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Abstract

Background

Aim of the study was to compare metabolic response of leg skeletal muscle during functional

electrical stimulation-driven unloaded cycling (FES) to that seen during volitional supine

cycling.

Methods

Fourteen healthy volunteers were exposed in random order to supine cycling, either voli-

tional (10-25-50 W, 10 min) or FES assisted (unloaded, 10 min) in a crossover design.

Whole body and leg muscle metabolism were assessed by indirect calorimetry with concom-

itant repeated measurements of femoral venous-arterial differences of blood gases, glu-

cose, lactate and amino acids.

Results

Unloaded FES cycling, but not volitional exercise, led to a significant increase in across-leg

lactate production (from -1.1±2.1 to 5.5±7.4 mmol/min, p<0.001) and mild elevation of arte-

rial lactate (from 1.8±0.7 to 2.5±0.8 mM). This occurred without widening of across-leg

veno-arterial (VA) O2 and CO2 gaps. Femoral SvO2 difference was directly proportional to

VA difference of lactate (R2 = 0.60, p = 0.002). Across-leg glucose uptake did not change

with either type of exercise. Systemic oxygen consumption increased with FES cycling to

similarly to 25W volitional exercise (138±29% resp. 124±23% of baseline). There was a net

uptake of branched-chain amino acids and net release of Alanine from skeletal muscle,

which were unaltered by either type of exercise.
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Conclusions

Unloaded FES cycling, but not volitional exercise causes significant lactate production with-

out hypoxia in skeletal muscle. This phenomenon can be significant in vulnerable patients’

groups.

Introduction

Functional electrical stimulation-assisted cycling (FES cycling) is a method originally devel-

oped over 30 years ago for patients with spinal cord injury [1]. It uses computer-driven electri-

cal pulses delivered by transcutaneous electrodes and directly activating muscle contractions,

independently on functionality of the physiological pathway between upper motoneuron and

the neuromuscular junctions. The method is now commercially available in the form of both

stationary and mobile devices [2], used by patients with a wide range of conditions incl. spinal

cord injury [3], stroke [4,5], and multiple sclerosis [6]. FES cycling was demonstrated to

improve cardiovascular fitness, insulin sensitivity [7] bone density and muscle strength [2,8].

In recent years, FES-cycling has become particularly attractive for sedated critically ill patients.

Early mobilization is the only intervention, which can partially prevent the development of

intensive care unit-acquired weakness [9–14]—the major long-term consequence in the survi-

vors of protracted critical illness [15,16]. Muscle atrophy [17,18] and dysfunction [18] occur

very early in the critically ill and FES cycling can help to deliver exercise before the patient can

co-operate with a physiotherapist [19].

Although FES cycling seems to be feasible in intensive care unit patients [19], before its

effect on meaningful clinical outcomes can be tested in the critically ill and other vulnerable

patients groups, important physiological questions need to be addressed. Metabolic efficacy

(i.e. power output divided by metabolic cost) of the FES cycling is typically very low, around

5–10%, as compared to 25–40% in volitional cycling [20–22]). This is likely due to non-physio-

logical pattern of muscle activation, where large muscle groups are activated simultaneously

rather than small well-coordinated units [2,23]. Despite FES cycling increases cardiac output

[24] and leg blood flow to the same extent [25] or even more [26] than volitional cycling and

consequently oxygen delivery to the muscle should be normal, there are features suggesting

early switch to anaerobic metabolism: early fatigue [23,27], rapid intramyocellular glycogen

depletion [28], increase of respiratory quotient (RQ)>1 [20] and even a mild increase in arte-

rial lactate levels [29]. Increased lactate production could be caused by microcirculation

impairment during electrically stimulated asynchronous contraction [30] or by a mismatch

between glycogenolysis activated by electrical stimulation [31] and pyruvate oxidation.

Nonetheless, a direct evidence of the presence of anaerobic metabolism in skeletal muscle

during FES cycling is lacking. In addition, whilst the influence of volitional resistance exercise

on amino acid metabolism has been extensively studied [32–36] there is no such data for FES

cycling, although one study demonstrated activation of anabolic signalling in electrically stim-

ulated gastrocnemius muscle in a rat [31]. These questions may be particularly relevant before

FES-assisted exercise is introduced to critically ill patients, who are in profound protein catab-

olism and may be less able to clear lactate from systemic circulation.

