
Citation: Suresh Babu, V.; Dudeja, G.;

SA, D.; Bisht, A.; Shetty, R.; Heymans,

S.; Guha, N.; Ghosh, A. Lack of

Retinoblastoma Protein Shifts Tumor

Metabolism from Glycolysis to

OXPHOS and Allows the Use of

Alternate Fuels. Cells 2022, 11, 3182.

https://doi.org/10.3390/cells11203182

Academic Editor: Peter Droge

Received: 31 July 2022

Accepted: 30 September 2022

Published: 11 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

Lack of Retinoblastoma Protein Shifts Tumor Metabolism from
Glycolysis to OXPHOS and Allows the Use of Alternate Fuels
Vishnu Suresh Babu 1,2 , Gagan Dudeja 3, Deepak SA 4, Anadi Bisht 1, Rohit Shetty 1, Stephane Heymans 2,5,*,
Nilanjan Guha 4,* and Arkasubhra Ghosh 1,*

1 GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, India
2 Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University,

6229 ER Maastricht, The Netherlands
3 Retinoblastoma Service, Narayana Nethralaya, Bangalore 560099, India
4 Agilent Technologies India Pvt Ltd., Bangalore 560048, India
5 Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven,

Herestraat 49, Bus 911, 3000 Leuven, Belgium
* Correspondence: stephane.heymans@mumc.nl (S.H.); nilanjan_guha@agilent.com (N.G.);

arkasubhra@narayananethralaya.com (A.G.); Tel.: +31-0433882949 (S.H.); +91-8040614256 (N.G.);
+91-8066660712 (A.G.)

Abstract: Mutations in the RB1 locus leading to a loss of functional Rb protein cause intraocular
tumors, which uniquely affect children worldwide. These tumors demonstrate rapid proliferation,
which has recently been shown to be associated with an altered metabolic signature. We found
that retinoblastoma tumors and in-vitro models lack Hexokinase 1 (HK1) and exhibit elevated fatty
acid oxidation. We show that ectopic expression of RB1 induces HK1 protein in Rb null cells, and
both RB1 and HK1 can mediate a metabolic switch from OXPHOS to glycolysis with increased
pyruvate levels, reduced ATP production and reduced mitochondrial mass. Further, cells lacking
Rb or HK1 can flexibly utilize glutamine and fatty acids to enhance oxidative phosphorylation-
dependent ATP generation, as revealed by metabolic and biochemical assays. Thus, loss of Rb and
HK1 in retinoblastoma reprograms tumor metabolic circuits to enhance the glucose-independent
TCA (tricarboxylic acid) cycle and the intermediate NAD+/NADH ratios, with a subsequent increase
in fatty-acid derived L-carnitine to enhance mitochondrial OXPHOS for ATP production instead
of glycolysis dependence. We also demonstrate that modulation of the Rb-regulated transcription
factor E2F2 does not result in any of these metabolic perturbations. In conclusion, we demonstrate
RB1 or HK1 as critical regulators of the cellular bioenergetic profile and identify the altered tumor
metabolism as a potential therapeutic target for cancers lacking functional Rb protein.

Keywords: retinoblastoma; metabolism; glycolysis; OXPHOS; OCR; energetics

1. Introduction

Retinoblastoma (Rb) is the most common pediatric ocular malignancy which is caused
by mutations in the RB1 gene [1]. Rapidly growing Rb tumors are fed by feeder arteries
and drainage veins [2] to facilitate choroidal, scleral and optic nerve invasion [3,4]. Rb
tumors possess an aggressive phenotype that is driven not only by the lack of cell cycle
checkpoints but also by metabolic alterations [5,6], a consequence of functional RB1 loss [7].
Reprogramming of metabolic circuits in tumors favors their growth, and such changes in
individual metabolic pathways frequently correlate with enhanced biosynthesis of energy
substrates [8]. The lack of Rb protein is known to enhance mitochondrial function [9] and
alter metabolic pathways in various cancers [10,11] to meet tumor energy requirements [12].

Mitochondrial oxidative phosphorylation (OXPHOS) generates cellular energy (ATP)
by utilizing reduced intermediates derived from glucose, glutamine, or fatty acid sub-
strates for efficient energy production [13]. Glucose and glucose-derived pyruvate are the
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favorite fuel choices for various cancers [14], while under restrictive nutrient conditions,
some tumors alter their metabolic circuits to use glutamine and fatty acids to satisfy their
bioenergetic demands [15,16]. However, in the context of retinoblastoma, the mechanisms
of energy production and the fuel choices in the tumor cells are not well defined. Pre-
vious reports and our recent discovery demonstrate that Rb tumors are associated with
high fatty-acid metabolism and low glycolysis [17,18]. We have identified a set of altered
metabolic pathways in Rb patient tumors and RB1 null in vitro models [17]. Further, Rb
protein depletion enhances glutamine uptake in cells [19], but the metabolic flexibility
of Rb tumors to utilize reduced intermediates derived from various metabolic pathways
remains unexplored. Therefore, in this study, using metabolic assays, we have unraveled
the metabolic phenotype of Rb null tumor cells and their usage of alternate fuels to meet
energy requirements. We hypothesized that the lack of RB1 in Rb tumor cells mediates
enhancement of glycolysis independent energy production, primarily via enhanced mito-
chondrial function; therefore, Rb tumor cells possibly switch to alternate fuels and energy
production mechanisms such as mitochondrial fat oxidation [20]. Therefore, we studied in
detail, using a variety of metabolic and biochemical assays, the cellular bioenergetics in
two Rb null cell lines along with a primary, patient-derived Rb null cell line.

