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Abstract—Latency-minimization is recognized as one of the
pillars of 5G network architecture design. Information-Centric
Networking (ICN) appears a promising candidate technology
for building an agile communication model that reduces latency
through in-network caching. However, no proposal has developed
so far latency-aware cache management mechanisms for ICN.
In the paper, we investigate the role of latency awareness on
data delivery performance in ICN and introduce LAC, a new
simple, yet very effective, Latency-Aware Cache management
policy. The designed mechanism leverages in a distributed fashion
local latency observations to decide whether to store an object
in a network cache. The farther the object, latency-wise, the
more favorable the caching decision. By means of simulations,
show that LAC outperforms state of the art proposals and results
in a reduction of the content mean delivery time and standard
deviation by up to 50%, along with a very fast convergence to
these figures.

I. INTRODUCTION

Latency minimization, or building for virtual zero latency
as commonly referred to, is one of the pillars of 5G network
architecture design and is currently fostering important re-
search work in this space. Inserting cache memories across
the communication data path between different processing
elements has been already demonstrated to be a reliable way
of improving performance by localizing - especially popular -
content at network edge and so reducing retrieval latency.

Besides other advantageous architectural choices, the in-
troduction of in-network caching as a native building block
of the network design makes Information Centric Networking
(ICN) [11], a promising 5G network technology. In a nutshell,
every ICN router potentially manages a cache of previously
requested objects in order to improve object delivery by
reducing retrieval path length for frequently requested content.
In fact, if content is locally available in the cache, the router
sends it back directly to the requester, otherwise it forwards the
request (or Interest) for the object to the next hop according to
name-based routing criteria. When the requested object comes
back, it is stored in the local cache before sending it back
to the requester. Given cache size limitations, a replacement
policy is put in place to evict previously stored objects
for accommodating the newly available ones. To this aim,
various classical cache replacement policies, not specifically
ICN-based exist: to cite a few, Least-Recently-Used (LRU),
Least-Frequently-Used (LFU), First-In-First-Out (FIFO) and
Random (RND) [9]. Within the panoply of cache management
policies proposed in the literature, very few exploit object
retrieval latency to orchestrate cache decisions, while requiring
transport protocol modifications [20] or involving additional

computational complexity [23], without significant caching
performance increase.

Clearly, the constraints imposed by ICN in terms of high
speed packet processing exclude every complex cache man-
agement policy. Therefore, we focus in this paper on a simple,
hence feasible, cache management policy leveraging not only
the objects replacement, but the cache insertion criterion, that
we define based on monitored object latency.

The cache management mechanism we propose in this
paper, LAC, lies upon the following principle: every time
an object is received from the network, it is stored into the
cache with a probability proportional to its recently observed
retrieval latency. As such, it is an add-on laying on top of
any cache replacement policy and feeding it at a regulated
pace. In this way, LAC implicitly prioritizes long-to-retrieve
objects, instead of caching every object regardless. The under-
lying trade off such caching mechanism tackles is between a
limited cache size and delivery time minimization. As caching
intrinsically aims to relieve the fallouts of network distance or
traffic congestion, it must be aware of both delay factors to
efficiently handle the cache size / delivery time tradeoff. Data
retrieval latency is a simple, locally measurable and consistent
metric for revealing either haul distance or traffic congestion.
More precisely, the contribution of this paper is threefold :

• We design LAC, a randomized dynamic cache manage-
ment policy leveraging in-network retrieval latency for
cache insertion. The locally monitored metric is the time
elapsing at a given node between request forwarding and
corresponding packet reception.

• We provide a preliminary analysis of LAC to prove its
superior performance over a symmetric p-LRU (proba-
bilistic LRU) policy using the same probability p for
Move-To-Front (MTF) operation in case of hit and miss
events.

• We evaluate LAC performance by means of packet level
simulations carried out with our ICN simulator CCNPL-
Sim (http://systemx.enst.fr/ccnpl-sim).

