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Abstract

Previous studies suggest that adenosine  A1 receptors  (A1R) modulate the processing of pain. The aim of this study was to 

characterize the distribution of  A1R in nociceptive tissues and to evaluate whether targeting  A1R with the partial agonist 

capadenoson may reduce neuropathic pain in mice. The cellular distribution of  A1R in dorsal root ganglia (DRG) and the 

spinal cord was analyzed using fluorescent in situ hybridization. In behavioral experiments, neuropathic pain was induced 

by spared nerve injury or intraperitoneal injection of paclitaxel, and tactile hypersensitivities were determined using a 

dynamic plantar aesthesiometer. Whole-cell patch-clamp recordings were performed to assess electrophysiological proper-

ties of dissociated DRG neurons. We found  A1R to be expressed in populations of DRG neurons and dorsal horn neurons 

involved in the processing of pain. However, administration of capadenoson at established in vivo doses (0.03–1.0 mg/kg) 

did not alter mechanical hypersensitivity in the spared nerve injury and paclitaxel models of neuropathic pain, whereas the 

standard analgesic pregabalin significantly inhibited the pain behavior. Moreover, capadenoson failed to affect potassium 

currents in DRG neurons, in contrast to a full  A1R agonist. Despite expression of  A1R in nociceptive neurons, our data do 

not support the hypothesis that pharmacological intervention with partial  A1R agonists might be a valuable approach for the 

treatment of neuropathic pain.
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Introduction

Traumatic injuries, surgical insults and damages of periph-

eral nerves often lead to neuropathic pain, a chronic debili-

tating disease that affects 7–10% of the general population 

and is associated with great impairment of quality of life [1]. 

However, more than half of neuropathic pain patients report 

inadequate pain relief with currently available medications, 

and these are often associated with severe dose-limiting side 

effects. Therefore, there is a large unmet therapeutic need 

for effective and safe treatment of neuropathic pain [2–4].

Neuropathic pain is associated with multiple alterations 

in the peripheral and central nervous system [5, 6]. Accu-

mulating evidence indicates that the nucleoside adenosine 

contributes to the processing of neuropathic pain [7, 8]. In 

general, adenosine interacts with four G protein-coupled 

receptors,  A1R,  A2AR,  A2BR and  A3R, which in turn affect 

the activity of various ion channels and enzymes [9]. Among 

the adenosine receptors,  A1R has gained interest in pain 

research. Previous studies reported that  A1R is expressed 

in both peripheral and central sites of the nociceptive sys-

tem, although the cellular distribution remains controversial 

[10–13]. Several lines of evidence indicate the functional 

contribution of  A1R to neuropathic pain processing. For 

example, mice lacking  A1R globally demonstrated increased 

pain behaviors in models of neuropathic pain [14]. Increas-

ing adenosine levels by delivery of ectonucleotidases that 

dephosphorylate adenosine 5′-monophosphate to adenosine 

is associated with potent, long-lasting, and  A1R-dependent 

antinociceptive effects [15, 16]. Furthermore, administration 

of  A1R agonists such as  N6-cyclopentyladenosine (CPA) or 

5’-chloro-5’deoxy-( ±)-ENBA (Cl-ENBA) ameliorated neu-

ropathic pain in various animal models (for review, see [7]).

Although numerous full  A1R agonists have been devel-

oped, clinical applications of these agents have been ham-

pered by unintended pharmacological effects including seda-

tion, motor impairment, bradycardia and atrioventricular 
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blocks [17, 18]. These unwanted effects can be overcome 

by partial  A1R agonists, which trigger only some of the 

physiological responses of receptor activation depending 

on endogenous adenosine levels and on receptor reserve in 

different tissues [19]. Partial  A1R agonists might therefore 

hypothetically ameliorate neuropathic pain in an effective 

and safe manner. Among the selective and potent partial 

 A1R agonists is capadenoson, which belongs to the non-

adenosine dicyanopyridine class of compounds. Capadeno-

son shows  EC50 values of 0.1 nM on  A1R, a selectivity factor 

of 1800 and 900 versus  A2AR and  A2BR, respectively, and 

no significant activity on  A3R [19]. Furthermore, it exhibits 

good pharmacokinetic parameters with sufficient bioavail-

ability after oral administration [18, 19]. The primary objec-

tives of the study were to characterize the cellular distribu-

tion of  A1R in nociceptive tissues and to investigate whether 

targeting  A1R using the partial agonist capadenoson might 

inhibit neuropathic pain in mice.

