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Abstract

Elaborate social interaction is a pivotal asset of the human species. The complexity of people’s social lives may constitute the domi-
nating factor in the vibrancy of many individuals’ environment. The neural substrates linked to social cognition thus appear especially
susceptible when people endure periods of social isolation: here, we zoom in on the systematic inter-relationships between two such
neural substrates, the allocortical hippocampus (HC) and the neocortical default network (DN). Previous human social neuroscience
studies have focused on the DN, while HC subfields have been studied in most detail in rodents and monkeys. To bring into contact
these two separate research streams, we directly quantified how DN subregions are coherently co-expressed with specific HC subfields
in the context of social isolation. A two-pronged decomposition of structural brain scans from ∼40000 UK Biobank participants linked
lack of social support to mostly lateral subregions in the DN patterns. This lateral DN association co-occurred with HC patterns that
implicated especially subiculum, presubiculum, CA2, CA3 and dentate gyrus. Overall, the subregion divergences within spatially over-
lapping signatures of HC–DN co-variation followed a clear segregation into the left and right brain hemispheres. Separable regimes
of structural HC–DN co-variation also showed distinct associations with the genetic predisposition for lacking social support at the
population level.

Key words: social isolation; population neuroscience; hippocampus subfields; default network fragmentation; higher-order associa-
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Introduction
Our brains are highly attuned to mediating social relationships.
Yet, this unique property may make us especially vulnerable in
times of social isolation. The hippocampus (HC) and the highly
associative default network (DN) in particular play key roles in
representing and integrating knowledge about the panoply of peo-
ple’s social worlds (Spreng and Andrews-Hanna, 2015; Tavares
et al., 2015). Evidence across the primate lineage demonstrates
expansion of the brain toward continuously larger association
cortex volumes. It has been suggested that this selective expan-
sion of association cortex brain regions has especially coincided
with the benefits of social bonding and coping with life in social
groups (Dunbar, 1998; Dunbar and Shultz, 2007). Additionally,
based on within-species assessments among humans, the size of
one’s social network has been found to correlate with the struc-
ture of brain regions, including key parts of the DN (Lewis et al.,
2011). This finding receives further support from monkey experi-
ments aimed at controlling group size (Sallet et al., 2011). In this

light, recently expanded regions of the association cortex appear

to be related to the advanced processing capacities required for

navigating social exchange with others (Schurz et al., 2021a).
However, the neocortical nodes of the DN have long been

emphasized in the brain-imaging community to be integral

for internally generated or self-directed cognitive functions,

as opposed to externally or environment-oriented processing

(Andrews-Hanna et al., 2014). This raises the question of how the

DN supports a central role in social embeddedness. Emotional

connection is one fundamental aspect of social cognition. Yet, this

domain is classically believed to be subserved by the limbic sys-
tem, which is often considered to include the HC (Schurz et al.,
2021b). Although controversy surrounds the roles and anatomi-
cal composition of the limbic system, as well as the value of the
concept itself (Ledoux, 1991; Rolls, 2015), it traditionally denotes
brain regions associated with emotion (LeDoux, 2000). On the
other hand, the more cognitive and abstract reasoning-based
aspects of social processing may be preferentially subserved by

Received: 19 August 2021; Revised: 17 November 2021; Accepted: 25 January 2022

© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original
work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/article/17/9/802/6516118 by guest on 19 Septem

ber 2023

https://orcid.org/0000-0002-0204-6497
https://orcid.org/0000-0003-1530-8916
https://orcid.org/0000-0003-3466-6620
mailto:danilo.bzdok@mcgill.ca
https://creativecommons.org/licenses/by-nc/4.0/


C. Zajner et al. 803

neocortical regions of theDN, such as themedial prefrontal cortex
(mPFC), inferior parietal lobule (IPL) and temporoparietal junction
(TPJ). For example, these same regions are associated with gen-
eral perspective-taking competence (Lewis et al., 2011) and show
neural activity responses when thinking about others (Krienen
et al., 2010). Thus, the relationship between the internal repre-
sentation of the social world and DN regions could perhaps be
a key factor behind the recent discovery that the DN is the net-
work circuit with the strongest links to subjective social isolation
(Spreng et al., 2020). Yet, we still have an incomplete understand-
ing of how social isolation and the disparate subsystems within
the higher association cortex are inter-linked with their affiliates
in the allocortex.

This knowledge gap is in part due to inherent methodologi-
cal challenges posed by the endeavor of studying DN regions that
are particularly evolved in the human species. From a compar-
ative perspective, progress in elucidating the DN in humans is
hampered by the difficulty of confidently matching distinct DN
subregions to counterparts in the brains of our monkey ances-
tors or even other animals. Indeed, several neocortical areas of
the human association cortex may have no definitive homolog in
non-human animals (Petrides et al., 2012). For example, there are
hurdles to the attempts of identifying homologous structures of
the human TPJ and mPFC in the monkey brain (Saxe, 2006; Mars
et al., 2013). Overall, such incongruences in comparative stud-
ies have impeded ‘the ability to compare experimental findings
from non-human primates with results obtained in functional
and structural neuroimaging of the human brain’ (Petrides et al.,
2012).

In contrast, there is an extensive knowledge base on the evo-
lutionarily more conserved HC in the allocortex (Buzsaki, 2006;
Xu et al., 2020). This is due to the ready possibility for conduct-
ing direct experiments on the HC of animals, which are typically
infeasible in humans. For example, invasive studies in living ani-
mals using direct axonal tracing, gene expression probes, optoge-
netic manipulation and single-cell electrophysiological recording
in the rodent and monkey HC have enriched our understand-
ing of this structure and its functionally specialized subfields.
There is also accumulating knowledge of the effects of social iso-
lation on specific subregions of the animal HC (Kogan et al., 2000;
Silva-Gomez et al., 2003; Ibi et al., 2008; Biggio et al., 2019). For
these reasons, the neuroscientific understanding of the neocor-
tical subregions of the DN remains more opaque than those of
the HC. Thus, simultaneously investigating these two functionally
interacting neural systems opens a window, which can eventu-
ally allow illuminating key properties of human DN subregions
through the lens of their partner HC subregions.

We expected concordances in how these allocortical and neo-
cortical neural systems are related to social isolation. This is
because both circuits are implicated in serving social interaction,
such as the abstract representation of other people’s purview of
the world. On the one hand, the DN is well-known to be involved
in both representing information about other people (Courtney
and Meyer, 2020) and taking other peoples’ perspectives (Saxe
and Kanwisher, 2003; Frith and Frith, 2006; Jamali et al., 2021;
Numssen et al., 2021). On the other hand, theHC of various animal
species has been shown to serve proto-forms of such functions
(Danjo et al., 2018; Omer et al., 2018; Oliva et al., 2020). This idea
is supported by the wide range of information domains, which
individual HC neurons are reported to be capable of represent-
ing, as evidenced by invasive electrophysiological recordings in
rodents and monkeys (Eichenbaum et al., 1999; Behrens et al.,
2018; Bellmund et al., 2018). These include spatial boundaries

(Lever et al., 2009), head direction (Taube et al., 1990), goal direc-
tion (Sarel et al., 2017), sound frequency (Aronov et al., 2017),
odor (Wood et al., 2000; Radvansky and Dombeck, 2018), time
(MacDonald et al., 2011) and reward (Gauthier and Tank, 2018).
These representations related to single-cell activity extend to
social information as well. For example, in rodents and bats, indi-
vidual HC neurons have been shown to specifically represent the
location of peers within a spatial environment (Danjo et al., 2018;
Omer et al., 2018; Oliva et al., 2020).