The rest of the paper is structured in the following way.
We review the state of the art and perceived limitations in §II.
The problem formulation of latency-aware caching is reported
in §III. Sec. §IV gathers analytical results, while performance
evaluation of our proposal is in §V. Finally, Sec.VI concludes
the paper, by giving a glimpse on future activities.
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II. RELATED WORK

In the context of ICN research, previous work have con-
sidered the enhancement of cache mechanisms with the
aim of reducing caching redundancy over a delivery path.
We can distinguish two categories of related work: those
leveraging content placement (e.g. [25], [16]) as opposed to
those proposing caching mechanisms based on selective inser-
tion/replacement in cache (e.g. [20], [1], [10], [17]). The first
class of approaches has a limited applicability to controlled
environments like a CDN (Content Delivery Network), where
topology and content catalog are know a priori. Either [25]
and [16] deals with video streaming in ICN and orchestrate
caching and scheduling of requests to caches in order to
create a cluster of caches with a certain number of guaranteed
replicas ( [16]). Unlike these approaches, our work belongs to
the second class of caching solutions and aims at defining
a decentralized caching solution that automatically adapts
to changes in content popularity, network variations etc. by
leveraging content insertion/replacement operations in cache.
We share the same objective as [1], where authors propose
a congestion-aware caching mechanism for ICN based on
estimation of local congestion, of popularity and of position
w.r.t. the bottleneck. The congestion estimate in this work does
not allow to differentiate content items in terms of latency like
in our work. A similar consideration holds for other related
approaches: the ProbCache work in [20], which utilizes the
same cache probability for every content item at a given
node and the cooperative caching mechanism in [10]- [17]
exploiting overall popularity and distance-to-server. Clearly,
the rationale behind is the same, but the distance-to-server
metric does not reflects the differences in terms of latency,
distance to bottleneck on a per-flow basis that our approach
takes into account. Beyond ICN, caching literature is vast
[19] and our review here does not attempt to be exhaustive,
while rather to position our contribution w.r.t. closest classical
caching approaches. Starobinski et al. [22] and later Jelenković
et al. [12] describe a cache management mechanisms to
optimize the storage of variable size documents. In their work,
the whole Move-To-Front rule is symmetric, i.e. applied in
both hit and miss events (as for LRU,LFU etc.) while our
approach, instead, may be denoted as asymmetric, since it
restricts the stochastic decision of MTF to cache miss events,
leaving object replacement subject to deterministic LRU.

Furthermore, Starobinski et al. model only focuses on a
single cache, while assuming that every object is associated
with a fixed retrieval cost, just like an intrinsic property.
However, in a network of caches, an object’s retrieval cost
may vary considerably, depending on its current location and
on network congestion.

III. PROBLEM FORMULATION AND DESIGN CHOICES

The problem of improving end-user delivery performance
can be formulated as the minimization of the overall average
delivery time E[T] for all users in the network and over all
requested objects.



min
∑
u∈U

∑
k∈K

∑
r∈Ru,k

qk,upk,r,uE[Tk,r,u]

∑
k

qk,u = 1, ∀u (1)∑
r

pk,r,u = 1, ∀k, r (2)

0 ≤ qk,u ≤ 1 ∀k, u (3)
0 ≤ pk,r,u ≤ 1 ∀k, r, u (4)

where qk,u is the normalized request rate of object k from user
u (namely, the popularity function at user u), and pk,r,u is the
probability to download object k from route r and E[Tk,r,u]
is the average latency to retrieve object k on route r. The set
of routes available at user u is identified by Ru,k.

Using the Lagrangian of the problem and imposing the
Karush-Kuhn-Tucker (KKT) optimality conditions it is easy
to show that for some constants c1, c2.

pk,r,u =
c1

qk,uE[Tk,r,u] + c2
(5)

In this paper we look for a distributed algorithm that tries
to minimize this objective by obtaining pk,r,u without any
coordination among the nodes and no signaling. The optimal
objective expressed in (2]) can be heuristically generalized to
every node n in the network by substituting qk,u with the local
residual popularity qk(n) at node n and with E[Tk,r,u] the
local virtual residual round trip time for object k on route r,
denoted by E[VRTTk,r]. Hence we set the probability to store
an object k at a given node n, proportional to the popularity
and latency locally observed at noted n. It is left to future work
to prove that this distributed heuristic is actually optimal. The
intuition behind eq.(5) is that user u downloads an object k
from a remote path r inversely proportional to its popularity
and retrieval latency. A globally optimal strategy performed in
each node would heuristically prefer to cache locally popular
content and with high retrieval latency.