Material and methods

Animals

All experiments were performed in C57BL/6 N mice of 

either sex (6–12 weeks old) obtained from Charles River 

Laboratories (Sulzfeld, Germany). Animals were housed on 

a 12 h light/dark cycle with access to food and water ad libi-

tum. All behavioral studies were carried out by observers 

blinded for treatment of the animals. All experiments were 

ethically reviewed and approved by our local Ethics Com-

mittee for Animal Research (Regierungspräsidium Darm-

stadt, Germany). They adhered to the IASP (International 

Association for the Study of Pain) and ARRIVE (Animal 

Research: Reporting on In Vivo Experiments) guidelines and 

conformed to Directive 2010/63/EU. All efforts were made 

to minimize animal suffering and to reduce the number of 

animals used.

Neuropathic pain models

The spared nerve injury (SNI) model [20] was used to inves-

tigate neuropathic pain behavior after surgically induced 

peripheral nerve injury. Animals were treated with carprofen 

(5 mg/kg, s.c.) 30 min prior to surgery to provide periopera-

tive and postoperative analgesia. Under isoflurane anesthe-

sia, two branches of the sciatic nerve were ligated and cut 

distally, leaving the sural nerve intact. This procedure leads 

to a hypersensitivity of the lateral surface (sural nerve skin 

area) of the affected hindpaw.

The paclitaxel model of neuropathy was used to mimic 

chemotherapy-induced neuropathic pain behavior. Animals 

received four i.p. injections of 1 mg/kg paclitaxel on days 0, 

2, 4 and 6 (cumulative dose 4 mg/kg; [21]. Paclitaxel (Sigma 

Aldrich, Germany) was dissolved in a vehicle composed of 

Cremophor EL and absolute ethanol (1:1) and was further 

diluted in 0.9% NaCl [22, 23].

Mechanical sensitivity of the hindpaw was measured 

using a Dynamic Plantar Aesthesiometer (Ugo Basile, 

Italy). This device pushes a thin steel rod against the plantar 

surface of the paw from beneath, and automatically stops 

and records the latency time until the animal withdraws the 

paw. The force increased constantly from 0 to 5 g in 10 s 

(ramp 0.5 g/s) and remained at 5 g for an additional 10 s 

[23–25]. The paw withdrawal latency was calculated as the 

mean of 4–5 consecutive measurements with at least 20 s in 

between. Baseline measurements of mechanical sensitivity 

were performed 2 and 1 days before SNI surgery or pacli-

taxel injections. To ensure full development of neuropathic 

pain, mechanical sensitivity of the hindpaw was determined 

13 or 20 days after SNI and 6 days after the last paclitaxel 

injection. One day thereafter, capadenoson (provided by 

Bayer AG, Germany, and purchased from MedChemEx-

press, USA), pregabalin (Bertin, France and Neuraxpharm, 

Germany), or vehicle (85% PEG400 and 15% glycerol; both 

from Carl Roth, Germany) were administered by oral gav-

age, whereas in another set of experiments capadenoson, 

N-Bicyclo[2.2.1]hept-2-yl-5’-chloro-5’-deoxyadenosine 

(CL-ENBA; Tocris, UK) or vehicle (60% PEG400 in water; 

Carl Roth, Germany) were administered by tail vein injec-

tion. The mechanical sensitivity of the ipsilateral hindpaw 

was determined over 24 h after drug administration.

In situ hybridization

Mice were killed by  CO2 inhalation and perfused with 4% 

formaldehyde (PFA) in phosphate-buffered saline (PBS) 

for 5 min. Lumbar (L4-L5) spinal cords and lumbar (L4-

L5) DRGs were dissected, post-fixed in PFA for 10 min, 

incubated in 20% sucrose in PBS overnight, and embed-

ded in tissue freezing medium (Leica, Germany). Cryostat 

sections were cut at a thickness of 14 µm on a CryoStar 

NX50 device (Thermo Fisher Scientific, Germany). In situ 

hybridization (ISH) was performed using a QuantiGene 

ViewRNA Tissue Assay (Thermo Fisher Scientific, Ger-

many) according to the manufacturer’s instructions and as 

previously described [26]. Briefly, probes for mouse Adora1 

(diluted 1:40; NM_001039510.2, type 1 probe set, catalog 

# VB1-19,627, Thermo Fisher, Germany), Rbfox3 (diluted 

1:40; NM_001039167.1, type 6 probe set, catalog # VB6-

18,012) and scramble control (1:40; catalog # VF1-17,155) 

were incubated overnight at 40 °C (Thermobrite; Leica, Ger-

many) followed by consecutive incubation with PreAmpli-

fier Mix QT, Amplifier Mix QT, an alkaline phosphatase 

labeled probe against the Amplifier, AP Enhancer Solution, 

and Fast Red Substrate. Finally, sections were mounted 
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with Fluoromount G (Southern Biotech, USA) or further 

processed for subsequent immunostaining.

