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Abstract

Based on previous evidence for individual-specific sets of cortical areas active during simple attention tasks, in this work we
intended to perform within individual comparisons of task-induced beta oscillations between visual attention and
a reasoning task. Since beta induced oscillations are not time-locked to task events and were first observed by Fourier
transforms, in order to analyze the cortical topography of attention induced beta activity, we have previously computed
corrected-latency averages based on spontaneous peaks of band-pass filtered epochs. We then used Independent
Component Analysis (ICA) only to single out the significant portion of averaged data, above noise levels. In the present work
ICA served as the main, exhaustive means for decomposing beta activity in both tasks, using 128-channel EEG data from 24
subjects. Given the previous observed similarity between tasks by visual inspection and by simple descriptive statistics, we
now intended another approach: to quantify how much each ICA component obtained in one task could be explained by
a linear combination of the topographic patterns from the other task in each individual. Our hypothesis was that the major
psychological difference between tasks would not be reflected as important topographic differences within individuals.
Results confirmed the high topographic similarity between attention and reasoning beta correlates in that few components
in each individual were not satisfactorily explained by the complementary task, and if those could be considered ‘‘task-
specific’’, their scalp distribution and estimated cortical sources were not common across subjects. These findings, along
with those from fMRI studies preserving individual data and conventional neuropsychological and neurosurgical
observations, are discussed in support of a new functional localization hypothesis: individuals use largely different sets of
cortical association areas to perform a given task, but those individual sets do not change importantly across tasks that
differ in major psychological processes.
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Introduction

The main finding of a series of studies in our Laboratory, both

on the cortical topography of Slow Potentials (SPs) and task-

induced beta oscillations, has been the high inter-individual

variability in the sets of cortical areas electrically active mainly

during expecting attention [1–4]. This kind of variability in

cortical distribution of non-sensory-motor activity, initially en-

countering some skepticism from the scientific community due to

the challenge of strict cortical functional localization views, is now

becoming increasingly accepted. Its acknowledgement has even

motivated the development of new approaches to present and

interpret fMRI results [5–7]. In particular, it suggests the

inadequacy of the use of spatial averaging of task-related

physiological changes across subjects [8–14], in some cases even

for sensory activity [11,12]. For this reason, our main intention in

the present work was to devise means of comparing task-related

results within-individuals.

Beta oscillatory activity, traditionally associated with overall

arousal levels [15], may now be considered as belonging to

a beta-gamma physiological continuum, following the conver-

gence of many years of results between groups of investigators,

mainly centered on the electrical properties of thalamocortical

cells across vertebrates, which lead to a seminal review work

[16]. We believe that the increasing interest in this frequency

range stems from the fact that it displays the space-time

dimensions compatible with long range cortico-cortical commu-

nication, in particular synchronization between areas [17,18].

We have recently been able to analyze the cortical topograph-

ical distribution of beta activity, when increased/induced by

simple attention tasks, due to new methodological approaches:

Since induced beta activity is not time-locked to task events, it

was originally observed only as ‘power’ changes, and its source

modeling by familiar algorithms made possible only when we

started to compute corrected-latency (spontaneous peak-cen-

tered) averaging [3]. However, in an analogous way to the
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limitation of conventional event-related averages to stimulus-

locked activity, our corrected-latency averages appear to be

limited to phase-locking between sources of oscillations. There-

fore, following the more adequate methodological suggestions by

Onton and colleagues [19], in the present work we decided to

re-compute peak-centered epochs but avoiding averaging after-

wards, and apply Independent Component Analysis (ICA) to

large sets of concatenated epochs. This approach, a more

proper use of ICA than our previous one (merely to extract

significant signal components from estimated noise), became

only recently possible due to the large computational resource

requirements involved.

In a recent study [4], we came to a psychophysiological

conclusion as unsettling as the inter-individual variability itself:

The persistency on within-individual task-related activity compar-

isons, lead us to start noticing a major similarity between tasks and

possibly minor overall significance of differences. We believe that

a reconsideration of differences found across tasks in large number

of studies, and an increased caution in the philosophical

interpretations of statistical differences in biological experimental

studies of the kind should take place in the near future. In that last

study, by attempting to decide whether possibly found inter-modal

(audio-visual) differences in beta activity could be localized and

compared, we concluded that the shift of attention to the auditory

modality did not correspond to any topographical change

systematic across subjects, as analyzed by simple descriptive

statistics. Moreover, the possibility remains that the differences

found in that, as a single example among a possible multitude of

studies, belong within an ‘experimental noise’ range loosely

considered.

