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The human vaginal microbiome is dominated by bacteria from the genus Lactobacillus,

which create an acidic environment thought to protect women against sexually

transmitted pathogens and opportunistic infections. Strikingly, lactobacilli dominance

appears to be unique to humans; while the relative abundance of lactobacilli in the human

vagina is typically >70%, in other mammals lactobacilli rarely comprise more than 1% of

vaginal microbiota. Several hypotheses have been proposed to explain humans’ unique

vaginal microbiota, including humans’ distinct reproductive physiology, high risk of STDs,

and high risk of microbial complications linked to pregnancy and birth. Here, we test

these hypotheses using comparative data on vaginal pH and the relative abundance of

lactobacilli in 26 mammalian species and 50 studies (N = 21 mammals for pH and 14

mammals for lactobacilli relative abundance). We found that non-human mammals, like

humans, exhibit the lowest vaginal pH during the period of highest estrogen. However,

the vaginal pH of non-human mammals is never as low as is typical for humans (median

vaginal pH in humans= 4.5; range of pH across all 21 non-human mammals= 5.4–7.8).

Contrary to disease and obstetric risk hypotheses, we found no significant relationship

between vaginal pH or lactobacilli relative abundance and multiple metrics of STD or

birth injury risk (P-values ranged from 0.13 to 0.99). Given the lack of evidence for these

hypotheses, we discuss two alternative explanations: the common function hypothesis

and a novel hypothesis related to the diet of agricultural humans. Specifically, with regard

to diet we propose that high levels of starch in human diets have led to increased levels

of glycogen in the vaginal tract, which, in turn, promotes the proliferation of lactobacilli.

If true, human diet may have paved the way for a novel, protective microbiome in

human vaginal tracts. Overall, our results highlight the need for continuing research

on non-human vaginal microbial communities and the importance of investigating both

the physiological mechanisms and the broad evolutionary processes underlying human

lactobacilli dominance.
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INTRODUCTION

Comparative research on mammalian microbiomes is critical to
understanding the basic evolutionary and ecological principles
guiding microbiome structure and function across mammalian
hosts (Ley et al., 2008b; Delsuc et al., 2014; Yildirim et al.,
2014; Moeller et al., 2016). To date, most comparative studies in
mammals find that hosts with similar lifestyles and evolutionary
histories harbor similar microbiomes at a given body site, both
in the bacterial taxa they contain and the functions they provide
to hosts (Ley et al., 2008a; Delsuc et al., 2014). One important
exception to this pattern is the vaginal microbiome, where
humans exhibit striking differences in community composition
compared to other mammals (Spear et al., 2012; Swartz et al.,
2014; Yildirim et al., 2014). Specifically, the human vaginal
microbiome is dominated by Lactobacillus spp., which typically
comprise >70% of resident bacteria in women, compared to
<1% in other mammals. These lactobacilli process glycogen
and its breakdown products to produce lactic acid, leading to
an exceptionally low vaginal pH of ≤4.5 (Boskey et al., 1999,
2001; Mirmonsef et al., 2014; Spear et al., 2014). Lactobacilli-
dominance and low pH of the human vaginal microbiome
are hypothesized to benefit women by reducing disease risk
(reviewed in Brotman, 2011; Graver and Wade, 2011; O’Hanlon
et al., 2011; Gong et al., 2014; Nunn et al., 2015). Furthermore,
the loss of lactobacilli-dominance is linked to bacterial vaginosis
(BV), which is associated with an overgrowth of anaerobic
bacteria, relatively high vaginal pH (>4.5; Aldunate et al., 2015),
infertility, preterm birth, maternal infections, and increased risk
of sexually transmitted diseases (Cherpes et al., 2003; Leitich et al.,
2003; Atashili et al., 2008; Brotman et al., 2010; van Oostrum
et al., 2013; DiGiulio et al., 2015; Redelinghuys et al., 2016). The
fact that the human vaginal microbiome appears to be unique
among mammals raises key questions about why humans are
different: Do humans have a distinct reproductive physiology or
experience different or stronger forces of selection compared to
other mammals? Or are the selective pressures experienced by
humans common among mammals, but humans have found a
unique microbial solution to these evolutionary forces?

To date, four non-mutually exclusive hypotheses have been
proposed to explain the uniqueness of the human vaginal
microbiome relative to other primates, and, by extension, to
other mammals (Stumpf et al., 2013). Two of these hypotheses
focus on proximate, mechanistic explanations, and two propose
ultimate or evolutionary explanations. The first proximate
explanation, the “reproductive phase hypothesis,” proposes
that the differences between human and non-human mammal
vaginal microbiomes are due to between-species differences
in reproductive physiology—especially the fact that humans
exhibit continuous ovarian cycling, while many other mammals
do not. Humans experience continuous, 28-day ovarian cycles
between menarche and menopause, governed by fluctuations
in reproductive steroids. In humans, estrogen levels are closely
linked to lactobacilli abundance and vaginal pH, with an increase
in estrogen promoting the thickening of the vaginal epithelium
and intracellular production of glycogen (Ayre, 1951; Nauth
and Haas, 1985; Patton et al., 2000; but see Mirmonsef et al.,

2016). Consequently, lactobacilli are most abundant and vaginal
pH is lowest when estrogen levels peak just before ovulation
(Drake et al., 1980; Wagner and Ottesen, 1982; Eschenbach
et al., 2000). In many non-human primates, and indeed in many
mammals, females do not cycle continuously and are often only
sexually receptive during a distinct breeding season (Hayssen
et al., 1993; Noakes et al., 2009; Dixson, 2012). While estrogen
levels follow similar patterns during the ovarian cycles of non-
human mammals (Noakes et al., 2009; Dixson, 2012), many
species may only experience high estrogen, high lactobacilli
abundance, and low vaginal pH during a brief period of time
that is commonly undetected by researchers (Stumpf et al.,
2013). Thus, the reproductive phase hypothesis predicts that
human uniqueness may be, in part, an artifact of sampling other
mammals at the wrong time—outside of high estrogen cycle
phases.

