Levels et al., 2014). 

19. An alternate approach is to infer the impact of mismatch on productivity through its relationship 
with other correlates of firm productivity (e.g. job satisfaction, absenteeism and turnover) but the 
conclusions are less clear-cut. Over-qualified or over-skilled workers would have an incentive to move to a 
job that better reflects their education and skills, suggesting that they experience reduced job satisfaction, 
which would in turn decrease job effort, increase absenteeism and lower productivity (Green and Zhu, 
2010; Battu et al., 1999). Quintini (2011a) finds that being over-qualified reduces job satisfaction 
compared with well-matched workers with the same level of qualification, but the effect is not significant 
compared with well-matched workers with the same job.  

20. Low job satisfaction can also lead to higher job turnover such that over-qualified and over-skilled 
workers are more likely to change jobs or engage in on-the-job training than well-matched workers with 
similar qualifications or jobs (Quintini, 2011b; Sloane et al., 1999; Verhaest and Omey, 2006). High job 
turnover can be a barrier to the accumulation of firm-specific human capital, as neither the employee nor 
the employer would have high incentives to invest in them. Indeed, there is evidence that over-qualified 
workers are less likely to take part in training than well-matched workers with the same qualifications 
(Hersch, 1991; Verhaest and Omey, 2006), while the opposite results hold when compared to well-matched 
workers in the same job (Büchel, 2002).  

21.  There is some evidence that the effect of skill mismatch on job satisfaction is stronger than that 
of qualification mismatch, with over-skilling having a negative effect on satisfaction (Allen and van der 
Velden, 2001). Despite the evidence of some relationship between mismatch and job satisfaction, the 
correlation between job satisfaction and qualitative measures of job performance is only modest (the 
correlation coefficient is around 0.3) which casts some doubt on the reliability of using job satisfaction to 
assess the effect of mismatch on productivity (Judge et al., 2001).  

22. A range of other studies also provide indirect evidence in favour of the proposition that the 
allocation of skills has important economic consequences. Industry-level studies from specific countries 
demonstrate that skill shortages – as measured by surveys of firms’ perceptions – have sizeable adverse 
impacts on productivity growth (Haskel and Martin, 1993), technological adoption and tangible and 
intangible investment (Forth and Mason, 2006).4 It is important to note, however, that the source of skill 
shortages in these studies is unclear, and may not necessarily be related to under-skilling or over-skilling. 
Moreover, there is evidence that the perception of employers and employees differ, with employers being 
less likely to report skill gaps (McGuinness and Ortiz, 2014).5 
                                                                                                                                                                             

job requiring tertiary qualifications. The latter comparison of workers with the same skills in different jobs 
is based on assignment theory that emphasises both individual and job characteristics for mismatch 
analysis (Sattinger, 1993).  

4  Using industry-level data for the United Kingdom, Haskel and Martin (1993) find that increases in skill 
shortages reduced productivity growth by 0.7% per annum between 1980 and 1986. Bennett and 
McGuinness (2009) find hard-to-fill and unfilled vacancies reduced output per worker levels by between 
65-75% in affected firms in Northern Ireland, while Tang and Wang (2005) provide similar evidence for 
Canada. Nickell and Nicolitsas (2000) find that a permanent 10 percentage point increase in the share of 
companies in a firm’s industry reporting skilled labour shortages leads to a permanent 10% reduction in its 
fixed capital investment and a temporary 4% reduction in R&D expenditure. 

5  At the same time, other studies calculate the costs of skill gaps in terms of vacancies and unemployment, 
which have been estimated to range from 7-8% of GDP for a number of European countries (Marsden et 
al., 2002).  
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2.2.2 Direct evidence of the impact of mismatch on productivity is limited 

23. For our purposes, the main methodological shortcoming of the existing literature is that they do 
not directly address the link between mismatch and productivity, but instead focus on indirect links 
through wages and job satisfaction (Hartog, 2000). Indeed, direct evidence on the impact of mismatch on 
firm productivity is very limited. The most relevant study uses linked employer-employee data for Belgium 
and finds a positive impact of over-qualification on firm productivity and a negative one for under-
qualification (Mahy et al., 2013). Furthermore, the effect of over-qualification on productivity is stronger 
for firms with a higher share of high-skilled jobs and that are in high-tech or knowledge-based industries. 
Using a similar dataset, Kampelman and Rycx (2012) also show that additional years of over-qualification 
increase the productivity of firms, while under-qualification has the reverse effect. While these studies 
from Belgium represent an important advance in the literature, it is unclear whether the conclusions can be 
extended to other countries.  

2.2.3 Mismatch can affect aggregate productivity through reallocation effects 

24. A key feature of the existing literature is its exclusive focus on the impact of mismatch on within-

firm productivity, but the impact on aggregate productivity may very well be different. From the 
perspective of a single firm, hiring an over-skilled worker may be beneficial for productivity, assuming 
there are no adverse effects on job satisfaction and the higher wages do not more than offset any associated 
productivity gains. From the perspective of the economy as a whole, however, over-skilling in any given 
firm could be harmful to productivity to the extent that there exist relatively more productive firms that 
could more efficiently utilise these skills but find it difficult to expand due to a lack of suitable labour.6 In 
an economy where firms are relatively homogenous, the potential gains to aggregate productivity from 
such a reallocation of mismatched workers would be relatively small. In practice, however, the degree of 
heterogeneity in firm performance is striking, which creates considerable scope for productivity-enhancing 
reallocation. For example, even within narrowly defined industries in the United States, firms at the 90th 
percentile of the TFP distribution are twice as productive as firms at the 10th percentile (Syverson, 2004).7 
Moreover, the distribution of firm productivity is typically not clustered around the mean (as would be the 
case with a normal distribution) but is instead characterised by many below-average performers and a 
smaller number of star performers. From this perspective, mismatch could also potentially influence 
aggregate productivity through the channel of resource allocation: that is, the allocation of employment 
across firms of varying productivity levels.  

25. Given the tendency for highly productive firms to coexist with low productivity firms within 
narrowly-defined industries, the recent literature has focused on resource misallocation as a potential 
explanation for why some countries are more productive than others (Bartelsman et al., 2013; Hsieh and 
Klenow, 2009). A key observation is that in well-functioning economies, a firm’s relative position in the 
productivity and size distributions is positively correlated, which means that on average relatively more 
productive firms should be larger (see Olley and Pakes, 1996). Research on firm dynamics reveals large 
cross-country differences in the efficiency of resource allocation, which suggests that some economies are 
more successful at channelling resources to highly productive firms than others. For example, in the United 
States, manufacturing sector labour productivity is 50% higher due to the actual allocation of employment 
across firms, compared to a hypothetical situation where labour is uniformly allocated across firms, 
irrespective of their productivity (Bartelsman et al., 2013). While a similar pattern holds for some countries 
of Northern Europe such as Sweden, it turns out that static allocative efficiency is considerably lower in 
other OECD economies, particularly those of Southern Europe (Andrews and Cingano, 2014). 

                                                      
6  In this case, aggregate productivity could improve via a reallocation of workers toward these firms. 

7  The same is true with respect to the firm size distribution, with many small firms co-existing with a smaller 
number of very large firms (Bartelsman et al., 2013). 
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26. In fact, it is increasingly being recognised that the growth potential of innovative firms is 
inversely related to the amount of resources that are absorbed by other less productive firms. In a 
heterogeneous firm model calibrated to US data, Acemoglu et al. (2013) show that policy intervention such 
as R&D tax subsidies are only truly effective when policy-makers can encourage the exit of “low-type” 
incumbent firms, in order to free-up R&D resources (i.e. skilled labour) for innovative “high-type” 
incumbents and entrants.8 Along the same lines, mismatch could make it more difficult for the most 
productive firms in an economy to attract suitable labour and expand, thus lowering aggregate 
productivity. Indeed, such an explanation could potentially draw on four observations: i) there is a fixed 
pool of highly skilled workers; ii) more productive firms employ a higher share of high skilled workers 
than less productive firms; iii) to the extent that over-skilling implies that high skilled workers are clogged 
up in low productivity firms, the effective pool of labour that the most productive firms can draw workers 
from is reduced; iv) which in turn makes it more difficult for the most productive firms to attract 
employment and expand, thus lowering allocative efficiency. Of course, this assumes that the adjustment in 
wages in the short run is not sufficiently large to facilitate a reallocation of mismatched workers from less 
productive to more productive firms, via mechanisms such as poaching. Indeed, this assumption seems 
reasonable to the extent that there are frictions that affect the efficiency of labour reallocation, arising from 
policy-induced frictions (e.g. labour market regulations; see Hopenhayn and Rogerson, 1993) or structural 
factors that prevent geographical mobility across regions. 