Since we could not rule out the effect of inter-individual

variability in some our previous studies as stemming from the

complexity of the task used [1,20], we have decided to use the

same simple visual attention task for many years as our

comparison standard. In the present study, we intended to

perform the within-individual comparisons between that simple

attention task and one in which a major engagement of

psychological processes were involved: a reasoning task adapted

from standardized psychological tests. Given that in pilot testing

we observed a major similarity between tasks in independent

component patterns, on the methodological end, besides the

proper use of ICA, we devised a novel approach: the application of

multiple linear regression models to quantify how much each

component obtained from one task could be explained by the

components obtained from the other task. Our hypothesis of the

present work was that the major psychological difference between

tasks would not be reflected as important topographic differences,

i.e., similar sets of active areas would be active in both tasks in each

subject. But in case a set of components were to be found not

explained by the complementary task, we intended to perform

source localization to illustrate whether such putative ‘task-

exclusive’ components were topographically systematic across

subjects.

Methods

Subjects
Thirty healthy individuals with normal vision and hearing, 18

male and 12 female, participated in the study. They ranged in age

between 20 and 50 years, with no history of drug or alcohol abuse,

and no current drug treatment. All subjects signed consent forms

specific to this study, approved by the Ethics Committee of the

University (Ethics Committee of Universidade Metodista).

Stimuli and Task
A commercial computer program (Stim, Neurosoft Inc.)

controlled all aspects of the tasks. Visual stimuli composing the

cue-target pairs (S1–S2) of the attention task consisted of small

rectangles (eccentricity 60.8u, S1:100 ms duration, S2:33 ms;

white background). In half of the trials, the S2 rectangle contained

a grey circle – the task target - with 60.3u of eccentricity. A

masking stimulus had the same grey level as the target (a

‘checkerboard’ grey and white square composed by one-by-one

pixel size squares), and was continuously present, along with the

fixation point, except during S1 and S2 presentation. S1 was

followed by S2, with onsets separated in time by 1.6 seconds. The ITI

was variable, ranging from 2.3 to 5 seconds. We instructed the

subjects that a rectangle would be presented to indicate that 1.6

seconds later it would flash again but quickly, containing or not the

target circle. The subject decided whether there was a target inside

the S2 rectangle, and indicated presence of the target by pressing

the right button with the right thumb or absence of the target by

pressing the left button with the left thumb. We explicitly

deemphasized reaction time in the instructions and measured

performance by the percent correct trials, from the total of 96 trials

comprising the task. An eye fixation dot was continually present on

the center of the screen, as well as a stimulus-masking background,

to prevent after-images.

The reasoning task consisted of 48 questions and 48

corresponding answers. Each question stayed on the screen until

the subject decided to check the answer, by pushing either

button. If the answer was considered correct, the subject should

press the right button with the right thumb, if incorrect the left

button with the left thumb. Actually correct answers followed

50% of trials in random order. The questions were divided in 3

blocks of verbal-logical, numerical-logical and visual-abstract-

induction tests, adapted to computer presentation from stan-

dardized psychological tests (HTM- Brazilian adaptation of

General Mental Ability Test by Santarosa, and Raven’s pro-

gressive matrices test [21,22]).

EEG Recording and Acquisition of MRIs
We used a fast Ag/AgCl electrode positioning system

consisting of an extended 10–20 system, in a 128-channel

montage (Quik-Cell, Compumedics Limited), and an imped-

ance-reducing saline solution which restricted the need for skin

abrasion to the reference and ground electrode regions.

Impedances usually remained below 5 kOhms, and unstable

channels were eliminated from the analysis. To know the actual

scalp sampling or distribution of electrodes in each individual

with respect to the nervous system, we used a digitizer

(PolhemusH) to record actual electrode positions with respect

to each subject’s fiduciary points: nasion and preauricular

points. After co-registration with individual MRIs, the recorded

coordinates were used for realistic 3D mapping onto MRI

segmented skin models, and later used to set up the source

reconstruction equations (distances between each electrode and

and each dipole supporting point). Two bipolar channels, out of

the 124-channels in the montage were used for recording both

horizontal (HEOG) and vertical electro-oculograms (VEOG).

Left mastoid served as reference only for data collection

(common average reference was used for source modeling)

and a frontal midline electrode was used as the ground. We

used 128-channel DC amplifiers (Synamps 2, Neuroscan-

Compumedics) for data collection and the Scan 4.5 software

package for initial data processing. The filter settings for

acquisition were from DC to 200 Hz, and the digitization rate

was 1000 Hz. The EEG was collected continuously, and task-
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related epochs spanned the interval from 300 ms before S1 to