The second proximate explanation, called “the common
function hypothesis,” proposes that, in non-human mammals,
other bacteria may protect hosts via mechanisms other than lactic
acid and low vaginal pH, such as production of bacteriocins
and other antimicrobial compounds, competitive exclusion, or
interactions with the host immune system (Klaenhammer, 1988;
Abt and Artis, 2013; Stumpf et al., 2013; Aldunate et al., 2015).
Thus, the presence of lactobacilli may not be a requirement for
a healthy vaginal environment. This explanation may also be
relevant to human health as some women consistently have low
abundance of lactobacilli and a vaginal pH > 4.5, but they do not
experience negative symptoms associated with BV (Ravel et al.,
2011).

In addition to these mechanistic explanations, two
evolutionary hypotheses have been proposed to explain
why the human vaginal microbiome appears to be unique
among mammals. The first evolutionary hypothesis, referred
to as the “disease risk hypothesis,” proposes that humans face
higher sexually transmitted disease (STD) risk than non-human
mammals. Species with promiscuous mating strategies are
predicted to have higher STD risk than those with only a single,
brief reproductive episode per breeding season (Thrall et al.,
1997, 2000; Nunn et al., 2000, 2003; Nunn, 2002). Humans,
in particular, may experience relatively high STD risk due
to prolonged intromission and continuous sexual receptivity
throughout the menstrual cycle, pregnancy, and the postpartum
period. Since STDs may have a significant impact on host and
host offspring fitness (Lockhart et al., 1996), selective pressure for
a protective, lactobacilli-dominated community may be stronger
in humans compared to mammals with less frequent sexual
contact (Stumpf et al., 2013).

Along a similar line of reasoning, the “obstetric protection
hypothesis” suggests that selection for lactobacilli in the human
vagina is due to the high risk of microbial complications
associated with pregnancy and childbirth. Problems associated
with gestation and parturition are not uncommon in mammals
(e.g., Aksel and Abee, 1983; Sheldon et al., 2006), but humans
may experience particularly difficult pregnancies and births
(Rosenberg and Trevathan, 2002). For example, since the human
maternal pelvic outlet is smaller than the neonatal head, there
is substantial risk of trauma to uterine and vaginal walls,
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which increases the likelihood of microbial infection (Rosenberg
and Trevathan, 2002; Chaim and Burstein, 2003; Dajani and
Magann, 2014). Thus, lactobacilli and low vaginal pH may serve
a protective function during human birth, and these traits are
unnecessary in mammals with less risky pregnancies and birth
(Stumpf et al., 2013).

Our objective was to test these hypotheses by comparing
vaginal microbiomes and vaginal pH across mammalian species
with a range of reproductive physiologies, mating systems, and
obstetric risks. Recently, a comparative analysis of the vaginal
microbiome across non-human primates found that interspecies
differences were predominantly explained by host species, with
additional evidence that host socio-ecological factors, including
host neonatal birth weight, may contribute to interspecies
variation (Yildirim et al., 2014). However, no studies have yet
directly correlated specific host risk factors with lactobacilli
abundance and vaginal pH, the aspects of the vaginal microbiome
thought to be protective in humans. Furthermore, comparative
data on vaginal microbial composition—especially interspecies
and inter-individual variation in the vaginal microbiome as
a function of female reproductive state and ovarian cycle
phase—are rare. Here, we test three of these hypotheses—the
reproductive phase, disease risk, and obstetric protection
hypotheses—using comparative data on vaginal pH from 21
species of mammals and lactobacilli relative abundance from
14 species of mammals, as a function of female reproductive
physiology, STD risk, and obstetric risk. To test the reproductive
phase hypothesis, we predicted that: (i) non-human mammals
would exhibit the lowest vaginal pH during the phase of their
cycle with the highest estrogen, and (ii) at peak estrogen, non-
human vaginal pH would be indistinguishable from humans.
For the disease risk hypothesis, we predicted that species with
high STD risk would possess lower vaginal pH and higher
lactobacilli relative abundance than those species with low
STD risk. Similarly, for the obstetric protection hypothesis, we
predicted that mammals with high obstetric risk would have
lower vaginal pH and higher lactobacilli relative abundance than
species with low obstetric risk. Overall, this work represents one
of the first attempts to explain interspecies variation in the vaginal
microbiome, particularly with regard to human uniqueness (but
see Yildirim et al., 2014).