2. Materials and Methods
2.1. Clinical Samples

The study was conducted by the Declaration of Helsinki principles under a proto-
col approved by the institutional ethics committee of Narayana Nethralaya (EC Ref no:
C/2013/03/02). Informed written consent was received from the patient’s guardians be-
fore inclusion in the study. The GL1-RB1 line was developed from an enucleated tumor
specimen obtained from the right eye of a 3-year-old female retinoblastoma subject (AJCC
staging-cT4b). The tumor tissue was enzymatically dissociated using dispase and trypsin,
and the cells were cultured in RPMI 1640 media (Cat #11875093, Gibco, Grand Island,
NY, USA) supplemented with 10% FBS (cat#A4766801, Gibco, Grand Island, NY, USA),
1% pen strep (cat#15070063, Gibco, Grand Island, NY, USA) and a 10 ng cocktail of EGF
(cat#01-407, Sigma Aldrich, St. Louis, MO, USA), VEGF (cat#01-185, Sigma Aldrich, St.
Louis, MO, USA) and FGF (cat#GF003AF, Sigma Aldrich, St. Louis, MO, USA). A bipha-
sic population of primary Rb cells was observed during the first two weeks, comprising
retinoblastoma tumor spheres adherent to feeder fibroblasts and suspension clusters of
single-cell retinoblastoma. Over four weeks, the tumor spheres detached from the fibroblast
and formed an unusual chain of suspension cells. These cells were cultured separately, and
cell population doubling time was calculated from the exponential growth phase curve.
The details of FFPE clinical samples used for mitochondrial staining, including age, gender,
laterality, tumor viability, and clinical and histopathology details, are mentioned in Table 1.

Table 1. Clinical and histopathological details of samples used for validations.

ID Sex Age at Presentation Laterality Clinical Risk IIRC Group AJCC Staging

P1 F 23 months Bilateral Advanced Group E cT3b
P2 F 24 months Unilateral Advanced Group E cT3b
P3 M 36 months Bilateral Advanced Group E cT3b
P4 F 33 months Unilateral Non-advanced Group D cT2b 33 months
P5 F 14 months Bilateral Non-advanced Group D cT2b 14 months

Control 1 F 3 months NA Cardiac arrest (no ocular complications)
Control 2 F 2 months NA Multiple organ dysfunction (no ocular complications)
Control 3 M 6 months NA No ocular complication

2.2. Cell Lines

WERI-Rb1 and Y79 cells were obtained from the American Type Culture Collec-
tion (ATCC, Manassas, VA, USA). The WERI-Rb1 and Y79 cells were cultured in RPMI
1640 medium (Gibco, Grand Island, NY, USA, Cat #11875093) supplemented with 10% FBS
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(cat# A4766801, Gibco, Grand Island, NY, USA) and 1% Pen Strep (penicillin–streptomycin)
(cat#15070063, Gibco, Grand Island, NY, USA) and maintained at 37 ◦C in a humidified
atmosphere of 5% CO2, with intermittent shaking in an upright T25 flask.

2.3. Gene Expression Analysis

Total RNA was isolated from cells using the Trizol reagent (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s protocol. A total of 1µg of RNA was reverse
transcribed using Bio-Rad iScript cDNA synthesis kit (cat#1708890, Bio-Rad, Hercules,
CA, USA), and quantitative real-time PCR was performed using Kappa Sybr Fast qPCR
kit (cat#KK4601, Kapa Biosystems Pty (Ltd.), Cape Town, South Africa) using a Bio-Rad
CFX96 system. Relative mRNA expression levels were quantified using the ∆∆C(t) method.
Results were normalized to housekeeping human β-actin. Details of primers used are
described in Table 2.

Table 2. Details of qPCR primers used in the study.