400 ms after S2 in the visual attention task, and from 2400 ms

previous to button press to 200 ms after that, in the reasoning

task. We chose this time window for the reasoning task due to

the expected high variability in reaction time (confirmed to be

roughly of 4 seconds, with a standard deviation above 2

seconds, by pilot testing), and to the supposition that the critical

processes of reasoning would more regularly precede the

decision and its motor implications (we used the window

between 2000 and 500 ms before button press for the remaining

analysis; see below). Baseline was defined from the first 300 ms

of either type of epochs. Epoch elimination was performed

visually for eye movements and muscle artifacts, and then

automatically: visual inspection served to eliminate epochs

containing other artifacts spread to many electrodes, such as

head/cable movements. Isolated electrodes presenting frequent

transient electronic noise were also eliminated visually, and

additional electrode elimination was dependent on the first

rounds of ICA computations. Eye blinks were removed from the

continuous EEG recordings by PCA filtering, prior to the

computation of epochs. We used PCA for this purpose because

eye-blinks are spatially stable, and our software performs this

individual-specific cleaning in a simple and straightforward way:

two or three first PCA components of a short time window

explaining a blink define a filter to be applied to the whole

continuous data (whereas the ICA available in our package, in

principle applicable to this purpose, is inadequate for this use

due to computational limitations).

MRIs were obtained by a 1.5 Tesla GE machine, model

Horizon LX. Image sets consisted of 124 T1-weighed saggital

images of 256 by 256 pixels, spaced by 1.5 mm. Acquisition

parameters were: standard echo sequence, 3D, fast SPGE, two

excitations, RT=6.6 ms, ET=1.6 ms, flip angle of 15 degrees,

F.O.V= 26626 cm. Total acquisition time was around 8 minutes.

Frequency-Time Analysis
After artifact rejection, the signal from each channel was

spectrally analyzed by means of a Short Time Fourier

Transform (STFT), to obtain frequency-time charts of the

induced spectrum from both tasks, from each individual, to

confirm the attention induced beta and to verify whether the

reasoning task was also accompanied by beta power changes.

To obtain the induced power spectrum [23], the time-frequency

decomposition was made for each electrode and each trial, from

DC to 100 Hz, and the resulting charts were then averaged,

both for each electrode and across electrodes. The decompo-

sition was computed twice on the EEG tapered by two sliding

Hamming windows, 400 points in size for inspection of

frequencies over 30 Hz, and 1000 points for lower frequencies,

with a temporal resolution (window displacement) of 10 points,

and a frequency resolution of 8192 points. Then, we normalized

the average power for each electrode to obtain Z-scores of

increments or decrements in each frequency bin with respect to

the power in the same frequency during the 300 ms baseline

(,Pj.= (Pj2mj)/sj; given Pj= spectral power at each time point

in electrode j, mj and sj are the mean and standard deviation,

respectively, of the average power during the baseline for the

electrode). Among the various available methods for frequency-

time analysis, we chose STFT because we are familiar with the

appearance of its results, and dispose of a fairly large database

from previous studies computed in this fashion. Moreover, we

used it exclusively to confirm the presence of beta induced

activity in each subject and task, and its results had no

implications to the main analysis of the present study.

Re-computation of Peak Centered Epochs and
Independent Component Analysis
Original EEG epochs were filtered between 15 and 30 Hz:

Butterworth, 96 dB roll-off. The resulting filtered epochs were

then processed by an algorithm for searching the peaks of bursts

within the task-time windows of interest. Filtered epochs were

thus cut again starting from positive voltage peaks (automatically

searched in the stimulus-expecting time window for the

attention task 500 to 1600 ms after S1, and between 2000

and 500 ms before button-press for the reasoning task), resulting

in new epochs, ranging from 100 ms before to 100 ms after the

peaks. As previously, we used each channel in the search for

peaks, thus leading to a large number of new epochs: number

of good channels multiplied by the number of original good

epochs. The new epochs were shuffled randomically so that any

portion of their concatenated set became representative. This

was confirmed by pilot testing, which also served to determine

the maximum computational capacity available in our labora-

tory for ICA and particularly ICA filtering: with a peak of 2.7

Gigabytes of RAM use during ICA filtering, we were able to

analyze data matrices corresponding to 350 to 500 thousand

time points, safely above the recommendation of Onton and

colleagues [19] (206N2
2N=number of good channels - time

points), which in our case would mean between 160 and 290

thousand time points.