In immunostaining experiments after in situ hybridi-

zation, sections were blocked in 10% normal goat serum 

(NGS), 3% bovine serum albumin (BSA) and 1% Triton 

X-100 in PBS for 1 h and incubated with primary antibod-

ies overnight using rabbit anti-NF200 (1:2000; # N4142, 

Sigma-Aldrich, Germany) and rabbit anti-CGRP (1:800, 

# PC205C, Calbiochem, Germany). After rinsing in PBS, 

sections were incubated with secondary antibodies conju-

gated with Alexa Fluor 488 (Invitrogen/Life Technologies, 

USA) for 2 h at room temperature. For staining with Grif-

fonia simplicifolia isolectin B4 (IB4), sections were incu-

bated with AF488-labelled IB4 (# I21411, Invitrogen/Life 

Technologies, USA; dissolved 1:300 in PBS buffer contain-

ing 1 mM  CaCl2, 1 mM  MgCl2, 1 mM  MnCl2, and 0.2% 

Triton X-100, pH 7.4) for 1 h at room temperature. Slides 

were coverslipped with Fluoromount G (Southern Biotech, 

USA). Images were taken using an Eclipse Ni-U microscope 

equipped with a monochrome DS-Qi2 camera (both from 

Nikon, Germany) and pseudocolored with the NIS Elements 

software (Nikon, Germany).

Cell counting

For quantification of  A1R mRNA-positive sensory and 

dorsal horn neuron populations, serial sections of lumbar 

DRGs (L4-L5) and the lumbar spinal cord (L4–L5) from 

3 mice were cut (14 µm). Per animal, ≥ 3 DRG sections 

at least 100 µm apart were counted manually (4837 cells 

in total). Only cells showing clear staining signals above 

background level, with a threshold set based on scramble 

control hybridization, were included. The percentage of 

CGRP-, IB4- and NF200-positive neurons is expressed as 

a proportion of marker-positive cells per total number of 

 A1R-positive neurons. For calculation of the percentage of 

 A1R-positive DRG neurons, the total number of DRG neuron 

somata was counted based on their autofluorescence visual-

ized in the FITC channel.

DRG neuron culture

Mice (4–8 weeks old) were killed by  CO2 inhalation and 

lumbar DRGs (L4-L5) were excised and transferred to HBSS 

(Thermo Fisher Scientific, USA). Following treatment with 

2.5 U/ml dispase II and 500 U/ml collagenase IV (both from 

Roche, Switzerland) for 90 min and 0.05% Trypsin/EDTA 

(Thermo Fisher Scientific, USA) for 10 min, isolated cells 

were transferred onto coverslips coated with poly-d-lysine 

(250 μg/ml, Millipore, USA) and cultured in neurobasal 

medium supplemented with B27 (Thermo Fisher Scien-

tific, USA), 100 μg/ml streptomycin and penicillin (Roth, 

Germany) at 37 °C and 5%  CO2. Cells were used for experi-

ments within 24 h after plating.

Electrophysiological recordings

Whole-cell voltage-clamp recordings on DRG neurons were 

performed at room temperature (20–22 °C), using an HEKA 

EPC 9 amplifier and Patchmaster software (HEKA Elec-

tronics, Germany). Offline analysis was performed using 

the Fitmaster software (HEKA Electronics, Germany) and 

GraphPad Prism 8. Micropipettes (3–5 MΩ) were pulled 

from borosilicate glass (Science Products, Germany) with a 

conventional micropipette puller (Model P-97, Sutter Instru-

ments, USA). Potassium currents were measured by continu-

ous perfusion of the external solution with clamp steps of 

500 ms between -100 and + 120 mV starting from a 1000 ms 

prepulse at − 100 mV. The holding potential was − 70 mV. 

Current densities were normalized to the cell capacitance 

(pA/pF). The pipette solution contained (mM): KCl 140, 

 MgCl2 2, EGTA 5, HEPES 10, MgATP 2, TrisGTP 1, pH 7.4 

adjusted with KOH. The external solution contained (mM): 

NaCl 140, KCl 5,  CaCl2 2,  MgCl2 2, HEPES 10, pH 7.4 

adjusted with NaOH. Capadenoson or CPA (Sigma-Aldrich, 

Germany), solved in external solution with a final concentra-

tion of 100 nM, were added to the bath without a continuous 

perfusion. Potassium currents were measured within 10 min 

after drug addition.

Statistical analysis

GraphPad Prism 8 software was used for statistical analysis. 

A two-way repeated-measures ANOVA with Bonferroni post 

hoc test was used to assess statistical significance. Changes 

with p < 0.05 were considered to be significant. All data are 

presented as mean ± SEM.