In this paper we design an heuristic based on the following
criterion. Thus our general formulation of the probability that
the caching decision di is true i.e. the probability to cache
the ith requested object considering all encountered object
retrieval latencies, is

P [di = true] ∝ min

(
(∆Ti)

β

(f ((∆Tj)j=1,2,...,i))
γ , 1

)
(6)

where ∆Tj is the retrieval latency of the jth requested
object, f might be, for example, either a mean, the median
or a maximum function, β and γ are intensity parameters, ∝
means “is proportional to”. The object retrieval latency and the
probability of caching it are, hereby, made proportional. Note
that the caching decision may cumulatively depend on another
fixed or dynamic factors (such as the outcome of another
random experiment). In the following section we analyze the
performance of the proposed caching system and compare
it to mechanisms existing in the literature under a dynamic
workload.



IV. MODEL

The dynamics of the system are complex to capture in
a simple model due to the tight coupling between delivery
performance and caching functions: delivery performance is
certainly affected by network conditions, while clearly network
load is a result of caching performance and vice-versa.

In this section, we first introduce modeling assumptions
(Sec.IV-A), then proceed in two steps: (i) we tackle the single
cache case, developing analytically some performance bounds,
(ii) we leverage such analysis to provide an insight on the
network of caches case.

A. Assumptions

The purpose of this model is to identify the added value
of the latency-aware stochastic decision in outperforming
existing alternatives. In this context, we consider the smallest
set of assumptions to have a simple and feasible analytical
representation.

• Zipf-like popularity: We assume that object popularity
follows a generalized Zipf law. Thus let q(k) be the pop-
ularity object with rank k: q(k) = c

kα with 1
c =

∑
i

i−α

and α > 0. This assumption is widely accepted in the
literature [4] [18].

• Poisson requests: We assume that clients request objects
according to a Poisson distribution with rate λ, similarly
to [5]

• Independent Reference Model: Temporal correlation be-
tween object requests, though neglected here like in [22]
and [8], is foreseen in future extensions of this work.

• LRU replacement policy: We focus on the widely adopted
LRU replacement policy whose common implementation
consists in moving the most recently served object to
the front of a list. This allows to study Move-To-Front
algorithm as an LRU scheme [12].

• Same object size: For the sake of simplicity, we assume
that, like in [7], all retrieved objects have the same size.
The model will later be improved to encompass more
fine-grained features such as variable object size. We aim
to calculate two metrics that, we think, give an insight of
a caching system asymptotic behavior: the steady-state
miss probability and mean delivery time per popularity
rank.

Refer to Table I the notation used throughout the paper.

x Local cache size in number of objects
λk Request rate of rank-k objects. Under Poisson arrivals, λk =

λq(k)
ϕk,τ Probability of receiving at least one request for a rank-k

object during τ seconds
πk,t Local cache miss probability for rank-k objects at time t
pk,t Probability of a positive caching decision for object rank k

at time t
τx Characteristic Time threshold for filling a cache of size x

TABLE I: Notation.

B. LAC in the single cache model

In this section, we analyze the latency-aware mechanism
proposed in this paper by computing its performance, ex-
pressed in terms of the cache miss probability. The analysis
starts from the computation of LAC steady-state per object k
miss probability, πk, ∀k. LAC is referred to as pasymi -LRU as
opposed to systems where either the insertion is determined by
a constant probability p or insertion/replacement operations are
symmetrically driven by the same probability. Indeed, recall
that LAC asymmetry stems from the fact that the insertion
is probabilistically determined on a per-object basis by the
monitored residual latency, while using LRU replacement.

Proposition 1. In a LRU cache with insertion probability pk,t,
the move to front probability at time t, during the time window
τ , for object k is given by

Fk(t, τ) , ((1− πk,t) + πk,tpk,t)ϕk,τ (7)
= (1− (1− pk,t)πk,t)ϕk,τ (8)

being ϕk,τ be the probability of receiving at least one request
for a rank-k object during τ seconds.