3. Data description 

3.1 Productivity indicators 

27.  With this in mind, we follow the emerging literature on firm dynamics and decompose weighted 
average productivity at the industry level into: i) within-firm or unweighted average productivity, which 
captures the fraction of ‘better’ relative to ‘worse’ firms; and ii) the extent to which, all else equal, it is the 
more productive firms that command a larger share of aggregate employment (i.e. allocative efficiency). 
More formally, we employ the cross-sectional decomposition of productivity developed by Olley and 
Pakes (1996). An index of productivity in industry j, defined as the weighted average of firm-level 
productivity (𝑃𝑗 =  ∑ 𝜃𝑖𝑃𝑖 𝑖∈𝑗 ) can be written as: 

      ∑ 𝜃𝑖𝑃𝑖 𝑖∈𝑗 = 𝑃̅𝑗 +  ∑ (𝜃𝑖 − 𝜃̅𝑗 )𝑖∈𝑗 (𝑃𝑖 − 𝑃̅𝑗 )           (1) 

where 𝑃̅𝑗 = 1/𝑁𝑗 ∑ 𝑃𝑖𝑖∈𝑗   is the within-firm productivity mean, 𝜃𝑖 is a measure of the relative size of each 
firm (measured by the firm employment share) and 𝜃̅𝑗  is the average share at the industry level. This 
allows the decomposition of aggregate productivity (𝑃𝑗) into a moment of the firm productivity distribution 
(the unweighted mean) and a joint moment with the firm size distribution reflecting the extent to which 
firms with higher efficiency also have a larger relative size (the Olley-Pakes covariance term or allocative 
efficiency).  

28. In this framework, a positive allocative efficiency reflects an increase in the industry productivity 
index due to an actual allocation of employment across firms within an industry relative to the case in 
which employment is randomly allocated, which would imply that weighted average and within-firm 

(unweighted) average productivity are equal. Another advantage of this approach is that focusing on the 
relative contribution of allocative efficiency to the observed aggregate productivity level only involves 
comparing productivity levels of firms in the same industry and countries, such that most of the 

                                                      
8  This reflects the idea that low-type firms – despite their lack of innovativeness – still employ skilled labour 

to cover the fixed costs of operation, such as management and back-office operations. One implication is 
that a R&D subsidy will be fully capitalised into the high-skilled wage rate – without a concomitant rise in 
innovation output (as suggested by Goolsbee, 1998) – unless the effective supply of high skilled labour can 
rise to meet additional demand via downsizing and/or exit of “low-type” firms. 
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measurement problems are controlled for (Bartelsman et al., 2009). By contrast, measurement problems 
can make comparisons of the levels of weighted average productivity or within-firm (unweighted) average 
productivity across sectors or countries problematic, although the inclusion of country and industry fixed 
effects in the regression specifications can potentially control for these problems. Finally, this 
decomposition could be performed at various levels of aggregation – e.g. the country level or at the 1 or 2-
digit industry level – but we adopt a 1-digit industry classification to better align with the mismatch data. 

29. While there are several potential sources of industry-level productivity data for OECD countries 
(e.g. OECD STAN or EU KLEMS), firm-level data are required to perform the decomposition outlined 
above. Following Andrews and Cingano (2014), we use a harmonised cross-country dataset, where the 
underlying firm level data are sourced from ORBIS, a commercial database provided to the OECD by 
Bureau Van Dijk.9 ORBIS has a number of drawbacks such as the representativeness of firms in certain 
industries and underrepresentation of small and young firms. Hence, in order to improve 
representativeness, the ORBIS firm sample is aligned with the distribution of the firm population from the 
Structural Demographic Business Statistics (SDBS) collected by the OECD and Eurostat, based on 
confidential national business registers.10 This post-stratification procedure is of course based on the 
assumption that within each specific cell, ORBIS firms are representative of the true population – an 
assumption that may be problematic if the nature of selection varies across countries.11 Labour productivity 
is calculated using an operating revenue turnover-based measure of labour productivity as value-added data 
are not available for all firms, but as outlined in Andrews and Cingano (2014), the correlation between the 
two measures is reasonably high. Finally, we follow a common data cleaning practice by excluding firms 
with one employee and firms in the top and bottom 1% of the labour productivity distribution.  

3.2 Mismatch data and sample composition 

30. The measures of qualification and skill mismatch, introduced in Section 2.1, are assembled from 
micro-data contained in the OECD Survey of Adult Skills (PIAAC), which is described in more detail in 
Box 3. To align with the industry level productivity indicators discussed in Section 3.1, the share of 
workers that are well-matched, over-qualified/skilled and under-qualified/skilled are aggregated to the 1-
digit industry level. Although PIAAC has 2-digit industry level identifiers, there are often not enough 
observations within each 2-digit industry cell to ensure sufficiently reliable estimates, so only 1-digit 
industries are considered.12 

                                                      
9  See Pinto Ribeiro et al. (2010) for details on the construction of the data, which includes financial and 

balance sheet information on tens of millions of firms worldwide. 

10  The post-stratification procedure applies re-sampling weights based on the number of employees in each 
SDBS country-industry-size class cell to ‘scale up’ the number of ORBIS observations in each cell so that 
they match those observed in the SDBS (see Gal, 2013). For example, if SDBS employment is 30% higher 
than ORBIS employment in a given cell, then the 30% ‘extra’ employment is obtained by drawing firms 
randomly from the pool of ORBIS firms, such that the ‘extra’ firms will make up for the missing 30%. See 
Gal (2013) and Andrews and Cingano (2014) for more details on the cleaning and construction of the data 
sample. 

11  To the extent that post-stratification weights do not address the issue of how accurately industry level 
productivity indicators are measured when the underlying number of available units is small, this issue will 
be addressed empirically by weighting OLS regression estimates by the number of available observations 
in each country-industry cell. 

12  On average across countries in our sample, there are 407 observations in each 1-digit industry, while there 
are only 117 observations on average in 2-digit industries, but the variance around this average is very 
large. 
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Box 3. OECD Survey of Adult Skills (PIAAC) 

The survey is based on a background questionnaire administered to households representing the population 
aged between 16 and 65 in 24 countries: Australia, Austria, Belgium (Flanders), Canada, the Czech Republic, 
Denmark, Estonia, Finland, France, Germany, Ireland, Italy, Japan, Korea, the Netherlands, Norway, Poland, the 
Slovak Republic, Spain, Sweden, the United Kingdom (England and Northern Ireland), the United States, Cyprus

*
 

and the Russian Federation. The data were collected in 2011-12 and published in the autumn of 2013.
1 

On 
average, across countries, 77.5% of participants were assessed on a computer, while the rest took the paper-
based assessment.  

PIAAC has extensive information on skill use at work and at home and background variables such as 
educational attainment, employment status, job, socio-economic background and personal characteristics. It was 
also designed to measure key cognitive and workplace skills and provides indicators on the proficiency of 
individuals in literacy, numeracy and problem-solving in technology-rich environments, measured on a 500-point 
scale. These data allow a more in-depth assessment of skills compared to previous surveys as they include more 
dimensions in capturing key information-processing competencies defined as: 

 Literacy: ability to understand, evaluate, use and engage with written texts to participate in society, to 
achieve one’s goals, and to develop one’s knowledge and potential. 

 Numeracy: ability to access, use, interpret and communicate mathematical information and ideas in 
order to engage in and manage the mathematical demands of a range of situations in adult life.

 
 

 Problem-solving in technology rich environments: the ability to use digital technology, communication 
tools and networks to acquire and evaluate information, communicate with others and perform practical 
tasks.