In light of this we conducted a crossover study of volitional and FES supine cycling in

healthy postprandial volunteers, where we combined indirect calorimetry with across-leg

venous-arterial (VA) difference studies. We hypothesized that FES-cycling as compared to

light volitional exercise would lead to increased production of lactate in correlation with
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widening of VA-CO2 gap (as the measure of anaerobic metabolism), and with increased

amino-acid efflux from skeletal muscle during exercise.

Materials andmethods

Study subjects

Our experimental group consisted of 14 young (31±8 years), non-obese (23.7±3.7kg/m2)

healthy volunteers (gender M/F = 11/3). University Hospital Kralovske Vinohrady’s Research

Ethics Board reviewed the protocol and approved the study. Prior to the enrolment, all subjects

gave their written informed consent in accordance with the Declaration of Helsinki.

Overview of study design

The study was performed during two visits performed 1 week apart. Subjects were asked to

attend the visit at 08:00 AM after an overnight fast. In between these visits, the subjects were

advised to take their usual diet and avoid strenuous exercise. During the first visit, the volun-

teers underwent a physical examination and body composition measurement. After 30 min

bed rest, their energy expenditure was measured using indirect calorimetry with a ventilated

canopy system. Afterwards, in each subject’s VO2MAX was determined on a cycle ergometer

with stepwise load by 25 W increments until exhaustion. During the second visit, subjects

were given a standardized breakfast containing 70 g of carbohydrates, 10 g protein and 15 g of

fat. Afterwards, femoral vein and radial artery were cannulated. After 30 min rest, the subjects

were exposed in random order to one of two supine exercise protocols, separated by 3 hours

rest. Both protocols begun with baseline measurements (AV difference studies and calorime-

try) followed by 5 min of passive cycling. Then, the subjects either performed three 10 min

cycles of volitional cycling (at 10, 25 and 50W, respectively) separated by 5 min of passive

cycling (Group A), or FES cycling (Group B). The exercise protocols are outlined in Fig 1.

Methods

Indirect calorimetry and body composition assessment. Resting energy expenditure

and RQ were measured after overnight (12 h) fast and 30 min bedrest using canopy as a mixing

chamber with 10 sec sampling (Quark RMR device, Cosmed, Italy). To determine peak oxygen

uptake (VO2max) exhaustive exercise test was performed in each subject on an electromagneti-

cally braked bicycle ergometer Ergoline Ebike (Ergoline Gmbh, Germany). After 5 min warm-

up period, a workload of 50W was initiated and increased by 25W every minute continuously

until fatigue despite the verbal encouragement. Oxygen uptake was measured using mask,

breath-by-breath, 10 sec sampling period (Quark RMR device, Cosmed, Italy. ECG was moni-

tored continuously. Gas analysers (container 5% CO2, 16% O2 and room air) and flow analyser

were calibrated prior to each measurement. Body fat was assessed using bioimpedance analysis

(NutriGuard 2000, Bodystat, Germany).

Cannulations. Femoral vein was cannulated 2–3 cm below inguinal ligament under ultra-

sound guidance. In order to avoid the admixture of blood from saphenous and pelvic veins

[37], a single-lumen central venous catheter (B-Braun, Germany) was inserted retrogradely to

the depth of 10–15 cm so that the tip was deep in the femoral muscular compartment. For arte-

rial sampling, we used a 22 F catheter (BBraun, Germany) inserted into the radial artery.

Cycling protocols. For both volitional and FES cycling we used RT-300 bikes (Restorative

Therapies Ltd., USA) and the exercise was performed in supine position. Volitional cycling

consisted of three 10 min intervals of active cycling: 10W (13 revolutions/min, resistance 7 N/

m), 25W (31 revolutions/minute, 7.6 N/m), 50W (35 revolutions/min, and resistance 13.4 N/
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m). These period were preceded (warm up) and separated by 5 min of passive cycling at 25 rev-

olutions/min. FES cycling: Three pairs of transcutaneous electrodes (3 x 4", Restorative Thera-

pies, Ltd., USA) electrodes were applied on each leg over quadriceps, hamstrings and gluteus

maximus muscles, as per manufacturer’s instructions. Prior to electrode placement, we mea-

sured the thickness of fat layer between the skin and muscle by ultrasound. After 5 min passive

warm up (25 revolutions/min), the target speed was changed to 30 revolutions/min and stimu-

lation gradually (1%/s) started to achieve 25 mA. Then, in each subject, the stimulation current

was gradually increased to reach subjectively tolerated maximum. Oxygen uptake was mea-

sured continuously in both volitional and FES assisted cycling using mask breath-by-breath

system (Quark RMR device, Cosmed, Italy). Gas analysers (container 5% CO2, 16% O2 and

room air) and flow analyser were calibrated prior to each measurement.