Our pilot testing simultaneously determined the maximum

number (by trial and error, with successful ICA convergence), of

10 independent components obtainable for the filtered data, by the

fast-ICA algorithm included in the commercial software package

used in our analysis (Curry6, Compumedics Limited). We are

aware of other types of software capable of computing larger

number of components, but our algorithm computes this

maximum of 10 components, which we consider a reasonable

number, since the data are filtered in a single band. As mentioned

above, the first two or three ICA rounds served to eliminate

additional electrodes manifesting transient artifacts, and to de-

termine whether the data from each subject resulted in the largest

possible number of components of supposed brain origin

(remaining after the elimination of obvious or suspected muscular

components): components representing muscular activity (sharp

polarity reversals, with voltage extrema comprising immediately

neighboring frontal, temporal or occipital electrodes) were not

included in the analysis. Since muscular activity is not passible of

PCA filtering, which we also tried during the pilot tests, subjects

presenting a major ‘contamination’ by muscle activity were

eliminated from analysis. Six subjects were thus eliminated, 3 for

this reason and 3 for excessive electronic noise). Besides the

obvious cases to visual inspection (as performed by other groups,

e.g., [19,24]), suspected muscular components (with voltage

extrema spreading a little beyond immediately neighbor electro-

des), were spectrally analysed: the plateau shaped power distribu-

tion reaching very high frequencies were considered of muscular

origin. Finally, those components not considered artifactual,

among the 10 remaining after a third ICA step, were considered

of brain origin. We eliminated an average of 24 channels in the

remaining group of 24 subjects, on whose data the full analysis was

performed.

Statistics of ICA Results
For each subject, a multiple linear regression was indepen-

dently modeled for each of the 10 ICA channel coefficients of

one task (as the response variable), considering the 10 ICA

coefficients of the other task as predictor variables. Components

of suspected muscular or electronic artifactual origin were not

Common Beta Activity to Attention and Reasoning
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considered in the analysis. The basic idea of this analysis is to

evaluate whether the two tasks have spatially similar compo-

nents (or linear combinations between them). We considered

components highly similar between tasks, i.e., statistically

explained by the complementary task, when the resulting

adjusted R2 values of the multiple regression were above the

cutoff value of 0.85. In other words, we considered that

a component was similar between the two tasks if 85% (or

above) of its variance (across channels) could be explained using

the components of the other task. The percentage of similar

components for each task and subject were tabulated for the

global consideration of results.

Intracranial Source Reconstruction
The independent components from the reasoning task that

eventually would be found not to be explained by the attention

task were exported by ICA filtering of the original data, for

source reconstruction, to test for a possible common origin

across subjects. MRI sets were linearly interpolated to create 3-

dimensional images, and semi-automatic algorithms based on

pixel intensity bands served to reconstruct the various tissues of

interest. A Boundary Element Model (BEM) of the head

compartments was implemented, by triangulation of collections

of points supported by the skin, skull and cerebrospinal fluid

(internal skull) surfaces. Mean triangle edge lengths for the BEM

surfaces were, respectively, 8, 7 and 5 mm. Fixed conductivities

were attributed to the regions enclosed by those surfaces,

respectively, 0.33, 0.0042 and 0.33 S/m. Finally, a reconstructed

brain surface, with mean triangle side of 2 mm, served as the

model for dipole positions. Individually measured electrode

positions were used, and finely adjusted onto the skin’s surface

modeled from the MRIs (2 mm mean triangle side). The

detailed description of the assumptions and methods used by the

‘‘Curry 4.6’’ software for MRI processing and source re-

construction may be found elsewhere (e.g., [25–27]). The

analysis program then calculated the lead field matrix that

represents the coefficients of the set of equations which translate

the data space (SNR values in the set of channels per time

point) into the model space (the thousands of dipole supporting

points). The source reconstruction method itself was sLORETA,

with data Lp norm=2, also part of the Curry6 software

package.

Results

Task Performance and ICA Results
All subjects reported that performance was relatively easy

during the attention task, provided that they were strongly

attending during the critical time of S2 presentation. Six subjects

were eliminated from the study, three for excessive temporal and

frontal muscle activity, and three due to excessive periods of

electrode instability or electronic noise mainly from electrode cable

movements. Further analysis to be presently reported was thus

performed on data from 24 subjects (16 male and 8 female). The

overall average performance in the attention task was 90.2%

correct responses (standard deviation 13.2%) and 82.1% in the

reasoning task (standard deviation 9.5%). This difference was

statistically significant (t-test, p = 0.02).

As previously observed, all subjects presented increased beta

activity in two or more sub-bands during the attention task,

typically peaking around 1 sec after S1 presentation. As a new

result, all subjects also presented beta induced activity preceding

the decision/response time of the reasoning task, in similar

frequency sub-bands, typically peaking around 1.5 sec before

button press. Figure 1 presents the z-transformed frequency-time

plot of task-related power changes from the attention and

reasoning tasks, respectively, from one example subject.

After the first ICA rounds and additional electrode elimina-

tion, the remaining electrode sets averaged 104610 in number.

The induced beta decomposition resulted in good, typical

cortically originated topographic patterns, averaging 662

components across subjects, for both attention and reasoning

tasks. As expected from the work of Onton and colleagues [19],

the patterns were relatively simple (with few extrema, many

times of dipolar appearance) as compared with our experience

on corrected latency averaged patterns. Figure 2 shows ICA

patterns from an example subject who presented 9 good

components, for both tasks.