The human HC is also increasingly believed to represent dis-
crete items of social information. For example, in vivo electrophys-
iological experiments in epilepsy patients have shown that single
HC neurons in the medial temporal lobe consistently respond to
pictures of the same person from diverse viewpoints (Quiroga
et al., 2005, 2009; Rey et al., 2020). Additionally, a similar study
of neurosurgical patients found that single HC neurons tend to
respond to different images of people if those images were previ-
ously judged by the patient to be similar (De Falco et al., 2016).
The conjunction of these earlier studies suggests that neurons
in the HC of human and non-human mammals play a funda-
mental role in recognizing and representing specific peers. These
social representations may hence be embedded within neural
representations of ‘social spaces’ mediated by the entorhinal
cortex.

Indeed, the entorhinal cortex—which is the main input and
output structure of the HC—has repeatedly been shown to code
an animal’s location through an ensemble of ‘grid cells’ (Hafting
et al., 2005; Moser et al., 2008; Jacobs et al., 2013). These dedicated
neurons are believed to discharge according to fields that tessel-
late the environment with regular hexagonal patterns. In fact,
such ‘grid cells’ have been demonstrated to map multiple differ-
ent domains of information, such as space (Hafting et al., 2005;
Moser et al., 2008; Jacobs et al., 2013), time (Kraus et al., 2015) and
speed (Kropff et al., 2015). Some studies have also shown that the
presubiculum (PrS) and parasubiculum support such ‘grid cell’
representations (Boccara et al., 2010).

The constant representation of spatial environments by grid
cells has been further suggested as a bedrock for a long discussed
role of the HC—to instantiate ‘cognitive maps’, classically maps
of space (Tolman, 1948; O’keefe and Nadel, 1978). Later, it was
suggested that this function in spatial conceptualization has been
co-opted in the primate brain to help instantiate other abstract
maps of related entities (Constantinescu et al., 2016; Behrens
et al., 2018; Bellmund et al., 2018). Recent evidence suggests that
similar spatial maps are also represented in the orbital frontal
cortex region of the DN (Wikenheiser et al., 2021). Evidence of a
cognitive map of interpersonal ties has been further associated
with neural activity responses of the human HC. This involved
both social agent ‘nodes’ and their social relationship ‘edges’
(Tavares et al., 2015). In particular, hippocampal functional mag-
netic resonance imaging (fMRI) activity could track the position
of characters within a social hierarchy as indexed by ‘power’ and
‘affiliation’ (Tavares et al., 2015). Moreover, in this human fMRI
experiment, individuals with better social skills showed more
pronounced fMRI activity responses (Tavares et al., 2015). It is
thus conceivable that advanced types of social cognition, such
as perspective-taking, require accessing and binding information
within an abstract social relationship ‘map’mediated by the HC. If
so, we reasoned that the hippocampal subregions that play cen-
tral roles in instantiating a cognitive map are potentially linked
to the regular exchange in one’s wider social networks and lack
thereof. The shared functions of the HC and DN thus point toward
principled co-variation between their subcomponents.
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In the past, brain-imaging studies aiming at brain parcel-
lation have typically investigated either the DN (e.g. Schurz
et al., 2014) or the HC alone (e.g. Plachti et al., 2019). Although
there is extensive research from animal studies on anatomi-
cally defined subregions of the HC, the extension of this work to
investigations on the human HC is still lacking. Advances in the
automatic segmentation of the HC using ex vivo brain imaging
(Iglesias et al., 2015; Wisse et al., 2017) now allow reliable assess-
ments of microanatomically defined HC subregions in a way that
scales to the ∼40000 UK Biobank Imaging cohort. This enables
deeper analyses of the principled inter-relationships between
the evolutionarily more conserved allocortical HC and DN of
the recently expanded neocortex. By leveraging a framework for
high-dimensional decomposition at a fine-grained subregion res-
olution, we here uncover principled co-variation signatures that
delineate how HC subregion volumes are co-expressed with DN
subregion volumes. We also detail the structural deviations of
these co-variation signatures that characterize objective social
isolation. Moreover, enabled by the availability of genetic data,
we investigate how these structural brain patterns are associated
with the genetic predisposition to experience social isolation. This
is accomplished by examining relationships between the expres-
sion of HC–DN co-variation across individuals and the genetic
liability of social isolation based on a polygenic risk score (PRS)
model. Robust links between these two sources of variation—in
structural brain morphology and purely genetic predisposition—
may thus speak to how the heritable components of social sup-
port are linked to the aspects of brain morphology examined here
at the population level.

Material and methods
Data resources
The UK Biobank is a prospective epidemiology resource that
offers extensive behavioral and demographic assessments, med-
ical and cognitive measures, as well as biological samples in
a cohort of ∼500000 participants recruited from across Great
Britain (https://www.ukbiobank.ac.uk/). This openly accessible
population dataset aims to provide brain imaging for ∼100000
individuals planned for completion in 2022. The present study
was based on the recent data release from February/March
2020. To improve comparability and reproducibility, our study
built on the uniform data preprocessing pipelines designed and
carried out by FMRIB, Oxford University, UK (Alfaro-Almagro
et al., 2018). Our study involved data from 38701 partici-
pants with brain-imaging measures and expert-curated image-
derived phenotypes of graymatter (GM)morphology (T1-weighted
MRI) from 48% men and 52% women, aged 40–69 years when
recruited (mean age 55 years, s.d. 7.5 years). The present
analyses were conducted under UK Biobank application num-
ber 25163. All participants provided informed consent. Further
information on the consent procedure can be found elsewhere
(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200).

Target phenotype for objective social isolation
To capture an objective measure of the frequency of social inter-
actions, our UK Biobank analyses were based on answers to the
question ‘How often are you able to confide in someone close to
you?’(data field 2110). Our study modeled lack of social support
as less than ‘daily or almost daily’ (yes or positive answer) against
confiding in others more often (treated as no or negative answer).

Measures of social relationship quality represent a widely
accepted andwidely investigated component of social embedded-
ness (Cohen and Hoberman, 1983; Hawkley et al., 2005). Lack of
social support is commonly viewed as an objective measure of
weak social connection with other people. For example, the Social
Relationships scales are part of theNIH Toolbox (Cyranowski et al.,
2013) feature dimensions of social networks, which closely resem-
bles our measure of social support. In general, a variety of studies
showed single-item measures of social isolation traits to be reli-
able and valid (Mashek et al., 2007; Dollinger andMalmquist, 2009;
Atroszko et al., 2015). The sociodemographic differences between
low and high social support individuals in the UK Biobank have
been reported elsewhere (Schurz et al., 2021b), but we also show
this data in Supplementary Table S2.

Brain-imaging and preprocessing procedures
MRI scanners (3T Siemens Skyra) were matched at several ded-
icated data collection sites with the same acquisition protocols
and standard Siemens 32-channel radiofrequency receiver head
coils. To protect the anonymity of the study participants, brain-
imaging data were defaced and any sensitive meta-information
was removed. Automated processing and quality control pipelines
were deployed (Miller et al., 2016; Alfaro-Almagro et al., 2018). To
improve the homogeneity of the imaging data, noise was removed
by means of 190 sensitivity features. This approach allowed for
the reliable identification and exclusion of problematic brain
scans, such as due to excessive head motion.