Laboratory methods. Arterial and venous blood samples were analysed for blood gases,

lactate and haemoglobin using POCT analyser Cobas b221 (Roche Diagnostics Limited, USA).

For other analysis blood samples were centrifuged and frozen at -80˚C until analysed. Serum

Fig 1. Overview of study design. Arrows designate arterial and venous blood sampling times. Note: ERGO = volitional cycling, FESCE = functional electrical
stimulation cycling. Details of exercise are shown in the inlet at the bottom.

https://doi.org/10.1371/journal.pone.0200228.g001
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creatine kinase and myoglobin was measured in a certified institutional laboratory (Cobas sys-

tem, Roche Diagnostics Ltd., USA). Serum amino acid concentration in arterial/venous blood

was analysed using capillary electrophoresis as described [38].

Calculations and statistics

Metabolic efficacy. Metabolic efficacy of volitional cycling was calculated as power output

divided by the increase of energy expenditure [2]. Veno-arterial gap in the total content of car-

bon dioxide (ctCO2 gap) was calculated according to equations used in ABL 900 Analyser (by

Radiometer, Copenhagen, Denmark).

ctCO
2
Bð Þ ¼ 9:286� 10

�3 � pCO
2
� ctHb� 1þ 10

ðpHEry�pKEryÞ
� �

þ ctCO
2
Pð Þ

� 1�
ctHb

21:0

� �

where ctCO2 (B) = CO2 content in blood in mmol/L; ctCO2 (P) = CO2 content in plasma in

mmol/L and equals to 0.23 x pCO2 + cHCO3
-(P); pCO2 is partial pressure in kPa, ctHb = hae-

moglobin content in mmol/L. ctCO2(P). pHERY = estimated intracellular pH in red blood cells,

which equals to 7.19+0.77 x (pH-7.4)+0.035 x (1-SO2), where SO2 is haemoglobin saturation

with oxygen; and finally pKERY is a negative decadic logarithm of bicarbonate dissociation

constant:

pKERY ¼ 6:125� logf1þ 10
½pHEry�7:84�ð0:06�SO2Þ�g

Blood flow. In both FES and volitional cycling, leg oxygen uptake represents a relatively

fixed proportion (76±8% and 78±9%, respectively) of whole-body oxygen uptake [39]. There-

fore, an index of blood flow through the leg was calculated as whole-body oxygen consumption

divided by the difference of oxygen content in arterial and femoral-venous blood. Blood oxy-

gen content was calculated in mmol/L as 0.00983�pO2 + SO2[%]/100 � Hb �0.06206�(1-COHb

[%]/100 –metHb[%], where SO2 is saturation of haemoglobin with oxygen [%], Hb is haemo-

globin [mmol/L], CO-Hb and met-Hb are fractions of carbonyl and methemoglobin, respec-

tively, and pO2 is partial pressure of oxygen [kPa].

Statistics. We used linear mixed effect model for 2x2 crossover design processed with

software Stata 15 (Stata Corp., LLC, U.S.A.) [40,41]. The model consists of fixed and random

part. In the fixed part, the model contained following parameters: (1) Sequence, i.e. order in

which subject performed volitional and FES cycling protocols. Had this parameter been signif-

icant, a carry-over effect would have been present; (2) Period, basal vs. active, a parameter

exploring the effect of the exercise, regardless whether volitional or FES; (3) Treatment,

exploits the difference between volitional and FES cycling; and (4) Interaction Period#Treat-

ment exploits whether FES cycling differs from volitional cycling during exercise period. Ran-

dom part of the model contains subject number in order to take into account repeated

measurements. Binary data are showed as frequency + %, continuous data as means ± SD. P

value<0.05 was considered as significant. Whenever another test was used we specified this in

the text. Sample size determination was performed prior commencement of the protocols with

VA lactate difference as a primary outcome.

Results

Characteristics, tolerability and signs of muscle damage

All 14 subjects finished the protocol without adverse events; baseline (visit 1) calorimetry data

are available for 13 subjects only due to a technical problem. Baseline characteristics are
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outlined in Table 1. Sequence parameter of linear mixed effect model was not significant in

any of analysed parameters (p = 0.14–0.94), so we assume no carry over effect from previous

cycling protocol.

Maximum tolerated stimulation current of FES was 45±13 mA (range 25–67 mA).

