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One of the greatest challenges is to reduce malnutrition worldwide while promoting

sustainable agricultural and food systems. This is a daunting task due to the constant

growth of the population and the increasing demands by consumers for functional foods

with higher nutritional values. Cereal grains are the most important dietary energy source

globally; wheat, rice, and maize currently provide about half of the dietary energy source

of humankind. In addition, the increase of celiac patients worldwide has motivated

the development of gluten-free foods using alternative flour types to wheat such as

rice, corn, cassava, soybean, and pseudocereals (amaranth, quinoa, and buckwheat).

Amaranth and quinoa have been cultivated since ancient times and were two of the major

crops of the Pre-Colombian cultures in Latin- America. In recent years and due to their

well-known high nutritional value and potential health benefits, these pseudocereals have

received much attention as ideal candidates for gluten-free products. The importance of

exploiting these grains for the elaboration of healthy and nutritious foods has forced food

producers to develop novel adequate strategies for their processing. Fermentation is

one of the most antique and economical methods of producing and preserving foods

and can be easily employed for cereal processing. The nutritional and functional quality

of pseudocereals can be improved by fermentation using Lactic Acid Bacteria (LAB).

This review provides an overview on pseudocereal fermentation by LAB emphasizing the

capacity of these bacteria to decrease antinutritional factors such as phytic acid, increase

the functional value of phytochemicals such as phenolic compounds, and produce

nutritional ingredients such as B-group vitamins. The numerous beneficial effects of

lactic fermentation of pseudocereals can be exploited to design novel and healthier

foods or grain ingredients destined to general population and especially to patients with

coeliac disease.
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INTRODUCTION

According to the Food and Agriculture Organization (FAO), global hunger is in ascent again after
constantly decreasing for over a decade (1). The number of chronically undernourished people in
the world is estimated to have increased to 815 million (11% of the global population) in 2016,
up from 777 million in 2015, as reported in the edition of the Annual United Nations on World
Food Security and Nutrition published in September 2017, based on reports by five organizations
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[ONU, FAO (Food and Agriculture Organization), WHO (World
Health Organization), IFAD (International Fund for Agricultural
Development (IFAD), and World Food Program (WFP)] (1). At
the same time, different forms of malnutrition are threatening
the health of millions of people worldwide. Nearly 795 million
people have eating disorders and do not carry out healthy and
active lifestyles with an estimated 41 million children that are
now overweight according to theWorld Food Program. Added to
this serious situation, the world population is expected to reach
nine billion persons in the coming decades, imposing the need for
urgent solutions to increase food supplies (2). In addition, climate
change is rapidly degrading the conditions of crop production,
affecting the availability of water and arable land, increasing
salinization and aridity, generating a serious problem in the yield
of food. It is estimated that approximately one billion hectares
or crop land will be affected worldwide due to these problems,
especially those in the hottest and most arid regions of the
world (3–7). In addition to climate change, global staple crop
production is also threatened by restrictions such as accelerated
erosion of soil and natural resources (8). Frison et al. (9) also
reported that modern agriculture generates serious problems in
the environment causing soil degradation and erosion, water
pollution and biodiversity decline. Therefore, it is essential to
increase food production for a growing population that uses
low input regimes. The FAO urges to expand the response to
climate change in agriculture. According to their 2017 document
“A systemic approach that involves the relevant agricultural
and food sectors and those interested in the adoption of
agroecology, has the potential to greatly accelerate the transition
to sustainable and resilient food systems, in line with the various
international commitments assumed by the member countries.”
Agroecology, in an integral manner, can support the execution
of different social, economic, environmental, nutritional, and
health objectives.

Diets throughout the world are based on two dozen crops
with a dominant proportion of the “big three” cereals: wheat
(Triticum aestivum), maize (Zea mays), and rice (Oryza sativa),
which contribute to approximately 60% of the total caloric intake
(10). However, these crops may not intrinsically be the best-
suited species to face up to extreme weather events that are
becomingmore frequent due to climate change; thus, world grain
production per capita is expected to decline by at least 14%
between 2008 and 2030 (11). The rapid growth of the world
population and per capita food consumption worldwide puts
great pressure on the food industry to produce more food (12).
The food supply must double by 2050 to counterbalance the
effects of climate change and population pressure on global food
systems and thus novel food sources must be found (6). Less than
0.6% of plant species that are suitable for human consumption
have reached the world markets (13). The diversification of
main crops and the systems in which they grow is essential
for agriculture to be sustainable, resilient, and suitable for local
environments and soils in the future. One critical measure
to ensure future food availability for all is to provide more
diverse food sources and develop agricultural systems that are
resistant to climate change. Furthermore, the new challenge for
the food industries and scientific areas such as chemistry, biology,

medicine, pharmacology, and food technology is to obtain foods
with a higher nutritional value that also possess functional
properties which go beyond traditional health requirements. In
response to this issue, one of the leading strategies is unlocking
the potential of underutilized crops. Most of these crops have
high nutritional value, resilience traits, with the ability to
withstand drought, flooding, extreme temperatures, and pests
and diseases better than current major staples and thus they
should be investigated, developed, and now more than ever used
(14). Current emphasis is now placed on the use of ancient cereals
and pseudocereals that include amaranth, buckwheat, quinoa,
teff, millets amongst others.