The structural MRI data were acquired as high-resolution T1-
weighted images of brain anatomy using a three-dimensional
MPRAGE sequence at 1mm isotropic resolution. Preprocessing
included gradient distortion correction, field of view reduction
using the Brain Extraction Tool (Smith 2002) and FLIRT (Jenkin-
son and Smith 2001; Jenkinson et al. 2002), as well as non-linear
registration to MNI152 standard space at 1mm resolution using
FNIRT (Andersson et al. 2007). To avoid unnecessary interpola-
tion, all image transformations were estimated, combined and
applied by a single interpolation step. Tissue-type segmentation
into cerebrospinal fluid, GM and white matter (WM) was applied
using FAST (FMRIB’s Automated Segmentation Tool, Zhang et al.
2001) to generate full bias-field-corrected images. SIENAX (Smith
et al. 2002), in turn, was used to derive volumetric measures
normalized for head size.

For the DN, volume extraction was anatomically guided by the
Schaefer–Yeo reference atlas (Schaefer et al., 2017). Among the
total 400 parcels, 91 subregion definitions are provided as belong-
ing to the DN among the 7 canonical networks. For the HC, 38
volume measures were extracted using the automatic Freesurfer
sub-segmentation (Iglesias et al., 2015). The allocortical volumet-
ric segmentation draws on a probabilistic HC atlas with ultra-high
resolution at ∼0.1mm isotropic. This tool from the Freesurfer
7.0 suite gives special attention to surrounding anatomical struc-
tures to refine the HC subregion segmentation in each participant.
The automatically derived HC sub-segmentation used in the UK
Biobank is indeed at the forefront of imaging parcellation and
involved development by imaging experts as well as a Bayesian
inference approach with ultra-high resolution ex vivo data from
autopsy brains. This segmentation protocol has additionally been
shown to provide robustly distinguishable details at the imaging
and genetic levels (Foo et al., 2021). For example, it has been found
using this subregion atlas that certain hippocampal subregions
had stronger associations with age, sex and PRS for Alzheimer’s
disease (AD). More specifically, these investigators sought to elu-
cidate whether the volume of hippocampal subregions could
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serve as a biomarker of risk for AD in a large population dataset.
Overall, these researchers show that this subregion atlas reveals
that certain hippocampal subregions had stronger associations
with age, sex and PRS for AD. More specifically, they found a
particular association between PRS for AD and lower volume in
left CA1, left ML, left GC-DG-ML, left, CA4, right subiculum (Sub),
bilateral tail and bilateral hippocampal amygdala transition area
(HATA). In this and similar UK Biobank studies, such automatic
HC parcellations have been found to provide reliable associations
between genetic markers and specific hippocampal subregions
(Van der Meer et al., 2020).

As a preliminary data-cleaning step, building on previous
UK Biobank research (Spreng et al., 2020; Schurz et al., 2021b),
inter-individual variation in brain region volumes that could be
explained by nuisance variables of no interest was regressed out:
body mass index, head size, head motion during task-related
brain scans, headmotion during task-unrelated brain scans, head
position and receiver coil in the scanner (x, y and z), position of
scanner table, as well as the data acquisition site, in addition to
age, age2, sex, sex*age and sex*age2. The cleaned volumetric mea-
sures from the 91 DN subregions in the neocortex and the 38 HC
subregions in the allocortex served as the basis for all subsequent
analysis steps.

Analysis of co-variation between HC subregions
and DN subregions
As the keystone of the analytical workflow, we sought dominant
regimes of structural correspondence—signatures or ‘modes’ of
population co-variation that provide insights into how structural
variation among the segregated HC can explain structural varia-
tion among the segregated DN (see Figure 6). Canonical correla-
tion analysis (CCA) was a natural choice of method to interrogate
such multivariate inter-relations between two high-dimensional
variable sets (Witten et al., 2009; Bzdok et al., 2019; Wang et al.,
2020).

A first variable set X was constructed from the DN subre-
gion volumes (number of participants × 91 DN parcels matrix).
A second variable set Y was constructed from the HC subregion
volumes (number of participants × 38 HC parcels matrix):

X ∈ Rn×p

Y ∈ Rn×q

where n denotes the number of observations or participants, p is
the number of DN subregions and q is the number of HC sub-
regions. Each column of the two data matrices was z-scored
to zero mean (i.e. centering) and unit variance (i.e. rescaling).
CCA addresses the problem of maximizing the linear correla-
tion between low-rank projections from the two variable sets or
data matrices. The two sets of linear combinations of the original
variables are obtained by optimizing the following target function:

LX = XV LY = YU

lX,l = Xvl lY,l = Yul

corr(lX,l, lY,l)∝ lTX,llY,l =max

where V and U denote the respective contributions of X and Y,LX
and LX denote the respective latent ‘modes’ expression of joint
variation (i.e. canonical variates) based on patterns derived from
X and patterns derived from Y, lX,l is the lth column of LX and
lY,l is the lth column of LY. We define mode as general principles

of population variation in our target neural circuits that can be
reliably extracted in brain structure at the population level. Fur-
ther, a co-variation signature henceforth refers to a mode overall
(including its two corresponding canonical vectors), whereas a
patternwill refer to a mode’s constituent canonical vectors for the
corresponding HC and DMN subregion sets. The goal of our CCA
application was to find pairs of latent vectors lX,l and lY,l withmax-
imal correlation in the derived latent embedding. In an iterative
process, the data matrices X and Y were decomposed into L com-
ponents, where L denotes the number of modes given the model
specification. In other words, CCA involves finding the canoni-
cal vectors u and v that maximize the (symmetric) relationship
between a linear combination of DN volume expressions (X) and a
linear combination of HC volume expressions (Y). CCA thus iden-
tifies the two concomitant projections Xvl and Yul. These yielded
the optimized co-occurrence between combined subregion varia-
tion inside the segregated DN and combined subregion variation
inside the segregated HC across participants.

In other words, each estimated co-variation signature iden-
tified a constellation of within-DN volumetric variation and a
constellation of within-HC volumetric variation that go hand-in-
hand with each other. Namely, every co-variation signature is
constituted by the relative structural relationships among the DN
and HC subregion sets, as described by each respective mode.
A pattern on the other hand refers to the relative contributions
(weights) of each subregion within a canonical vector, which
is a result of the analytic workflow (CCA step). The set of k
orthogonal modes of population co-variation are mutually uncor-
related by construction (Wang et al., 2020). They are also naturally
ordered from the most important to the least important HC–DN
co-variation mode based on the amount of variance explained
between the allocortical and neocortical variable sets (see Supple-
mentary Figure S1 for HC, see Supplementary Figure S2 for DN).
The first and strongest mode therefore explained the largest frac-
tion of joint variation between combinations of HC subregions and
combinations of DN subregions. Each ensuing cross-correlation
signature captured a fraction of structural variation that is not
explained by one of the k− 1 other modes. The variable sets were
entered into CCA after a confound-removal procedure based on
previous UK Biobank research (cf. above).

Group difference analysis
For each of the derived population modes of HC–DN co-variation,
we then performed a rigorous group contrast analysis for social
isolation. We aimed to identify which anatomical subregions
show statistically defensible deviation in the socially isolated
group compared to the control group. For the low social support
trait, we carried out a principled test for whether the solution vec-
tor obtained from CCA (i.e. canonical vectors, cf. above) in the
socially isolated group is systematically different from the solu-
tion vector in the control group. This analysis step elucidated the
HC and DN subregions that showed structural divergences in the
particular context of our target phenotype, namely lacking social
support (see Figure 1).