Although FES cycling caused a degree of discomfort, post-exercise serummyoglobin remained

within reference range (<85 ng/mL) in all subjects (33±15 pg/mL, range 21–74). Nonetheless,

there was a positive correlation between maximal stimulation current and post-exercise serum

myoglobin (Spearman’s R2 = 0.57, p = 0.002).

Metabolic efficacy of volitional vs. FES cycling

Metabolic efficacy of volitional cycling was 39.2±5.6%. Unloaded FES cycling led to an increase

of metabolic rate to 138±29% from baseline, which was comparable to the increase with 25 W

volitional exercise (124±23%). See Fig 2. Energy gain from anaerobic glycolysis was negligible

or negative for volitional cycling and 5.0±6.2 W for FES cycling.

Blood flow index

At rest before volitional and FES cycling, blood flow index was 6.6±2.4 vs. 6.3±3.4 (p = 0.57),

and increased significantly (p<0.01) and similarly (p = 0.77) to 160% and 165% of baseline

after volitional and FES exercise.

Exploring muscle metabolism during FES cycling

VA differences of both O2 and CO2 contents (ctO2 and ctCO2) tended to widen with volitional

exercise (Fig 3A and 3B), whilst the opposite trend was seen for FES cycling. In line, there was

no change in oxygen saturation of haemoglobin in femoral venous blood neither with voli-

tional exercise (from 63.9±12.7% to 64.3±8.7%), whilst there was an increase after FES cycling

(from 62.6±11.3 to 70.3±8.7%; p = 0.02). Across-leg respiratory exchange ratio (i.e. the ratio

between VA differences of CO2 and O2 contents) although different at baseline (Fig 3C)

tended to increase with volitional cycling, but this change was not significant. There was no

change from baseline in across-leg glucose uptake of glucose (FES -5.5±3.9 to -5.9±3.6mmol/

min; volitional -7.0±3.6 to -6.9±6.1mmol/min). Whole body RQ increased with FES cycling

(0.88±0.02 to 0.95±0.02, p = 0.001, but did not change with volitional exercise (0.87±0.02 to

0.85±0.02, p = 0.55; See Fig 3D) and only FES cycling led to an increase in across-leg lactate

VA differences and production (from -1.1±2.1 to 5.5±7.4 mmol/min, p<0.001 vs. from -0.9

±1.1 to -0.4±1.2 mmol/min, p = 0.70 Fig 3E) with very high inter-individual variability (See

Table 1. Baseline characteristics of study subjects.

Parameter Mean±SD N

Age (years) 31±8 14

Sex (M/F) 11/3 14

BMI (kg/m2) 23.7±3.7 14

Body fat (%) 14±6 14

REE (kcal/day) 1901±356 13

RQ at rest 0.90±0.10 13

VO2MAX (ml/kg/min) 41±6 13

Note: BMI = body mass index, REE = resting energy expenditure, RQ = respiratory quotient, VO2max = peak oxygen

consumption. Baseline data from one subject are unavailable due to technical problem with the machine.

https://doi.org/10.1371/journal.pone.0200228.t001
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Fig 3F). Systemic arterial lactate levels remained normal after volitional cycling (from 1.6±0.6

mmol/l to 0.9±2.1 mmol/l, p = 0.887), and increased after FES cycling (from 1.6±0.7 mmol/l to

2.3±0.8 mmol/l, p<0.001).

Analysing lactate production

With FES cycling, there was a significant positive correlation between VA lactate difference

and femoral venous haemoglobin saturation with oxygen (Spearman’s R2 = 0.6, p = 0.002, Fig

3G). Lactate producers had smaller veno-arterial difference in CO2 content of the blood (R
2 =

0.3, p = 0.046, Fig 3H), effectively ruling out oxygen delivery problem. Subjects with femoral

VA lactate difference>0.5 mmol/L (“lactate producers”, n = 5, see Fig 3F) were compared

with the rest of the group (n = 9) but no difference was found besides lactate having higher RQ

at baseline (0.94±0.06 vs., 0.86±0.07, p = 0.034). Of note, stimulation current used during FES

cycling was not different in lactate producers (42±10 vs. 44±16 mA, p = 0.87).