Figure 1. Examples of time-frequency plots, showing the total task-related power changes transformed into z-scores (scale at right
of each figure); (left) attention task, (right) reasoning task. At bottom, task time in seconds, mostly negative during the reasoning task, with
respect to button pressing. At left of each figure, frequency in Hz.
doi:10.1371/journal.pone.0059595.g001
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Statistics of ICA Results
The adjusted R2 values for each component for the two

subjects presenting 9 good components for each task are shown

in Tables 1 and 2 (values from subject represented in table 1

corresponds to the maps presented in figure 2). The average

percentage of explained components (adjusted R2 above 0.85)

was 89.4% (615.7%) for the attention task and 86.3%

(618.0%) for the reasoning task. This difference was not

statistically significant (t-test, p = 0.19). The overall average

values of adjusted R2 for all ICA components across subjects

were 0.92 (60.07) for the attention task, and 0.92 (60.08) for

the reasoning task. If we consider only the explained

components, the averages were also virtually identical, 0.944

(60.037) and 0.941 (60.039) for attention and reasoning tasks,

respectively. If we consider only the 46 unexplained components

across all subjects, the average adjusted R2 values are still high,

0.76 (60.09) and 0.73 (60.13) for attention and reasoning tasks,

respectively. Ten of the twenty three subjects presented all

components from the reasoning task explainable by the

attention task components, and thirteen of the subjects

presented all components from the attention task explainable

by the reasoning task components.

Source Reconstruction and Cortical Distribution of
Unexplained Components
Figure 3 shows two examples of reconstruction results for all

components from the two subjects who presented 9 good

components. As we have always observed when analyzing both

averaged Slow Potentials and corrected latency averaged beta

activity, the sets of cortical areas estimated as sources of the

present epoched data are highly variable across subjects. The

figure is an example of the fact, typical of case-by-case inspection

of results, that few example subjects are sufficient to show the lack

of commonality in sets of active cortical areas across individuals.

When sources of all components from a subject and task are taken

together, they seem complex and idiosyncratic as the ICA

components from averaged data with which we are familiar.

However, sources of single components extracted from the present

epoched data are typically more focal, but sometimes bilateral. We

Figure 2. Example set of ICA topographic patterns obtained for
one subject, after decomposition of beta activity during both
tasks. Colors indicate opposite polarity.
doi:10.1371/journal.pone.0059595.g002

Table 1. Multiple Linear Regression R2 Values.

0.9915650 0.9868824

0.9858277 0.9824556

0.9782438 0.9903828

0.9859431 0.9687755

0.9264988 0.9691128

0.9712228 0.9768545

0.8675914 0.9757552

0.9744756 0.9433747

0.9046056 0.9652627

Examples of adjusted R2 linear regression values obtained for the subject
whose ICA maps are shown in figure 2, who presented 9 good ICA components
for beta activity. At left, adjusted R2 values for the reasoning task components,
at right, for the attention task components.
doi:10.1371/journal.pone.0059595.t001
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have also inspected all components that were not satisfactorily

explained by the complementary task. Figure 4 shows reconstruc-

tion results for all components from the reasoning task that were

not satisfactorily explained by the attention task components, in

the thirteen individuals in whom they occurred. Those results are

also sufficient to demonstrate the lack of similarity across subjects

on what could be a ‘task-specific’ set of cortical areas related to the

additional processes involved in reasoning, as opposed to mere

visual attention.

Discussion

Individual Variability in Active Association Areas and
Functional Localization
The high degree of inter-individual variability found in the scalp

distribution and estimated cortical sources of Slow Potentials (SPs)

and beta oscillations in our previous studies [1–4,20] has raised the

need for within-individual methods of analysis, task comparisons in

particular, the main purpose of the present work. This type of

variability, in the sets of cortical areas active across individuals, was

once more found in our estimated sources of beta activity during

the present visual attention and reasoning tasks: no single cortical

area was seen to be active in all subjects. This variability is also met

with in the unfortunately few fMRI studies that present individual

data [8–14], some even during passive sensory stimulation [11,12].

Nevertheless, the concern with individual variability is now an

important issue in fMRI research, but typically of a different kind,

regarding the extent and amplitudes of task-related changes in

given brain regions, frequently pre-selected ‘regions of interest’

(ROIs). The proposed methodological improvements center in the

transformations of individual data (coordinates of peak changes) to

a common ‘space’, previous to group spatial averaging [5–7]. In few

cases we find the concern to preserve individual data and an

explicit advice against group spatial averaging [8–14]. The

methods of analysis and interpretation in those studies would

typically range from simple data tabulation to ‘fuzzy clustering’

[28] or ‘multisubject network’ [29,30] approaches. It is still

worthwhile emphasizing that group averaged spatial patterns does

not match each and every individual, in that a given cortical area

depicted in the pattern may show no change at all in some individual,

and some individual may present important changes in areas not

seen by group averaging or not belonging to the selected ROIs.