MATERIALS AND METHODS

Literature Search and Inclusion Criteria
We searched for data on mammalian vaginal lactobacilli and
pH using appropriate search terms in Web of Science, Google
Scholar, PubMed, and in the references of other publications. For
information on lactobacilli prevalence and relative abundance,
we focused on culture-independent studies (i.e., lactobacilli
identification based on Illumina or 454 sequencing) because
cultivation-basedmethods can under-represent or overlook some
species (Zhou et al., 2004; Lamont et al., 2011). For data on
vaginal pH, all pH measurements were collected using standard
methods with pHmeters or paper. Of particular note, human pH
measurements from O’Hanlon et al. (2013) were not included
because they collected data under hypoxic conditions and

therefore were not comparable to measurements on non-human
mammals. In addition, because the human vaginal microbiome
changes in response to puberty and menopause and between
reproductive states (e.g., Cauci et al., 2002; Thoma et al.,
2011a; MacIntyre et al., 2015), we confined our data set to pH
values collected during the ovarian cycle (i.e., follicular and
luteal phases, anestrus) of sexually mature subjects. Furthermore,
humans or non-human animals who had recently mated were
not included as semen is alkaline and can temporarily neutralize
vaginal tract pH (Tevi-Bénissan et al., 1997). Finally, because
testing the reproductive phase hypothesis required data on how
natural fluctuations in estrogen impact vaginal pH, we excluded
subjects who were sterilized or supplemented with exogenous
hormones. However, we did include studies of humans where
women were taking hormonal birth control because past work
has found no relationship between vaginal pH and birth
control (Drake et al., 1980; Wagner and Ottesen, 1982). In
total, we found 50 studies with data on vaginal pH and/or
lactobacilli relative abundance across 26 mammalian species.
Specifically, we found information on vaginal pH for 21 different
species of non-human mammals from 44 studies (Figure 1;
Table S1) and data on relative abundance of lactobacilli for
14 mammals, 8 of which also had information on vaginal pH
(Table 2).

FIGURE 1 | Vaginal pH across 22 species of mammals including

humans. Open circles represent mean pH from individual studies and

diamonds represent the overall mean for that species. Diamonds are

color-coded based on taxonomic order. Error bars represent the standard

deviation from the mean. Humans are divided into two groups, one with

bacterial vaginosis (BV) and one without BV. Dendrogram indicates the

evolutionary distance between species in millions of years (Myr).
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Calculating Vaginal pH
For each mammalian species, we calculated the average vaginal
pH across all available studies (Table S1). Because some studies
measured vaginal pH at only a few cycle phases, the average
pH of a species reflects the available data and not necessarily all
cycle phases. If a study reported a pH range instead of a single
value, we calculated the midrange (i.e., added the minimum and
maximum values and divided by 2). For studies that represented
their data graphically, but did not give numerical values, we used
WebPlotDigitizer (Rohatgi, 2015) to extract pH values from the
relevant plots. To test the reproductive phase hypothesis, we used
vaginal pH values from the phases of the ovarian cycle when
estrogen was highest and lowest (Table S1). For the majority of
mammalian species, peak estrogen occurs during late proestrus
or estrus, and the lowest level of estrogen occurs during the
luteal phase or menses (Figure S1). However, for several species,
including cows and dogs, peak estrogen occurs at both the end of
proestrus and beginning of estrus. In these instances, we used the
pH value from estrus to represent the high estrogen time point
because proestrus can span multiple days and can encompass
considerable variation in estrogen levels (Figure S1).

Measuring STD and Obstetric Risk
To test the disease risk and obstetric protection hypotheses,
we required information on interspecies risk associated with
STDs and reproduction. We calculated proxies of both STD
and obstetric risk using species-specific trait data compiled from
primary literature, edited books, and the life history database,
PanTHERIA (Jones et al., 2009; Table S2). Whenever possible,
we used data from wild, feral, or free-ranging populations over
data from captive or domesticated individuals. In 13 instances, we
could not find a particular life history trait for a species. In these
cases, we used data from the closest related species with available
data. For example, there was no information on the age of sexual
maturity or life expectancy for the red-bellied tamarin (Sanginus
labiatus), so we used data from the closely related cotton-top
tamarin (S. oedipus). All proxies and their descriptions are listed
in Table 1. Specifically, to test the disease risk hypothesis, we
used five proxies: testes mass relative to body size, baseline white
blood cell (WBC) count, annual sexual receptivity, total lifetime
reproductive events, and intromission pattern (Table 1). For the
obstetric protection hypothesis, we used gestation length, relative
neonatal mass, and relative maternal pelvic area (Table 1).

TABLE 1 | Proxies of mammalian STD and obstetric risk.

Proxy Description

STD RISK

(1) Relative testes mass After correcting for body size, testes mass indicates degree of sperm competition, which gives an estimate of promiscuity between

species (Harcourt et al., 1981; Kenagy and Trombulak, 1986).

(2) White blood cell count Species with high risk of STDs should have a corresponding high number of baseline WBCs in order to cope with potential infections

(Nunn et al., 2000, 2003; Nunn, 2002).

(3) Annual sexual receptivity Species that experience longer periods of sexual receptivity may experience increased STD risk (van Schaik et al., 1999). To correct

for variability in cycle length across mammals, we standardized sexual receptivity duration to 1 year:

sexual receptivity (days)*
annual breeding season (days)

ovarian cycle (days)

(4) Total lifetime

reproductive events

Species with longer lifespans and more reproductive events may experience increased STD risk (Loehle, 1995; Nunn, 2003).

maximum lifespan− age at first reproduction

interbirth interval

(5) Intromission pattern During copulation, more intromissions and longer intromission duration increase the probability of STD exposure and transmission.

Following the categories in Dixson (2012), we classified the intromission pattern of a species as Single or Multiple and Brief (≤3min)

or Prolonged (>3min). Thus, a species was assigned one of four overall intromission patterns: MBI, SBI, MPI, or SPI.