Amino acid metabolism

As expected in postprandial volunteers, at baseline resting skeletal muscle was taking up

branched-chain amino acids (BCAAs) whilst producing Alanine (Ala). Skeletal muscle only

produced Glutamine (Gln) at baseline in the volitional cycling group, otherwise the change

was not significantly different from zero (Fig 4). Neither type of exercise led to a significant

change of amino acid metabolism, but it is apparent from Fig 4 that with volitional cycling

there was a trend to an increase in Ala production and a decrease of glutamine production,

Fig 2. Hunt’s diagram [2,22] outlining the efficacy of volitional exercise relative to metabolic cost of unloaded FES
cycling (yellow line).Note: Metabolic efficiency is the gradient of the line joining the active cycling operating point (A) to
one of the baseline conditions: u is unloaded cycling; r is rest, p is passive cycling.

https://doi.org/10.1371/journal.pone.0200228.g002
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whilst after FES cycling no such a trend was apparent (across-leg amino acid exchange

remained unaffected). Uptake of BCAAs continued and did not change with either type of

exercise (p = 0.83 and p = 0.86).

Discussion

The major finding of our study is that unloaded supine FES cycling leads to lactate production

without signs of muscle hypoperfusion, as low blood flow through exercising limbs would

have caused femoral venous haemoglobin desaturation (Esaki et al., 2005; Sun et al., 2016) and

widening of VA-CO2 gap [42], which were not observed in our subjects. Moreover, there was

a significant positive correlation between across-leg lactate production and femoral venous

oxygenation, suggesting that subjects producing lactate did so whilst extracting less oxygen

from (and producing less CO2 into) the local circulation. There was a marked interindividual

variability in metabolic response to FES cycling: some subjects responded to FES similarly to

volitional cycling, whilst others produced so much lactate that it elevated systemic (arterial)

lactate concentrations well above the normal range. We have not found any convincing char-

acteristics of the subjects producing lactate during FES, although they seemed to be oxidizing

more carbohydrates at baseline. Notably there was no correlation between the amplitude of

stimulation current used and the production of lactate.

Tissue dysoxia and femoral venous desaturations are known to accompany lactate produc-

tion during high intensity volitional exercise (i.e.> approx. 60% VO2 MAX) [43, 44, 45], at

which oxidative phosphorylation becomes oxygen dependent. At lower exercise intensities,

there is a concomitant lactate production in fast twitch glycolytic muscle fibres and consump-

tion in slow twitch fibres [46] and—as seen in our subjects—during a steady low intensity voli-

tional exercise, skeletal muscle may become a net lactate consumer [47].

The most obvious explanation of FES-driven lactate production would be tissue dysoxia,

occurring despite adequate flow of oxygenated blood through major vessels. Non-physiological

asynchronous contractions of large muscle units activated by FES [2,23] could have caused an

inhomogeneous perfusion at the level of microcirculation, with hypoxic regions and units with

luxurious perfusion acting as functional AV shunts. The increase in whole-body RQ with FES

cycling, would support the presence of some degree of anaerobic metabolism, but it could also

be explained by impaired fatty acid oxidation with the preference of carbohydrate substrates

[39] or by primary increased ventilation. The major argument against microcirculatory

impairment and anaerobic lactate generation is the absence of widening of venous-arterial

CO2 gap. Carbon dioxide is produced also anaerobically and released from bicarbonate as the

consequence of buffering acid load in hypoxic tissue, and because CO2 diffuses rapidly even

from poorly perfused tissue, VA-CO2 gap is regarded as a very sensitive marker of tissue hyp-

oxia caused by impaired microvascular flow [48]. Not only VA CO2 gap was not widened after

FES cycling, but in was inversely proportional to lactate production. Moreover, the 138±29%

increase in the whole body oxygen consumption after FES-cycling observed by us and others

[49] would also argue against major oxygen delivery problem.

Lactate production without tissue dysoxia may occur as a result of the dysbalance between

pyruvate production from glycolysis and its conversion to acetyl-CoA and oxidation in tricar-

boxylic acid cycle [46,47]. Muscle contraction instantly triggers, via the increase in Ca2+[IC],

Fig 3. Venous-arterial (VA) differences studies. Lactate VA difference is derived frommultiplying femoral VA differences of
concentrations and calculated leg blood flow. See text for further details. Linear regression was used in G and H. Note: ctO2 and
ctCO2 = total blood content of oxygen and carbon dioxide; RQ = whole body respiratory quotient; SvO2 = femoral venous saturation
of haemoglobin with oxygen. ERGO = volitional cycling; FESCE = functional electrical stimulation-assisted cycling; Passive period
vs Active FES/50W volitional period.