The aim of this review is to highlight certain nutritional
and functional properties of pseudocereals and how lactic acid
fermentation can be used as an advantageous biotechnological
strategy to improve the natural potential of these grains. This
review provides an overview on pseudocereal fermentation by
lactic acid bacteria (LAB) emphasizing the capacity of these
bacteria to decrease antinutritional factors such as phytic acid,
increase the functional value of phytochemicals such as phenolic
compounds, and produce nutritional ingredients such as B-
group vitamins.

CROP DIVERSIFICATION:
PSEUDOCEREALS

Crop diversification is an important strategy to protect global
food supplies and to fight against malnutrition. Sustainable
diets should provide nutritious food at affordable costs, while
having a low impact on the environment (15). Effective analysis
of sustainable plant resources is an important assignment for
ensuring global food security in the future (16).

The need for the diversification of grains for human
consumption and the consumer’s demands for gluten-free and
more nutritious products caused the resurgence and valoration
of underutilized crops, so-called minor grains such as sorghum,
millets, and pseudocereals through the world during the last
several decades (17). In the “International AACC list of
recognized grains” pseudocereals are also mentioned (18) where
the most important species are quinoa (Chenopodium quinoa
Willd), amaranth (Amaranthus sp.), and buckwheat (Fagopyrum
esculentum). Pseudocereals are dicotyledonous species unlike
true cereals (Poaceae family), that are monocotyledonous species.
Pseudocereals are known as such since they are similar to cereals
in their physical appearance and their seeds are edible with high
starch content that can be milled into flour (19). Their high
nutritional value is mostly due to their elevated content and
quality of proteins (20, 21).

Celiac disease (CD) is one of the most common lifelong
disorders worldwide with as estimated mean prevalence of
1% of the general population (22). The increase of celiac
patients throughout the world has led to intensify the search
for alternative flours to wheat (19). The development of gluten-
free (GF) products is therefore essential and poses novel
challenges for food producers (23). In the last decade, due
to the pseudocereals characteristics, GF and good nutritional
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advantages, the use of these grains has increased for their
addition in healthy diets especially for people allergic to cereals.
Thus, the integration of these grains into GF diets could
be a valuable contribution for improving the quality of the
existing GF products, which have been mainly based on rice
and maize flour (24). Despite the fact that the interest in
pseudocereals due to its high nutritional value has increased,
only a few products including these grains are available on the
market [Figure 1; (25)].

PSEUDOCEREALS HISTORICAL
BACKGROUND

Pseudocereals nourished the Native Americans populations
and allowed them to increase their endurance and mental
development; because of their properties, Mayans and Incas
considered these grains sacred. The conquest of America meant
not only a political and social domination of indigenous
civilizations, but also a change in their feeding habits. Jacobsen
(26) reported that quinoa is one of the oldest crops in the Andean
region, having been grown for approximately 7000 years; it is
considered the principal crop of the pre-Columbian cultures in
Latin America (27, 28). The Incas called quinoa “the mother
grain” for many reasons: (i) it is one of the few crops able to grow
in high salt soils in Southern Bolivia and Northern Chile, (ii) it
has high tolerance to abiotic stresses, (iii) it grows in soils with
water scarcity, and (iv) it is resistant to extreme temperatures (−4
to 38◦C) and harsh climate conditions (15, 27, 29, 30). The FAO
(United Nations) declared, “quinoa has the balance of proteins
and nutrients closest to the ideal food for humans.”

Amaranth (Amaranthus sp.) is an ancient crop consumed
during the Mayan and Aztec periods. It was called “the Inca
wheat” by the Spanish conquerors. Amaranth grain species are
annual herbaceous plants native of America but they are also
now distributed in Asia andAfrica (31, 32).Amaranthus caudatus
was discovered in the north of Argentina (Salta) 2000 years ago
(33). When the Spaniards arrived, they decided to exterminate
pseudocereals because of their religious implications. Ironically,

FIGURE 1 | Principal grains used for gluten-free products on the market

[adapted from (25)].

it is now Europeans who teach us how to consume the grains that
were used by the Native American civilizations. The interest in
these Andean ancestral crops in the world has led to an increase
in their cultivation and production in recent years.

Buckwheat (Fagopyrum esculentum Moench) has its origin in
Asia and it is believed to have been cultivated in China during the
fifth and sixth centuries. It came to Europe after some 800–900
years and to North America in seventeenth century (34).

Underutilized species by means of sustainable intensification,
adaptation and mitigation can accelerate the process to obtain
climate-smart agriculture [Figure 2; (35)].