OBSTETRIC RISK

(6) Gestation length Gestation can be an energetically costly reproductive event and may increase maternal susceptibility to certain types of infections via

changes in the immune system (Gittleman and Thompson, 1988; Krishnan et al., 2013). Additionally, physiological changes that

occur during gestation may disrupt maternal microbial communities (Redelinghuys et al., 2016).

(7) Relative neonatal mass In humans, larger neonates increase the likelihood of complications during birth (Alsammani and Ahmed, 2012; Weissmann-Brenner

et al., 2012). From the interspecies perspective, species with larger neonatal mass, controlling for maternal body mass, may

experience more risk associated with parturition than species with relatively small neonates (Leutenegger, 1973).

(8) Relative maternal

pelvic area

Species with small maternal pelvic inlet areas relative to neonatal massmay bemore prone to complications in passing neonates through

the maternal birth canal (Deutscher, 1985; Basarab et al., 1993; Rosenberg and Trevathan, 2002). We calculated this proxy as:

maternal pelvic inlet area

neonatal mass

Note: Because pelvic inlet measurements were not available for many species in our dataset, this proxy could only be calculated for a

subset of species.
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Hypothesis Testing
All statistical tests were implemented in the R statistical
environment (R Core Team, 2015). Before testing our primary
hypotheses, we first tested for a phylogenetic signature on vaginal
pH such that mammals with more similar evolutionary histories
had more similar vaginal pH values. We obtained divergence
times between the species in our data set from Bininda-Emonds
et al. (2007), with an updated primate phylogeny by Perelman
et al. (2011) and Papio spp. values from Purvis (1995). We
constructed a distance matrix and phylogenetic tree using the R
package, ape (Paradis et al., 2004), along with a distance matrix
of vaginal pH values between species. We correlated phylogenetic
distance with differences in vaginal pH using aMantel test, which
calculates a P-value based on comparison of the observed Pearson
correlation coefficient to the distribution of coefficients from
10,000 permutations.

To test the reproductive phase hypothesis, we compared
the vaginal pH during high- and low-estrogen phases of the
female ovarian cycle using a paired t-test in R. To test the
disease risk and obstetric protection hypotheses, we correlated
vaginal pH and lactobacilli relative abundance with each proxy
of STD or obstetric risk using linear regressions and ANOVAs.
To calculate the minimum sample size required to detect a
significant relationship, we used the R package, pwr (Champely,
2015), with a power value of 0.80. We further constructed
multivariate linear regression models to test whether any
combination of proxies predicted vaginal pH. Predictor variables
in each model included relative testes mass, baselineWBC count,
annual sexual receptivity, total lifetime reproductive events,
intromission pattern, gestation length, and relative neonatal
mass. Model selection was performed using stepwise backward
regression with the stepAIC function from the R package, MASS
(Venables and Ripley, 2002) and a 5% significance level was used
as a threshold for inclusion in the final model.

RESULTS AND DISCUSSION

Interspecies Comparison of Lactobacilli
and Vaginal pH Reflects the Unique Nature
of the Human Vaginal Microbiome
Of the 26 mammalian species for which we found data on vaginal
pH and/or lactobacilli relative abundance, most were captive
primates used for medical studies, domesticated ungulates (e.g.,
horse, cow, pig), and common laboratory rodents (e.g., mouse,
rat, and guinea pig). Of note, only one study measured vaginal
pH in a wild population (yellow baboons; Miller et al., in review).

Together, our results confirm that humans are distinct from
other mammals in dominance of lactobacilli and the acidity of
their vaginal tract. For instance, across 10 studies of healthy
human women, median vaginal pH was 4.5 (range = 4.0–4.9),
while median vaginal pH across non-human mammals was 6.8,
with no species falling in the range of healthy human pH, and
only two species with a pH below 6.0 (Figure 1). Furthermore,
while 13 of 14 mammals had detectable levels of Lactobacillus
spp., the average relative abundance of lactobacilli was only
1.1% (±0.39% SEM) in non-human mammals compared to

69.6% in human women (±0.046% SEM) (Figure 2). This
disparity is unlikely to be due to differences in the species of
Lactobacillus in non-human mammals as compared to humans
as the same four species that dominate the vaginal tract of
women (L. cripsatus, L. gasseri, L. iners, and L. jensenii), were
also frequently found in other mammals, albeit in low relative
abundance. However, non-human mammals also harbored other
lactobacilli generally not found in humans, including L. animalis,
L. fornicalis, L. amylovorus, and L. johnsonii. Other members
of the phylum Firmicutes were also common in non-human
mammals, particularly species of two lactic acid-producing
genera Aerococcus and Facklamia. Among primates, there was
also high relative abundance ofmultiple genera linked to bacterial
vaginosis (BV) in women, including Gardnerella, Sneathia, and
Prevotella (Onderdonk et al., 2016).

Importantly, as has been reported previously, human women
with BV had significantly higher vaginal pH than healthy
women (N = 6 studies; two-sample t-test: t(8.14) = 3.65,
P = 0.0063; Figure 1). Women with BV also exhibited
compositional similarities to healthy baboons and macaques,
including moderately high relative abundances of Gardnerella,
Mobiluncus, Sneathia, and Prevotella (e.g., Miller et al., in review;
Spear et al., 2010, 2012; Uchihashi et al., 2015; Onderdonk et al.,
2016). However, of the five macaque and baboon species in our
data set, all but the olive baboon had significantly higher vaginal
pH than BV women (ANOVA: F(5, 14) = 12.84, P = 8.12e-05;
Figure 1), which suggests that similar microbial composition
may not always translate into similar ecological functions and
consequences (e.g., Mirmonsef et al., 2012).