Gene Forward Primer Reverse Primer Tm(F/R)

RB1 TTTGTAACGGGAGTCGGGA CAGCGAGCTGTGGAGGAG 54.67/55.89
β-Actin TCCCTGGAGAAGAGCTACGA AGGAAGGAAGGCTGGAAGAG 56.9/55.2

2.4. Lentiviral Plasmids and Vectors

We constructed a lentiviral plasmid expressing the RB1 gene in the pCL20 backbone [17].
We purchased commercially available overexpression plasmids for E2F2 (cat#TOLH-1508827,
Transomics Technologies Inc., Huntsville, AL, USA) and HK1 (cat#TOLH-1505162, Technolo-
gies Inc, Huntsville, AL, USA) in a pLX304 lentiviral backbone having CMV promoter. The
corresponding shRNA constructs for E2F2 and HK1 were in the pZIP lentiviral backbone
containing CMV promoter (Transomics Technologies Inc, Huntsville, AL, USA), and the target
sequences are available in Supplementary Table S1. Lentiviral transduction was used for
RB1, E2F2, HK1 overexpression and knockdown in cell lines using the previously described
protocol [21]. Lentivirus was produced in HEK 293T cells, and the media supernatant was
concentrated by centrifugation. A total of 1 × 106 WERI-Rb1 cells in 1 mL serum-free media
were transduced with 50 µL of 100× g concentrated lentiviral preparations of RB1, E2F2,
HK1 and their knockdown viruses in 6 well plates for 4 h, with intermittent shaking at every
30 min. The specific gene expression efficiencies were determined using RT-PCR after 72 h.

2.5. Western Blotting

For Western blot analysis, cells were lysed in RIPA buffer (20 mM Tris pH 8.0, 0.1%
SDS, 150 mM NaCl, 0.08% sodium deoxycholate, and 1% NP40) supplemented with 1 tablet
of protease inhibitor (complete ultra mini-tablet, Roche, Indianapolis, IN, USA) and phos-
phatase inhibitor (PhosStop tablet, Roche, Indianapolis, IN, USA). A total of 20 µg of total
protein was loaded per lane and separated by SDS-PAGE. The separated proteins on the gel
were transferred onto the PVDF membrane and were probed for specific antibodies against
Rb (cat#9309; Cell Signaling Technology, Danvers, MA, USA), phospho-Rb (cat#8516, Cell
Signaling Technology, Danvers, MA, USA), E2F2 (ab209662; Abcam, Cambridge, UK),
HK1(cat#2024; Cell Signaling Technology, Danvers, MA, USA) and GAPDH (cat#5174;
Cell Signaling Technology, Danvers, MA, USA) at 1:1000 dilution in 5%BSA in 1× TBST
overnight at 4 ◦C. After 4 washes with 1× TBST for 10 min, membranes were incubated
with HRP-conjugated anti-mouse (cat#7076; Cell Signaling Technology, Danvers, MA, USA)
or anti-rabbit antibodies (cat#7074; Cell Signaling Technology, Danvers, MA, USA) at
1:2000 dilution for 2 h. Images were visualized using the Image Quant LAS 500 system (GE
Healthcare Life Sciences, Piscataway, NJ, USA).
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2.6. Energy Phenotype Assay

Cells were seeded onto an XFp 8-well Seahorse XFp flux plate (cat#103723-100, Agilent
Technologies, Santa Clara, CA, USA) pre-coated with 0.01% poly-L-lysine (cat#P4707,
Sigma Aldrich, St. Louis, MO, USA). A cell density of 4000 cells/150 µL per well was
seeded and centrifuged at 500× g rpm to encourage adhesion to the plate and form an
evenly dispersed monolayer. Cells were then incubated at 37 ◦C in non-CO2 conditions
in Seahorse XF assay medium (cat#103681-100, Agilent Technologies, Santa Clara, CA,
USA) and further processed using the XFp Extracellular Flux Analyzer (cat#431018, Agilent
Technologies, Santa Clara, CA, USA) as per the manufacturer’s protocols. The energetic
profile of modulated and control cells was determined using Seahorse XFp Extracellular
Flux Analyzer and Cell Energy Phenotype Test Kit (cat#103275-100, Agilent Technologies,
Santa Clara, CA, USA).

2.7. Mitochondrial Stress Assay

Cells were seeded onto an XFp 8-well Seahorse XFp flux plate (cat#103723-100, Agilent
Technologies, Santa Clara, CA, USA) pre-coated with 0.01% poly-L-lysine. A cell density
of 4000 cells/150 µL per well was seeded and centrifuged at 500× g rpm to encourage
adhesion to the plate and form an evenly dispersed monolayer. Cells were then incubated
at 37 ◦C non-CO2 conditions in Seahorse XF assay medium (cat#103681-100, Agilent Tech-
nologies, Santa Clara, CA, USA) and further processed using the XFp Extracellular Flux
Analyzer (cat#431018, Agilent Technologies, Santa Clara, CA, USA) as per the manufac-
turer’s protocols. Mitochondrial function was measured using a Seahorse XF Mito-stress
test kit (cat#103010-100, Agilent Technologies, Santa Clara, CA, USA). Briefly, mitochondrial
OCR (oxygen consumption rate) was measured after injections of 0.5 µM oligomycin, 1 µM
FCCP, 1 µM antimycin A, and 1 µM rotenone, according to the manufacturer’s instruc-
tions. Determinants of mitochondrial function (basal respiration, maximal respiration,
spare respiratory, and ATP production) were calculated using the formulas according to
manufactures protocol. All measurements were normalized to a total number of cells
using the PrestoBlue Cell Viability Reagent (cat#A13261, Invitrogen, Waltham, MA, USA)
post-mitochondrial stress assay. Data were analyzed using Seahorse XFp Wave Software
(Version 2.4, Agilent Technologies, Santa Clara, CA, USA) and expressed as replicate data
points ± SD of triplicate experiments.