NUTRITIONAL VALUE

Charalampopoulos et al. (36) reported that 73% of the total
world harvested area corresponds to cereal crops and contributes
to more than 60% of the world food production, furnishing
proteins, minerals, dietary fiber, and vitamins necessary for
human health. Cereals contribute around 50% of the mean
daily energy intake in most populations, and 70% in some
developing countries, converting them into one of the most
important sources of energy in the world (37). However, most
grains are, to a greater or lesser extent, deficient in a number of
elemental nutrients such as the essential amino acids threonine,
lysine, and tryptophan. Their protein digestibility is also lower
than that of animal origin, due partially to the presence of
phytic acid, tannins, and polyphenols which bind to protein
thus making them indigestible (38). Pseudocereals in turn have
been described as “the grains of the twenty-first century” (39,
40). The FAO classified quinoa as one of humanity’s promising
crops destined to contribute to food security in the twenty-
first century by its high nutritive potential and genetic diversity
[Food and Agriculture Organization Regional Office for Latin
America and PROINPA, (27, 41)]. Quinoa and amaranth have
tender leaves that are used in food preparation; however, it
is their grains that attract the most interest due to their high
nutritional value. They are rich in proteins of excellent quality
with a balanced essential amino acid composition that include
abundant amounts of sulfur- rich amino acids (42). They are also
a good source of minerals (calcium, iron and zinc), vitamins,
and natural antioxidants (43). They are a significant source of
compounds such as flavonoids, polyphenols and phytosterols
with potential nutraceutical benefits. From a food provision
perspective, pseudocereals are potentially important crops due
to their properties (exceptional nutritional value, ability to grow
in dry conditions, and their resilience to climatic conditions).
Several reviews have reported the nutritional value of Andean
grains (19, 43–49).

The General Assembly of the United Nations declared 2013
as the International Year of Quinoa (IYQ), with the goal
of focalizing global attention on the role it can perform in
contributing to food security, nutrition, and poverty eradication
(50, 51). The rapid expansion of the harvested area, with
a doubling of countries from 2013, is rapidly changing the
perception and representation of quinoa from a minor to a
potential major crop. The excellent properties of quinoa led to
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FIGURE 2 | Strategies to use underutilized species and increase the crops biodiversification for a sustainable agriculture [adapted from (35)].

this ancestral grain to be considered a possible crop in NASA’s
Controlled Ecological Life Support System for long-duration
manned space flights (39).

Vitamin in Pseudocereals
Vitamins are essential micronutrients since only small quantities
are required for adequate growth and function of numerous
metabolic reactions. Vitamins are divided based on their
solubility in fat (A, D, E, and K), or in water (C and the B-group
vitamins). Since there are no foods that contain all vitamins, there
is a worldwide increase in their deficiencies due to unbalanced
diets. Other causes of vitamin deficiencies are malabsorption that
can be due to certain drug treatments or diseases, by the presence
of antinutritional factors found in certain foods. Although most
vitamins are present in cereals and pseudocereals, a large portion
of water-soluble vitamins are lost during processing and cooking,
especially when water is used for grain soaking. In this sense,
many countries have adopted mandatory fortification programs
with specific vitamins and minerals. Folic acid is frequently
added in foods of mass consumption (such as different flours) in
order to prevent deficiencies in the general population. However,
the chemical form of the vitamin used in these programs is
controversial. Folic acid, a chemical derivative of folates, is not
found in nature and can cause many side effects, especially
masking vitamin B12 deficiency and affecting the activity of
certain liver enzymes, but also has been associated with increased
risks of colon and prostate cancers (52). Natural folate, present
in numerous different chemical forms in vegetables or produced
by certain microorganisms does not cause these undesirable side
effects. For this reason, more and more researchers are now
searching for more natural methods to increase water soluble
vitamins such as folate and riboflavin in foods to not only prevent
deficiencies, but also to reduce the use of chemical additives in the
food chain.

It was demonstrated that staple foods produced from
amaranth contained total folate contents of 35.5 µg/100 g in
bread, 36.3 µg/100 g in cookies, and 38.9 µg/100 g in noodles,
whereas when wheat was used, breads contained only 12.0
µg/100 g (53). The riboflavin content in amaranth flour is in
the range of 0.29–0.32 mg/100 g, which is about 10-fold higher
than that of wheat (54). In general, significant reductions of
all vitamins take place during processing, which affect the
nutritional value of the products (55). The production of
fermented food products with high levels of B-group vitamins
increases their commercial and nutritional value and eliminates
the need for fortification (56).

Phytochemical Profile of Pseudocereals
Pseudocereals are important phytochemical sources in the diet.
Like cereal, these grains contain a great amount of functional
phytochemicals including the phenolic compounds (PC) (57–
60). The PC constitute a group of secondary metabolites with
important functions in cereals and pseudocereals. The chemical
structures of these compounds include an aromatic ring with
one or more hydroxyl substituents, and vary from simple
phenolic molecules to highly polymerised compounds (61). PC
are broadly divided in four classes; phenolic acids (benzoic
or hydroxycinnamic acid derivatives), flavonoids (flavonols,
flavones, isoflavones, flavanones, and anthocyanidins), stilbenes
and lignans. In addition to this diversity, polyphenols may be
associated with various carbohydrates and organic acids (60). In
general, ferulic, p-coumaric, caffeic, isoferulic, vanillic, sinapic, p-
hydroxybenzoic, syringic, and protocatechuic acids are present
in all grains; with ferulic acid the most abundant phenolic acid
(62, 63). Gorinstein et al. (64, 65) reported a high content
of polyphenols, anthocyanins and flavonoids in pseudocereals
such as buckwheat, quinoa and amaranth. Likewise, the highest
amount of PC was reported in quinoa (490.2 mg/kg DW), slightly
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lower in amaranth v. Aztek (464 mg/kg DW), and the lowest in
amaranth v. Rawa (424.6 mg/kg DW) (66).