We may mention here some examples of studies closely related to

our line of research, where results appear to be more consistent

across subjects, but this fundamental difference may be explained

by methodological issues. Thus, some groups interested in beta

activity use electrical power to be mapped instead of ICA

decomposed voltage as we did [24,31,32]. Average power

essentially ‘‘collapses’’ various out-of-phase (independent) sources

in space, as compared to what we see by the current ICA on

unaveraged data – which on its turn also ‘‘sees more’’ than our

previous method of corrected latency averaging, that emphasizes

phase-locked sources. Regarding sampling, in the study by

Kamiński and colleagues [24], only 11 electrodes were used, and

the own authors explain the lack of expected findings in the

occipital region by this low resolution. Hanslmayr and colleagues

[31] pool only 8 parieto-occipital electrodes out of 64 for statistical

analysis. More important, in the study by Hipp and colleagues

[32], the consistency for the group of the 24 subjects at first

impression stems from one more example of study (as some fMRI

studies mentioned above) where different individual measures

(power projected to a common grid of 400 points by beamforming)

are subject to group statistics on secondary measures (coherence

between sources) before the process of ‘‘network identification’’,

thus performed on group data. Besides the different measure, of

source coherence during the peri- and post-stimulus reduction in

beta activity (that could in principle topographically differ from the

prevailing stimulus expecting activity, being more stimulus/

perception related), the essential point is that for that study to be

comparable to ours, networks should be individually ‘‘identified’’.

One interesting invasive study of beta activity in monkeys [33]

shows increased beta coherence between frontal and parietal

cortices during a kind of expecting attention (visual search), but

only four areas were sampled by electrode implantation. As

previously discussed by us [3], for studies in experimental animals,

especially single cell recordings, to be comparable to ours, the

prevalence of cells classified by response type to tasks, i.e., their

distribution in different cortical areas, with a widespread sampling,

would have to be explicitly compared across a number of animals.

And according to the experience of Prof. J.M. Fuster (personal

communication), that distribution is also highly variable across

individuals. Finally, we may cite the fMRI study on visual

attention by Corbetta and colleagues [34], where even with a small

number of ROIs analyzed in only 5 subjects, the table of

individual results presents gaps in three subjects and two out of 5

areas. Comparability to our method in this case would mean

increase in sample, consideration of all task-related raw, unprocessed

BOLD effect distribution across the cortex in each subject, and

especially a verification of how by varying the arbitrary statistical

thresholds to present results would affect the individual patterns of

BOLD effect cortical distributions.

If individual data were always taken into account, even if one

single subject in each study presented no changes in some area

appearing in group averaged results, the consideration of the

enormous amount of studies and tasks would leave no single area

as essential for the implementation of any task. This lack of one-to-

one function-to-area mapping will certainly also be the case even if

group spatially averaged data are considered, regarded that

unrestricted literature search is performed either by cytoarchitectonic

area or by supposed psychological function. One explicit

theoretical account of the variability in cortical areas active during

particular tasks, and in clinical symptomatology after lesions in

common areas, an implicit commonsense fact that justifies the

statistical nature of Neuropsychological results, is the ‘biological

degeneracy’ concept [30]: it allows and emphasizes many-to-one

function/area possible mappings.

The most solid basis for the contemporary version of

localization of function, and corresponding scientific community

resistance to other views, stems from the anatomy of preferential

cortico-cortical connections [35–37], particularly developed in the

Table 2. Multiple Linear Regression R2 Values.

0.9820455 0.9942912

0.9763507 0.9855181

0.9935971 0.9723158

0.9787430 0.9902790

0.9876926 0.9682983

0.9780159 0.9593978

0.9728619 0.9723354

0.9585617 0.9420752

0.8937664 0.9055980

Examples of adjusted R2 linear regression values obtained for the other subject
who presented 9 good ICA components for beta activity.
doi:10.1371/journal.pone.0059595.t002
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case of the visual cortices [38]. It has motivated our own initial

search for regional specialization of prefrontal cortical function

[1,39,40]. By now we believe that a new hypothesis, of ‘‘individual

localizationism’’, becomes plausible: the consideration of two or

three long-range (excitatory-excitatory) cortico-cortical synaptic

steps leads one to conceive of a myriad of possible functional loop

pathways, to be formed and possibly changed spontaneously, and

given the complexity involved, in an individually idiosyncratic

fashion. Of course, preferential (‘‘one-synaptic’’) pathways could,

in principle, define a much expected universal functional pattern

across individuals, of statistical ‘probabilistic’ nature, if unreason-

ably large numbers of subjects were included. This is exactly the

purpose of ‘meta-analytical’ studies, but it is a fact that in spite of

more than four decades of research resulting in a vast literature on

task-related physiological changes, no conclusive, consensual

‘‘human brain map’’ encompassing cortical areas beyond the

sensory-motor domains is still available. On the other hand, a most

critical support for the suggested ‘‘individual-localizationist’’