2.8. Glycolytic Rate Assay

For glycolytic rate analysis in WERI-Rb1 cells of different conditions, the cells were
seeded onto a 0.01% poly-L-lysine-coated XFp 8-well flux plate (cat#103723-100, Agilent
Technologies, Santa Clara, CA, USA) in Seahorse XF glycolytic assay conditioned medium
(Seahorse XF assay medium cat#103576-100, Agilent Technologies, Santa Clara, CA, USA,
with supplements of 1 mM sodium pyruvate, 2 mM glutamine, 10 mM glucose and pH
adjusted to 7.4). The glycolytic function was measured using the Seahorse XFp Glycolytic
rate assay test kit (cat#103346-100, Agilent Technologies, Santa Clara, CA, USA). Briefly,
the ECAR baseline readings were recorded using the Seahorse XFp analyzer (cat#431018,
Agilent Technologies, Santa Clara, CA, USA), and the following injections were done with
4 µM Rot/AA and 50 mM 2-deoxyglucose (2-DG) respectively. PER, glycoPER, basal
glycolysis, basal proton efflux rate, and compensatory glycolysis were calculated using the
manufacturer’s formula.

2.9. Fuel Choice/Mito Fuel Flex Assay

For analysis of mitochondrial fuel oxidation pathways, the Seahorse XFp Mito Fuel
Flex test (cat#103270-100, Agilent Technologies, Santa Clara, CA, USA) was performed
according to the manufacturer’s instructions at the recommended drug concentrations, and
the Seahorse XF Mito Fuel Report Generator was utilized to produce results.
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2.10. Metabolite Measurement In Vitro

WERI-Rb1 cells of 1 × 106 density per condition (post 72 h-transduction) were used
for the measurement of metabolites like pyruvate (cat#MAK071, Sigma Aldrich, St. Louis,
MO, USA), NAD+/NADH (cat#MAK037, Sigma Aldrich, St. Louis, MO, USA), ATP
(cat#MAK190, Sigma Aldrich, St. Louis, MO, USA) and L-carnitine (cat#MAK063, Sigma
Aldrich, St. Louis, MO, USA) according to the manufacturer’s protocol. For WERI-Rb1,
cells (1 × 106) cultured in one fuel source (glucose or glutamine) were used, followed by
quantification of metabolites according to the manufacturer’s protocol.

2.11. Immunofluorescence/Mito Tracker Green

A total of 5 × 103 WERI-Rb1 cells per transduced condition were seeded on 96-well
plates (Eppendorf, Hamburg, Germany) pre-coated with poly-L-lysine. The cells were
stained with 1:5000 dilution of Mito Tracker green (cat#M7514, Thermo Fischer Scientific,
Waltham, MA, USA) in 10% RPMI media and Hoechst 33342 (cat#H1399, Invitrogen,
Waltham, MA, USA) for 15 min. The images were captured using the ImageXpress High
content confocal system (Molecular device, San Jose, CA, USA), and the mitochondrial
intensity was calculated using MetaXpress software (Molecular device, San Jose, CA, USA).

For staining tumor tissues, 6 µm sections of Rb tumor (n = 5) and pediatric retina
(n = 3) were deparaffinized in xylene (3 washes) and rehydrated in ethanol and water.
They were then subjected to heat-induced epitope retrieval using citrate buffer (pH 6.0)
for 20 min at 100 ◦C. The tissue sections were permeabilized using 0.1% Triton × 100 in
1 × PBS for 10 min at room temperature (RT) followed by 45 min of blocking in 3% BSA
in 1 × PBS solution at RT. The tissue sections were further washed thrice in 1 × PBS for
5 min and were stained with 1:2000 dilution of Mito Tracker green (cat#M7514, Thermo
Fischer Scientific, Waltham, MA, USA) in 1 × PBS for 20 min. The slides were mounted
using Fluoroshield medium (cat#F6057, Sigma Aldrich, St. Louis, MO, USA) fortified with
DAPI as a counterstain. The images were captured using the ImageXpress High content
confocal system (Molecular device, San Jose, CA, USA), and the mitochondrial intensity
was calculated using MetaXpress software (Molecular device, San Jose, CA, USA).

2.12. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 8 (San Diego, CA, USA).
Data are presented as mean ± s.d. unless indicated otherwise, and p < 0.05 was considered
statistically significant. For all representative images, results were reproduced at least three
times in independent experiments. For all quantitative data, the statistical test used is
indicated in the legends. A statistical ‘decision tree’ is shown in Figure S4.