More specifically, following previous UK Biobank research
(Schurz et al., 2021b), we carried out a bootstrap difference test
of the CCA solution from the socially isolated group vs socially
well-connected group (Efron and Tibshirani, 1993). In 100 boot-
strap iterations, we randomly pulled participant samples with
replacement to build an alternative dataset (with the same sam-
ple size) that we could have gotten. We subsequently performed
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Fig. 1. Low social support is associated with divergences in distinct subregions in the dominant signature of HC–DN co-variation. In ∼40000 UK
Biobank participants, we explored the structural co-variation between the 38 allocortical subregions of the HC and 91 neocortical subregions of the
DN by means of a two-view decomposition involving CCA. We subsequently determined how the ensuing subregion patterns diverged in individuals
with lack of social support (bootstrap difference test, cf. ‘Materials and methods’ section). The leading mode of the obtained CCA solution achieves the
most explanatory co-variation, with a canonical correlation of rho=0.51. (A) The figure shows the HC subregion patterns (left, one canonical vector of
mode 1) with parameter weights that robustly diverge between low and high social support groups; mapped onto eight consecutive coronal slices of
the left and right HC in the anterior (top) to posterior (bottom) direction. (B) The figure shows the DN subregions patterns (right, other canonical vector
of mode 1) that robustly diverge between the low and high social support groups. Although the analyses of the HC and DN are obtained from an
integrated framework, different color schemes are used for the HC and DN visualizations to indicate the difference in the anatomical scales between
the macroscopic DN and microanatomically defined HC subregions. Overall, within the leading signature of structural co-variation between the HC
and the DN, there are specific subregions whose volumes systematically diverge in individuals with low social support. vlPFC=ventrolateral
prefrontal cortexDG=GC-DG-ML.

CCA in parallel by fitting one separate model to each of the
two groups. In each resampling iteration, this approach thus
carried out a separate estimation of the doubly multivariate cor-
respondence between HC subregions and DN subregions in each
particular group. The two distinct CCA solutions from each itera-
tion were thenmatchedmode-by-mode regarding sign invariance
and mode order. Canonical vectors of a given mode that car-
ried opposite signs were aligned by multiplying one with −1. The
order of the CCA modes was aligned based on pairwise Pear-
son’s correlation coefficient between the canonical vectors from
each estimated CCA model. After mode matching, we directly
estimated the resample-to-resample effects by elementwise sub-
traction of the corresponding canonical vectors of a given mode k
between the two groups. We finally recorded these difference esti-
mates for each vector entry (each corresponding to the degree of

deviation in one particular anatomical subregion). The subregion-
wise differences were ultimately aggregated across the 100 boot-
strap datasets to obtain a non-parametric distribution of group
contrast estimates.

We thus propagated the variability attributable to partici-
pant sampling into the computed uncertainty estimates of group
differences in the UK Biobank population cohort. Statistically
relevant alteration of anatomical subregions in social isolation
was determined by whether the two-sided confidence interval
included zero or not according to the 10/90% bootstrap-derived
distribution of difference estimates (Schurz et al., 2021b). Remain-
ing faithful to our multivariate analytical strategy and research
question, this non-parametric approach directly quantified the
statistical uncertainty of how social isolation is manifested in
specific subregions of the HC–DN axis.
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Analysis of how individual expressions of
HC–DN co-variation are linked to the genetic
predisposition for social isolation
PRS is a genome-wide analysis technique that has been shown
to successfully quantify the genetic predisposition of individuals
for a variety of phenotypes. The approach has become especially
potent for complex phenotypes that implicate tens of thousands
of common-variant single-nucleotide polymorphisms (SNPs) with
individually small-effect sizes, such as major psychiatric diseases
(HLA-C, H., 2009; Kuchenbaecker et al., 2017; Inouye et al., 2018;
Khera et al., 2018; Elliott et al., 2020). PRS has is also considered to
be a sharp tool for heritability analyses due to the advent of large
population datasets (e.g. the UK Biobank) (Choi et al., 2020; Wray
et al., 2021). Such data resources have allowed the investigation of
the relationship between SNP-based genetic variation and inter-
individual differences in a particular phenotype, which includes
neuroimaging-derived phenotypes (Elliott et al., 2018; Smith et al.,
2021). For the purpose of the present study, we have constructed
a PRS model for the low social support trait. The subject-specific
risk scores were then regressed onto our expressions of HC–DN
modes (i.e. canonical variates). Our integrative imaging-genetics
approach aimed to disentangle whichmode expressions have reli-
able links to the genetic vulnerability to low social support trait
as attributable to thousands of genetic variants.

As is common for PRS analysis workflows, summary statis-
tics from previously conducted genome-wide association studies
(GWAS) on our target phenotypes were used as the backdrop to
determine how several hundred thousand SNPs are associated
with the low social support trait. The summary statistics for low
social support were obtained from a GWAS that was conducted
as part of the Canadian Longitudinal Study on Aging. Quality
control was implemented by excluding SNPs with a minor allele
frequency of <1%, as well as excluding SNPs with imputation
information score of <0.8. Mismatching, duplicate and ambiguous
SNPs were also disregarded from further analysis. Quality con-
trol on the base data also involved excluding individuals with a
difference between reported sex and that indicated by their sex
chromosomes and removing overlapping samples.

The quality-controlled summary statistics were used as start-
ing point for the PRS model that was built and applied using
the PRSice framework (http://www.prsice.info). This software tool
uses the available collection of effect sizes of candidate SNPs
to form single-subject predictions of genetic predisposition for
a phenotype of interest. More specifically, this tool determined
the optimal PRS model based on the UK Biobank participants
(training data, n=253295) of European ancestry who did not pro-
vide any brain-imaging data (at the time of study). This model
training step involved automated adjustments, such as identify-
ing ideal clumping and pruning choices, to select the thresholds
that decide which SNPs are included in the PRS model. Subse-
quently, once optimized, the final PRS model was then used to
predict the genetic predisposition for each of 23 423 UK Biobank
participants of European ancestry with brain-imaging data (test
data). This PRS model consisted in pooling across additive effects
of weighted SNPs, whereby the weighted sum of the participants’
genotypes was computed as follows:

prs=
∑

gi ∗ β̂i

where gi denotes an individual’s genotypes at SNP
i (values 0, 1, or 2), β̂i is the obtained point estimates of the
per-allele effect sizes at SNP i and j is a particular individual
(Choi et al., 2020).