hypothesis of association cortical function is Functional Neurosur-

gery. Beyond the well-recognized facts of occasionally undetect-

able symptoms after localized cortical lesions or resections, and the

wide variability in individual ‘eloquent’ areas, for instance,

intraoperative interference with cortical function by electrical

stimulation is now explicitly recommended and extended to

Figure 3. Examples of source reconstruction results obtained for the reasoning task beta activity, from the two subjects (each
column) who presented 9 beta ICA patterns (sLORETA algorithm, data-Lp norm=2; current density distribution clipped at the
percentile 50 of the maximum current in each case and subject).
doi:10.1371/journal.pone.0059595.g003

Figure 4. Representation of source reconstruction results (as in figure 3), of the reasoning task components from all subjects, that
were not satisfactorily explained by the attention task. The rectangles indicate the three subjects who presented more than one unexplained
component.
doi:10.1371/journal.pone.0059595.g004
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‘‘noneloquent’’ areas [41]. Particularly relevant is the fact that this

recommendation allows for safer tumor resections beyond visible

lesion margins, with lack of functional impairments in many cases

[42].

Minor Relevance of within-individual Task-differences
Regarding the task comparison performed in the present study,

it represents a new effort that may also contribute as another

interesting aspect of the ‘individual localizationist’ hypothesis, and

as a general advice against another major trend in research. It is

an attempt to establish a quantitative foundation for the high

topographical similarity between tasks, within subjects, a common

observation in all of our data, from this and previous studies.

Statistics applied to biological sciences is designed to test for

differences. Following its regular use and mainstream search for

differences, we have previously attempted to test for task-specific

SP generators during verbal, pictorial and spatial visual tasks,

undistinguishable by visual inspection ([1]; we have also desisted

from publishing results from the detection potentials of the P300

class from the same tasks, exactly due to the lack of significant task

differences). To avoid spatial group averaging, we tabulated scores

of activity in estimated cortical areas, and performed group

analysis on the spatially abstracted data. Although a few areas

were depicted by the analysis as putatively ‘‘task-specific’’, we were

then already careful to state that the effect could well disappear,

for instance, after sample increase, and the above comment on

unrestricted literature searches. In an analogous way, when

computing corrected-latency averages of beta oscillations and

estimating their sources [3], we concluded that the absolutely

major fraction of ‘task-induced’ beta activity is topographically

identical to the pre-stimulus baseline beta (95% of power), thus not

‘task-specific’ but merely an increase in the ongoing activity. The

putatively ‘task-specific’ much weaker component (in that case

extracted as the second ICA component of the averaged data)