Phylogeny Does Not Predict Vaginal pH
Before testing our main hypotheses, we first investigated whether
shared evolutionary history amongmammals explained variation
in vaginal pH among mammal species. Figure 1 indicates that
primates exhibited the widest variation in vaginal pH, with
species-specific averages in non-human primates ranging from
5.4 to 7.8, and chimpanzees and olive baboons exhibiting pH

FIGURE 2 | The mean relative abundance of Lactobacillus spp. vs.

other bacteria in (A) humans and (B) non-human mammals. For non-human

mammals, lactobacilli relative abundance was calculated as the mean across

all species (N = 14). The standard error of the mean for lactobacilli was

±0.046% in humans and ±0.39% in other mammals. See Table 2 for the list

of studies used to generate this figure.
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TABLE 2 | Prevalence and relative abundance of the genus Lactobacillus across mammalian species.

Order Species Common name Origina N Lactobacilli

prevalence (%)

Lactobacilli relative abundance (%) References

Mean ± SD Range

RODENTIA

Cavia porcellus Guinea Pig D 5 100 0.013±0.0079% 0.0017–0.021% Neuendorf et al., 2015

ARTIODACTYLA

Bos taurus Cow D 20 90 0.36±0.66% – Swartz et al., 2014

Ovis aries Sheep D 20 80 0.53±0.65% – Swartz et al., 2014

Sus scrofa Pig D 20 ≥90 3.52±0.45% 3.00–4.20% Lorenzen et al., 2015

PRIMATES

Alouatta pigra Black Howler W 5 0 − – Yildirim et al., 2014

Cercocebus atys Sooty Mangabey C 6 100 4.77±7.56% 0.12–19.69% Yildirim et al., 2014

Chlorocebus aethiops Grivet C 6 100 1.68±3.16% 0.026–8.05% Yildirim et al., 2014

W 6 83.33 1.42±3.11% 0–7.77% Yildirim et al., 2014

Homo sapiens Human – 9 100 77±29.47% 2.99–97.99% Yildirim et al., 2014

– 398 98.50 70.62±39.4% 0–99.85% Ravel et al., 2011

– 32 100 61.21±35.65% 0.020–99.65% Gajer et al., 2012

Macaca mulatta Rhesus Macaque C 11 36 generally <1% 0–39% Spear et al., 2010

Macaca nemestrina Pig-Tailed Macaque C 10 100 2.20% <1–27% Spear et al., 2012

Pan troglodytes Common Chimpanzee W 12 75 0.33±0.91% 0–3.21% Yildirim et al., 2014

Papio anubis Olive Baboon C 3 100 generally <1% <1–9% Hashway et al., 2014

C 38 16 1.25±3.34 0–14.95% Uchihashi et al., 2015

C 6 100 2.09%±2.6% 0.12–7.20% Yildirim et al., 2014

Papio cynocephalus Yellow Baboon W 48 84.6 0.036±0.14% 0–0.93% Miller et al., in review

W 6 33.33 0.014±0.028% 0–0.071% Yildirim et al., 2014

Procolobus rufomitratus Red Colobus W 6 33.33 0.021±0.035% 0–0.084% Yildirim et al., 2014

Propithecus diadema Diademed Sifaka W 6 33.33 0.0022±0.0035% 0–0.0080% Yildirim et al., 2014

All data are from culture-independent studies (i.e., Illumina and 454 sequencing).
aCaptive (C), Wild (W), or Domesticated (D).

values most similar to humans. Indeed, more variation in
vaginal pH existed among primate species than among all other
mammal lineages, which, despite encompassing many more
years (and units of branch length) of evolutionary history, had
vaginal pH values that ranged from just 6.5–7.4 (Figure 1).
However, evolutionary distance between mammalian species did
not predict similarity in vaginal pH, either among humans and
non-human primates (Mantel test: N = 10, Mantel statistic
r = −0.01, P = 0.47), or among all mammals (N = 22,
Mantel statistic r = −0.2, P = 0.93). Hence, shared evolutionary
history is unlikely to play a dominant role in shaping interspecies
variation in vaginal pH.

Across Mammals, Females Exhibit Low
Vaginal pH During Periods of Peak
Estrogen
The reproductive phase hypothesis proposes that differences
between human and non-human primate vaginal microbiota are
due to between-species variation in reproductive physiology—
especially the continuous nature of human ovarian cycling.
This hypothesis predicts that non-human mammals will exhibit
lactobacilli dominance and a vaginal pH similar to humans
during the period in their ovarian cycle when they experience

highest estrogen levels. To test this idea, we compared vaginal pH
during high- and low-estrogen phases of the female ovarian cycle
in 10 non-human mammals where we had enough information
on pH throughout the ovarian cycle. Notably, some of the
mammal species we considered exhibit continuous, year-round
reproductive cycling (i.e., spider monkey, cow, rat, pig-tailed
macaque, common brushtail possum, and olive and yellow
baboons), allowing us tomake a strong comparison with humans.
We found that, similar to humans, non-human mammals exhibit
the lowest vaginal pH during high-estrogen phases (paired t-test:
t(9.00) = −3.16, P = 0.012; Figure 3). However, even during
peak estrogen, the pH of non-human mammals never declined
to a level comparable to humans (Figure 3). Data on the relative
abundance of Lactobacillus spp. as a function of ovarian cycle
phase are rare in non-human mammals, but one study on wild
baboons found that the order Lactobacillales, which comprises
all lactic acid-producing bacteria, including lactobacilli, wasmore
abundant in individuals experiencing ovulation compared to
other ovarian cycle phases (Miller et al., in review). However, the
mean relative abundance of Lactobacillus spp. in these ovulating
baboons was only 0.0058%, which is considerably lower than the
level typical in healthy human women (Miller et al., in review).