https://doi.org/10.1371/journal.pone.0200228.g003
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glycogenolysis and glycolysis, producing pyruvate. Sudden increase in cytosolic pyruvate con-

centration shifts the near-equilibrium reaction: Pyruvate + Glutamate$ Alanine + 2-oxogluta-

rate, rightwards. Alanine is increasingly released during exercise and 2-oxoglutarate is

believed to increase the functional capacity of tricarboxylic acid cycle [50] allowing for increase

in oxidative ATP production. BCAAs uptake in skeletal muscle continues or even increases

during exercise, providing carbons for oxidative pathways and nitrogen for Alanine and Gluta-

mine formation (Fig 4D). Although non-significant, we have observed some trends to these

responses after volitional cycling, but no rearrangement at all of amino acid metabolism was

seen with FES exercise. Glycolytic compartment is known to respond much faster compared

to oxidative phosphorylation and a rapid increase in cytosolic pyruvate concentration could

lead to lactate release from cells even in the absence of tissue hypoxia [46]. Moreover, FES

cycling compared to volitional exercise is known to activate glycogenolysis and glycolysis dis-

proportionally faster than oxidative pathways [20,39]. In light of this, our data are consistent

with aerobic lactate generation due to a dysbalance between pyruvate generation from glyco-

genolysis and glycolysis and its oxidation in citric acid cycle. Indeed, skeletal muscle is not a

Fig 4. Amino acid metabolism during volitional and FES cycling. Values are derived frommultiplying femoral VA differences of concentrations and
calculated leg blood flow. Note: BCAA = branched-chain amino acids (i.e. the sum of Valine, Leucine, and Isoleucine); ERGO = volitional cycling;
FESCE = functional electrical stimulation-assisted cycling; Passive period vs Active FES/50W volitional period. TCA = tricarboxylic acid cycle,
2-OG = 2-oxoglutarate.

https://doi.org/10.1371/journal.pone.0200228.g004
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metabolically homogenous tissue [47] and FES may preferentially trigger muscle contraction

in glycolytic fast twitch fibres, whilst lactate oxidizing slow fibres may have been less sensitive

to electrical stimulation. The sensitivity of different muscle fibres to external stimulation is

unknown and remains to be studied, but a higher sensitivity of fast twitch fibres would be in

keeping with the finding, that a long-term external electrical stimulation of a denervated mus-

cle restores its mass and contractile power, but not fatigability [51].

From clinical point of view we found important the absence of venous haemoglobin desa-

turation during FES-cycling as decreased central venous saturation impairs systemic oxygen-

ation in patients with a degree of intrapulmonary shunt. Mild lactic acidosis could be of

concern in patients with impaired lactate clearance (e.g. liver failure). Unloaded FES cycling

led to VO2 response comparable to 25W volitional exercise, which would represent a very sig-

nificant exercise load for critically ill patients, who tend to have even higher metabolic cost for

a given power output [52] and only tolerated cycling at 3–6W in one study [52]. Lastly,

although the absence of laboratory signs of muscle damage and amino acid release is reassur-

ing, the positive association of post-exercise serum myoglobin with stimulation current ampli-

tude suggest a risk of muscle damage from the use of stimulation currents above 70mA, which

are often needed to elicit visible contractions in sedated critically ill patient, perhaps due to

their impaired muscle excitability [16].

The major weakness of our study is that we have not used direct measurements of leg blood

flow and tissue oxygenation. We only use indirect indices, which prevents us from drawing

any conclusions about the influence of FESCE on blood flow, which might have been altered,

eg. by altered function of muscle pump. However, effects of FES exercise on leg blood flow are

known [17,25] and the main finding of the study, i.e. lactate production without evidence of

tissue hypoxia, can be supported by across-leg VA differences alone. Muscle tissue oxygen con-

centrations are known to be closely reflected by femoral venous oxygen content [43,53].

In conclusion, we have demonstrated that 10 min of supine FES cycling in healthy volun-

teers leads to production of lactate without features suggestive oxygen consumption/delivery

mismatch, which are known to accompany lactate production during high intensity voluntary

exercise [42,43]. Despite a significant increase in systemic oxygen consumption (proportional

to 25W of volitional exercise) and unaltered across-leg glucose uptake with FES cycling, we

have not observed the rearrangement of amino acid metabolism towards anaplerosis.
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jčová, Tomáš Urban, Petr Tůma.

Methodology: Jan Gojda, Petr Waldauf, Barbora Blahutová, Tomáš Urban, Petr Tůma, Franti-
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