2
  

There are two main issues that need to be taken into consideration when these data are used.
3
 First, the 

three skill domains were not directly assessed for each respondent due to time constraints, but PIAAC uses 
matrix-sampling design to assign the assessment exercises to individuals and Item Response Theory to combine 
the individual responses to get a comprehensive view of each skill domain across the country. However, such 
aggregation can lead to biased estimates due to measurement error. Hence, a multiple imputation methodology 
was utilised to generate 10 “plausible values” for each respondent for each skill domain and the subsequent 
analysis takes a mean of these values. Second, complex sampling designs that vary across countries were 
administered in the data collection. In order to get a consistent approach to sampling variance calculation, a 
replication technique (the Jacknife Repeated Replication) is used to compute sampling error. The estimates 
presented in this paper take these weights into account through the use of the “PIAAC Tool” macro. 4

 

1. PIAAC is being implemented in 9 additional countries (Chile, Greece, Indonesia, Israel, Lithuania, New Zealand, Singapore, Slovenia 
and Turkey) in 2014 and the results will be available in 2016. 

2. Using the problem-solving indicator is problematic as the average score does not take into account the large and variable proportion 
of participants who did not take that part of the assessment either due to not being able to use a computer or due to refusal.   

3.  For more details, see OECD (2013), Technical Report of the Survey of Adult Skills (PIAAC), Paris. 

4.  The macro is available at http://www.oecd.org/site/piaac/publicdataandanalysis.htm. 

*1.Footnote by Turkey 
The information in the document with reference to « Cyprus » relates to the southern part of the Island. There is no single authority 
representing both Turkish and Greek Cypriot people on the Island. Turkey recognizes the Turkish Republic of Northern Cyprus (TRNC). 
Until a lasting and equitable solution is found within the context of the United Nations, Turkey shall preserve its position concerning the 
“Cyprus issue”. 
 

2. Footnote by all the European Union Member States of the OECD and the European Union 

The Republic of Cyprus is recognised by all members of the United Nations with the exception of Turkey. The information in the 
documents relates to the area under the effective control of the Government of the Republic of Cyprus. 

31. Before aggregation, however, we cleaned the data in the following ways. First, as outlined in 
Section 2.1, threshold values are applied to the scale of proficiency scores of well-matched workers in 
order to provide the bounds that define what it is to be a well-matched worker. OECD (2013) uses the 5th 
and 95th percentile rather than the actual minimum and maximum to create benchmarks. To test the 
robustness of the results, other thresholds, namely 10th/90th percentile and 2.5th/97.5th percentile, are also 
considered. The correlation between these various measures is reasonably high but far from perfect (Table 



 ECO/WKP(2015)27 

 19 

A2 in Appendix A). Given these similarities, results are not reported for the 2.5th/97.5th percentile 
definition. Although the 5th percentile cut-off works well in the analysis of the overall indicator of skill 
mismatch in each country, a less extreme measure of mismatch based on a more generous threshold (e.g. 
10th/90th percentile) is used when analysing the links between productivity and mismatch at the industry 
level. Second, only employees holding just one job and who are not self-employed are considered. Finally, 
due to the small sample size, ISCO codes 0 (armed forces) and 6 (skilled agricultural and fishery workers) 
are dropped while ISCO codes 1 (managers) and 2 (professionals) are merged together. 

32. While PIAAC covers 24 countries, the final sample is based on the overlapping 19 countries and 
11 1-digit market sector industries for which productivity data are available. More specifically, the country 
sample includes Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Italy, 
Japan, Korea, the Netherlands, Norway, Poland, the Slovak Republic, Spain, Sweden, the United 
Kingdom, and the United States.13 The industries covered are manufacturing; electricity, gas, steam and air 
conditioning supply; water supply; construction; wholesale and retail trade; transportation and storage; 
accommodation and food service activities; information and communication; real estate activities; 
professional, scientific and technical activities, and administrative and support service activities. This 
results in a dataset of 205 country-industry cells, which is relatively small. Thus, the results should be 
viewed with some caution. 

3.3 Cross-country differences in mismatch 

33. There is significant variation across countries and industries in the degree of both qualification 
and skill mismatch (OECD, 2013). These differences are also reflected in calculations based on the sample 
used in this paper.14 On average, qualification mismatch (at 36%) is more common than skill mismatch at 
24% (Figure 2).15 As documented in Figure A1 in Appendix A, being over-qualified is on average roughly 
twice as common than being under-qualified, while being over-skilled is on average roughly two and a half 
times more common than being under-skilled.  

34. It is important to control for both types of mismatch when analysing the links between mismatch 
and labour productivity to the extent that the overlap between qualification and skill mismatch is quite low, 
suggesting that qualifications are not a good proxy for skills in literacy. For example, on average, 14% of 
over-qualified workers are also over-skilled, with the overlap ranging from 7% in Estonia to 25% in 
Ireland, while the overlap between under-qualified and under-skilled workers is even less at 5% of 
respondents (OECD, 2013).  

35. Finally, in Table A3 in Appendix A, the extent to which the country and industry dimensions of 
the data explain the overall variance in mismatch is explored. With the exception of over-qualification, 
most of the variance is explained by cross-country factors, which raises the possibility that policy factors 
may explain mismatch. Technological factors that are reflected in industry-specific effects are an important 
determinant of over-qualification. 

                                                      
13  Although Australia, Canada and Ireland are excluded from the econometric analysis due to a lack of 

reliable productivity data, they are included in the results presented in Sections 3.3 and 4.4. 

14  The percentage of workers with skill and qualification mismatch reported may vary somewhat from the 
aggregate values in OECD (2013) due to three main reasons. First, only workers in the industries for which 
productivity data are available are considered. Second, threshold values based on a top and bottom 10 per 
cent definition are utilised to construct the skill mismatch indicator. Finally, in order to abstract from 
differences in industrial structures across countries, the 1-digit industry level mismatch indicators are 
aggregated using a common set of weights, based on industry employment shares for the United States. 

15  Figure C1 in Appendix C is an extension of Figure 2 to include countries that are not in our sample, but are 
included in the PIAAC sample. 
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Figure 2.  Incidence of qualification and skill mismatch 

Panel A: Percentage of workers with skill mismatch 

 

Panel B: Percentage of workers with qualification mismatch 

 

Note: The figures are calculated from the cross-country industry data from the sample described in Section 3.2. Workers with 
qualification (skill) mismatch refer to the percentage of workers who are either over- or under- qualified (skilled), as defined in Section 
2. Under - (over-) skilled workers refer to the percentage of workers whose scores are higher than that of the min (max) skills required 
to do the job, defined as the 10

th 
(90

th
) percentile of the scores of the well-matched workers in each occupation and country. In order 

to abstract from differences in industrial structures across countries, the 1-digit industry level mismatch indicators are aggregated 
using a common set of weights based on industry employment shares for the United States. 

Source: OECD calculations based on the Survey of Adult Skills (2012). 

4. Empirical model and results 

4.1 Empirical model 

36. To explore the link between mismatch and labour productivity, we estimate an industry level 
regression of the following form: 

 cscs

k

cs

j

cs Mismatchprod ,,1,             (2) 

where: prod is a measure of labour productivity (weighted productivity, within-firm productivity and 
allocative efficiency) in country c and industry s, while Mismatch refers to the measures of qualification 
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and skill mismatch and their components (under-skilled/qualified and over-skilled/qualified). The model 
controls for country and industry fixed effects, while standard errors are clustered at the country level. 
Including country fixed effects controls for omitted time-invariant country-specific factors that might 
affect labour productivity, while industry fixed effects control for common industry-specific technological 
factors, such as differences in the extent of natural competition across industries. Following Andrews and 
Cingano (2014), OLS regression estimates are weighted by available observations in each country-industry 
cell to control for outliers arising from the small number of observations in some cells.  

37. The literature exploring the determinants of qualification and skill mismatch and their economic 
consequences suggest that skill and qualification mismatch can have different implications for productivity 
and there is no real consensus on which one can be more costly (Allen and van der Velden, 2001). For 
example, some studies claim that just looking at qualification mismatch exaggerates the adverse economic 
effects since only over-qualified workers who are also over-skilled should be considered a real mismatch 

(Green and Zhu, 2010). In order to address these concerns as well as take into account the fact that there is 
little overlap between the two types of mismatch (see Section 3.3), we include both qualification and skill 
mismatch in the baseline specification.16 However, including these terms separately yields similar results.  

38. In addition to the baseline specification, several other alternatives are considered based on the 
literature between mismatch and productivity. 