3. Results
3.1. RB1 Expression Reduces Mitochondrial Respiration in Retinoblastoma Cells

We have interrogated the consequence of Rb protein loss in patient tumors using tran-
scriptomic profiling and identified significantly enriched glycolysis and reduced fatty acid
metabolism pathways [17]. To model this altered metabolic profile, we tested the effects
of RB1 complementation in different Rb null retinoblastoma cells. To elucidate how RB1
complementation affects mitochondrial function, we have used the Seahorse XFp analyzer
to measure mitochondrial respiration in Rb null and Rb-complemented Y79, WERI-Rb1
and patient-derived, primary GL1-RB1 retinoblastoma cells. First, we ectopically expressed
RB1 in WERI-Rb1 (Figure S1A), Y79 (Figure S1C) and GL1-RB1 (Figure S1E). Further, we
measured real-time OCR rates in Rb null and RB1-complemented WERI-Rb1 (Figure S1B),
Y79 (Figure S1D) and GL1-RB1 (Figure S1F) retinoblastoma cells. We found a significant
reduction in mitochondrial respiration in RB1-overexpressed retinoblastoma cells com-
pared to Rb null controls. Measuring mitochondrial respiration parameters revealed low
basal mitochondrial respiration, maximal respiration and spare respiration in RB1-over-
expressed WERI-Rb1 (Figure 1A–C), Y79 (Figure 1D–F) and GL1-RB1 (Figure 1G–I), further
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highlighting an altered mitochondrial function and energy profile in retinoblastoma cells
with RB1 complementation.
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Figure 1. RB1 expression reduces mitochondrial respiration in retinoblastoma cells. Seahorse XFp
mito-stress test assay showing (A) basal respiration, (B) maximum respiration, and (C) spare respira-
tion in WERI-Rb1 cells; (D) basal respiration, (E) maximum respiration, and (F) spare respiration in
Y79 cells; and (G) basal respiration, (H) maximum respiration, and (I) spare respiration in GL1-RB1
cells. Values represent the mean ± s.d. of three independent experiments. Two-tailed Mann–Whitney
test was used for statistical analysis. ** p < 0.01.

3.2. RB1 and HK1 Complementation in Rb Null Cells Reveal Distinct Energy Profiles

In our previous study, we identified HK1 and E2F2 as two of the top differentially
regulated genes in patient tumors when compared with matched pediatric, healthy retina
controls [17]. Since HK1, which catalyzes the first step of glycolysis, represents a critical
node of the cellular metabolic network and E2F2 is a less studied member of the E2F family,
we investigated further the intracellular status of metabolism upon modulation of RB1,
E2F2, and HK1. RB1 overexpression induced HK1 and reduced E2F2 protein levels in WERI-
Rb1 cells. E2F2 overexpression and knockdown did not significantly induce HK1 protein,
and similarly, HK1 modulation did not affect E2F2 protein levels (Figure 2A), indicating
that they are independently regulated by Rb. Using energy phenotype tests, we measured
the metabolic parameters in RB1- and HK1-modulated cells and found significant changes
to their energy profile compared to controls. RB1-overexpressed cells showed a quiescent
phenotype (Figure 2B) with significant incompetence in utilizing mitochondrial respira-
tion under stressed conditions (OCR and ECAR of cells under induced energy demand)
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compared to energy-rich Rb null WERI-Rb1 cells (Figure 2E). Similarly, HK1-overexpressed
cells with or without RB1 overexpression displayed a glycolytic phenotype with reduced
utilization of mitochondrial respiration under an energy demand (Figure 2C,E). Conversely,
HK1 knockdown cells showed an energy-rich phenotype with high competence in uti-
lizing mitochondrial respiration rather than glycolysis under stressed conditions, which
are restricted by RB1 complementation (Figure 2D,E). Collectively, we show that rescue
of RB1 and HK1 in Rb null cells alters the metabolic profile towards an energy-restrictive
glycolytic phenotype and away from mitochondrial respiration.Cells 2022, 11, x FOR PEER REVIEW  9  of  19 
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Figure 2. RB1 and HK1 complementation in Rb null cells reveals distinct energy profiles. (A) Western
blot showing the protein expression of phospho-Rb, Rb, E2F2, and HK1 in RB1 null and RB1-
overexpressed (OE) WERI-Rb1 cells modulated with E2F2 OE and HK1 OE and knockdown constructs.
Energy phenotype profile of (B) vector control and RB1-overexpressed WERI-Rb1 cells, (C) HK1 OE
cells vs. RB1 OE+ HK1 OE WERI-Rb1 cells, and (D) HK1 knockdown vs. RB1 OE+ HK1 KD cells.
(E) Metabolic potential of modulated cells under stressed phenotype. Open squares represent baseline
activity, and closed squares represent stress-induced activity. Values represent three independent
experiments mean with data points ± s.d. Kruskal–Wallis with Dunn’s multiple comparisons test
(for >2 groups) were used for statistical analysis. ** p < 0.01, *** p < 0.001. OE = overexpression;
KD = knockdown.
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3.3. RB1 and HK1 Augmentation Reduce Mitochondrial Mass in Rb Null Cells