could belong to the typical kind of result more prone to naturally

vanish by lack of replicability, for instance, immerse in ‘‘exper-

imental error’’ in a wide sense. In a more recent work, we

explicitly compared the generators of averaged beta oscillations,

between the current visual attention task and one with the same

visual stimuli but with superimposed auditory stimuli to be

attended [4]. Again, a very small fraction of estimated currents

could be said to differ between tasks, i.e. correspond to the

modality shift of attention, but with no common pattern across

subjects. In the present study, some methodological improvements

with respect to that study gave strength to the conclusions: 1-

a completely independent blind analysis (ICA) was performed on

data from each task, thus without task-data subtraction; 2- the

avoidance of averaging allowed for more components to be

obtained, overall, for each task, a major challenge to the similarity

test, as opposed to typically two components obtained from

averaged data ICA; 3- moreover, regarding the quality of

components, ICA applied to epochs represents a proper use of

the method, whereas the previous use of ICA on averages was

simply a method to extract the most significant part of the data

(above some SNR level); 4- finally, averaging emphasizes the

phase-locked portion of oscillatory signals. Results from the

presently used multiple linear regression modeling between task

components indicated a very high topographic similarity between

beta activity from the two very different tasks. Overall, very high

adjusted R2 values were obtained for all components, even for

those that did not pass our cutoff criterion of ‘reciprocal

explainability’. Those components, not considered to be re-

ciprocally explained between tasks, on their turn, were once more

not systematic in topography across subjects. This is a new,

independent indication that tasks that differ in major psychological

processes may not be so different in some of their physiological

correlates, depending on the way we look at the data. It is

interesting to re-mention here the fMRI work by Corbetta and

colleagues [34] that also supports the idea of largely common

activity across supposedly very different tasks, involving visual-

spatial attention, covert and even explicit saccades. Although the

only band of interest in this study, beta activity should represent

a most direct correlate or indicator of cortico-cortical communi-

cation ([17,18,43]; its physiological continuum counterpart, the

gamma band, was not analyzed due to the well-known individual

variability in bands and amplitudes [44]; besides the more difficult

technical issues of muscle activity contamination). Experimental

and modeling evidence differentiate beta and gamma in this

respect, leaving gamma synchronization as a mediator of more

local cortical interactions [45]. Most investigators regard beta as

a correlate of attention/arousal and performance (efficient task

engagement), processes so universal as to coexist with mere

consciousness (thus obviously present in both of our tasks). One

slightly different view, by Engel and Fries [46], holds beta activity

as ‘‘signaling the status-quo’’, in the motor case, of the ‘‘motor

set’’. We prefer the more parsimonious view held by the other

cited groups [24,31,32] regarding beta as a correlate of attention/

arousal, and suggest low beta (including the m rhythm) to be

considered a ‘‘high or motor’’ alpha, given its opposite behavior to

higher frequency beta bands (indicating cortical ‘idling’ ([47]; in its

case, of motor areas). If beta is not related to attention/arousal per

se, it would be connected with other equally vague and universally

present processes such as mental effort, task engagement or

voluntary action, all concurrent with mere consciousness, to some

degree; and such degree is exactly what appears to be co-

modulated with beta. Finally, we consider any of those putative

psychological correlates of beta perfectly compatible with its role

in long-range cortico-cortical communication, i.e., they would

essentially reflect such communication (along with its subcortical

counterpart, undetectable by the scalp EEG methods). In any case,

as stated in a previous study when all bands were analyzed, at least

the main component of all frequency bands appear to have the

same generators ([3] with exception of alpha-2, SPs or ‘sub-delta’,

and occasionally some theta or delta task-induced topographic

pattern – of P300 appearance – overriding the baseline pattern of

the same band). This would mean, if confirmed, that a large

fraction of the EEG beyond beta stems from the same set of

individual-specific cortical areas, active as long as minimum

consciousness is present.

As opposed to the beginnings of our line of research, when tasks

were chosen based on neuroanatomical and neuropsychological

hypotheses, our criteria were changed by results from the last

years. The visual attention task, that became a ‘standard’ in our

laboratory, was designed as a simplification of Posner’s tasks

[48,49]. The purpose was exactly to test whether simpler SP

distributions and estimated sources, more common across subjects

as compared to our first studies, could be observed. It is

undeniable that attention is a minimum component process of

voluntary activity, especially so in the present task, where location

and time of possible target are well known to the subjects. We are

currently interested in a ‘‘coarse-grained’’ spectrum of the subjects’

psychological engagement, at least as a first step of use of the

currently presented topographic methods, instead of the more fine-

grained preconceived functions estimated from Neuroanatomy

with which we started this line of research. The reasoning task

represents the uppermost level of this spectrum. In the immediate

future, we intend to compare the visual attention task with a special

‘resting’ condition, with quiet meditative attention to breathing,
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eyes opened and fixated, and presentation of the same visual

stimuli, but to be ignored. Ideally, we intend to use 256-channel

recordings and a free number of ICA components by the required

higher capacity computational resources (for easier artifact

elimination and preservation of ‘good’ components). More

important should be the incorporation of spatial (electrode

positions or source locations) into the multiple regression analysis.

This would allow for inter-session replication of individual results

and, when a satisfactory method of quantification of CDR results

in comparable cortical areas across individuals also becomes

available, an analogous direct comparison between individuals. A

final step of this project will be the study of minimal consciousness

state patients. When computing corrected-latency beta averages

from the attention task, we obtained preliminary data showing that

the main pre-stimulus baseline component appears topographi-

cally identical to the main component of an uncontrolled resting

state. If high similarity is observed between the meditative resting

(and maybe even minimal consciousness state) and attention

correlates as well, it would reinforce the idea that the most

important aspect of electrical activity is not related to what the

subject does, but to the individually idiosyncratic, spontaneously

formed functional loops. The implication of this hypothesis to

Functional Neurosurgery is that indeed ‘inert’ cortical areas could

exist, at least in a temporary mode, whose lesions would have

minimal clinical implications, except for the loss of resources to the

cortical circuit type of neural plasticity. The major psychophys-

iological implication of the hypothesis is that most of the neocortex

would have a very general, ‘‘associative’’ function (of course still

respecting major anatomical-connectional differences such as

between frontal and posterior areas), similarly engaged in an

equally general process of biological problem solving. This does

not explain, but may reduce our astonishment with respect to how

organisms of radically divergent neural architecture, such as octopus

vulgaris with its large ‘‘integrative’’ (non-sensory-motor) lobes, can

solve problems in analogous ways to vertebrates.
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