Finally, Bayesian linear regression was used to regress the
subject-specific predictions of genetic liability for the low social
support trait onto the participant expressions of HC–DN co-
variation modes. To this end, the individuals in the top 5% pre-
dictions (i.e. highest PRS estimates) and the individuals in the
bottom 5% predictions (i.e. lowest PRS estimates) were consid-
ered as a binary outcome in a Bayesian logistic regression model
with participant-wise mode expressions serving as input vari-
ables (Lecarpentier et al., 2017; Fan et al., 2019; Meisner et al.,
2020). In this multiple regression setup, PRS for low social support
was regressed against each of the 25 canonical variates (linearly
uncorrelated by construction) on the HC side for every individual.
An analogous multiple regression model was estimated for the
(uncorrelated) 25 canonical variates from the DN side. The fully
Bayesian model specification for these regression analyses was as
follows:

yprs = x1 ∗βmode1 + . . .+x25 ∗βmode25 +αmen[sex] +αwomen[sex]

+αmen_age[sex] ∗ agemen +αwomen_age[sex] ∗ agewomen

βj ∼Nj (0, 1)

αmen ∼N (0, 1)

αwomen ∼N (0, 1)

αmen_age ∼N (0, 1)

αwomen_age ∼N (0, 1)

where βj denotes the slopes for the subject-specific 25 mode
expressions as canonical variates xj, and yprs denotes the PRS esti-
mates of each participant. Potential confounding influences were
acknowledged by the nuisance variables α, which accounted for
variation that could be explained by sex and (z-scored) age. Once
the Bayesian model solution was approximated using Markov
chainMonte Carlo sampling, it yielded fully probabilistically spec-
ified posterior parameter distributions for each β coefficient cor-
responding to one of the signatures of allocortical–neocortical
co-variation (cf. above). The association with trait heritability of
a mode expression was then determined based on how robustly
their corresponding model coefficients deviated from 0 (e.g.
>95% of model coefficient posterior probability excluded a value
of 0).

Results
Structural co-variation between HC and DN at
the subregion level
We explored the principal signatures of structural co-variation
between the full set of 38 hippocampal subregions and the full
set of 91 DN subregions. The concurrent patterns within sub-
region variation among the HC and those within the DN were
computed using a doubly multivariate learning algorithm. In so
doing, we achieved a co-decomposition of hippocampal subregion
volumes and DN subregion volumes. Each of the top 25 modes of
co-variation was characterized based on how much of joint vari-
ance a particular signature explained: with the most explanatory
signature (mode 1) achieving a canonical correlation of rho=0.51
(measured as Pearson’s correlation coefficient) (see Supplemen-
tary Table S1). The second most explanatory signature (mode 2)
achieved a canonical correlation of rho=0.42, the third signa-
ture rho=0.39, the fourth signature rho=0.31, the fifth signature
rho=0.27 and the sixth rho=0.23; through to the 25th signature

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/article/17/9/802/6516118 by guest on 19 Septem

ber 2023

http://www.prsice.info


808 Social Cognitive and Affective Neuroscience, 2022, Vol. 17, No. 9

that had rho=0.06 (see Supplementary Table S1 for full list). This
analysis thus established the scaffold for all subsequent anal-
yses that delineates how multiple complementary hippocam-
pal patterns co-vary hand-in-hand with DN patterns across
individuals.

Differences in the HC–DN co-variation in social
isolation
Based on the identified population signatures of HC–DN co-
variation, we investigated the neurobiological manifestations of
social isolation in our UK Biobank sample. This was accom-
plished by examining robust subregion-level divergences in how
hippocampal patterns are co-expressed with DN patterns that
characterize groups of socially isolated vs control participants
(i.e. low vs high social support). To this end, we analyzed
objective social isolation by a rigorous group difference analysis
between the structural patterns of co-variation in the low social

support and high social support groups. This approach revealed
the precise subregions contributing to the structural HC–DN co-
variation that systematically diverged between the two groups,
for each mode of the CCA.

We uncovered a multitude of modes with systematic group
differences in either specific HC or DN subregions (see Table 1).
We also found modes with no significant structural divergences
in any HC or DN subregion. From here on, a subregion that was
observed to have a robustly different weighting within a modes
canonical vector, between low and high social support groups,
is termed a ‘hit’ (i.e. an observed structural divergence in indi-
viduals with low social support). Across all 25 examined modes,
contrasting low vs high social support, we identified hits in 32
HC subregions and 50 hits in DN subregions. Most of these hits
occurred in earlier modes, with all the hits occurring between
modes 1 and 7. Just in the first three modes, we found 24 HC sub-
region hits (70.6% of the HC total). In the first mode alone, we
observed 26 DN hits (52% of the DN total). Across all modes, the

Fig. 2. Divergences in CA2/3, Sub and left DN subregions are associated with low social support. Mode 3 of the CCA solution achieves the third most
explanatory HC–DN co-variation, with a canonical correlation of rho=0.39. (A) The figure shows the HC subregion patterns (left, one canonical vector
of mode 3) with parameter weights that robustly diverge between low and high social support groups—mapped onto eight consecutive coronal slices
of the left and right HC in the anterior (top) to posterior (bottom) direction. (B) The figure shows the DN subregion patterns (right, other canonical
vector of mode 3) that robustly diverge between the low and high social support groups. Similar to mode 1 (see Figure 1), within the third most
explanatory mode, low social support has preferential effects on CA2/3 and Sub of the HC, as well as left hemisphere DN subregions.
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Fig. 3. Structural divergences in left hemisphere HC subregions and right DN subregions are associated with low social support. Mode 4 of the CCA
solution achieves the fourth most explanatory HC–DN co-variation signature, with a canonical correlation of rho=0.31. (A) The figure shows the HC
subregion patterns (left, one canonical vector of mode 4) with parameter weights that robustly diverge between low and high social support
groups—mapped onto eight consecutive coronal slices of the left and right HC in the anterior (top) to posterior (bottom) direction. (B) The figure shows
the DN subregion patterns (right, other canonical vector of mode 4) that robustly diverge between the low and high social support groups. These
results further demonstrate that low social support is associated with distinct subregion divergences within-HC–DN co-variation signatures, which
are robustly present in only one brain hemisphere.

largest number of HC hits were observed in PrS (5 hits), Sub (5),
CA2/3 head (4) and GC-DG-ML (4). Regarding the parallel DN diver-
gences, we found the largest number of hits in lateral cortical
subregions (78% of the total), such as the middle temporal gyrus
(MTG), temporal pole and IPL, with less number of hits in midline
subregions. There was a total number of hits in 17 temporal (34%),
17 prefrontal (34%), 11 parietal (22%) and 5 posterior cingulate
(10%) subregions.

The divergences between the low versus high social support
groups for mode 1 (see Figure 2) revealed a rough synopsis of the
hit locations for the totality of the observed modes. In the dom-
inant mode, we observed hits in bilateral CA2/3 head and body,
bilateral CA4 head, left CA4 body, bilateral HATA, left PrS head,
bilateral Sub body and bilateral GC-DG-ML head and body, with
26 hits in DN subregions (8 temporal, 7 parietal, 10 prefrontal and
1 posterior cingulate). Additionally, the HC subregion hits with
the strongest weights included left CA2/3 body and bilateral GC-
DG-ML. On the flipside of our model, the DN subregion hits with
the strongest weights were bilateral prefrontal cortex, left MTG
and left IPL.