PC may provide health benefits to humans since they are
associated with a reduced risk of chronic diseases such as anti-
allergenic, anti-inflammatory, anti-microbial, antioxidant, anti-
thrombotic, cardioprotective, and stimulates insulin secretion in
diabetes mellitus type 2 (57, 67–71). The dietary PC contribute to
the maintenance of a healthy gut bymodulating the gut microbial
balance (beneficial bacteria/pathogen bacteria). Metagenomic
and metabolomic studies providing more insight into the health
effects of PC in humans are needed to understand the dietary
PC/gut microbiota relationship and their mechanisms of action.
The PC effect on the modulation of the gut ecology and the two-
way relationship “polyphenols ↔ microbiota” is currently being
studied (72).

The biological effects of PC depend principally on their
bioaccessibility (release of the food matrix in an absorbable
form during digestion) and bioavailability (absorption and
transference to the bloodstream), and both depend on their
chemical structure, matrix interactions, antioxidant activity, and
food processing (73–79). Natural PC usually occur as glycosides,
esters or polymers that have no biological activity (80). Of the
total PC intake, only 5–10% is absorbed in the small intestine and
the remaining PC (90–95%) accumulate in the large intestinal
lumen where they are subjected to the enzymatic activities of
the gut microbial community (81). Food technologists need to
find the operating conditions to increase bioaccessibility and
bioavailability of PC from the matrix. The addition of purified
enzymes such as feruloyl and p-coumaryl esterases, xylanase,
β-glucanase, and α-amylase from natural sources has been
proposed to increase the active PC content in cereals [i.e., wheat
and rye; (82–84)]. However, these studies in pseudocereals are
still missing.

ANTINUTRITIVE FACTORS IN
PSEUDOCEREALS

Grains of cereals, pseudocereals, and legumes are of global
importance in the feeding of monogastric animals (humans and
domestic animals) since they are a good source of proteins,
bioactive compounds and trace elements (85). However, they
contain certain antinutrients compounds, such as phytic acid,
saponins, tannins, polyphenols, and protease inhibitors (86).
In this sense the bioavailability of minerals in whole grain
foods is negatively affected by the presence of phytate (87).
Since phytate is an antinutritional factor that is found in the
highest quantities in pseudocereals and due to its important
negative effect on malnutrition, this review will focus on this
antinutritive factor.

Phytates
Phytic acid (PA) (myo-inositol 1,2,3,4,5,6-hexakisphosphate) is
an abundant plant constituent, comprising 1–5% (w/w) of
legumes, cereals, pseudocereals, oil seeds, pollen and nuts and
represents the largest form of phosphorus storage (88, 89).

Besides phytate, myo-inositol 1,2,3,4,5 pentaphosphate andmyo-
inositol 1,2,3,4 tetraphosphates are also present in seeds, but to a
much lower extent (<15%) (90).

Phytic acid is negatively charged at physiological pH, which
gives it an extraordinary chelating power with affinity for various
components present in foods that are positively charged such
as minerals and trace elements. The formed complexes are
stable, insoluble and difficult to digest at physiological pH, thus
decreasing their bioavailability in the human digestive tract (91).

In certain world populations where staples like wheat,
maize and rice are the major or the only source of nutrition,
PA as antinutritional factor attracts higher attention because
the reduced bioavailability of minerals complexed by it can
lead to significant deficiencies in humans (92). Also, Arendt
et al. (93) reported that gluten free flours/ingredients have
variable concentrations of phytate, i.e., rice, 0.12%; pearl millet,
0.25%; amaranth, 0.47%; teff, 0.70%; lupin, 0.77%; corn, 0.92%;
oats,1.13%; quinoa, 1.18%; and soybean, 1.33%. Micronutrient
deficiencies affect more than half of the world population,
especially in developing countries where plants are the major
source of food. Thus, improving the nutritional value of such
type of food will improve the nutritional status of entire
population (94). High content of phytates in the diet, especially
of infants, children, elderly, and people in clinical situations, can
significantly decrease the retention of calcium, iron and zinc
(95). Reddy et al. (96) reported that PA also is present in the
diets of non-ruminant animals, representing 50–80% of total
phosphorus content in cereal grains and legumes frequently used
in livestock animal feeds. However, phytate phosphorus present
in food and feed has low bioavailability and is underutilized
due to the lack or low levels of gastrointestinal phytases in
monogastric animals (swine, poultry, and fishes) (97, 98). In
order to meet the phosphorus requirements in these animals,
inorganic phosphorus has to be added to the animal feedstuff
as an additional nutrient, which in turn increases the feed
cost and phosphorus pollution (99, 100). Undigested phytate
and unabsorbed inorganic phosphate are excreted to a large
extent (70%) and remains in manure and can lead to its
accumulation in the soil and waters. This fact can generate the
eutrophication of water, a serious phosphorus pollution problem
in areas of intensive livestock production. The eutrophication of
water surfaces can then generate cyanobacterial blooms, hypoxia
and death of aquatic animals and nitrous oxide production, a
potential green- house gas producing a severe environmental
problem (101).