The characteristic time (“Che”) approximation [7] states
that for a sufficiently large cache, the object eviction time
is well approximated by a unique constant τx, being x the
cache size. Under this approximation, hence, the miss process
for a cache under stochastic caching decision, Fk(t, τx) =
1 − Pk,t[]MTF > x] = (1 − (1 − pk,t)πk,t)ϕk,τx . ]MTF
denotes the number of distinct objects moved to the cache
front. Upon the assumption that every object gets eventually
cached at least once over time. Under this approximation
Fk(t, τx) ≈ 1− πk,t which implies πk,t≈ 1−ϕk,τx

1−ϕk,τx (1−pk,t) and
generalizes what obtained in [15] and [2]. for any inter-arrival
time distributions of the request process. If we assume that
pk,t and ϕk,τ are both ergodic

E[πk] =

∫ 1

0

1− ϕk,τx
1− ϕk,τx(1− u)

dP[pk ≤ u]

= 1−
∫ 1

0

P[pk > u]
(1− ϕk,τx)ϕk,τx

(1− ϕk,τx(1− u))2
du (9)

If we restrict to a discrete set of positive caching decision
probabilities,

E[πk] =
∑
u

P[pk = u]
1− ϕk,τx

1− ϕk,τx(1− u)
. (10)

τx is the root of
∑
k

(1− πk) = x (11)

That holds from the Che approximation. Note that ϕk,τx ,
1 − e−λkτx under Poisson object arrivals. Note that Eq.(10)
might not be computationally tractable. However the following
theorem shows that values of pk can be replaced by its mean.

Theorem 1. If positive caching decision probabilities pk
and popularity ranks are deemed independent, and assuming
Poisson object arrivals,



E[πk] =
e−λkτx

1− (1− e−λkτx)(1− E[p])
. (12)

Proof: The miss probabilities are a convex function of
the caching decision probabilities as

∂2πk,t
∂p2

k,t

≡
2
(
eλkE[τx(p)] − 1

)2(
1 +

(
eλkE[τx(p)] − 1

)
pk,t
)3 ≥ 0

By Jensen’s inequality,

πk ≥
e−λkE[τx(p)]

1− (1− e−λkE[τx(p)])(1− E[p])
. (13)

A proof that also τx(pk,t) is convex follows by computing
∂2

∂p2k,t
τx(pk,t) from the first derivative obtained in [15] Ap-

pendix A, which applies the implicit function theorem over
Eq.(11). ∂2

∂p2k,t
τx(pk,t) is composed of positive terms expect

one ∂2

∂τx∂pk,t
I(τx, pk,t) that is negative ∀k ≤ (λ c

log(2)τx)
1
α and

surely positive for any sufficiently large number of popularity
ranks. Hence, by invoking Jensen’s inequality once more,
E[τx(p)] ≥ τx(E[p]). As ∂πk,t

∂τx
≡ −λkpk,teλkτx

(1+(eλkτx−1)pk,t)2
≤ 0, τx

tends to counterbalance inequality (13), giving

πk ∼
e−λkτx

1− (1− e−λkτx)(1− E[p])

This result is important because it states that caching based
on a random p with values pk,t ends up in a steady-state
miss probability similar to the one obtained directly using a
constant positive decision probability p = E[p]. Fig.1 depicts
this miss probability over popularity rank as a function of
the decision probability. It gives a first intuition that keeping
p very small decreases drastically the miss probability of
high popularity ranks. The number of beneficiary ranks being
limited by the cache size (set to 8 files in this instance).
However, the drawback of a constant and small p is that it
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Fig. 1: πk increases with p for the most popular objects.

postpones considerably the time popular objects are first stored
in the cache. LRU+LCP suffers from this phenomenon because
the expected time to enter the cache is 1

λkp
. Consequently, the

overall object delivery time converges slowly.

C. psymi -LRU, an analytical lower bound to pasymi -LRU

Providing a closed-form expression for pasymi -LRU’s miss
probability and its Characteristic Time τasymx is hard. Instead,
we demonstrate its superiority over the analytically tractable
psymi -LRU mechanism. With some loss of generality, α is
assumed greater than one. Let us consider the symmetric
mechanism psymi -LRU where the MTF probabilities are condi-
tioned by the same probability pk,t. By contrast in pasymi -LRU
the MTF decision is taken in case of miss only.