 First, given the importance of competition for productivity, a Herfindahl index (calculated as ∑ 𝑠𝑖    2𝑁𝑖=1 where si is the market share of firm i and N is the number of firms in an industry, using 
ORBIS data) is added to the baseline specification as a measure of market power, such that a 
higher value might be associated with lower competitive pressures. The use of the Herfindahl 
index to proxy competitive pressures reflects practical considerations. Alternative indicators, – 
e.g. mark-ups or product market regulation indices – while conceptually superior, are not readily 
available at the corresponding industry classification used in this paper. 

 Second, as an extension to the baseline model, it is also possible to control for the overlap 
between skill and qualification mismatch by creating additional categories of mismatch – e.g. the 
share of workers who are both over-skilled and over-qualified – which is explored in detail in 
Appendix B. There are nine possible categories: i) over-qualified and under-skilled; ii) over-
qualified and over-skilled; iii) over-qualified and well-matched in terms of skills; iv) under-
qualified and under-skilled; v) under-qualified and over-skilled; vi) under-qualified and well-
matched in terms of skills; vii) over-skilled and well-matched in terms of qualifications; viii) 
under-skilled and well-matched in terms of qualifications; and ix) well-matched in terms of both 
skills and qualifications (Table B1 in Appendix B). Looking at these additional categories can 
provide additional insight into the relationship between mismatch and productivity. 

 Third, a new measure of managerial quality, based on the average literacy scores of managers in 
each country-industry cell using PIAAC data, is also included.  

39. The analysis is undertaken with a view to establish a robust correlation between mismatch and 
labour productivity and should not be interpreted as causal for a number of reasons. First, in sectors with 
more reallocation, there is more scope to reduce mismatch. Second, there may be other factors that affect 
both mismatch and productivity. For example, better managed firms are more productive (Bloom and Van 
Reenen, 2010), while they may also be less susceptible to mismatch to the extent that better managers may 
be more effective at: i) screening potential job applicants; ii) developing new work practices to more 
effectively integrate new technologies; iii) internally reallocating over-skilled/qualified workers to more 

                                                      
16  This is possible since the correlation between skill and qualification mismatch is low. 
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productive uses within the firm; and iv) taking remedial measures and/or removing under-skilled/qualified 
workers from organisations. This raises the possibility that part of the correlation between mismatch and 
productivity could be due to managerial ability, which we explore in more depth in Section 4.3.3.  

4.2 Baseline results 

40. Table 1 shows the baseline results for three measures of industry productivity performance: 
weighted average productivity, allocative efficiency and within-firm productivity. The odd number 
columns include the aggregated mismatch variables (qualification and skill mismatch) while the even 
numbered columns decompose these measures into their constituent parts (e.g. under- and over-
qualified/skilled). In the odd-numbered columns, the coefficients should be interpreted as the estimated 
impact of increasing the share of mismatched workers at the expense of the omitted category: the share of 
well-matched workers. In the even-numbered columns that include the respective components of 
mismatch, the coefficients should be interpreted as the impact on productivity of an increase in the share of 
a given category (e.g. over-skilled workers), at the expense of the omitted category (i.e. well-matched 
workers), holding constant all other components of mismatch (i.e. the share of under- and over-qualified 
and under-skilled workers). The results are shown for the 10th percentile definition of skill mismatch, while 
those using the 5th percentile definition are broadly similar (Table A4 in Appendix A). The estimates 
suggest that both qualification and skill mismatch are associated with lower labour productivity, though in 
each case, the mechanism varies. 

Table 1.   Baseline results of the link between mismatch and labour productivity  

 

1. The dependent variables are as defined in (1), computed for 2007. All specifications include country and industry fixed effects and 
are clustered by country. Observations are weighted by industry size—number of firms. Robust standard errors in parentheses. *** 
denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level. 

2. Workers with qualification (skill) mismatch refer to the percentage of workers who are either over- or under- qualified (skilled). 
Under- (over-) qualified workers refer to the percentage of workers whose highest qualification is lower (higher) than the qualification 
they think is necessary to get their job today. Under- (over-) skilled workers refer to the percentage of workers whose scores are 
higher than that of the min (max) skills required to do the job, defined as the 10

th 
(90

th
) percentile of the scores of the well-matched 

workers in each occupation and country. 
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41. Higher skill mismatch is associated with lower weighted average labour productivity, although 
the effect is not statistically significant (Column 1). However, higher skill mismatch has a negative 
relationship with allocative efficiency – the ability of more productive firms to attract resources to grow 
(Column 3). By contrast, skill mismatch is uncorrelated with the within-firm productivity component 
(Column 5), which is important given that the existing literature predicts that skill mismatch should be 
related to productivity through this within-firm channel. 

42. The aggregated measure of skill mismatch in Column 1 hides a strong and statistically significant 
negative relationship between the share of over-skilled workers and labour productivity (Columns 2 and 4), 
while the under-skilled component of skill mismatch, assuming that the worker is well-matched in terms of 
qualifications,  is uncorrelated with labour productivity. Columns 4 and 6 show that the negative 
relationship between over-skilling and weighted average labour productivity is entirely realised through the 
channel of allocative efficiency, which suggests that that a higher incidence of over-skilling makes it more 
difficult for the most productive firms to gain market shares at the expense of less productive firms. In 
terms of economic significance, a one standard deviation increase in over-skilling – roughly equivalent to 
the difference in mismatch between Italy and the United States in Figure A1 – is associated with a 6% 
reduction in allocative efficiency and a 4% decrease in overall labour productivity.17  

43. A higher percentage of workers with qualification mismatch is associated with lower labour 
productivity, with the coefficient in Column 1 implying that a one standard deviation increase in 
qualification mismatch – roughly equivalent to the difference between Estonia and the United States in 
Figure 2, Panel B – is associated with a 5% reduction in weighted average labour productivity.18 Column 2 
shows that the main source of this effect is under-qualified workers, while over-qualification, assuming 
that the worker is well-matched in terms of skills, is uncorrelated with labour productivity. With respect to 
economic magnitudes, the results suggest that a one standard deviation increase in the percentage of under-
qualified workers – roughly equivalent to the difference in mismatch between Denmark and Belgium in 
Figure A1 – would be associated with a 10% decrease in overall labour productivity.19    

44. Closer inspection reveals that the negative relationship between under-qualification and labour 
productivity is realised through both lower allocative efficiency and within-firm productivity, where the 
latter is predicted by the existing literature. The within-firm productivity component (Column 6) reflects 
the fact that in industries with a higher share of under-qualified workers, there is a lower ratio of high 
productivity to low productivity firms – which is consistent with research from Belgium (Mahy et al., 
2013). A one standard deviation increase in the share of under-qualified workers – roughly equivalent to 
the difference in mismatch between Denmark and Belgium in Figure A1 – is associated with a 6% 
reduction in labour productivity. Under-qualification is also related to labour productivity through the 
channel of allocative efficiency, although the coefficient is only statistically significant at the 10% level. 
The economic impact is slightly more modest: a one standard deviation increase in under-qualification is 
associated with a 4% reduction via the allocative efficiency channel (Column 4). 

                                                      
17   Calculated as β*standard deviation of the percentage of over-skilled workers*100, that is, -0.0094*5.1*100 

for productivity and -0.0124*5.1*100 for allocative efficiency. 

18  Calculated as β*standard deviation of the percentage of workers with qualification mismatch*100, that is 
0.079*6.6*100. 

19    Calculated as β*standard deviation of the percentage of under-qualified workers*100, that is -
0.0216*4.9*100 for productivity, -0.0087*4.9*100 for allocative efficiency and -0.0129*4.9*100 for 
within-firm productivity. 
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4.3 Extensions and robustness tests 

4.3.1 Controlling for market competition 

45. Table 2 explores the robustness of the baseline results to controlling for the extent of competition 
which may influence both mismatch and labour productivity (Rodriguez Mora, 2007; see Box 1). More 
specifically, the baseline specification, which includes country and industry fixed effects, is augmented 
with a measure of market power, proxied by the Herfindahl index as described in Section 4.1. Results show 
that once the extent of market competition is controlled for, the main results remain intact, with 
coefficients very similar to the baseline specification. In addition, the negative relationship between skill 
mismatch and labour productivity becomes statistically significant at the 10% level (Column 1). 
Furthermore, as expected, less competition is correlated with lower weighted productivity and allocative 
efficiency. 

Table 2.  Mismatch and labour productivity: controlling for market competition 

 

1. The dependent variables are as defined in (1), computed for 2007. All specifications include country and industry fixed effects and 
are clustered by country. Observations are weighted by industry size—number of firms. Robust standard errors in parentheses. *** 
denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level. 