PA forms a strong complex with some proteins (the free
portion of the basic amino acids such as Lys, Arg, His) and resists
their proteolysis. PA negatively affects the absorption of proteins
present in foods because inhibits enzymes that are necessary to
their digestion such as pepsine. In general, the interaction of
phytate with protein is dependent on pH (102).

Lee et al. (103) reported that dietary phytate forms complexes
with carbohydrates, reducing their solubility and negatively
affecting glucose absorption, leading to a decrease in the glycemic
index (blood glucose response). In addition, it was postulated
that phytate, by complexing with Ca2+ ion, inhibits amylase
activity (104).
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FUNCTIONAL FOODS AND BIOACTIVE
COMPOUNDS

The demand of consumers for healthier foods has led the
food industry to formulate new products within the area of
so-called functional foods. Functional foods were defined by
Bech-Larsen and Grunert (105) as “Foods that may provide
health benefits beyond basic nutrition” and “Food similar in
appearance to conventional food that is intended to be consumed
as part of a normal diet, but has been modified to subserve
physiological roles beyond the provision of simple nutrient
requirements.” According to these definitions, certain fruits
and vegetables, rich in fiber and bioactive phytochemicals,
can be considered functional products. Bioactive compounds
are phytochemicals present in plants that can promote health
but are not essential for life (106). In the last years, cereals
have also been explored due to their potential utilization
in developing functional foods (107–109). The key bioactive
components of whole grain cereals provide health benefits,
principally due to their content of flavonoid and dietary fiber. The
covalent interactions between these two components increase
their individual anti-inflammatory effects and their positive
impact on the gut microbiome (67, 69, 110). In addition to their
exceptional nutritional value, pseudocereals are characterized
for being rich in many “health-promoting” phytochemicals,
such as polyphenols and dietary fiber which exhibit anti-
oxidant and free-radical scavenging activity (28, 64, 66, 111–
115). Amaranth oil has high levels of tocotrienols and squalene,
which are involved in the cholesterol metabolism and could play
a significant role in lowering the low-density lipoprotein (LDL)—
cholesterol in blood (116). Also, dietary fiber and polyphenols
intake has been associated with reduced risk for a number
of cardiovascular diseases including stroke, hypertension, and
heart disease (117, 118). Pasko et al. (119) reported that the
supplementation of a fructose-containing diet with quinoa in
male Wistar rats reduced serum total cholesterol, triglycerides,
glucose, LDL and plasma total protein and suggests the potential
ability of this pseudocereal to prevent cardiovascular disease.

Furthermore, Berti et al. (120) reported that good glycemic
control is especially important in CD, as there appears to
be a higher incidence of type I diabetes among CD patients.
Certain studies in vivo demonstrated that pseudocereals have
hypoglycemic effects, for this reason they have been suggested as
an alternative to habitual ingredients in the production of cereal-
based GF products with low GI (120–123). Hence, the utilization
of pseudocereals has increased not only in special diets for people
allergic to cereals, but also as part of healthy diets (65).

FERMENTATION

Fermentation is a metabolic process in which carbohydrates
are oxidized to liberate energy in the absence of external
electron acceptor. This process is one of the oldest and
most economical techniques applied in food preservation and
processing (124). Fermented foods, produced and consumed
since the development of human civilizations, form part of

normal human diet (125). The original purpose of fermentation
was the preservation effect. Subsequently, with the development
of numerous available preservation technologies, plenty of
fermented foods were therefore manufactured because of their
unique flavors, aromas, and textures that are much appreciated
by consumers. The fermentation of cereals plays a vital role in the
production of compounds of great influence on the organoleptic
characteristics (such as aroma, taste, and texture) and on the
improvement of nutritional properties with a final positive
impact on human health (126). Microorganisms are found in
almost all ecological niches; cereals and pseudocereals are, in
general, a good medium for microbial fermentations. They are
rich in polysaccharides, which can be used as a source of carbon
and energy by microorganisms during fermentation. Besides
carbohydrates, they also contain minerals, vitamins, sterols, and
other growth factors (127). Fermented products prepared from
more common cereals (such as rice, wheat, corn, or sorghum)
and pseudocereals are widespread around the world (128–130).
In certain developing countries such as Asia and Africa, high
consumption of cereals was reported where these grains are
mixed with legumes to improve overall protein quality of the
final fermented products (131). Cereal and pseudocereal grains
normally have an indigenous microbiota composed by molds,
LAB, enterobacteria, aerobic spore formers, etc., which compete
for nutrients. The type of microbiota present in each fermented
food depends on the pH value, water activity, salt concentration,
temperature and composition of the food matrix (132).