Together, these results suggest that estrogen plays a similar
role in shaping vaginal microbial composition and pH in
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FIGURE 3 | Mean vaginal pH between periods of high and low estrogen

of 11 mammalian species during the ovarian cycle. Paired black

diamonds represent the overall mean for each species at both estrogen levels.

The open diamonds and dashed line show the mean human vaginal pHs

during the high estrogen phases (follicular phase and ovulation) and low

estrogen phases (luteal phase and menstruation) of the ovarian cycle. Letters

next to diamonds identify the mammalian species. See Table S1 for the list of

studies used to generate this figure. Abbreviations: C, Cow; D, Dog; H, Horse;

OB, Olive baboon; P, Common brushtail possum; PM, Pig-tailed macaque; R,

Brown rat; S, Sheep; SM, Black-handed spider monkey; YB, Yellow baboon.

humans and in othermammals. Specifically, rising estrogen levels
increase available glycogen in the vaginal epithelium, which in
turn, provides an energy source for lactobacilli to produce lactic
acid. Indeed, like humans, many non-human mammals exhibit
a thickening of the vaginal epithelium and increasing glycogen
content in response to rising estrogen levels during the ovarian
cycle (e.g., Gregoire and Guinness, 1968; Gregoire and Parakkal,
1972;Williams et al., 1992; Nyachieo et al., 2009). However, direct
correlations between estrogen, glycogen, lactic acid, lactobacilli,
and vaginal pH have yet to be explored in non-human mammals
to the extent they have been in humans (e.g., Boskey et al., 1999,
2001; Mirmonsef et al., 2014; but see Mirmonsef et al., 2012).
In summary, in terms of the reproductive phase hypothesis, we
find that differences in reproductive cycling between humans
and other mammals are not sufficient to explain why the human
vaginal pH and lactobacilli abundance are such outliers relative
to other mammals. Hence the uniqueness of the human vaginal
microbiome is unlikely to be a consequence of sampling non-
human mammals during the incorrect reproductive state.

Vaginal pH and Lactobacilli Relative
Abundance Across Mammals Does Not
Correlate with Risk Associated with
Sexually Transmitted Diseases or
Obstetrics
The disease risk hypothesis proposes that high risk of STD
exposure in humans, compared to other mammals, has

selected for a protective, lactobacilli-dominated community. This
hypothesis predicts that, in general, mammals, such as humans,
with greater STD risk will have higher abundance of lactobacilli
and lower vaginal pH compared to species with minimal STD
risk. To test this hypothesis, we correlated the vaginal pH and
lactobacilli relative abundance of mammals with species-specific
proxies of STD risk (Table 1). Overall, we found no significant
relationships between vaginal pH and any of the five STD risk
proxies, including relative testes mass (linear regression: N = 21,
F(1, 19) = 0.16, P = 0.70; Figure 4A), baseline WBC count
(N = 21, F(1, 19) = 0.90, P = 0.36; Figure 4B), annual
sexual receptivity (N = 21, F(1, 19) = 0.00030, P = 0.99;
Figure 4C), number of lifetime reproductive events (N = 21,
F(1, 19) = 2.56, P = 0.13; Figure 4D), and intromission
pattern (ANOVA: N = 21, F(2, 18) = 1.07, P = 0.36;
Figure 4E). Additionally, there was no significant relationship
between lactobacilli relative abundance and any of the same STD
risk proxies (N = 14; relative testes mass: F(1, 12) = 0.0050,
P = 0.95; baseline WBC count: F(1,12)= 0.072, P = 0.79; annual
sexual receptivity: F(1, 12) = 0.79, P = 0.39; number of lifetime
reproductive events: F(1, 12) = 2.66, P = 0.13; copulation pattern:
F(2, 11) = 2.52 P = 0.13).

Parallel to the disease risk hypothesis, the obstetric protection
hypothesis proposes that the unique nature of the human
vaginal microbiome is due to risk of infection during human
pregnancy and birth. By extension, across mammals, species
experiencing higher risk during gestation and parturition should
have higher abundance of lactobacilli and lower vaginal pH.
We correlated vaginal pH and lactobacilli relative abundance
with three common proxies of obstetric risk across mammals
(Table 1). Again, there was no relationship between vaginal pH
and any obstetric risk proxy, including gestation length (linear
regression: N = 21, F(1, 19) = 0.18, P = 0.67; Figure 4F), relative
neonatal mass (N = 21, F(1, 19) = 0.54, P = 0.47; Figure 4G),
and relative maternal pelvic area (N = 11, F(1, 6) = 0.42,
P = 0.54; Figure 4H). There was also no relationship between
lactobacilli relative abundance and any proxy (gestation length:
N = 14, F(1, 12) = 0.69, P = 0.42; relative neonatal mass:N = 14,
F(1, 12) = 0.20, P = 0.66; relative maternal pelvic area: N = 5,
F(1, 3) = 0.0054, P = 0.95).