Theorem 2. psymi -LRU steady-state miss probability πsymk =
exp{− xα

kαΓ(1− 1
α )α
} under the assumption that the mean pos-

itive caching decision probability, p, is the same for all
popularity ranks i.e. p =

∑
u
P [pk = u]u,∀k.

Proof: Let ]k denote the number of times a rank-k object
is moved to the cache front. The mean number of distinct
objects moved to the front of the LRU cache over time is∑
k

E
[
1{]k>0}

]
=
∑
k

1− e−λkτp ≈
∫ +∞

1

(1− e−λ c
vα p)dv

= (λτcp)
1
αΓ

(
1− 1

α

)
In virtue of Lemma 5 of [12]. Hence, the power of alpha-
magnified mean number of distinct objects moved to the front
of the LRU cache over time

xα = λτ symx cpΓ

(
1− 1

α

)α
⇒ τsymx ≈ xα

λcpΓ
(
1− 1

α

)α
The rest follow by using the exponential inter-arrival distribu-
tion for an object with rank k.

The closed-form expression of Theorem 2 is intrinsically
the same as LRU’s in [5]. This observation yields the next
corollary.

Corollary 2.1. If decision probabilities and popularity ranks

are deemed independent, πsymk
L1

→ πLRUk i.e. psymi -LRU
behaves in first-order mean like LRU.

pasymi -LRU consequently outperforms psymi -LRU thanks to
its convergence to the Least Frequently Used replacement
policy [15]. This leads to the next theorem.

Theorem 3. Let ηmechanism be the number of most popular
objects “permanently” accommodated thanks to a caching
mechanism, ∃µ ≥ 1 : ηpasymi LRU ≥ µηpsymi LRU

i.e. pasymi -LRU allows to accommodate “permanently” µ-
times more of the most popular objects than psymi .

Proof: (optional) Let the miss probabilities of all “per-
manently” stored objects admit a sufficiently small value ε
as upper bound. Then, ηpsymi LRU = x

Γ(1− 1
α )(− log ε)

1
α

and

ηpasymi LRU =

(
λcτasymx

log(1+ 1
E[p] (

1
ε−1))

) 1
α

. Since a first-order Taylor

series expansion of ε for pasymi -LRU, when E[p]→ 0, yields
ηpasymi LRU ∼

E[p]→0

x

Γ(1− 1
α )E[p] log(1+ 1

E[p] (
1
ε−1))

1
α

,



lim
E[p]→0

ηpasym
i

LRU

ηpsym
i

LRU
≥ (− log ε)

1
α > 1

Let LAasym , LRU equipped for latency-aware stochastic
caching decision (presented in this paper) and LAsym ,
LRU modified for latency-aware stochastic MTF decision
(Starobinski-Tse-Jelenković-Radovanović’s).

Corollary 3.1. As a mere special case of Theorem 3,
∃µ ≥ 1 : ηpLAasymi

≥ µηpLAsymi
.

This typically means that the performance of LRU caches
equipped with latency-aware stochastic caching decision can
exceed beyond a given factor µ that of psymi -LRU, then LRU
studied analytically and extensively in previous works [5].

D. Network of caches

The analytical characterization of the dynamics of a network
of caches, even in a broader scope than ICN, is an active
research topic [3] [21] [13] and some closed-form results have
been presented, but only for networks of LRU caches [5].

Leaving for future work a thorough analytical character-
ization of network dynamics under LAC, we explain here
the entanglement between latency-aware caching and network
performance we need to take into account.

Let focus on a single path, where in-network caching is
enabled at each node. As in [5], [6], we may denote with
VRTTk, the Virtual Round Trip Time (VRTT) for any packet
of object k and at a given user which we assume to be the first
node of this path towards the repository. VRTTk is defined as
the weighted sum of user-to-node i round trip time, R(i) times
the probability for node i to be the first hitting cache for the
request sent by the user,

VRTTk =
∑
i

R(i)
∏
j<i

pk(j)(1− pk(i))

pk(i) being the miss probability for packets of object k at
node i. Now, at every intermediate node l along the path, the
measured residual latency can be defined as: RV RTTk(l) =∑
i≥lR(i)

∏
j<i pk(j)(1 − pk(i)) Over time, the expectation

of the Residual Virtual Round Trip Time for a rank-k object at
node n, E[RV RTTk(n)] represent the mean cost of all routes
to a permanent copy of the object departing from n.