In the second most explanatory signature of HC–DN co-
variation (i.e. mode 2), we identified seven HC hits—bilateral tail,
bilateral parasubiculum, bilateral PrS head and left Sub body—
and no hits in DN subregions (see Supplementary Figure S3). In
mode 3, we observed two HC hits located in left CA2/3 head and
right Sub head. We also observed seven DN hits, located in the
ventromedial prefrontal cortex (vmPFC), dorsolateral prefrontal
cortex (dlPFC) and TPJ—all of which were in the left hemisphere
(see Figure 3). In mode 4, we observed three HC hits located in
left PrS head, left fimbria and left HATA. All these HC hits for
mode 4 were in the left hemisphere. Conversely, we observed
four DN hits exclusively in the right hemisphere (see Figure 4).
These DN hits emerged in the temporal pole, retrosplenial cor-
tex (RSC), anterior cingulate cortex (ACC) and dlPFC. In mode 5,
we observed four HC hits located only in the right hemisphere.
These hits included the fimbria, PrS head, Sub head and molec-
ular layer head. We also noted one hit in the DN: right posterior
cingulate cortex (PCC) (see Supplementary Figure S4). In mode 6,
we observed no HC hits and 12 DN hits all in the left hemisphere
(see Figure 5). These hits included eight in the lateral temporal
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Fig. 4. Low social support is associated with selective divergences in left lateralized DN subregion volumes. Mode 6 of the CCA solution acheives the
sixth most explanatory HC–DN co-variation, with a canonical correlation of rho=0.23. (A) The figure shows the HC subregion patterns (left, one
canonical vector of mode 6) with parameter weights that robustly diverge between low and high social support groups—mapped onto eight
consecutive coronal slices of the left and right HC in the anterior (top) to posterior (bottom) direction. (B) The figure shows the DN subregions patterns
(right, other canonical vector of mode 6) that robustly diverge between the low and high social support groups. These results emphasize the selectivity
of the social support and group difference analysis, as even though the analysis determines divergences on an individual subregion level, a coherent
and highly lateralized set of subregions are highlighted.

lobe, two in the IPL and two in the RSC. In mode 7, we observed a
hit in the left parasubiculum and no DN hits (see Supplementary
Figure S5). Beyond mode 7, we did not observe hits in any of the
other 25 examined modes. Thus, the more dominant signatures
of HC–DN co-variation showed stronger relationships to a lack of
social support than less dominant signatures. We present here the
modes with the greatest number of subregion divergences in both
the HC and DN (see Figures 2–5). These collective results show
that a group contrast analysis of low vs high social support indi-
viduals revealed specific subregion divergences within spatially
overlapping signatures of HC–DN co-variation.

Overall, we noted a recurring theme of certain subregions with
numerous hits in the group analysis of social support. For the HC,
this included the PrS, Sub, CA2/3 and GC-DG-ML (see Table 1 for
full list). For the DN, especially lateral subregions—such as the
dlPFC, IPL andMTG—tended to diverge between low vs high social
support groups (see Table 2 for full list). We also noted that the
divergences observed for low social support occurred in structural
patterns within eachmode, as most hits were chiefly seen on only

one brain hemisphere. For example, inmode 6, therewas a cluster
of hits in lateral cortical regions but only in the left hemisphere
of the brain (see Figure 5). Analogously, in mode 3, we observed
seven DN hits, yet all in the left hemisphere. Thus, low social sup-
port was primarily concomitant with divergences in left lateral
DN subregions, as well as the PrS, Sub, CA2/3 and the GC-DG-ML
of the HC.

Genetic predisposition for social isolation
We finally sought to interrogate whether the uncovered expres-
sions of HC–DN co-variation featured systemic relationships with
the participants’ liability for low social support (cf. ‘Materials and
methods’ section). For this purpose, we computed PRS predic-
tions for the innate risk of low social support for our UK Biobank
participants. We observed that there was a relevant relation-
ship between low social support PRS and participant expressions
(i.e. canonical variates) of modes 1 and 16 for the HC and modes
3 and 11 for the DN (see Figure 6). The HC–DN modes with robust
relationships were thus the relatively more dominant signatures
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Fig. 5. The genetic predisposition for low social support is linked to the brain signature expressions of HC–DN co-variation. We conducted a PRS
analysis to estimate the subject-specific heritable tendency for low social support based exclusively on genome-wide effects across tens of thousands
of SNPs. The subject-specific PRS estimates were then regressed against the expressions of each of the signatures of structural co-variation between
the HC and DN. The relevance of the heritability effects was judged based on the posterior parameter distributions inferred by the Bayesian logistic
regression model (histograms). The x axis of each plot represents the posterior parameter distribution for the β coefficient of the model, and the y axis
of each plot represents the plausibility of each coefficient value. A value of 0 indicates no association between PRS and inter-individual mode
expression. In each panel, the three posterior distribution histograms show convergence across three different Markov chain Monte Carlo runs (blue
lines). Overall, heritability effects for low social support are related to the HC patterns of modes 1 and 16, as well as to the DN patterns for modes 3
and 11. These results demonstrate that specific mode expressions are robustly linked to the predisposition for lacking social support based on genetic
complexion. The more explanatory modes with associations to heritability also show numerous subregion divergences in individuals with low social
support (see Figures 1 and 2). In sum, structural divergences within specific HC and DN subregion co-variance patterns may be explained by the
genetic predisposition for objective social isolation.

Table 1. Hippocampus subregion divergences across hippocampus–default network co-variation modes

Mode CA1 CA2/3 CA4 DG HATA Para PrS Sub Fissure Fimbria ML Tail

1 0 3 3 4 2 0 1 2 0 0 0 0
2 0 0 0 0 0 2 2 1 0 0 0 2
3 0 2 0 0 0 0 0 1 0 0 0 0
4 0 0 0 0 1 0 1 0 0 1 0 0
5 0 0 0 0 0 0 1 1 0 1 1 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0 0 0 0
Total 0 5 3 4 3 3 4 5 0 2 1 2

There were no subregion divergences between modes 8 and 25.

among the 25 examined. The HC and DN patterns with rela-
tionships to PRS for low social support were also in modes in
which we observed structural divergences in individuals with low
social support. For example, mode 1 on the HC side showed 15
subregion hits (see Figure 2), and mode 3 on the DN side showed
7 subregion hits (see Figure 3). Overall, we found that specific
mode expressions in low social support individuals had robust
ties to purely genetic factors, as captured by genome-wide risk
predictions across tens of thousands of genetic markers.

Discussion
We have tailored an analytical framework to examine how the
anatomical substrates of HC–DN correspondence systematically

deviate in individuals lacking regular social exchange with close
others. Our approach allows extending the emerging interpreta-
tions of distinct subsystems within the DN by establishing robust
cross-links with anatomically defined HC subfields at the popula-
tion level. We work toward this goal by directly estimating prin-
cipled co-variation signatures that delineate how HC subregion

volumes are co-expressed with DN subregion volumes in ∼40000
participants from the UK Biobank imaging-genetics cohort. In

so doing, our study aimed to deepen the understanding of the

human DN by anchoring its variation in corresponding substrates
of the allocortical HC—a structure that has been implicated in
mnemonic and associative processes in non-human animals and
which likely underpins human social navigation.
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Fig. 6. Workflow schematic to model differences in co-variation between HC subregions and DN subregions in individuals lacking social support.
Dominant regimes of HC and DN co-variation were estimated at population scale through the CCA algorithm. Subsequently, the divergence of these
patterns was determined by comparing low social support vs adequate social support groups in our UK Biobank cohort (n=38701). In particular, CCA
allowed the joint investigation of the multivariate patterns of co-variance between the 38 HC subregions and 91 DN atlas subregions of the examined
UK Biobank participants. The ensuing insight from CCA takes the form of ‘modes’ or signatures of co-variation, which emphasize the effect sizes of
every HC and DN subregion in each identified mode. The identified pair of canonical vectors (for each mode) determines the maximally explanatory
combination of weights which account for joint HC–DN structural co-variation throughout the UK Biobank cohort. The canonical vectors (i.e. modes
2–25) capture remaining variance in the brain-imaging data that is linearly independent of the previous modes’ explained variance. A robust
difference for a particular subregion between individuals lacking social support and those with adequate social support is shown on the far right. The
density distribution of canonical vector weights is shown among the aggregated 100 bootstrap datasets. The determination of a ‘hit’ (or a robust
divergence in subregion volume) was determined based on whether the two-sided confidence interval included zero according to the 10/90%
population-level certainty intervals (bootstrap) of the structural difference estimates.