Since mitochondrial dynamics and, consequently, their mass affects mitochondrial
respiration in tumors [22], we evaluated the active mitochondrial status in RB1- and HK1-
complemented WERI-Rb1 cells using Mito-tracker dye. We observed lesser mitochondrial
mass in RB1- and HK1-complemented cells compared to controls, while HK1 knockdown
showed a higher mitochondrial mass (Figure 3A,B). HK1 overexpression led to a reduction
in active mitochondria, explaining observations in previous reports [6,17]. Since cellular
energy production through OXPHOS is dependent on mitochondrial status [23], we show
that overexpression of RB1 and HK1 reduces mitochondrial mass in Rb null cells. We
further validated the mitochondrial status in Rb tumor tissues (n = 5) and healthy, pediatric
control retina (n = 3) using the Mito-tracker dye. We found a significantly higher overall
mitochondrial mass in Rb tumor tissues compared to the photoreceptor layers of the
pediatric retina (p = 0.04), where the mitochondria appear restricted to specific cellular
layers (Figure 3C,D). Thus, higher mitochondrial mass in tumor tissues corroborates with
elevated TCA and fatty-acid metabolism in Rb tumors, as reported previously by us
and others.

3.4. HK1 and RB1 Expression Induce a Metabolic Switch from Mitochondrial Respiration to
Glycolysis

The consequences of HK1 and RB1 expression modulation on energy production and
mitochondrial function were validated using Seahorse XFp mito-stress assays (Figure 4A).
Basal (Figure S2A) and maximal (Figure S2B) mitochondrial respiration was significantly sup-
pressed upon ectopic expression of RB1 and HK1 either alone or in combination. Conversely,
HK1 knockdown increased respiration, which was suppressed by RB1 (Figure S2A,B). Spare
respiratory capacity was reduced significantly in RB1- and HK1-expressing cells (Figure 4B),
indicating curtailed OXPHOS dependence. The spare respiratory capacity was higher in
HK1 knockdown cells, indicating that lack of HK1 in patient tumors possibly enhances their
reliance on OXPHOS (Figure 4A,B). Consequently, both basal (Figure 4C,D) and compensatory
(Figure 4E) glycolytic proton efflux rates (glycoPER) in cells expressing RB1 and HK1 were
significantly elevated, indicating their metabolic shift towards glycolysis. However, the gly-
colytic capacity of HK1-ablated cells was significantly lower compared to control (Figure 4E),
indicating that tumor cells have low dependence on glycolysis. E2F2 overexpression and E2F2
knockdown in these cells did not show any significant change in mitochondrial respiration
parameters (Figure S2C–E). This suggests that in the absence of RB1 and low HK1, the Rb
tumor cells acquire an ability to replenish the TCA cycle, even when glucose-derived pyruvate
levels are low (Figure S2J).

To analyze this aspect further, we measured key metabolites involved in glycolysis, the
TCA cycle, and fatty acid metabolism in RB1-, HK1-, and E2F2-modulated cells. Pyruvate
levels were significantly higher in HK1-overexpressing cells (similar to RB1) compared to
HK1-ablated and control cells (Figure 4F). To evaluate the function of the mitochondrial
TCA cycle-driven ETC (electron transport chain) function, we measured NAD+/NADH
levels. RB1 and HK1 overexpression resulted in a significant reduction in NAD+/NADH
levels compared to controls and HK1-ablated cells (Figure 4G). Further, L-carnitine, a
key metabolite generated during β-oxidation of long-chain fatty acids [24] that produces
higher ATP than glycolysis, was higher in controls and HK1-ablated cells compared to RB1-
and HK1-overexpressing cells (Figure 4H). Consequently, ATP levels were significantly
reduced in RB1- and HK1-expressing cells compared to controls. Conversely, ablation of
HK1 increased ATP output (Figure 4I). The NAD+/NADH ratios and L-carnitine levels
indicate that in the absence of RB1 and HK1, tumor cells can flexibly utilize alternate fuels
such as glutamine or fatty acids to feed OXPHOS, fulfilling their bioenergetic demands. In
all these experiments, E2F2 modulation did not alter pyruvate, ATP, the NAD+/NADH
ratio, or L-carnitine levels compared to control (Figure S2F–I), demonstrating the specificity
of the HK1 function.
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Figure 3. RB1 and HK1 augmentation reduce mitochondrial mass in Rb null cells. (A) Mitochondrial
density in cells transduced with indicated vectors modulating RB1 and HK1 as indicated; post 96-h
transduction, the cells were stained with Mito-tracker green and Hoechst 33342 for 10 min. White
arrows indicate high mitochondrial mass, while yellow arrows indicate low mitochondrial mass.
Scale bar = 50 µm. (B) Mean mitochondrial IF intensity was calculated per condition using HCS and
MetaXpress software. Immunofluorescence showing mitochondrial density in (C) photoreceptor
layers of the pediatric retina (n = 3) and B) Rb tumor tissue (n = 5) using Mito-tracker green dye.
Mean IF intensity of mitochondria, (D) pediatric retina and Rb tumors. White arrows indicate high
mitochondrial mass, while yellow arrows indicate low mitochondrial mass. Scale bar = 100 µm.
Values represent three independent experiments mean with data points ± s.d. Two-tailed Mann–
Whitney test (for 2 groups) or Kruskal–Wallis with Dunn’s multiple comparisons test (for >2 groups)
were used for statistical analysis. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 4. HK1 and RB1 expression induce a metabolic switch from mitochondrial respiration to
glycolysis. (A) WERI-Rb1 cells were transduced with indicated vectors modulating RB1 and HK1 as
indicated, and oxygen consumption rate (OCR) was measured using Seahorse XFp Mito-stress assay
to assess mitochondrial function in WERI-Rb1 cells. (B) Spare respiration. (C) Seahorse XFp glycolytic
rate assay to measure glycolysis in cells transduced with different vectors as indicated. (D) Basal
glycolysis. (E) Compensatory glycolysis. In cells transduced with indicated vectors, measurement of
key metabolites were assessed: (F) pyruvate levels indicating glycolytic flux (G) NAD+/NADH ratios
to estimate mitochondrial TCA functions, (H) L-carnitine levels to evaluate dependency on fatty
acid oxidation, (I) total ATP levels to estimate energy produced. Values represent three independent
experiments mean with data points ± s.d. Two-tailed Mann–Whitney test (for 2 groups) or Kruskal–
Wallis with Dunn’s multiple comparisons test (for >2 groups) were used for statistical analysis.
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3.5. RB1 Expression Restricts the Usage of Alternate Fuels in Rb Null Cells