Lactic Acid Fermentation
Lactic acid bacteria are Gram positive, non-sporulating,
cytochrome deficient, catalase negative, aerotolerant, fastidious,
acid-tolerant, and strictly fermentative microorganisms,
produce lactic acid as the major metabolic end product of
carbohydrate fermentation (133–135). LAB is a heterogeneous
group of microorganisms with GRAS (Generally Recognized
as Safe) status that have traditionally been associated with food
fermentation (136). The effective carbohydrate fermentation
coupled to substrate-level phosphorylation is essential
characteristic of LAB; the ATP produced is then employed
for biosynthetic functions. LAB are generally related with
habitats rich in nutrients, for example different foods (milk,
beverages, vegetables, meat, cereals); however, some LAB are
members of normal flora of the intestine, mouth, and vagina of
mammals (137, 138).

Hammes and Ganzle (139) reported that “Sourdough is a
leavening agent traditionally obtained through a backslopping
procedure, without the addition of starter microorganisms,
whose use in bread making has a long history.” Likewise,
according to Hammes et al. (140) “The concerted hydrolytic
activities of the grain and microorganisms (LAB and yeasts)
are the origin of all cereal fermentations and are best
represented by the traditional sourdough fermentation.” The
application of selected autochthonous LAB to ferment sourdough
constitutes an adequate biotechnology to exploit the potential of
cereals, non- wheat cereals and pseudocereals in breadmaking
(141, 142). This criterion is of great importance when
considering the different biochemical, technological, nutritional,
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and functional characteristics of different flours. The activity
of LAB during cereal fermentation is well-documented. A
wide variety of metabolites and compounds, such as organic
acids, exopolysaccharides (EPS), antimicrobial compounds, and
useful enzymes, among others, are produced by LAB (143–
151). There are several different ways how the nutritional
and functional quality of cereals and pseudocereals could be
improved by their fermentation such as: production of bioactive
peptides that may stimulate immune system (152); elimination
of cereal gluten (153–158); production of gamma-aminobutyric
acid (141); increasing total phenolic content and antioxidant
capacity (159–162); improving antiproliferative activity (162);
decreasing of antinutritional factors, such as phytic acid, tannins
and enzyme inhibitors (163–167).

Traditional cereal- and pseudocereal-fermented products are
made all over the world, mainly widespread in Asia and Africa
(168). Innovative functional fermented foods were formulated
using cereal matrices and LAB (169–172). Currently, there
are many products derived from cereals fermented by LAB,
however only a few are derived from pseudocereals. Fermented
quinoa-based beverages were developed by Ludena Urquizo et al.
(173) and Jeske et al. (174). Jeske et al. (175), reported the
beneficial effect of fermentation by mannitol-producing LAB in
combination with various exogenous enzymes in the reduction of
sugar in a quinoa-based milk substitute.

Improving the Functional Phytochemical Value by

Lactic Fermentation
Numerous commercial microbial enzymes have been used to
increase the functional value of phytochemicals present in
plant sources however, lactic acid fermentation is preferred
to improve the nutraceutical value of these foods because it
is relatively inexpensive and improve overall organoleptic and
nutritional characteristics (84). Contradictorily, PCs are able
to exert an inhibitory effect on LAB (176). In addition, the
incidence of certain chemical and physical parameters, such as
the lack of fermentable carbohydrates, osmotic stress, and the
acidic environment, are adverse conditions for bacterial growth.
However, several LAB can adapt and grow in these substrates,
being L. plantarum the most isolated species (166, 167, 177–
179). The adaptation and survival strategies of LAB during
cereal fermentation by activation of specific metabolic pathways
have been investigated through a panel of various interacting
omics approaches (metabolomic, phenomic, and transcriptomic
profile) (180–183). The study of these adaptation responses
would allow the optimal design of fermentation strategies for
cereals and others plant matrices; however, these “omics” studies
were not reported in pseudocereals fermentation.

The effects of LAB on the release of PC and modification
of phenolic profiles in both cereals and pseudocereals have
been reported. They depend mainly on the grains types, species
of microorganisms, fermentation conditions, particularly time,
temperature, and pH values (159, 183–185). Some studies have
highlighted the capacity of lactic fermentation of pseudocereals
to enhance the PC in bread (159, 161, 186), beverages (173, 187,
188), tarhana soup (189) and pasta (190). The PC metabolism
in LAB has two important physiological functions, it is an

efficient mechanism to detoxify such compounds (191), and can
have a role in the cellular energy balance because LAB employ
hydroxycinnamic acids as external acceptors of electrons (192).
The metabolism of PC by LAB was described principally in
L. plantarum strains, and only few studies were reported in
Weissella spp., Leuconostoc mesenteroides, L. paracollinoides, L.
hilgardii, and Oenococcus oeni (192–194). The enzymes involved
in the PC metabolism by LAB such as decarboxylases (PAD),
reductases (PAR), esterases and/or glycosidases were reported
[Figure 3; (176, 179, 196–198)]. The production of vinyl-phenol,
vinyl-guaiacol and vinyl catechol from the p-coumaric, ferulic
and caffeic acids, respectively, by PAD activities, are the most
relevant (176, 177). Subsequently, these hydroxycinnamates by
action of reductase are transformed to their corresponding
phenylpropionic acids (199).