Finally, because disease and obstetric risk could be acting
as simultaneous selection pressures on the vaginal microbiome,
we also tested both hypotheses together using combinations
of STD and obstetric risk proxies as factors in multivariate
linear regressions predicting vaginal pH and lactobacilli relative
abundance. Consistent with univariate results, no combination
of proxies was significantly correlated with either vaginal pH
or lactobacilli relative abundance (P-value range = 0.89–0.13).
While the sample sizes for these correlations were small, a power
analysis suggests that we still would need a sample size at least
2 times our current sample size and often more than 10 times
the current sample size to detect significant effects. Hence, STD
and obstetric risk are, at best, minor forces shaping mammalian
vaginal pH and the relative abundance of lactobacilli.

Our results suggest that, contrary to the assumptions
underlying the disease risk and obstetric protection hypotheses,
humans do not have considerably higher disease or obstetric
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FIGURE 4 | Mean vaginal pH as a function of STD or obstetric risk across mammals. Each point represents one species. Asterisks show where humans fall

within each comparison. STD risk proxies are (A) relative testes mass, (B) baseline white blood cell count, (C) annual sexual receptivity, (D) maximum lifetime

reproductive events, and (E) intromission pattern (SBI, single brief intromission; MBI, multiple brief intromissions; SPI, single prolonged intromission). Obstetric risk

proxies are (F) gestation length, (G) relative neonatal mass, and (H) relative maternal pelvic area. Risk level increases moving left to right on all plots (note the reversed

x-axis in plot H). The solid lines represent the best-fit linear models without humans.

risk compared to other mammals (see asterisks on Figure 4).
For example, many mammals have STDs and may experience
high STD risk due to sexually promiscuous behavior (Smith
and Dobson, 1992; Lockhart et al., 1996; Altizer et al.,
2003). Additionally, a number of mammals have longer
gestation duration than humans, and may experience extreme
complications associated with parturition (Aksel and Abee, 1983;
Frank and Glickman, 1994; Rosenberg and Trevathan, 2002).
For instance, squirrel monkeys give birth to exceptionally large
neonates for the diameter of the maternal pelvis, which can lead
to an almost 50% perinatal mortality in some captive populations,
yet vaginal pH in squirrel monkeys is around 6.75 (Aksel and
Abee, 1983). Thus, the human STD and obstetric risk selective
pressures do not appear to be particularly strong compared to
selective pressures experienced by other mammals. Together,
these results do not support the hypotheses that STD or obstetric
risks have shaped the mammalian vaginal microbiome.

Alternative Hypotheses
The Common Function Hypothesis
While we found little support for three of the four hypotheses
proposed to explain the unique nature of the human vaginal
microbiome (Stumpf et al., 2013), the fourth hypothesis (i.e.,
the common function hypothesis) could not be tested with
available data. This hypothesis remains a promising avenue for
future work. Specifically, it suggests that while all mammals
may experience similar selective pressures, humans have found
a unique microbial solution in lactobacilli-dominance. Further,
in other host species, the protective role of lactobacilli may be

fulfilled by other microbes that achieve similar functions without
low vaginal pH. For example, vaginal bacteria, including some
microbes commonly found at high abundances in the vaginal
tract of non-humanmammals (e.g., Streptococcus, Prevotella, and
Corynebacterium), may produce high quantities of antimicrobial
proteins, called bacteriocins (Zheng et al., 2015). Additionally,
the microbes of non-human mammals may provide a protective
function via interactions with the host immunity. Indeed, in
humans, lactobacilli and lactic acid are thought to mediate
host immune responses in vaginal mucosa, while BV-associated
bacteria tend to promote pro-inflammatory immune responses
(Mirmonsef et al., 2011; Aldunate et al., 2015). In non-human
mammals, the interaction between commensal vaginal bacteria
and host immunity have yet to be extensively investigated and it
remains to be seen whether those interactions, particularly with
regard to lactic acid and BV-associated bacteria, are similar to
what is observed in humans or are species-specific.

Glycogen and the Human Diet
While the common function hypothesis may clarify how
humans and other mammals differ in their protective microbial
communities, it does not explain why humans possess a unique
microbial solution to relatively similar selective pressures. Here
we propose a new proximate explanation for the uniqueness of
human vaginal microbiome, which posits that exceptionally high
levels of glycogen in the human vaginal tract create “lactobacilli-
friendly” conditions, leading to lactobacilli dominance. While
data on glycogen levels in non-human mammals are rare, the
limited data that exist indicate that humans have considerably
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higher concentrations of glycogen present in vaginal epithelial
tissue and in genital fluid compared to other mammals (Table 3;
Mirmonsef et al., 2012). Because glycogen and its breakdown
products (e.g., maltose) are a main energy source for lactobacilli,
low glycogen levels in the vaginal tracts of non-human mammals
may prevent lactobacilli dominance (Mirmonsef et al., 2014).
Furthermore, recent work suggests that, in addition to glycogen,
the mammalian enzyme α-amylase must also be present in
the vaginal tract to break down glycogen into a form usable
by lactobacilli strains that cannot metabolize glycogen directly
(Spear et al., 2014, 2015; Nasioudis et al., 2015). It is currently
unknown whether α-amylase is present in the vaginal tract of
mammals other than humans, but a lack of this enzyme in
non-human mammals might also contribute to the absence of
lactobacilli dominance in non-human mammals. A comparison
of α-amylase gene copy number to vaginal pH may provide
further evidence for the function of this enzyme in the vaginal
tract. Additionally, quantification of glycogen and α-amylase
levels in mammalian vaginal tracts, including humans, would
enable researchers to identify species with “lactobacilli-friendly”
vaginal tracts.