Results

Cellular distribution of adenosine  A1 receptors 
in dorsal root ganglia and the spinal cord

We first investigated the cellular distribution of  A1R mRNA 

in DRGs and the spinal cord using fluorescent in  situ 

hybridization. In DRGs, we detected abundant hybridiza-

tion signals (Fig. 1a), which were seen primarily in neu-

ronal somata. Cell counting revealed that 60.7 ± 2.4% of 

DRG neurons express  A1R mRNA. No hybridization signals 

were detected using a scramble control probe (Fig. 1b). To 

analyze the localization of  A1R in DRG neuron subpopula-

tions we combined in situ hybridization of  A1R mRNA with 

immunostaining for established markers (Fig. 1c-f). Out of 

the  A1R-positive neurons, 26.4 ± 2.9% coexpressed CGRP, 
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a marker of peptidergic C fiber neurons, and 35.6 ± 3.0% 

bound IB4, a marker of non-peptidergic C fiber neurons. 

Furthermore, 45.7 ± 5.6% of  A1R-positive neurons co-

expressed NF200, which stains myelinated DRG neurons. 

These data suggest that  A1R are expressed in both unmyeli-

nated and myelinated DRG neurons of naive mice.

In the spinal cord,  A1R mRNA was enriched in cells 

of the dorsal horn (Fig. 2a). No specific hybridization 

signal was detected using scramble control, as expected 

(Fig. 2b). Double-labeling in situ hybridization of  A1R 

with the neuronal marker Rbfox3 (which produces the 

‘neuronal nuclei’ antigen NeuN) revealed that virtually all 

 A1R-positive cells co-express Rbfox3 (Fig. 2c), suggest-

ing that  A1R is mainly expressed in neurons in the dorsal 

horn of the spinal cord. Together, the expression of  A1R 

in DRG neurons and dorsal horn neurons further supports 

its contribution to pain processing.

Fig. 1  Distribution of adeno-

sine  A1 receptors  (A1R) in 

dorsal root ganglia (DRG). a 

Fluorescent in situ hybridiza-

tion detected  A1R mRNA in 

mouse DRGs. b No hybridiza-

tion signal was detected using 

a scramble control probe. c–e 

Fluorescent in situ hybridization 

of  A1R mRNA combined with 

immunostaining of calcitonin 

gene-related peptide (CGRP; c), 

binding of isolectin B4 (IB4; d), 

or immunostaining of neurofila-

ment-200 (NF200; e) revealed 

that  A1R mRNA is expressed 

in populations of peptidergic 

and non-peptidergic C fibers 

and myelinated DRG neurons, 

respectively. f Quantitative sum-

mary of DRG neuron popula-

tions expressing  A1R (2061 

cells counted; n = 3 animals). 

Scale bars: 100 µm (a), 25 µm 

(c)

f

A1R mRNA NF200 Merge

A1R mRNA IB4 Merge

d

e

A1R mRNA CGRP Merge

ScrambleA1R mRNA

a b

c
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Treatment with capadenoson does not affect 
neuropathic pain behavior in mice

We next explored whether pharmacological activation of 

 A1R might ameliorate neuropathic pain. For that purpose 

we tested whether treatment with the partial  A1R agonist 

capadenoson affects mechanical hypersensitivity in two 

models of neuropathic pain in mice, i.e. the spared nerve 

injury (SNI) model of peripheral nerve injury and the pacli-

taxel model of chemotherapy-induced neuropathic pain. In 

a first set of experiments, we administered capadenoson 

perorally (p.o.) at three doses (0.03, 0.1 and 0.3 mg/kg). 

We chose these doses because capadenoson at 0.03, 0.1 and 

0.3 mg/kg p.o. previously showed dose-dependent efficacy 

in a cardioprotection model in mice (personal communica-

tion from Cardiovascular Research, Bayer AG; data are not 

to be disclosed), and capadenoson at 0.3 mg/kg p.o. reduced 

overnight running distance on a running wheel in mice [18]. 

As shown in Fig. 3a, the SNI surgery induced a mechanical 

hypersensitivity of the affected hindpaw 13 days after SNI in 

all animals, as expected. One day thereafter, mice were p.o. 

treated with capadenoson, pregabalin or vehicle. However, 

treatment with capadenoson at all three doses did not sig-

nificantly alter mechanical hypersensitivity over 24 h com-

pared to the vehicle-treated group (Fig. 3a). By contrast, the 

positive control pregabalin (60 mg/kg [23, 27]), significantly 

ameliorated the mechanical hypersensitivity, confirming that 

the SNI-induced neuropathic pain behavior is responsive to 

standard analgesic treatment.

We then investigated whether capadenoson treatment 

may inhibit chemotherapy-induced neuropathic pain in the 

paclitaxel model. Four i.p. injections of 1 mg/kg paclitaxel 

(on days 0, 2, 4 and 6) resulted in a significant mechani-

cal hypersensitivity (determined 6 days after the last pacli-

taxel injection) in 43% of all paclitaxel-injected animals. 