The pseudocereals (i.e., buckwheat and quinoa) have a higher
content of flavonoids, mainly rutine, kaempferol, and quercetin,
with respect to cereals such as rye and wheat (112, 200–204). The
flavonoid aglycones are more potent in their functional action
(i.e., antioxidant activity) than their corresponding glycosides.
Shin et al. (205) showed that a strain of Enterococcus avium
was able to metabolize rutine, a flavonol glycoside, in quercetin,
a flavonol with many beneficial effects on health. Recently,
Zielinski et al. (206) observed a decrease in rutin content in
buckwheat flours fermented by different species of Lactobacillus.
According to Yang et al. (207), quercetin has numerous biological

FIGURE 3 | Effect of lactic acid fermentation on phenolic compounds profile

of cereal and pseudocereals [adapted from (195)].
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and pharmacological effects, such as anticancer, antioxidative,
antiviral, anti-inflammatory, and antiatherogenic activities. Fan
et al. (208) reported the inhibition mechanism of quercetin on
tyrosinase (rate-limiting enzyme in the melanogenesis pathway)
and its potential use in the treatment of pigmentation disorders.
In addition, Xiao (209) reviewed different biological benefits
and pharmacokinetic behaviors between flavonoid glycosides and
their aglycones. The elucidation of the metabolic pathways of
these compounds will lead to obtain strains resistant to PC
or adequate enzymes for cereals/pseudocereals processing and
products with higher functional values, such as antioxidants.

Vitamins Produced by LAB
LAB and other vitamin-producing microorganisms can be used
as an alternative to mandatory fortification in many countries
to reduce deficiencies. Some LAB strains can produce elevated
concentrations of the natural form of vitamins, which reduces
the side-effects of chemically synthesized vitamins (masking of
vitamin B12 deficiency, reduced enzyme activities in the liver, etc.)
that are normally used (210, 211). Besides being a more natural
alternative, vitamins producing LAB can also lower production
costs by eliminating the need to add synthetic vitamins. The
search for natural LAB strains from different ecological niches
that can produce vitamins, such as folate, is essential in order
to produce novel fermented foods that have high concentrations
of this vitamin (212, 213). Vitamin producing strains have been
able to revert and prevent vitamin deficiencies in animal models
(52, 214).

LAB diversity is interesting not only at a species level, but
also at the strain level, since most technological and nutritional
properties are strain dependent. Raw cereals/pseudocereals
constitute an interesting ecological niche to isolate new LAB
strains with important characteristics to be used as a starter

culture in the preparation of fermented cereal food. It was shown
that folate producing LAB were isolated from wheat, sorghum
and triticale (215). Previously, a few strains have been studied for
this capacity in oat brans and rye sourdoughs (216, 217). In terms
of vitamin-producing strains in pseudocereals, it has been shown
that certain strains of LAB isolated from quinoa and amaranth
sourdough have the capacity to produce elevated concentrations
of riboflavin and folate in vitamin-free media (166, 167). These
strains were used to obtain a B9 and B2 bio enriched pasta, which
was able to prevent and revert vitamin deficiency in different
rodent models (218).

In Africa, folate deficiency is related to the low dietary
diversity and nutrient concentrations in complementary foods
for infants (219, 220). In several African countries, cereal-based
porridges are consumed as an alternative or in complement
to breast feeding (221) but this product does not contain
sufficient nutrients to prevent folate deficiencies (222). It has been
suggested that porridges can also be consumed after fermentation
with LAB, which can improve their overall nutritional quality,
especially by increasing vitamin B9 concentrations (131, 223).

Several vitamin B2–producing LAB were isolated from durum
wheat flour (224). Two L. plantarum over producer strains
used as starter cultures were able to increase between 2 and 3
times the initial concentration of vitamin B2 in both, bread and
pasta fermentations.

Russo et al. (225) reported that L. fermentum PBCC11 isolated
from sourdough was able to produce riboflavin. Bread produced
using the co-inoculum yeast and L. fermentum PBCC11.5 led
to an approximately 2-fold increase of final vitamin B2 content
compared to the wild-type strain (L. fermentum PBCC11). It
was also reported that some LAB strains that are able to
produce pseudo-vitamin B12 could also be used to increase the
concentrations in cereal-based foods (226). These authors stated

FIGURE 4 | Phytate-ions complexes reduce bioavailability of minerals in cereal and pseudocereals. (a) Phosphorus supplementation in animal feedstuff cause

pollution problems. (b) Phytase activity increase mineral biodisponibility and improve nutrition value of foods [adapted from (240)].
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that the first pseudo-cobalamin producing strain of LAB was
L. reuteri CRL 1098 that was isolated from sourdough (227). It
has been suggested that the pseudo-cobalamin produced by LAB
would not be biologically available since the intrinsic factor has
a low affinity for this compound (228). However, it has been
shown that soy fermented with this strain was able to prevent
vitamin B12 deficiency in mice (229), demonstrating that pseudo
cobalamins are bioavailable. The analysis of sequenced genomes
of LAB will provide more insights and new potential candidates
that could be used to ferment cereal-based foods.