The reliance of Rb null cells on alternate fuel sources like glutamine or fatty acids was
evident from earlier experiments, and this ability can provide a ready supply of carbon
substrates to the cancer cells for mitochondrial TCA anaplerosis and lipid generation [25].
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Since the tumor transcriptome findings also revealed high expression of glutamine pathway
genes [17], we tested the ability of WERI-Rb1, Y79, and GL1-RB1 cells to use alternate
fuels in the presence or absence of RB1 using the Seahorse mito-fuel flex assay. In the
presence of RB1, cellular glucose dependency and flexibility were both significantly higher
(Figures 5A and S3A,D). However, cells without RB1 had significantly higher flexibility to
use glutamine (Figures 5B and S3B,E) or fatty acids (Figures 5C and S3C,F), suggesting that
Rb tumors use these alternate fuels for their growth.Cells 2022, 11, x FOR PEER REVIEW  15  of  19 

 

 

 

Figure 5. RB1 expression restricts the usage of alternate fuels. Seahorse XFp Mito-fuel flex as-
says to measure fuel dependency and flexibility in cells transduced with different vectors as indi-
cated. (A) Oxidation of glucose as fuel in control and RB1-complemented WERI-Rb1 cells (n = 3).
(B) Oxidation of glutamine as fuel (n = 3). (C) Oxidation of fatty acids as fuel (n = 3). Validation of
fuel oxidation profile in cells cultured in glucose and glutamine alone conditions and transduced
with indicated vectors. Measurement of key metabolites was assessed as follows: (D) pyruvate
levels indicating glycolytic flux, (E) NAD+/NADH ratios to estimate mitochondrial TCA functions,
(F) L-carnitine levels to evaluate dependency on fatty acid oxidation. (G) Total ATP levels to estimate
energy produced. (H) Schematic representation of metabolites in each metabolic pathway under RB1
null and RB1-overexpressed cells. Values represent the mean ± s.d. of three independent experiments.
Two-tailed Mann–Whitney test (for 2 groups) or Kruskal–Wallis with Dunn’s multiple comparisons
test (for >2 groups) were used for statistical analysis. ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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To validate these findings, we measured key metabolite levels in Rb null and Rb-
complemented WERI-Rb1 cells fed with glucose and glutamine. WERI-Rb1 and Y79 cells
lacking RB1 produced significantly lower pyruvate when fed with glutamine (p < 0.001)
rather than glucose (Figures 5D and S3G) when compared to Rb-complemented cells.
This corroborates with the results from patient vitreous humor (Figure S2J), where pyru-
vate levels were lower. However, the total ATP (Figure 5G) and NAD+/NADH levels
(Figures 5E and S3H) were higher in glutamine-fed conditions compared to glucose in
WERI-Rb1 and Y79 cells, with a concurrent increase in L-carnitine (Figures 5F and S3I). This
validates that Rb null cells rely on non-glucose fuel sources to replenish the mitochondrial
TCA cycle and increase ATP production. Thus, in the absence of a functional Rb or reduced
HK1, these tumor cells produce higher amounts of ATP through increased mitochondrial
respiration fed by multiple fuel sources such as glutamine and fatty acids (Figure 5H).