Hence, for the caching node n, the probability of a positive
LAC decision for rank k at each discrete decision instant t
results to be proportional to the monitored average Residual
Round Trip Time,
pk,t(n) ∝ min(

(RVRTTk,t(n))β

(f(n)(t−1))
γ , 1), t > 1. Beyond the nor-

malization of the probability to 1, the specific function we
have selected accounts for a normalization of the monitored
metric over a function, f (n) which is meant to indicate the
overall latency cache n welcomes. We have had successful
experience with the instance f (n) , E (·), namely the average

f (n)(t) ∼
t→+∞

∑
k

E[RV RTTk(n)]E[pk(n)]∑
k

E[pk(n)]
.

V. PERFORMANCE EVALUATION

We implement and test LAC by means of simulations
carried out with the packet-level NDN simulator CCNPL-Sim
(https://code.google.com/p/ccnpl-sim/). We evaluate (i) single
cache topologies, then (ii) networks of caches topologies with
a single content server on the top and three intermediate
layers of caches and a client layer at the bottom. LAC, our
latency-aware LRU denoted as LAasym is tested against
two other fully distributed caching management mechanisms:
LRU+Leave-Copy-Probabilistically and LRU [14] [24]. By
fully distributed, we mean mechanisms that do not require
the exchange of any specific signalling between caches.

A. Single cache topology
The following results are achieved in a simulated ICN with

a single caching node between the object consumers and the
publishing server and with the following parameters.
• Cache sizes are equal to 80KBytes.
• The Poisson process for generating content requests is

characterized by a rate of 1 object/s
• Objects are requested over a catalog of 20,000 items, ac-

cording to a Zipf-like popularity distribution of parameter
α = 1.7. This value of α has been demonstrated realistic
[18]. Each file is 10KBytes size.

• The two FIFO links from the consumers up to the content
publisher have a capacity of 200Kbps and of 30Kbps,
respectively.

• Each object conveyed through these links has an average
size of 10KBytes, that we also take as fixed packet size.

About LAC parameters, caches are equipped for latency-aware
stochastic caching decision, with β = γ = 5 to stress the
rejection of quickly delivered objects. The function f is the
mean latency of all ever-cached objects. We report the related
charts in Fig.2. The load ρ of the 30Kbps downlink equals
0.56 when the cache is ruled by LRU, 0.58 under LAsym,
0.41 under LRU+LCP and 0.37 under LAC (LAasym).

A first observation we draw from the plots in Fig.2 is that
our LAC proposal, LAasym converges to the same steady
state as LRU+LCP, which approximates the optimal LFU
behavior. Note that it this is true in static and hierarchical
network of caches with no regeneration (no user requests from
intermediate nodes), in general LAC is based on temporal
measurements of residual latency, so adapting over time based
on the sensed variations in terms of experienced latency.
Secondly, we observe how much LAasym latency-aware tech-
nique reduces both delivery time mean and standard deviation.
It is striking to see how quickly they converge, compared to
classical LRU+LCP. The constant decision probability used
in LRU+LCP is, indeed, the average of all latency-aware
decision probabilities (p = 0.1) and this impacts negatively
either the convergence either the system reactivity to temporal
variations of latency, as opposed to our LAC proposal. Finally,
we observe that LAsym and LRU miss probability curves
coincide in steady state as predicted in [12]. A symmetric
filtering of objects to put in and to remove from the cache
has the only effect of slowing down convergence while not
modifying the dynamics of the underlying Markov chain.

https://code.google.com/p/ccnpl-sim/
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Fig. 2: Single cache topology simulation: LAasym decreases LRU delivery time by 30% and outperforms LRU+LCP on
convergence.

B. Network of caches

 Cache 3 Cache 2 Cache 1 

Consumers 

Producer 

200Kbps 300Kbps 200Kbps 30Kbps 

Poisson λ=1 file/s 
1 file = 1 chunk = 10KB 
 C3 = 8 files C2 = 8 files C1 = 8 files 

20,000 files 
 

Fig. 3: Simulated line topology.