One day thereafter, mice showing a significant mechanical 

hypersensitivity were p.o. treated with capadenoson (0.03, 

0.1 and 0.3 mg/kg), pregabalin (60 mg/kg), or vehicle. Simi-

lar to the SNI model, the delivery of capadenoson at three 

doses did not result in significant changes of paclitaxel-

induced mechanical hypersensitivity as compared to vehicle 

(Fig. 3b). We observed a tendency of increased hypersensi-

tivity after administration of 0.3 mg/kg capadenoson, which 

however was not significant. By contrast, treatment with pre-

gabalin significantly inhibited the hypersensitivity (Fig. 3b). 

Together, these data suggest that treatment with the partial 

 A1R agonist capadenoson at doses up to 0.3 mg/kg p.o. does 

not significantly affect neuropathic pain behavior in mice.

In a separate cohort of mice, we tested capadenoson at 

a higher dose (1 mg/kg p.o.) in the SNI model using the 

same experimental paradigm described above. After admin-

istration of this dose 14 days after SNI, the extent of SNI-

induced mechanical hypersensitivity was slightly, but not 

significantly, ameliorated as compared to vehicle-treated 

Fig. 2  Distribution of adeno-

sine  A1 receptors  (A1R) in 

the spinal cord. a Fluorescent 

in situ hybridization detected 

 A1R mRNA primarily in the 

dorsal horn of mouse spinal 

cord. b No hybridization signal 

was detected using a scram-

ble control probe. c Double-

labeling in situ hybridization of 

 A1R mRNA with mRNA of the 

neuronal marker Rbfox3 in the 

dorsal horn shows that  A1R is 

mainly expressed by neurons. 

Scale bars: 500 µm (a), 50 µm 

(c)

a b

A1R mRNA Scramble

c

A1R mRNA Rbfox3 mRNA Merge
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a

dc

bSNI – p.o. delivery Paclitaxel – p.o. delivery

SNI – p.o. delivery SNI – i.v. delivery

Fig. 3  Neuropathic pain behavior in mice is not affected by capaden-

oson treatment. a In the spared nerve injury (SNI) model, neuropathic 

pain was induced by surgery. Fourteen days thereafter, a mechani-

cal hypersensitivity of the affected hindpaw (determined using a 

Dynamic Plantar Aesthesiometer) was detected in all mice. Then 

animals were orally treated with vehicle (85% PEG400 / 15% glyc-

erol, n = 13), 0.03 mg/kg capadenoson (n = 13), 0.1 mg/kg capadeno-

son (n = 9), 0.3 mg/kg capadenoson (n = 12), or 60 mg/kg pregabalin 

(n = 12) and the mechanical sensitivity was assessed over 24 h. Note 

that pregabalin inhibited the neuropathic pain behavior, whereas 

capadenoson was not effective. b In the paclitaxel model, neuro-

pathic pain was induced by four i.p. injections of paclitaxel on day 

0, 2, 4 and 6. Seven days after the last paclitaxel injection, 43% of 

treated animals developed a significant mechanical hypersensitivity. 

These animals were orally treated with vehicle (85% PEG400/15% 

glycerol, n = 11), 0.03  mg/kg capadenoson (n = 13), 0.1  mg/kg 

capadenoson (n = 13), 0.3 mg/kg capadenoson (n = 12), or 60 mg/kg 

pregabalin (n = 12) and the mechanical sensitivity was assessed over 

24 h. Similar to the spared nerve injury model, pregabalin inhibited 

the paclitaxel-induced neuropathic pain behavior, whereas capadeno-

son was not effective. c–d In a separate cohort of mice, neuropathic 

pain was induced by SNI surgery. c At day 14 after SNI, the animals 

were orally treated with vehicle (85% PEG400/15% glycerol; n = 11), 

1 mg/kg capadenoson (n = 11), or 30 mg/kg pregabalin (n = 10), and 

the mechanical sensitivity was assessed over 24 h. Pregabalin signifi-

cantly inhibited the neuropathic pain behavior, whereas the effects of 

capadenoson were not significant. d At day 21 after SNI, the animals 

were i.v. treated by tail vein injection with vehicle (60% PEAG400 

in water; n = 11), 0.3 mg/kg capadenoson (n = 11), or 0.5 mg/kg Cl-

ENBA (n = 10) and the mechanical sensitivity was assessed over 5 h. 

Neither capadenoson nor Cl-ENBA did affect SNI-induced mechani-

cal hypersensitivity. Data are presented as mean ± SEM.  *p < 0.05, 

comparing drug treated and vehicle treated mice. Abbreviations used 

on the x-axis: BL: baseline sensitivity in naive animals; SNI: spared 

nerve injury-induced hypersensitivity before drug delivery; PTXL: 

paclitaxel-induced hypersensitivity before drug delivery
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mice (Fig. 3c). By contrast, pregabalin, which in this experi-

ment was given at 30 mg/kg p.o. [27], significantly inhibited 

the mechanical hypersensitivity in comparison to vehicle 

(Fig. 3c).