Table 2. Default network subregion divergences across
hippocampus–default network co-variation modes

Mode Temporal Prefrontal Parietal Posterior cingulate

1 8 7 10 1
2 0 0 0 0
3 0 5 2 0
4 1 2 0 1
5 0 0 0 1
6 8 0 2 2
Total 17 14 14 5

There were no subregion divergences between modes 7 and 25.

Past literature supports the notion that the frequency with
which an individual interacts with other people resonates with
the structural characteristics of the HC and DN. In fact, DN sub-
regions are implicated in representations of oneself and social
others (Mars et al., 2012; Laurita et al., 2020). Likewise, the human
HC has been proposed to represent information about individual
people (Quiroga et al., 2005), in addition to its classic functional
interpretations of representing places and retrieving memories
(Scoville and Milner, 1957; O’Keefe and Dostrovsky, 1971). Pre-
vious authors have even argued that the HC may mediate an
abstract social cognitive map for relationships between people, in
the form of ‘vector angle’ representations (Tavares et al., 2015). In
light of this idea, we expected individuals with lower frequency of
social interactions, or low social support, to exhibit differences in
specific signatures of HC–DN co-variation, compared to individu-
als with higher levels of social connection and support. Although
we are unable to establish whether the divergences in HC–DN
co-variation are specific to social processing and exclude other
cognitive operations subserved by this relationship, we show that

ourmeasure of social support frequency is associated with robust
divergences.

In accord with our expectations, we identified a set of subre-
gional divergences that were characteristic for individuals with
low social support: PrS, Sub, CA2/3, GC-DG-ML and CA4 of the
HC. In particular, the expressions of structural co-variation across
all modes revealed a total of five PrS hits, five Sub, four CA2/3,
four GC-DG-ML and three in CA4 for individuals who lack social
interaction in everyday life. Effects in these five subregions alone
constituted as much as 66% of the total observed subregion diver-
gences. Experimental animal models of subregional specializa-
tion within the HC suggest that this may reflect differences in HC
subfields, which represent discrete elements of social information
(Watarai et al., 2021). Such divergences would be in accord with
the relationship between an individual’s objective level of social
embeddedness and the richness of their neural representations
of social information (Li et al., 2013; Chadwick et al., 2014; Watarai
et al., 2021).

More specifically, the CA2 subregion—which yielded four total
hits across modes in the combined CA2/3 subregion—has been
shown to be integral for successful peer recognition in rodents
(Hitti and Siegelbaum, 2014; Stevenson and Caldwell, 2014;
Alexander et al., 2016; Leroy et al., 2018; Meira et al., 2018).
For example, in mice, functional inhibition of dorsal CA2 cells
through viral neurotoxin injection has been found to reduce inter-
action time with familiar peers (Hitti and Siegelbaum, 2014). Yet,
this direct intervention onHC tissue did not appear to affect socia-
bility or other HC-dependent behaviors (Hitti and Siegelbaum,
2014). Similarly, it has been reported that mice showed an altered
rate of place cell remapping in CA2 after the introduction of a peer
into their environment. Conversely, exposure to a novel toy, as an
enrichment of the physical environment, did not produce such
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effects (Alexander et al., 2016). In our study, the CA2 subregion
was only analyzable through the combined CA2/CA3 subregion in
the UK Biobank reference atlas because of the CA2 subregions’
small size and challenging brain-imaging-based demarcation.
The combined CA2/3 subregion may thus offer a small window
into the social memory functions of the HC. However, a limita-
tion of this interpretation is that past authors have noted sub-
regions with smaller anatomical size yield relatively less reliable
measurements (Worker et al., 2018; Quattrini et al., 2020).

Individual cells in the dorsal CA1 have been found to support
a similar function as CA2 cells, as CA1 cells have been reported to
reliably represent the spatial location of peers (Danjo et al., 2018;
Omer et al., 2018); however, CA2/3 cells were not recorded in these
studies. Evidence that CA2 neurons especially encode information
of newly encountered peers and possess place fields sensitive to
social information has also recently been reported (Oliva et al.,
2020). Numerous studies across species have additionally sug-
gested that neurogenesis—a process localized to the granule cell
layer of the dentate gyrus—is particularly sensitive to the expe-
rience of social isolation (Stranahan et al., 2006; Ibi et al., 2008;
Dranovsky et al., 2011; Biggio et al., 2019) and social stress (Gould
et al., 1997, 1998; Anacker et al., 2018). Hippocampal neurons thus
appear to play a committed role in instantiating and integrating
representations of social agents. Our results are consistent with
this idea, as we find preferential hits in CA2/3 and DG, indicat-
ing systematic differences in the neural representations of social
information. Neural activity and structure of the human DG and
CA2/3 may thus reverberate with the richness of the environment
more broadly, including social agents and relationships between
them.

Similarly, CA2/3 and the DG have been discussed to be instru-
mental in disambiguating sensory inputs from similar stimuli
(Kesner and Rolls, 2015; Knierim and Neunuebel, 2016). This is
a function that has been termed ‘pattern separation’ and has
been established at a single-cell level in the rodent HC (Gilbert
et al., 2001; Leutgeb et al., 2004, 2007) and through neuroimag-
ing in humans (McHugh et al., 2007; Bakker et al., 2008; Baker
et al., 2016; Berron et al., 2016). An emerging view is that pat-
tern separation is a key function altered in AD (Ally et al., 2013;
Wesnes et al., 2014; Parizkova et al., 2020), while AD has anal-
ogously been linked with social isolation (Marioni et al., 2015;
Penninkilampi et al., 2018; Shen et al., 2021; Xiang et al., 2021).
For example, in a mouse model of AD, the investigators reported
reduced Aβ synaptotoxicity in the HC (Li et al., 2013) and reduced
cognitive impairment (Jankowsky et al., 2005) with environmental
enrichment—an important source of which in humans is regu-
lar social contact. Recently, invasive cell-recording experiments
also showed that AD model mice have a selective impairment
in pattern separation as subserved by the DG and CA3 (Rechnitz
et al., 2021). Overall, the neurobiological underpinnings for repre-
senting a rich environment, perhaps best constituted by mapping
social networks with their ties among people, may be intimately
linked with AD and its accompanying cognitive consequences.
Our study speaks to an association of divergences in the DG and
CA2/3with objective social isolation. This population-level insight
highlights these allocortical subregions and their neocortical affil-
iates as important targets for future investigations on pattern
separation-dependent functions and AD.

Of course, neural representation of social information and
social processing are not the sole provenance of HC subregions.
Rather they involve dynamic functional coupling with the neo-
cortex to support social labeling and the construction of more
complex models of the social environment (Schurz et al., 2021).