2. Workers with qualification (skill) mismatch refer to the percentage of workers who are either over- or under- qualified (skilled). 
Under- (over-) qualified workers refer to the percentage of workers whose highest qualification is lower (higher) than the qualification 
they think is necessary to get their job today. Under- (over-) skilled workers refer to the percentage of workers whose scores are 
higher than that of the min (max) skills required to do the job, defined as the 10

th 
(90

th
) percentile of the scores of the well-matched 

workers in each occupation and country. 

4.3.2 Controlling for the overlap between qualification and skill mismatch 

46. On average, there is little overlap between qualification and skill mismatch across OECD 
countries, with only 9% of workers mismatched on both skills and qualifications. Nevertheless, it is useful 
to exploit this overlap in order to shed more light on the possible channels and to test the robustness of the 
baseline results. This might also help explain why over-skilling – but not over-qualification – should 
matter for allocative efficiency, while under-qualification – but not under-skilling – should matter for 
within-firm productivity. However, the results from this analysis should be interpreted with caution for two 
main reasons. First, increasing the potential number of categories of mismatch decreases the number of 
observations within each industry cell. Second, the higher number of variables in the regression analysis 
creates additional pressure from a degrees of freedom perspective, given the already small sample size. 
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47. While a detailed discussion of the results from this exercise is contained in Appendix B, a few 
key results warrant further discussion. First, the results for the overall mismatch measures highlight the 
robustness of the baseline model: while there is a negative relationship between having only qualification 
or only skill mismatch and labour productivity, the correlation of labour productivity with the share of 
respondents with both skills and qualifications mismatch is insignificant. Second, Table 3 reports the 
results from including the overlap of the different components of qualification and skill mismatch, where 
the omitted category is the share of workers who are well-matched in terms of both skills and qualifications 
(these results can be compared to the even-numbered columns of Table 2). While these results are also 
broadly consistent with the baseline results, they paint a more nuanced picture. The negative relationship 
between under-qualification and labour productivity, which was shown to be significant in the baseline 
results, is mainly driven by under-qualified workers, who are well-matched in terms of skills (term 6). The 
main channel of this effect is allocative efficiency. However, column (3) of Table 3 also shows that the 
negative relationship between under-qualification and within-firm productivity observed in the baseline 
results is entirely driven by workers who are both under-qualified and under-skilled (term 4) such that 
increasing their share at the expense of well-matched workers in terms of qualifications and skills is 
associated with lower within-firm productivity. 

Table 3.   Mismatch and labour productivity: controlling for the overlap between the components of 
qualification and skill mismatch  

 

1. The dependent variables are as defined in (4), computed for 2007. All specifications include country and industry fixed effects and 
are clustered by country. Observations are weighted by industry size—number of firms. Robust standard errors in parentheses. *** 
denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level. 

2. Under- (over-) qualified workers refer to the percentage of workers whose highest qualification is lower (higher) than the 
qualification they think is necessary to get their job today. Under- (over-) skilled workers refer to the percentage of workers whose 
scores are higher than that of the min (max) skills required to do the job, defined as the 10

th
 (90

th
) percentile of the scores of the well-

matched workers in each occupation and country. 

48. Third, with respect to over-skilling, Table 3 shows that a higher share of over-skilled workers 
who are well-matched in terms of qualification (term 7) is negatively correlated with allocative efficiency, 
which is consistent with the baseline estimates. This suggests that being only over-skilled (i.e. not over-
qualified at the same time) might have a larger impact on productivity than just being over-qualified (i.e. 

not over-skilled at the same time). Fourth, a key result is that a higher share of workers who are both over-
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qualified and over-skilled (term 2) is positively associated with within-firm productivity, but negatively 
correlated with allocative efficiency. These findings imply that while having workers with a combination 
of over-skilling and over-qualification might be good for the firms who employ these workers, this does 
not necessarily translate into an increase in the economy-wide labour productivity to the extent that this 
constrains the growth of other relatively more productive firms that could more efficiently utilise these 
skills. 

4.3.3 Controlling for managerial quality 

49.  Recent research has shown that higher managerial quality improves firm and aggregate 
productivity (Bloom et al., 2012 and 2013a). The benefits of superior management practices on 
productivity are largely realised through within-firm effects, such as the use of modern HR practices (e.g. 
monitoring) and organisational restructuring to promote more efficient technological adoption, as opposed 
to higher allocative efficiency. While this literature has not specifically analysed the nexus between 
managerial quality and mismatch, it is plausible that better managers will also be more effective at 
matching the qualifications, knowledge, skills and competencies of a worker to those required by a job (see 
Section 4.1 for more details). 

50. In order to analyse the links between managerial quality, mismatch and productivity, we consider 
several options. First, the relationship between a new measure of managerial quality (proxied by the 
average literacy scores of managers in each industry and country) and the various measures of mismatch 
and productivity, is considered.20 Consistent with the channels discussed above, Table A6 in Appendix A 
shows that higher managerial quality is associated with higher labour productivity through the within-firm 
(unweighted) productivity channel, while the relationship of managerial quality with allocative efficiency 
is not significant. Furthermore, managerial quality is correlated with under-skilling and under-qualification 
(Table A7, Panel A in Appendix A), which have a significant and negative relationship with within-firm 
labour productivity (see Tables 1 and 3).  

51.   Consistent with the above prediction, Table 4 shows that managerial quality is correlated with 
labour productivity through the within-firm productivity channel. More interestingly, the impact of under-
qualification on within-firm productivity becomes insignificant, suggesting that most of the effect is 
accounted for by differences in managerial quality. Controlling for managerial quality in regressions using 
the overlap of the components of mismatch also shows that most of the impact of under-qualification and 
under-skilling is due to differences in managerial quality (see Appendix B). Similar results are obtained 
when the different measures of mismatch are instrumented using the managerial quality indicator. Indeed, 
the second stage estimates in Panel B of Table A7 (see Appendix A) indicate that the relationship between 
within-firm productivity and under-qualification is predominantly explained by the variation in under-
qualification that is predicted by managerial quality.21 In terms of economic significance, a one standard 
deviation increase in managerial quality – roughly equivalent to moving from the sample average to the 
high level in Sweden – is associated with a 9% increase in within-firm productivity. 

                                                      
20  Managerial quality indicators from the World Management Survey (WMS) data (see Bloom et al., 2012) 

are not utilised to the extent that they are only available for a subset of countries and industries in our 
sample. However, many of the countries that rank highly according to the WMS data also perform well 
according to the PIAAC data (e.g. Japan, Germany, Sweden and to a less extent, the United States). 

21  This exercise is undertaken purely to demonstrate the idea that mismatch is a potential channel through 
which managerial quality may influence productivity. Of course, these results should be interpreted with 
caution to the extent that the exclusion restriction is clearly violated given that management may affect 
productivity through channels other than mismatch. 
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Table 4. Mismatch and labour productivity: controlling for managerial quality 

 

1. The dependent variables are as defined in (1), computed for 2007. All specifications include country and industry fixed effects and 
are clustered by country. Observations are weighted by industry size—number of firms. Robust standard errors in parentheses. *** 
denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level. 

2. Workers with qualification (skill) mismatch refer to the percentage of workers who are either over- or under- qualified (skilled). 
Under- (over-) qualified workers refer to the percentage of workers whose highest qualification is lower (higher) than the qualification 
they think is necessary to get their job today. Under- (over-) skilled workers refer to the percentage of workers whose scores are 
higher than that of the min (max) skills required to do the job, defined as the 10

th 
(90

th
) percentile of the scores of the well-matched 

workers in each occupation and country. 

4.3.4 Other sensitivity tests 

52. The baseline results reported in Table 1 are broadly robust to a number of sensitivity tests. 
Instead of using ORBIS data from 2007, estimations using data for 2005 and 2006 as well as an average of 
2005-07 yield similar results. The baseline coefficients are also broadly robust to excluding one country 
and industry from the sample at a time and to changing the omitted category, which is the share of well-
matched workers in the baseline specification.22 Finally, given the large literature on the relationship 
between skill levels and productivity, the baseline results are robust to including the mean proficiency 
score for each industry, which turns out to be positively correlated with productivity.  