Finally, we assessed whether intravenous (i.v.) delivery of 

capadenoson affects SNI-induced mechanical hypersensitiv-

ity. For these experiments we used the same cohort of mice, 

but injected drugs 21 days after SNI (i.e., after a wash-out 

period of 7 days following the 1 mg/kg capadenoson p.o. 

measurements). We administered capadenoson at a dose 

of 0.3 mg/kg i.v. that significantly decreased infarct size in 

a model of acute myocardial infarction in rats [19]. As a 

control we used the full  A1R agonist Cl-ENBA at a dose 

of 0.5 mg/kg that has been reported to inhibit SNI-induced 

mechanical allodynia in mice after i.p. delivery [28]. As 

shown in Fig. 3d, 0.3 mg/kg i.v. capadenoson did not affect 

SNI-induced mechanical hypersensitivity as compared to 

vehicle-treated animals. Unexpectedly, 0.5 mg/kg i.v. Cl-

ENBA also failed to alter the mechanical hypersensitivity 

(Fig. 3d; see also discussion). Moreover, all mice treated 

with Cl-ENBA displayed obvious sedative effects within 

the first 30–45 min after drug injection. Altogether, these 

behavioral experiments suggest that capadenoson is of lim-

ited value for the treatment of neuropathic pain.

Capadenoson fails to affect potassium currents 
in dissociated DRG neurons

We next assessed whether capadenoson affects electrophysi-

ological properties of DRG neurons. Because coupling of 

 A1R to neuronal potassium channels has been considered as 

a mechanism contributing to the analgesic activity of  A1R 

agonists [29–31], we analyzed outward potassium currents 

 (IK) of dissociated DRG neurons in presence of capadeno-

son. In particular, we assessed the transient, peak current 

component and the sustained, steady-state current compo-

nent of  IK [32, 33]. Whole-cell patch-clamp recordings were 

performed at a holding potential of − 70 mV by applying a 

1000-ms-long prepulse of -100 mV followed by series of 

500-ms-long pulses ranging from − 100 to + 120 mV in inter-

vals of 20 mV. As shown in Fig. 4, addition of capadenoson 

(100 nM) to the external solution did neither affect  IK peak 

currents (Fig. 4a) nor  IK steady-state currents (Fig. 4b). An 

original registration at + 100 mV is depicted in Fig. 4c. The 

 IK peak currents were also not affected by the full  A1R ago-

nist CPA (100 nM [13]; Fig. 4d). However,  IK steady-state 

currents were significantly reduced by CPA (Fig. 4e and 4f), 

pointing to a coupling of  A1R and potassium channels in 

DRG neurons. The lack of effect of capadenoson in these 

experiments further supports the finding that pharmacologi-

cal intervention with this partial  A1R agonist might not be a 

valuable approach for the treatment of pain.

Discussion

In this study, we investigated whether the partial  A1R ago-

nist capadenoson might be sufficient for treatment of neu-

ropathic pain. Even though  A1R is localized to DRG neu-

rons and dorsal horn neurons, which are relevant for pain 

processing, capadenoson did not affect the pain behavior 

induced by peripheral nerve injury and chemotherapy, and 

it did not alter potassium currents in DRG neurons. Hence, 

capadenoson seems not to be suitable for neuropathic pain 

therapy.

The distribution of  A1R in the nociceptive system has 

been investigated in earlier studies, however with conflict-

ing results. In immunostaining experiments it was reported 

that  A1R immunoreactivity is present in a subset of rat 

DRG neurons [10], and double-labeling experiments sug-

gested that about 32%, 80% and 1% of  A1R-positive rat 

DRG neurons co-express substance P, IB4 and NF200, 

respectively [11]. We here performed in situ hybridization 

experiments and confirmed  A1R expression in a subset of 

mouse DRG neurons. However, our in situ hybridization 

combined with immunostaining revealed that  A1R mRNA 

is expressed in 26%, 36% and 46% of neurons positive for 

CGRP, IB4 and NF200, respectively. Species differences 

in the distribution of  A1R in DRG neurons of rats and 

mice, differences between protein and mRNA expression, 

or a lack of antibody specificity might account for this 

apparent discrepancy.

In the spinal cord, we found  A1R mRNA to be enriched 

in dorsal horn neurons. This observation is in accordance 

with previous autoradiography experiments on rat spinal 

cord sections, in which  A1R were detected predominantly 

in the superficial dorsal horn [34–36]. Immunohistochemi-

cal analyses of rat spinal cord sections were less consist-

ent, because some studies showed a dense band of staining 

predominantly in lamina II of the dorsal horn [10, 12], 

whereas more diffuse  A1R immunoreactivity through-

out the spinal cord were observed in another study [13]. 