4. Discussion

The present study identifies RB1 and HK1 as previously unrecognized regulators of
metabolic adaptation in retinoblastoma cells. In studies, we have identified low expression
of the glycolytic HK1 protein and pyruvate in Rb tumors, and we further revealed that
ectopic expression of RB1 induces HK1 in Rb null retinoblastoma cells [17]. We report
that ectopic expression of RB1 reduced mitochondrial respiration and spare respiration
capacity of WERI-Rb1, Y79, and patient-derived GL1-RB1 retinoblastoma cells, highlighting
that mitochondrial function is curtailed by the wild-type Rb protein. We show that Rb
proteins diminish mitochondrial functions by inducing HK1, a rate-limiting glycolytic
enzyme that phosphorylates glucose and can alter mitochondrial functions and metabolic
pathways [26,27]. HK1 levels are significantly low in retinoblastoma tumors and RB1-null
retinoblastoma cells [17], which is distinct from other types of solid tumors. High expres-
sion of HK1 is observed in various tumors [28,29], possibly driving higher glycolysis in
those cases to fulfill the tumor cell’s energy demands. Contrary to these findings, we report
that RB1 and HK1 complementation in Rb null cells drives them to adopt a glycolytic pheno-
type and restricts the high energy-producing mitochondrial respiration. We show that RB1
and HK1 complemented cells have reduced mitochondrial mass, which are characteristics
of altered mitochondrial biogenesis [30], further highlighting the ability of these genes to
impede OXPHOS and mediate a metabolic switch to glycolysis. Notably, loss of functional
Rb in breast cancers enhanced mitochondrial proteins and OXPHOS with a subsequent
increase in mitochondrial function [10], which agrees with our data, where Rb tumors pos-
sess high mitochondrial mass, in contrast to the healthy retina. In the retina, photoreceptor
precursor cells are thought to be the cells of origin for Rb tumors [31]. Photoreceptors pri-
marily rely on HK1 and aerobic glycolysis for rapid energy production [32,33], consuming
a major portion of the glucose to produce lactate [34]. However, the whole retinal tissue
depends on both glycolysis and mitochondrial OXPHOS for its functional and structural
requirements to provide vision, which includes restricting the use of fatty acids potentially
for the production of photoreceptor outer segment disks [34]. Since Rb tumor cells lack
photoreceptor functions (as shown by significantly reduced expression of such genes [17])
and acquire higher proliferative potential, these cells reprogram their metabolism to meet
the biosynthesis and energy production needs.

Retinoblastoma patient tumors have reduced pyruvate levels but higher levels of fatty
acids. Fatty acids are known to enhance cancer proliferation by providing intermediates
that are essential for maintaining cell membrane structure and function, energy storage,
and signal transduction [16]. Their synthesis starts with the generation of mitochondrial
acetyl CoA derived from citrate via pyruvate. However, in the absence of glycolytic
pyruvate, the anaplerotic flux of carbon in the TCA cycle is maintained by glutamine
for the generation of acetyl CoA [35]. We show that the lack of HK1 allows the Rb-null
cancer cells to expand their flexibility of fuel choices, using glutamine and fatty acids for
TCA anaplerosis. Such enhanced utilization of OXPHOS results in greater mitochondrial
activity and higher ATP generation in tumor cells lacking RB1 and HK1. Rescuing RB1 or
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HK1 in retinoblastoma cells shifted the cellular metabolic profile to glycolysis dependence,
consequently reducing mitochondrial ATP production. Concurrent reduction in fatty acid
pathway metabolite L-carnitine indicates that HK1-overexpressing cells no longer use fatty
acid as a key energy source.

The restrictive metabolic profile directed by RB1 and HK1 in Rb cells can be exploited
for pharmacological targeting in clinical settings. Although our investigations in the current
study were limited to in vitro models, our findings on metabolic phenotypes of Rb null cells
agree with the data obtained from primary patient samples and raise hopes for targeting
Rb tumors. In conclusion, our work reveals the metabolic phenotypes and nutrient sensing
in Rb null cells, illustrating RB1- and HK1-mediated metabolic flexibility as a potential
therapeutic target.

5. Conclusions

In conclusion, we demonstrate Hexokinase 1 (HK1) to be significantly reduced in Rb
tumors and RB1 null retinoblastoma cells, wherein their loss mediates a critical metabolic
adaptation towards enhanced mitochondrial respiration. Conversely, the data show a
significant reduction in mitochondrial function and mass in Rb- and HK1-complemented
retinoblastoma cells characterized by a metabolic switch from OXPHOS to glycolysis and
reduced fuel utilization flexibility. Thus, our study provides a better understanding of
the metabolic adaptations of retinoblastoma cells that can be useful for developing cancer
metabolism-targeted therapeutics.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11203182/s1, Figure S1: RB1 expression reduces mitochondrial
respiration in retinoblastoma cells; Figure S2: HK1 and RB1 expression induce a metabolic switch
from mitochondrial respiration to glycolysis; Figure S3: RB1 expression restricts the usage of alternate
fuels; Figure S4: Statistical decision tree. Table S1: Details of lentiviral plasmids.
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