53.  Although industry fixed effects play a relatively small role in explaining cross-country industry 
variation in mismatch, we also explored whether the link between mismatch and productivity varied 
according to the technological characteristics of the industry. For example, it could be of interest to 
policymakers if mismatch disproportionately affected productivity in emerging knowledge-based capital 
(KBC)-intensive sectors, which are expected to become increasingly important for economic growth. To 
test this hypothesis, we interacted the mismatch indicators with measures of sectoral R&D, KBC and ICT 
intensity, using data from the United States. However, this analysis did not yield any meaningful results, 
possibly reflecting the fact that there was insufficient variation at the 1-digit level in these indicators. 

  

                                                      
22  The analysis in Table A5 in Appendix A repeats the exercise using over-qualified and over-skilled workers 

or under-qualified and under-skilled workers as the omitted category and yields broadly similar results. 
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4.4 Skill mismatch and cross-country gaps in labour productivity  

54. Assuming the relationship is causal, the economic significance of the results can be illustrated by 
estimating the potential gain to labour productivity under a counterfactual scenario where skill mismatch in 
each country is reduced to the best practice level in each industry. We concentrate on skill mismatch rather 
than qualification mismatch to the extent that qualifications become less relevant for workplace 
performance over time, than skills (see OECD, 2013). In turn, these 1-digit industry level mismatch 
indicators are aggregated using industry employment shares for the United States as weights to calculate 
the weighted average difference in the actual and the counterfactual productivity in each country. 
Aggregation based on United States employment shares is performed for practical purposes, to the extent 
that employment data on the ISIC Rev. 4 industry classification basis – on which the industry identifiers in 
PIAAC are defined – are not yet available for seven countries in the sample. However, the choice between 
using country-specific or United States employment shares in the aggregation does not materially affect the 
results, at least for the 11 countries (other than the US) in the sample for which ISIC Rev. 4 data are 
available (see Figure A2 in Appendix A). This result is consistent with the fact that the industry fixed 
effects play a relatively small role in explaining the cross-country industry variation in skill mismatch 
(Table A3). 

55. Figure 3 plots the simulated gains to allocative efficiency from lowering skill mismatch to the 
best practice.23 If interpreted causally, this exercise suggests reducing skill mismatch in countries such as 
Italy and Spain to the best practice level would be associated with an increase in allocative efficiency of 
around 10%, which would account for about roughly one-fifth of the gap in non-farm business sector 
allocative efficiency between Italy and the United States (or Sweden), for example.24 From this 
perspective, skill mismatch has the potential to explain a non-trivial share of cross-country labour 
productivity gaps. 

56. More speculatively, the same exercise can be extended to countries that are not in our sample due 
to lack of productivity data, but are included in the PIAAC sample (Figure C2 in Appendix C). The 
estimates suggest that lowering the skill mismatch to best practice would be associated with an increase in 
allocative efficiency of 8% for Ireland, 6% in Australia and 2% for Canada. Of course, it is not possible to 
calculate how much reducing skill mismatch can explain cross-country productivity gaps for these 
countries due to a lack of productivity data. 

                                                      
23  This exercise focuses on allocative efficiency (AE) as opposed to weighted productivity (WP) to the extent 

that fewer cross-country or cross-sector comparability issues arise with respect to the former, compared to 
the latter (see Section 3.1). Moreover, the link between skill mismatch and WP is realised through AE, 
while the mismatch-AE relationship is also more precisely estimated than the mismatch-WP link.  

24  This is calculated as: the difference between the gains to allocative efficiency from lowering skill mismatch 
to best practice in Italy and the United States (7.13 = 9.96-2.83) divided by the difference between business 
sector allocative efficiency in the United States and Italy (0.38=0.37- (-0.01)). 
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Figure 3. Counterfactual productivity gains from reducing skill mismatch 

Simulated gains to allocative efficiency from lowering skill mismatch to the best practice; per cent 

  
Note: The chart shows the difference between the actual allocative efficiency and a counterfactual allocative efficiency based on 
lowering the skill mismatch in each country to the best practice level of mismatch. Both the actual and counterfactual numbers are 
calculated by aggregating 1-digit industry level mismatch indicators using a common set of weights based on the industry 
employment shares for the United States. For example, lowering the skill mismatch to best practice leads to a simulated gain of 
around 10% in Italy and 3% in the United States.  

Source: OECD calculations based on the Survey of Adult Skills (2012). 

5. Policy discussion 

57. If interpreted causally, the estimates in this paper suggest that mismatch is one factor that may 
contribute to explaining cross-country differences in labour productivity. However, the question remains as 
to what are the policy and structural factors that determine mismatch. While this will be addressed in more 
detail in Adalet McGowan and Andrews (2015), this section provides some preliminary insights into the 
types of policies that may be relevant. To the extent that mismatch is related to productivity through more 
than one channel, it is important to consider policies that work through both within-firm and between-firm 
factors. 

58. As discussed in the previous section, differences in managerial quality can potentially account for 
the strong association between under-qualification and within-firm productivity. From a policy perspective, 
the question then becomes what determines managerial quality. Recent research (see Bloom et al., 2014) 
identifies four possible explanations: i) competition; ii) regulations affecting product and labour markets; 
iii) ownership structure (e.g. managerial quality is highest in MNEs and lowest in family managed firms); 
and iv) education. It is also possible that policies may shape the ability of managers to reduce mismatch 
within firms at any given level of managerial quality. 

59. While improvements in the quality of management can lead to high productivity within firms, 
from the perspective of the economy as a whole, these gains will be maximised when the most effective 
managers command a larger share of the economy’s resources. Indeed, this is the case on average across 
OECD countries, with larger firms tending to have better managers than smaller firms (Figure 4, Panel 
A).25 However, some interesting cross-country differences emerge, with the monotonic pattern (observed 
                                                      
25  This analysis complements that in OECD (2014b) that uses PIAAC data to show that larger firms are better 

at rewarding skills and adjusting rewards after hiring as actual skills of workers are revealed.  
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in Figure 4, Panel A) particularly pronounced in Sweden, while there is no apparent relationship between 
managerial quality and firm size in Poland (Figure 4, Panel B).26 These findings, which suggest that some 
countries are more successful at channelling resources to better managers than others, are broadly 
consistent with evidence from Bloom et al. (2013b), which use data from the World Management Survey to 
measure the core managerial practices in the areas of: monitoring, targets and incentives. 

Figure 4. Managerial quality across industries and firm size  

Panel A: Average across selected OECD economies; industry break-down 

 

Panel B: A two country example – Sweden and Poland, all industries 

  

Notes: Firm size is measured as the number of employees at the firm. Average scores of managers refer to the average of the 
proficiency scores (in literacy) of managers in each country. Panel A is an unweighted average of the scores of managers in the 22 
OECD countries in the PIAAC sample (see Box 3). 

Source: OECD calculations based on the Survey of Adult Skills (2012). 

60. The strong negative relationship between skill mismatch (i.e. over-skilling) and labour 
productivity via the allocative efficiency channel suggests that future research on the policy determinants 
of skill mismatch should focus particularly on those policy factors that impose frictions to the efficient 
reallocation of labour. Previous research has highlighted the adverse effects of stringent regulations 
                                                      
26  These patterns are symptomatic of differences in the efficiency of resource allocation across the two 

economies (Andrews and Cingano, 2014). 
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affecting product and labour markets and bankruptcy legislation that excessively penalises business failure 
on the efficiency of resource allocation (Andrews and Cingano, 2014). 

61.  Low residential mobility may pose another barrier to the efficient reallocation of labour. Across 
OECD countries, there is a positive correlation between residential mobility and worker reallocation rates 
(Figure 5), which is significant to the extent that skill mismatch is related to productivity via the 
reallocation channel. Indeed, policy interventions in housing markets, such as transaction costs or rental 
market regulations, have been shown to be important for residential mobility (Andrews et al., 2011), which 
raises the possibility that they may also be relevant for mismatch. 