Hence, our in situ hybridization data add confidence that 

the major localization of  A1R mRNA in the spinal cord are 

interneurons in the dorsal horn. It should be noted however 

that  A1R has been detected in activated microglia cells 

after induction of neuropathic pain [37], and that delivery 

of an  A1R agonist ameliorated the injury-induced micro-

glia activation and neuronal sensitization [28]. Moreover, 

 A1R are expressed in various supraspinal CNS regions 

including brain cortex, hippocampus, and cerebellum [9], 

which was however not investigated in this study.

Early preclinical studies in the 1980s with systemic and 

intrathecal administration of adenosine,  A1R agonists and 

 A1R antagonists suggested that targeting  A1R might be 

suitable for treatment of neuropathic pain (for review, see 
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[7, 38, 39]). However, the development of analgesics is 

hampered by the wide distribution of  A1R leading to a 

variety of possible side effects, the high number of recep-

tor subtypes (the four existing adenosine receptors present 

a sequence homology of 80–95% [9]), and the lack of truly 

subtype-selective agonists to be dispensed through clini-

cally relevant routes of administration [31]. For example, 

systemic (intraperitoneal or intravenous) administration 

of the full  A1R agonist CPA has been reported to inhibit 

neuropathic pain after nerve injury in rats [40, 41]. How-

ever, systemic treatment with CPA is accompanied by an 

intense depression of blood pressure as an unwanted side 

effect that might also affect the behavior in animal models 

of pain [40]. Moreover,  A1R are thought to mediate the 

local anti-nociceptive effects of acupuncture, and injec-

tion of the  A1R agonist 2-Chloro-CPA (CCPA) into the 

Zusanli point ST36 inhibited neuropathic pain in a model 

of peripheral nerve injury [42]. However, CCPA seems 

not to be suitable for systemic treatment as it reduced the 

latency to fall off the rotarod and caused catalepsy-like 

behavior in a dose-dependent manner [43]. Hence, the use-

fulness of systemic  A1R agonists is limited by unwanted 

cardiovascular, motor and sedative side effects.

In general, improved efficacy of  A1R agonists for pain 

treatment might be reached with allosteric modulators or 

partial agonists [7, 31, 44, 45]. Among the allosteric  A1R 

modulators that have been tested for analgesia in vivo are 

T62 and TRR469. Oral administration of T62 reduced 

mechanical allodynia after peripheral nerve injury in rats. 

However, within 5 days of repeated daily administration, 

a tolerance occurred that led to decreased analgesic effi-

cacy over time partly as a result of receptor down-regu-

lation [46, 47]. T62 was also subjected to a clinical trial 

in patients with postherpetic neuralgia, which however 

a

d

b

e

c

f

Peak current Steady-state current

Peak current Steady-state current

Fig. 4  Potassium currents in DRG neurons are not affected by 

capadenoson. IV relations of the total potassium currents  (IK) were 

measured in isolated lumbar DRG neurons of mice using the whole 

cell patch-clamp technique. After the measurement of the control 

current, the partial  A1R agonist capadenoson (100 nM; n = 4; a–c) or 

the full  A1R agonist  N6-cyclopentyladenosine (CPA; 100 nM; n = 5; 

d–f) were added into the bath solution. Ten minutes thereafter, cur-

rents were measured again. Original registrations at + 100  mV are 

presented in c and f and indicate the peak current component (marked 

by a triangle) and the steady-state current component (marked by a 

circle). Capadenoson failed to affect both the peak and steady-state 

currents. CPA did not affect the peak current but significantly reduced 

the steady-state current. Data are presented as mean ± SEM, *p < 0.05
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was discontinued [9, 45]. Intraperitoneal administration 

of TRR469, a more potent allosteric  A1R modulator as 

compared to T62, inhibited neuropathic pain in the model 

of streptozotocin-induced diabetic neuropathy and did not 

display locomotor or cataleptic side effects in mice [43]. 

Hence, there are obvious discrepancies on the effective-

ness and tolerability of  A1R agonists reported in different 

studies, probably due to the use of different compounds, 

routes of administration and models of neuropathic pain.