Strategies to Decrease Phytates in Pseudocereals:

Phytases
Different methods have been applied to reduce the PA
content in grains and food to improve their nutritional
value (230). Phytases, [myo-inositol (1–6) hexakisphosphate
phosphohydrolase] constitute a particular subgroup of
phosphatases capable of initiating the gradual dephosphorylation
of phytate [myo-inositol (1–6) hexakisphosphate] forming myo-
inositol phosphate intermediates decreasing or eliminating
its antinutritional effect (231, 232). Phytases can be derived
from different sources including plants, animals and
microorganisms such as yeast and LAB; however, their structures
are different (233).

One strategy to reduce phytate in cereals/pseudocereals
includes treatments, such as soaking and malting (94) or
germination (234, 235), that activate phytases present in plants
(236). However, this activity is considered insufficient to
eliminate the phytate present in these substrates (237). Recent
research has shown that microbial sources are more promising
for the production of phytases on a commercial level and in cereal
based foods (238, 239).

Nowadays, phytase is one of the most important enzymes for
non-ruminant animal production. The application of phytases
is broad, can be used to eliminate phytates in the food
and feed industries, protect the environment by reducing
phosphorus contamination and the eutrophication of water
surfaces [Figure 4; (100, 239, 241, 242)]. Phytases have been
successfully used in monogastric feeds for about to 20 years.
In the beginning, marketable phytases were of fungal origin,
mostly from Aspergillus species. Different studies have shown
that the bioavailability of phosphorus increases, and the amount
of phosphorus excreted is reduced (30–50%) by supplementing
animal feeds with phytases (243–245). Recently, Theodoropoulos
et al. (246) reported that treatment with commercial phytase
decreased the content of myo-inositol phosphates and improved
the nutritional value of soy drink, by improving the solubility
of Ca2+, Fe2+, and Zn2+. Currently, the significance of bacterial
phytases as potential tools in biotechnology is increasing (247).

LAB phytase activity
The prevalence of LAB in cereal ecosystems and their
contribution to the improvement of this particular fermentation
processes could be due to their biochemical and metabolic
characteristics (248). Studies of enzymes, like phytases involved
in nutritional aspects in determined ecosystems, are important
for the understanding of particular traits of LAB that are
relevant for their right exploitation as starters (249). The PA

contained in gluten free flours can be reduced by lactic acid
fermentation, directly by LAB phytase activity or indirectly
providing the optimal conditions to the endogenous phytase
activity (250). Several studies were carried out on different
aspects of LAB phytases in cereals fermentation (129, 130, 163,
238, 251–253), nevertheless, there are only few reports of these
enzymes in autochthonous LAB isolated from pseudocereals.
Carrizo et al. (166, 167) reported high phytase activities in
LAB strains isolated from quinoa and amaranth (grains and
sourdough), such as E. durans CRL 2122 (1,041 ± 48 U/mL),
E. mundtii CRL 2007 (957 ± 25 U/ml) and L. plantarum CRL
2106 (730 ± 25 U/mL), among other. Afterwards, the minerals
bioavailability present in pasta made with quinoa flour as a
dietary matrix and fermented by selected LAB producing phytase
was evaluated in an animal model. The animal group fed with
the bio-enriched pasta fermented by LAB (L. plantarum CRL
2107 + CRL 1964) showed higher concentrations of minerals
(P, Ca+2, Fe+2, and Mg+2) with respect to control animal
group (218). Also, Rizzello et al. (186) reported that the use
of quinoa sourdough with autochthonous LAB (L. plantarum
T6B10 and L. rossiae T0A16) increased phytase activity during
the fermentation respect to non-fermented flour. The results
confirmed that quinoa fermented with selected starters had a
phytase activity ca. 2.75- times higher than raw quinoa flour.

Recent studies showed that phytate degradation by
recombinant probiotic LAB could provide a solution for
phosphate utilization in humans (254, 255). Regarding this
topic, Vasudevan et al. (247) reviewed the contributions of
recombinant technology to phytase research during the last
decade with specific emphasis on new generation phytases.
These results are relevant in the design of new functional foods
with improved nutritional quality by using food-grade strains
expressing microbial phytases.

CONCLUSIONS

Throughout the world and especially in developing countries,
the interest in pseudocereals has increased for both consumers
and small businesses. Recent studies strongly suggest that non-
essential nutrients like phytochemicals of pseudocereals can also
have potential health beneficial effects. This fact has promoted
different processing techniques that may enhance the biological
value of pseudocereals. Despite the important nutritional and
functional value of these grains, their commercialization is still
quite limited. Lactic acid fermentation is an ancestral process
of food preservation but with renewed interest over time. It
has become an important strategy to exploit the bioactive
potential of pseudocereals by hydrolysing anti-nutrients factors
and increasing the level of health beneficial compounds. The
multiple beneficial effects of pseudocereals fermented by selected
LAB can be exploited in different ways leading to the design of
novel plant-based foods that can target specific populations.

This review summarized recent research reporting some
different beneficial effects of pseudocereals and contributes to
increase the knowledge on LAB capacity to produce B-group
vitamins, metabolize phytochemicals, and decrease phytates
present in Andean grains. In this way, lactic acid fermentation
can contribute to improve the nutritional and functional
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potential of fermented foods based on these grains for wide use
throughout the world.
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