Assuming that human vaginal tracts do have higher levels
of glycogen than other mammals, the next question is: why
do humans exhibit such high levels of glycogen? From an
evolutionary perspective, high glycogen may be the result of
selection for a protective microbial community, as suggested
by the disease risk and obstetric risk hypotheses. However,
given the lack of evidence for these hypotheses, we suggest
that glycogen abundance is a byproduct of some other aspect
of human physiology or behavior. In particular, we propose a
“diet hypothesis,” which centers on the high starch content of
human diets. Humans ingest relatively large quantities of starch,
facilitated by the origins of agriculture, cooking food, and our
ability to efficiently break carbohydrates down with high levels
of amylase in saliva (Englyst et al., 1992; Diamond, 2002; Perry
et al., 2007; Carmody and Wrangham, 2009; Hardy et al., 2015).

Because glycogen is the major storage molecule of glucose, high
starch diets may have led to high levels of glycogen in the vaginal
tract, which, in turn, might create a favorable environment for
lactobacilli proliferation. Although themechanism by which high
starch diets might lead to high levels of glycogen in the vaginal
tract is unknown, it is well established carbohydrate ingestion
increases glycogen in the liver and skeletal muscle (McGarry
et al., 1987; Jeukendrup, 2003). In addition, there is some
evidence that differences in women’s diets predict differences
in glycogen levels in the vagina and BV risk. For instance in
one study, having a BMI > 30 was linked to increased free
glycogen in vaginal fluid, although this relationship was only
marginally significant (Mirmonsef et al., 2014). Further, diet
may play a role in vaginal microbial composition, particularly
with regard to risk of BV (Neggers et al., 2007; Tohill et al.,
2007; Thoma et al., 2011b). A priori, we might hypothesize
that a shift to diets rich in starch transformed vaginal microbial
communities (and pH), and that evidence of this historymight be
found in comparisons among women with different ancestries.
For example, it has been shown that individuals from human
lineages that consumed more starch (e.g., agrarian societies as
opposed to hunter gatherers) are more likely to have more copies
of salivary amylase genes and, in turn, produce more amylase
(Perry et al., 2007). Interestingly, there is variation in vaginal
pH and community composition among human populations
(Ravel et al., 2011; MacIntyre et al., 2015). However, because this
variation is typically matched to race rather than to genotype,
it is difficult to know whether this variation is in line with our
prediction or not. To date, only one study has investigated the
affect of a high starch diet on vaginal glycogen levels in humans
(Willson and Goforth, 1942). Although the researchers did not
detect a change in glycogen after the implementation of an
abnormally high carbohydrate diet, we do not believe this finding
represents an adequate test of this hypothesis as subjects were
postmenopausal and glycogen concentrations were not assessed
quantitatively.

TABLE 3 | Concentration of glycogen in the vaginal tract across mammalian species.

Order Species Common name Vaginal glycogen content References

Tissue (µg/100mg of

wet tissue)

Genital fluid

(Glycogen:Protein [µg/µg])

RODENTIA

Mesocricetus auratus Golden Hamster 182.78 – Gregoire and Guinness, 1968

Mus musculus House Mouse 68.98 – Balmain et al., 1956

Oryctolagus cuniculus European Rabbit 44.00 – Gregoire and Hafs, 1971

Rattus norvegicus Brown Rat 35.56 – Shukla et al., 1989

PRIMATES

Homo sapiens Human (non-BV) 1395.75 – Gregoire et al., 1971

– 0.2 Mirmonsef et al., 2012

Human (BV) – 0.04 Mirmonsef et al., 2012

Macaca mulatta Rhesus Macaque 603.67 – Gregoire and Parakkal, 1972

– 0.004 Mirmonsef et al., 2012

Macaca nemestrina Pig-Tailed Macaque – <0.001 Mirmonsef et al., 2012
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CONCLUSIONS AND FUTURE
DIRECTIONS

Of the four hypotheses currently proposed to explain the
unique nature of the human vaginal microbiome, our results
provide little to no evidence for the reproductive phase,
disease risk, and obstetric protection hypotheses. The fourth,
common function hypothesis and our newly proposed diet-
based hypothesis are as yet untested and represent two
promising areas for future research. Overall, future work on
the vaginal microbiome, particularly with regard to mechanistic
and evolutionary explanations for human uniqueness, will
require additional comparative data. Specifically, it would be
useful to have more data on the vaginal microbiome of wild
populations of mammals, especially from different stages of the
ovarian cycle. It would also be useful to characterize vaginal
microbiomes and vaginal pH in species of mammals with
especially high obstetric risk, such as the hyena (Frank and
Glickman, 1994), or similar patterns of socio-sexual behavior
to humans, such as the bonobo or bottlenose dolphin (Dixson,
2012; Furuichi et al., 2014). Furthermore, there is an urgent
need for more information on both glycogen and α-amylase
content of the vaginal tract in both humans and other mammals.
This type of data would be particularly useful for understanding
the mechanistic origins of low vaginal pH in humans and
exploring the relationship between the human vaginal tract and
diet. To fully test the human diet hypothesis, however, both
experimental and comparative work will be required, including

the comparison of vaginal microbiota across human populations
with differing diets, such as hunter-gatherers and agricultural
societies.
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