Another strategy to separate the desired from unde-

sired pharmacological effects is to use partial  A1R ago-

nists. These compounds have been shown to activate only 

certain responses of  A1R-mediated G-protein signaling, 

mostly in cells with high receptor reserve [48]. Moreo-

ver, the partial agonism is postulated to achieve confor-

mational selection of a distinct active state, as recently 

shown for  A2AR [49]. Hence, partial agonists might show 

better receptor selectivity due to increased receptor density 

and/or efficiency of receptor coupling to effector systems 

in the presence of nerve injury [7, 50, 51]. We here tested 

the partial  A1R agonist capadenoson in two animal mod-

els of neuropathic pain. Capadenoson, which previously 

entered into two phase IIa clinical trials in patients with 

atrial fibrillation and stable angina, has been reported to 

have beneficial cardiovascular effects [19, 52, 53]. Unex-

pectedly, in our behavior experiments, four different doses 

of p.o. administered capadenoson (0.03, 0.1, 0.3 and 1 mg/

kg) and one dose of i.v. delivered capadenoson (0.3 mg/

kg) failed to significantly inhibit mechanical hypersensi-

tivity in neuropathic pain models. In a previous study, p.o. 

administration of capadenoson at 0.3 and 1 mg/kg in mice 

led to a significant decrease of locomotion activity in a 

running wheel model as a surrogate marker for sedative 

CNS effects, and capadenoson at 1 mg/kg substantially 

decreased the running distance in this model by 37% [18]. 

We observed a trend towards inhibition of neuropathic 

pain behavior (not significant) at a dose of 1 mg/kg p.o. 

capadenoson in the SNI model. However, the profound 

impairment of running wheel behavior [18] indicates that 

this dose is associated with sedative adverse effects. Thus, 

we did not test higher doses of p.o. administered capaden-

oson in our study. Instead thereof, we assessed i.v. delivery 

of capadenoson at 0.3 mg/kg, but again did not observe 

any inhibition of neuropathic pain behavior. By contrast, 

capadenoson at 0.1 and 0.3 mg/kg i.v. has been reported 

to decrease infarct size in a model of acute myocardial 

infarction in rats [19]. Considering that capadenoson in 

the dose range of 0.3–1 mg/kg p.o. and 0.1–0.3 mg/kg 

i.v. provided significant pharmacological activity in other 

models [18, 19] we conclude that partial  A1R agonism is 

of minor value for treatment of neuropathic pain. It should 

be noted however that in a recent study, capadenoson was 

found to have also activity at  A2BR [54]. As  A2BR agonists 

exhibit proinflammatory effects on immune cells [7], this 

might also affect the pain behavior after nerve injury or 

chemotherapy.

About the reasons for the ineffectiveness of the full  A1R 

agonist Cl-ENBA in the SNI model we can only specu-

late. We intended to use 0.5 mg/kg Cl-ENBA as a positive 

control in our experiment with i.v. administered capadeno-

son, because Luongo and colleagues [28] reported that 

this dose significantly reduced neuropathic pain behavior 

after SNI. It has to be considered that Luongo et al. used 

a modified version of the SNI model, in which the tibial 

nerve is left intact [55], and not the sural nerve as in our 

study. Moreover, in the study by Luongo et al. Cl-ENBA 

was i.p. administered 7 days post injury and mechanical 

hypersensitivity was assessed with a dynamic plantar 

aesthesiometer using a ramp of 3 g/s [28], whereas we 

delivered Cl-ENBA i.v. 21 days post injury and used a 

ramp of 0.5 g/s. Although speculative, these differences 

in experimental settings might account for the discrepan-

cies between the study of Luongo et al. and our findings.

The lack of efficacy of capadenoson for analgesia is 

also supported by our patch-clamp experiments, in which 

capadenoson failed to affect potassium currents in disso-

ciated mouse DRG neurons. Various downstream mecha-

nisms of  A1R have been previously identified in different 

tissues including cAMP/PKA and PLC/IP3/DAG signaling, 

potassium channel stimulation, calcium channel inhibition, 

and β-arrestin mediated receptor modulation (for review, 

see [7]). In rat ventricular myocytes,  A1R are coupled to 

potassium channels by G protein signaling [56], and we 

thus speculated that a coupling of  A1R and potassium 

channels might also exist in DRG neurons. Indeed, in our 

patch-clamp experiments addition of the full  A1R agonist 

CPA significantly decreased the steady-state potassium 

currents at positive voltage ranges. By contrast, the peak 

potassium currents were not altered, suggesting a specific 

inhibition of the sustained current component. In previous 

studies, adenosine and the full  A1R agonist CCPA inhib-

ited potassium currents by a steady-state block in AZF 

cells [33], and inhibition of sustained potassium currents 

by tetraethylammonium prolonged the duration of the 

repolarization phase and thereby reduced intrinsic firing 

in trigeminal neurons [32]. Accordingly, CPA has been 

shown to inhibit action potentials [57] and A- and C-fiber 

evoked field potentials [41] in neuronal tissues. Hence, we 

hypothesize that a decrease of the steady-state potassium 

current by CPA might lead to a reduced firing frequency in 

DRG neurons and inhibition of pain processing. However, 

in contrast to CPA, capadenoson did not affect the steady-

state potassium currents in DRG neurons.

Altogether, in our study, a partial  A1R agonist failed to 

ameliorate neuropathic pain in mice. If this holds true in 

other species or humans has to be shown.
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