1) Line topology network: We now consider the setting in
Fig.3, with three caching nodes in-line between the users and
the publishing server. The set of parameters we consider is
the same as before for what concerns cache sizes, request
process and popularity. The four links from the consumers up
to the publisher have capacities equal to 300Kbps, 200Kbps,
200Kbps and 30Kbps respectively. Under LRU+LCP, p = 0.1
and corresponds to the lowest mean latency-aware caching
decision probability, Cache 3’s. Related results are reported
in Fig.4. The resulting link load ρ on downlinks from the
repository to the users is respectively : (0.5, 0.01, 0.03, 0.27)
under LRU, (0.27, 0.02, 0.02, 0.27) under LRU+LCP and
(0.22, 0.04, 0.06, 0.27) under our LAC proposal, LAasym.
Clearly, the expensive traffic to the publisher decreases sig-
nificantly with LAasym, while very little increase can be
oberserved on the other links. The tremendous gain in delivery
time (50% of LRU’s) can be appreciated in both its first
and second moments. Such a delivery time standard deviation
decrease plays a central role in stabilizing customers quality
of experience.

2) Tree topology network: The next results are those
achieved in the ICN setting in Fig.5, spanning a binary
tree topology whose seven caching nodes are spread over
three network levels, between the users and the repository
(publishing server). In such configuration,

• Cache sizes are 8MBytes.
• Poisson object request rate at the user is 1 object/s.
• Object popularity follow a Zipf(1.7) distribution.
• Object size is taken equal to 1 MB.
• Downlink capacities from the users up to the repository

are 30Mbps-capable, except the last one toward the
repository, which is 9Mbps.

• Each packet has an average size of 10KBytes, making
every object equal to 100 packets in size.

Caches are equipped for LAC decision, with β = γ = 3,
with the function f remaining equal to the mean latency of all
ever-cached objects. Cache 4 is on the first layer (the closest
to the consumers), Cache 8 on the second layer and Cache 10
on the third (the farthest to the users). LRU+LCP’s p = 0.03.
That corresponds to LAasym’s mean latency-aware caching
decision probability.

We report the related charts in Fig.6. The observed link load
ρ on downlinks from the repository to the users is respectively:
(0.7, 0.31, 0.18, 0.6) under LRU, (0.7, 0.07, 0.33, 0.6) under
LRU+LCP and (0.7, 0.12, 0.23, 0.6) under LAasym. Again,
our LAC mechanisms allows to lower maximum and average
link load over the network.
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Fig. 4: Line topology simulation: LAasym decreases LRU delivery time by 50% and outperforms LRU+LCP on convergence.
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Fig. 5: Simulated tree topology

Finally, we observe as a general rule that implementing
LAasym decreases the overall cache miss probability i.e. the
probability that all solicited caches fail to serve the requested
object. It also decreases and stabilizes the overall object
delivery time. Indeed, the mean delivery time and the 95%
confidence interval around the average, both decrease by up
to 50%.

Note also that this overall improvement is not achieved to
the detriment of the convergence speed, unlike LRU+LCP. The

latter, indeed, exhibits tremendously slow convergence and
extremely high delivery time standard deviation.

VI. CONCLUSION AND FUTURE WORK

In the paper, we showed the benefits of leveraging latency
for caching decisions in ICN and proposed LAC, a latency-
aware cache management policy that bases cache insertion
decisions on measurements of residual latency over time on a
per-object basis. While keeping the same low complexity as
standard LRU with probabilistic cache insertion, it provides a
finer-granular differentiation of content in terms of expected
residual latency. Two main advantages have been demon-
strated: (i) superior performance in terms of realized delivery
time at the end-user plus maximum and average link load
reduction, when compared to classical LRU and probabilistic
caching approaches; (ii) faster convergence w.r.t. probabilistic
caching approaches along with reduced standard deviation.

We leave for future work a thorough characterization of
LAC dynamics, especially in a network of caches, where
the coupling with hop-by-hop forwarding may be addressed
through a joint optimization.

The sensitivity to variations in network conditions and
routing will also be investigated to highlight the benefit in
terms of self-adaptiveness of a measurement-based approach
w.r.t. classical latency-insensitive approaches.
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