Figure 5. Residential mobility and worker reallocation rates 

Selected OECD countries 

 

Notes: Worker reallocation rates are country averages of reallocation rates (hiring and firing rates) expressed in percentage of total 
dependent employment (adjusted for industry composition). The data are sourced from OECD (2010) and refer to 2000-07 except for 
Austria, Iceland, Slovenia: 2002-07; Canada, Denmark, France, Germany, Italy, Portugal, Sweden and the United States: 2000-06; 
the Czech Republic: 2001-07; Greece, Hungary, Ireland, Spain: 2000-05; Norway: 2000-04; Poland: 2004-05; the Slovak Republic: 
2002-06; and Turkey: 2007. Residential mobility data are from Andrews et al. (2011) based on 2007 EU-SILC Database, on HILDA 
for Australia, AHS for the United States and SHP for Switzerland. *** denotes statistical significant at 1% level; ** denotes statistical 
significant at 5% level. 

Source: Andrews et al. (2011) and OECD (2010), Employment Outlook, Paris. 

62. Finally, to the extent that the incidence of mismatch is higher amongst youth and immigrants, 
policies that disproportionately affect these groups could warrant further investigation (OECD, 2014b and 
2014c). For example, recent research using PIAAC data finds that labour market institutions can shape the 
impact of mismatch on wages amongst young persons (OECD, 2014b).27 At the same time, however, 
policies affecting older workers will also be relevant, to the extent that it may be important to provide 
mechanisms to ensure the effective use of human capital amongst those segments of the population that 
have gained their formal qualifications a long time ago. From this perspective, the provision of adult 
education will be particularly relevant, as will mechanisms that encourage efficient organisational 

                                                      
27  In addition to skill and qualification mismatch, OECD (2014b) also considers field of study mismatch and 

finds that the field of study is almost twice as likely to generate over-qualification (and associated impact 
on wages) among youth than older workers. 
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restructuring in order to ensure the effective integration of new technologies, while minimising the adverse 
consequences on mismatch.  

6. Conclusion  

63. This paper explores the link between skill and qualification mismatch and labour productivity 
using cross-country industry data for 19 OECD countries. Utilising mismatch indicators aggregated from 
micro-data sourced from the recent OECD Survey of Adult Skills, the main results suggest that higher skill 
and qualification mismatch is associated with lower labour productivity, with over-skilling and under-
qualification accounting for most of these impacts. The channels that link these respective components of 
mismatch to productivity vary. A novel result is that higher skill mismatch is associated with lower labour 
productivity through a less efficient allocation of resources, presumably because when the share of over-
skilled workers is higher, more productive firms find it more difficult to attract skilled labour and gain 
market shares at the expense of less productive firms. At the same time, a higher share of under-qualified 
workers is associated with both lower allocative efficiency and within-firm productivity – i.e. a lower ratio 
of high productivity to low productivity firms. Additional analysis shows that a higher share of workers 
who are both over-qualified and over-skilled is positively associated with within-firm productivity, but 
negatively correlated with allocative efficiency. Furthermore, the negative relationship between under-
qualification and within-firm productivity is entirely driven by workers who are both under-qualified and 
under-skilled. While this finding is consistent with previous research in this area, additional analysis 
suggests that differences in managerial quality can potentially account for the relationship between under-
qualification and under-skilling, and within-firm productivity.   

64. The analysis does not address the causal impact of mismatch on productivity as in sectors with 
more reallocation, there is more scope to reduce mismatch. Nevertheless, the finding of a robust negative 
correlation between mismatch and productivity suggests that mismatch is a relevant structural indicator 
that is worthy of monitoring in cross-country structural surveillance exercises. At the same time, the 
analysis highlights the value of cross-country micro-data sources such as the OECD Survey of Adult Skills 
to understanding the sources of cross-country differences in living standards. 

65. More generally, this paper adds further weight to the idea that policymakers should not only be 
concerned with increasing the stock of human capital, but also with allocating the existing stock of human 
capital more efficiently. The latter is likely to take on heightened importance over coming decades to the 
extent that the growth in the stock of human capital is projected to slow, which implies a moderation in 
economic growth but also an increase in income inequality within countries, given that the demand for 
skills is likely to increase (Braconier et al., 2014). Moreover, reducing mismatch may be beneficial to 
growth in the short-to-medium term to the extent that the benefits of human capital-augmenting policies 
take a long time to be realised, while it may also enhance the ‘bang-for-the-buck’ – i.e. the productivity 
impacts – of such policies in the longer run. Of course, the question of what determines mismatch remains, 
and future research will explore the policy correlates of mismatch using micro-data from PIAAC (see 
Adalet McGowan and Andrews, 2015). 
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APPENDIX A 

Table A1. Descriptive statistics of mismatch 

 

Note: Workers with qualification (skill) mismatch refer to the percentage of workers who are either over- or under- qualified (skilled). 
Under- (over-) qualified workers refer to the percentage of workers whose highest qualification is lower (higher) than the qualification 
they think is necessary to get their job today. Under- (over-) skilled workers refer to the percentage of workers whose scores are 
higher than that of the min (max) skills required to do the job, defined as the 2.5

th
/5

th
/10

th
 (97.5

th
/95

th
/90

th
) percentile of the scores of 

the well-matched workers in each occupation and country. 

 

Table A2. Correlations between various measures of skill mismatch 

 

Note: Workers with skill mismatch refer to the percentage of workers who are either over- or under-skilled. Under- (over-) skilled 
workers refer to the percentage of workers whose scores are higher than that of the min (max) skills required to do the job, defined as 
the 2.5

th
/5

th
/10

th
 (97.5

th
/95

th
/90

th
) percentile of the scores of the well-matched workers in each occupation and country. 
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Table A3. Mismatch: analysis of variance  

 

Note: Adjusted R-squared of fixed effects regressions on qualification and skill mismatch. 

 

Table A4. Mismatch and labour productivity: using the 5% definition of skill mismatch  

 

1. The dependent variables are as defined in (1), computed for 2007. All specifications include country and industry fixed effects and 
are clustered by country. Observations are weighted by industry size—number of firms. Robust standard errors in parentheses. *** 
denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level. 

2. Workers with qualification (skill) mismatch refer to the percentage of workers who are either over- or under- qualified (skilled). 
Under- (over-) qualified workers refer to the percentage of workers whose highest qualification is lower (higher) than the qualification 
they think is necessary to get their job today. Under- (over-) skilled workers refer to the percentage of workers whose scores are 
higher than that of the min (max) skills required to do the job, defined as the 5

th
(95

th
) percentile of the scores of the well-matched 

workers in each occupation and country. 
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Table A5. Mismatch and labour productivity: using a different base case (well-matched workers) 

 

1. The dependent variables are as defined in (1), computed for 2007. All specifications include country and industry fixed effects and 
are clustered by country. Observations are weighted by industry size—number of firms. Robust standard errors in parentheses. *** 
denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level. 

2. Workers with qualification (skill) mismatch refer to the percentage of workers who are either over- or under- qualified (skilled). 
Under- (over-) qualified workers refer to the percentage of workers whose highest qualification is lower (higher) than the qualification 
they think is necessary to get their job today. Under- (over-) skilled workers refer to the percentage of workers whose scores are 
higher than that of the min (max) skills required to do the job, defined as the 10

th
(90

th
) percentile of the scores of the well-matched 

workers in each occupation and country. 

 

Table A6. The link between managerial quality and labour productivity 

 
 

1. The dependent variables are as defined in (1), computed for 2007. All specifications include country and industry fixed effects. 
Robust standard errors in parentheses. *** denotes statistical significance at the 1% level, ** significance at the 5% level, * 
significance at the 10% level. 
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Table A7. Instrumental variables estimation of the link between mismatch, managerial quality and labour 
productivity  

 

1. The dependent variables in Panel B are as defined in (1), computed for 2007. In each column of Panel B, the relevant mismatch 
measure is included separately. All specifications include country and industry fixed effects. Robust standard errors in parentheses. 
*** denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level. 
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Figure A1. Components of skill and qualification mismatch 

Panel A: Under-skilled and over-skilled workers 

 

Panel B: Under-qualified and over-qualified workers 

 

Note: The figures are calculated from the cross-country industry data from the sample described in Section 3.2. Under- (over-) 
qualified workers refer to the percentage of workers whose highest qualification is lower (higher) than the qualification they think is 
necessary to get their job today. Under- (over-) skilled workers refer to the percentage of workers whose scores are higher than that 
of the min (max) skills required to do the job, defined as the 10

th 
(90

th
) percentile of the scores of the well-matched workers in each 

occupation and country. In order to abstract from differences in industrial structures across countries, the 1-digit industry level 
mismatch indicators are aggregated using a common set of weights based on industry employment shares for the United States. 