Our analytical approach was designed to directly investigate this
aspect of allocortical–neocortical correspondence in the service
of social functioning. Our results underscore structural diver-
gences in left lateral temporal and lateral parietal subregions of
the highly associative DN in individuals with low social support—
neocortical divergences that our approach revealed to be con-
comitant with the allocortical divergences in CA2/3 and DG. We
speculate that these conjoint divergences in left lateral temporal
and parietal subregions, which are implicated in social semantics
and spatial processing respectively (Mars et al., 2012; Alcalá-López
et al., 2018; Hartwigsen et al., 2021), are linked to the previously
reported functional roles served by CA2/3 and DG in social cogni-
tion. This includes roles such as binding information about social
relationships within a social cognitive map.

Further, we observed subregion divergences in individuals with
objective social isolation to occur in almost exclusively lateralized
patterns. These were consistent with left-lateralized semantic
processes (Binder et al., 2009; Liu et al., 2009; Numssen et al.,
2021). Indeed, the vast majority of our observed DN hits were
in left-hemispheric subregions in modes 1, 3 and 6 (76% of the
total), consistent with the idea that sociality is fundamentally
dependent on semantics as well as conceptual and symbolic (e.g.
language) processing (Dunbar and Shultz, 2007; Frith and Frith,
2010; Lord, 2013). For example, much of the everyday stimu-
lation in people’s lives is driven by social information (Mesoudi
et al., 2006; Mar et al., 2012). Low access to social exchanges with
other people may therefore be appropriately viewed as a condi-
tion for an overall stimulation-poor environment. Indeed, several
past studies have made evident that our highlighted DN subre-
gions are neurobiological substrates of environmental vibrancy.
As some of many examples, volume and density of temporal
lobeGM—especially theMTGand superior temporal sulcus—have
been shown to track social network size, both as measured by
online interactions in humans (Kanai et al., 2012), as well as in
real-world social groups of monkeys (Sallet et al., 2011).

The anterior portion of the human HC has also been pro-
posed to be a locus of both semantic (Schacter and Wagner,
1999; Strange et al., 2014) and social (Vogel et al., 2020; Mor-
ton et al., 2021) processing. In line with this notion, we iden-
tified 21 total hits in the head portion of the HC (66%) and
only 11 (34%) in its body portion across all modes. The fre-
quency of meaningful encounters with close others thus appears
to be associated with divergences of structural co-variance signa-
tures involving the anterior HC. When considered in conjunction
with the preferential structural divergences of left-lateralized DN
subregions, these two broad patterns reconcile previous reports
of sub-specializations within each of these two brain systems
(Andrews-Hanna et al., 2010; Fanselow and Dong, 2010). In
sum, social cognition draws upon social concept representation
and abstract cognitive maps among other processes, which are
revealed to be subserved by the concord of lateral subregions of
the DN with CA2/3, DG and the broader anterior HC.

The DN has also been reliably dissociated into subsystems
(Andrews-Hanna et al., 2010; Braga and Buckner, 2017; Braga
et al., 2019, 2020; DiNicola et al., 2020). Our population neu-
roscience results confirm and detail this notion by uncovering
distinct signatures of structural deviation in social isolation that
aligns well with one of these subsystems. More specifically, our
results implicate structural deviations in lateral DN subregions
in objective social isolation, while past studies have highlighted
together the lateral temporal cortex, TPJ, dmPFC and tempo-
ral pole. Nonetheless, our study goes beyond previous attempts
to sub-divide the DN, as we extend the interpretational themes
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of each DN subregional pattern by appreciating, and explicitly
modeling, its consistent structural relationships with dedicated
hippocampal subregions. In particular, the hippocampal patterns
robustly linked with lateral temporal and parietal subregions
tended to highlight CA2/3, GC-DG-ML and CA4. Overall, these
observations reinforce the idea of biologically coherent cross-
dependencies that exist between these subregions of the DN
and HC.

Since there appears to be an inherent relationship between
objective social isolation and the HC–DN correspondence high-
lighted in our results, we suspected there may be a heritable
contribution to these characteristics. To this end, we conducted
the first—to our knowledge—PRS analysis for low social support.
This analysis allowed us to investigate the genetic contributions
to low social support that are due to individually small-effect
size SNPs. Overall, we found that participant-specific expres-
sions of HC–DN signatures show differing links to the heritable
components of low social support. This is in accord with some
previous research showing that social isolation has consistent,
yet small genetic underpinnings (Spithoven et al., 2019). However,
the majority of past investigations of the genetics of social isola-
tion have focused on the subjective feeling of social connection
(i.e. loneliness) (Boomsma et al., 2005; Gao et al., 2017; Day et al.,
2018; Abdellaoui et al., 2019).

Yet, an underlying genetic contribution to objective levels of
social support has been supported by recent genome-wide corre-
lation analyses. For example, one study has demonstrated that
our UK Biobank social support trait significantly shared genetic
factors with 52 different demographic, lifestyle and disease phe-
notypes (Schurz et al., 2021b). Such recent population neuro-
science research indicates that the genetic determinants under-
lying social isolation are probably quite polygenic and involve
complex gene–environment interactions. In our present study,
we extended these insights by performing a PRS analysis for low
social support. We furthered this by elucidating the relationship
between a participant-specific predisposition for lacking social
support and the brain expression of each HC–DN co-variation sig-
nature. Importantly, we found that only selected signatures of
HC–DN co-variation showed a relevant relationship with genetic
liability for low social support. These precise modes additionally
showed numerous subregion divergences in our group difference
analysis, which roughly overlapped the subregion divergences
observed in low social support (i.e. modes 1 and 3). For exam-
ple, expression of mode 1 on the HC side was linked to PRS for
low social support and highlighted the CA2/3 and DG subregions.
Participant-specific expressions of mode 3 on the DN side were
also linked with PRS for low social support and showed seven DN
subregions with structural divergences, all in the left hemisphere.
The genetic predisposition for low social support is thus manifest
in brain networks that follow a pronounced left–right divide, rem-
iniscent of the left-lateralized nature of semantic networks that
subserve human-defining cognition (Binder et al., 2009; Liu et al.,
2009; Numssen et al., 2021).

However, the determination of ‘objective’ social isolation in
our study is not without limitations. Past studies have shown
that single-item phenotypes from the UK Biobank exhibit sta-
tistically robust genetic correlations (Spreng et al., 2020; Schurz
et al., 2021b), even though the identification of participants with
a lack of social support is based on a self-reported answer to a
single question. Many authors view social support as a measure
of objective social isolation (Cacioppo et al., 2011, 2015; Taylor
et al., 2018), but a future protocol tomore rigorously identify social
support metrics is thus warranted. Notwithstanding this limita-
tion of our study setup, our results identify definite structural

brain pattern differences between well-connected participants
and those deemed to objectively lack social support, which is
sensible and plausible in terms of past literature.

In conclusion, enabled by the breadth and depth of the
UK Biobank resource, our analytical approach showed that
an objective measure of social connection has robust struc-
tural concomitants in human HC and DN subregions. These
allocortical–neocortical structural deviations included PrS, Sub,
CA2/3 and DG subregions of the HC and lateral subregions of
the DN. Our framework extends understanding of the functional
subsystems of the DN and their potential preferential relation-
ship with dedicated HC subfields. We also found that distinct
signatures of HC–DN structural co-variation have robust relation-
ships with individuals’ genetic predisposition for social discon-
nection. Future investigations into the genetic determinants and
environmental influences on social isolation represent important
research directions to further elucidate the structurally heteroge-
nous qualities of the socially isolated brain.
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