Source: OECD calculations based on the Survey of Adult Skills (2012). 
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Figure A2. Counterfactual productivity gains from reducing skill mismatch: robustness to aggregation method 

Simulated gains to allocative efficiency from lowering skill mismatch to the best practice; per cent 

  

Note: The chart shows the difference between the actual allocative efficiency and a counterfactual allocative efficiency based on 
lowering the skill mismatch in each country to the best practice level of mismatch. Both the actual and counterfactual numbers for 
each country are calculated by aggregating 1-digit industry level mismatch indicators both using weights based on their industry 
employment shares and those for the United States. As noted in Section 4.4, industry weights on the ISIC Rev. 4 basis are not 
available for the following seven countries in the sample: ESP, EST, GBR, JPN, KOR, POL and SVK. 

Source: OECD calculations based on the Survey of Adult Skills (2012). 
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APPENDIX B 

1.  On average, across OECD countries, only 15% of workers have skill mismatch, despite being 
well-matched in terms of qualifications, while 27% are only mismatched in terms of qualifications but 
well-matched in terms of skills. There is little overlap between qualification and skill mismatch, with on 
average only 9% of workers mismatched on both skills and qualifications. Looking at the different 
components of mismatch shows that the majority of the overlap is driven by workers who are over-skilled 
and over-qualified (Table B1). Given the literature that shows that the implications of qualification and 
skill mismatch may be different for productivity as well as the baseline results presented in the paper, it 
would be useful to control for this overlap in the regression analysis. However, there are two main issues 
that make it crucial to interpret these results with extreme caution. First, increasing the potential number of 
categories of mismatch decreases the number of observations in each industry cell. Second, the higher 
number of variables in the regression analysis creates additional pressure from a degrees of freedom 
perspective, given the already small sample size of 205 observations. 

Table B1. The overlap between qualification and skill mismatch 

Selected OECD countries 

 

Note: Based on the sample of the paper so the figures may vary somewhat from those reported in OECD (2013).  

Source: OECD calculations based on the Survey of Adult Skills (2012).  

Empirical Model 

2. The first specification uses the aggregate definitions of skill and qualification mismatch (as 
defined in Sections 2 and 3) and estimates an industry level regression of the following form: 

        , 1 , 2 , 3 , 4 , ,
j

s c s c s c s c s c s c s cprod BOTH QMM SMM HERF                  (3)  

      

where: prod is a measure of labour productivity (weighted productivity, within-firm productivity and 
allocative efficiency) in country c and industry s, while BOTH refers to the share of respondents with both 
qualification and skill mismatch, QMM to the share with only qualification mismatch and SMM to 
respondents with only skill mismatch. HERF refers to a Herfindahl index that measures market power and 
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is included to control for competition.28 The omitted category is the percentage of workers who are well-
matched in terms of both skills and qualifications. The coefficients should be interpreted as the impact on 
productivity of an increase in the share of a given category (e.g. workers with qualification mismatch only) 
at the expense of the omitted category, holding constant all other categories constant (i.e. workers with 
skill mismatch only and workers who have both skill and qualification mismatch). 

3.  The second specification uses the overlap between the different components of skill and 
qualification mismatch and estimates an industry level regression of the following form: 

         , 1 , 2 , ,
j k

s c s c s c s c s c
prod OVERLAP HERF                   (4)    

where: prod is a measure of labour productivity (weighted productivity, within-firm productivity and 
allocative efficiency) in country c and industry s, while OVERLAP refers to the different combinations of 
the overlap between qualification and skill mismatch. There are 9 potential categories (k=9): over-qualified 
and under-skilled; over-qualified and over-skilled; over-qualified and well-matched in terms of skills; 
under-qualified and under-skilled; under-qualified and over-skilled; under-qualified and well-matched in 
terms of skills; over-skilled and well-matched in terms of qualifications; under-skilled and well-matched in 
terms of qualifications; and well-matched in terms of both skills and qualifications.  HERF is the 
Herfindahl index, as described above. The omitted category is the share of workers who are well-matched 
in terms of both skills and qualifications. 

4.  Similar to the baseline model in the paper, these specifications control for country and industry 
fixed effects, while standard errors are clustered at the country level. Following Andrews and Cingano 
(2014), OLS regression estimates are weighted by available observations in each country-industry cell to 
control for outliers arising from the small number of observations in some cells.  

Results 

5. Table B2 reports the results from the estimation of equation (3). The results are consistent with 
those reported in the odd-numbered columns of Table 2, which do not take into consideration the overlap 
between qualification and skill mismatch for each individual, but instead use aggregate measures of 
mismatch. More specifically, there is a negative relationship between having only qualification or only 
skill mismatch and labour productivity. The main channel of this effect is allocative efficiency, the ability 
of more productive firms to attract more labour. The relationship between having both qualification and 
skill mismatch and labour productivity is not statistically significant. These results indicate that as 
discussed in the paper, skill and qualification mismatch measure different aspects of the suitability of a 
worker for their job and it is useful to consider both to determine their impact on productivity.  

                                                      
28  Calculated as ∑ 𝑠𝑖    2𝑁𝑖=1 where si is the market share of firm i and N is the number of firms in an industry, 

using ORBIS data. 
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Table B2. Mismatch and labour productivity: controlling for the overlap between qualification and skill 
mismatch  

 

1. The dependent variables are as defined in (3), computed for 2007. All specifications include country and industry fixed effects and 
are clustered by country. Observations are weighted by industry size—number of firms. Robust standard errors in parentheses. *** 
denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level. 

2. Workers with qualification (skill) mismatch refer to the percentage of workers who are either over- or under- qualified (skilled). 
Under- (over-) qualified workers refer to the percentage of workers whose highest qualification is lower (higher) than the qualification 
they think is necessary to get their job today. Under- (over-) skilled workers refer to the percentage of workers whose scores are 
higher than that of the min (max) skills required to do the job, defined as the 10

th
(90

th
) percentile of the scores of the well-matched 

workers in each occupation and country. 

6.  Table 3 in Section 4.3.2 reports the results from the estimation of equation (4). Adding the proxy 
for managerial quality, based on the mean proficiency scores of managers based on PIAAC data, yields 
similar results to those presented in Table 3.29 The relationship between managerial quality and within-firm 
productivity is positive, but not statistically significant. Although the main results from Table B3 remain, 
the impact of under-qualified and under-skilled workers on within-firm productivity becomes insignificant 
when managerial quality is controlled for. This is in line with the baseline results suggesting that most of 
the impact of under-qualification can be accounted for by differences in managerial quality as discussed in 
more detail in Section 4.3.3.  

 

                                                      
29  These results are available from the authors on request. 
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APPENDIX C 

Figure C1. Incidence of qualification and skill mismatch: additional countries 

Panel A: Percentage of workers with skill mismatch 

 

Panel B: Percentage of workers with qualification mismatch 

 

Note: This is an extension of Figure 2 to all the OECD countries in the Survey of Adult Skills. * refers to countries that are not in 
included in the econometric analysis. Workers with qualification (skill) mismatch refer to the percentage of workers who are either 
over- or under- qualified (skilled), as defined in Section 2. Under - (over-) skilled workers refer to the percentage of workers whose 
scores are higher than that of the min (max) skills required to do the job, defined as the 10

th 
(90

th
) percentile of the scores of the well-

matched workers in each occupation and country. In order to abstract from differences in industrial structures across countries, the 1-
digit industry level mismatch indicators are aggregated using a common set of weights based on industry employment shares for the 
United States. 

Source: OECD calculations based on the Survey of Adult Skills (2012). 
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Figure C2. Counterfactual productivity gains from reducing skill mismatch: additional countries 

Simulated gains to allocative efficiency from lowering skill mismatch to the best practice; per cent 

 

Note: The chart shows the difference between the actual allocative efficiency and a counterfactual allocative efficiency based on 
lowering the skill mismatch in each country to the best practice level of mismatch. Both the actual and counterfactual numbers are 
calculated by aggregating 1-digit industry level mismatch indicators using a common set of weights based on the industry 
employment shares for the United States. This is an extension of Figure 3 to all the OECD countries in the Survey of Adult Skills. 
Estimates for Australia, Canada and Ireland should be interpreted with caution to the extent that they are not included in the 
econometric analysis due to insufficient productivity data. 

Source: OECD calculations based on the Survey of Adult Skills (2012). 
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