LACUNARY STRONG CONVERGENCE OF DIFFERENCE SEQUENCES WITH RESPECT TO A MODULUS FUNCTION

RIFAT ÇOLAK

Abstract. A sequence $\theta=\left(k_{r}\right)$ of positive integers is called lacunary if $k_{0}=0,0<k_{r}<k_{r+1}$ and $h_{r}=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ are denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$.

Let ω be the set of all sequences of complex numbers and f be a modulus function. Then we define

$$
\begin{aligned}
& N_{\theta}\left(\Delta^{m}, f\right)=\left\{x \in \omega: \lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} f\left(\left|\Delta^{m} x_{k}-l\right|\right)=0 \text { for some } l\right\} . \\
& N_{\theta}^{0}\left(\Delta^{m}, f\right)=\left\{x \in \omega: \lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} f\left(\left|\Delta^{m} x_{k}\right|\right)=0\right\} . \\
& N_{\theta}^{\infty}\left(\Delta^{m}, f\right)=\left\{x \in \omega: \sup _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} f\left(\left|\Delta^{m} x_{k}\right|\right)<\infty\right\} .
\end{aligned}
$$

where $\Delta x_{k}=x_{k}-x_{k+1}, \Delta^{m} x_{k}=\Delta^{m-1} x_{k}-\Delta^{m-1} x_{k+1}$ and m is a fixed positive integer.

In this study we give various properties and inclusion relations on these sequence spaces.

1. INTRODUCTION

Let w be the set of all sequences of real or complex numbers and ℓ_{∞}, c, and c_{0} be respectively the Banach spaces of bounded, convergent and null sequences $x=\left(x_{k}\right)$ with the usual norm $\|x\|=\sup _{k}\left|x_{k}\right|$, where $k \in N=$ $\{1,2, \ldots\}$ the set of positive integers.

The difference sequence space $X(\Delta)$ was introduced by Kizmaz [4] as follows:

$$
X(\Delta)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta x_{k}\right) \in X\right\} \text { for } X=\ell_{\infty}, c \text { and } c_{0}
$$

where $\Delta x_{k}=x_{k}-x_{k+1}$, for all $k \in N$.

[^0]The difference sequence spaces were generalized by Et and Çolak [2] as follows:
$X\left(\Delta^{m}\right)=\left\{x=\left(x_{k}\right) \in w: \Delta^{m} x=\left(\Delta^{m} x_{k}\right) \in X\right\}$ for $X=\ell_{\infty}, c$ and c_{0}, where $\Delta^{m} x_{k}=\Delta^{m-1} x_{k}-\Delta^{m-1} x_{k+1}$ and so $\Delta^{m} x_{k}=\sum_{v=0}^{m}(-1)^{v}\binom{m}{v} x_{k+v}$.

By a lacunary sequence $\theta=\left(k_{r}\right) ; r=0,1,2, \ldots$, where $k_{0}=0$, we mean an increasing sequence of non-negative integers with $h_{r}=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. We denote by $I_{r}=\left(k_{r-1}, k_{r}\right]$ the intervals determined by θ and $q_{r}=\frac{k_{r}}{k_{r-1}}$ for $r=0,1,2, \ldots$. The space of lacunary convergent sequences N_{θ} was defined by Freedman et all [3] as follows:

$$
\begin{equation*}
N_{\theta}=\left\{x=\left(x_{k}\right): \lim _{r} h_{r}^{-1} \sum_{k \in I_{r}}\left|x_{k}-\ell\right|=0, \text { for some } \ell\right\} . \tag{1.1}
\end{equation*}
$$

The space N_{θ} is a BK-space with the norm

$$
\begin{equation*}
\|x\|_{\theta}=\sup _{r} h_{r}^{-1} \sum_{k \in I_{r}}\left|x_{k}\right| . \tag{1.2}
\end{equation*}
$$

N_{θ}^{0} denotes the subset of N_{θ} those sequences for which $\ell=0$ in the definition of $N_{\theta} \cdot\left(N_{\theta}^{0},\|\cdot\|_{\theta}\right)$ is also a BK-space. There is a relation (see for instance [3]) between N_{θ} and the space $\left|\sigma_{1}\right|$ of strongly Cesaro summable sequences defined by

$$
\begin{equation*}
\left|\sigma_{1}\right|=\left\{x=\left(x_{k}\right): \lim _{n \rightarrow \infty} n^{-1} \sum_{k=1}^{n}\left|x_{k}-\ell\right|=0, \text { for some } \ell\right\} . \tag{1.3}
\end{equation*}
$$

In the special case $\theta=\left(2^{r}\right)$ we have $N_{\theta}=\left|\sigma_{1}\right|$.
The notion of a modulus function was introduced by Nakano [7]. We recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that
(i) $f(x)=0$ if and only if $x=0$
(ii) $f(x+y) \leq f(x)+f(y)$, for all $x \geq 0, y \geq 0$
(iii) f increasing,
(iv) f continuous from the right at zero.

Since $|f(x)-f(y)| \leq f|(x-y)|$, it follows from (iv) that f is continuous on $[0, \infty)$. Furthermore, we have $f(n x) \leq n f(x)$ for all $n \in N$ from condition (ii), and so $f(x)=f\left(n x \frac{1}{n}\right) \leq n f(x / n)$, hence $\frac{1}{n} f(x) \leq f(x / n)$ for all $n \in N$.

A modulus may be bounded or unbounded. For example, $f(x)=x^{p}$ for $0<p \leq 1$ is unbounded, but $f(x)=\frac{x}{x+1}$ is bounded.

Subsequently modulus function have been studied by Ruckle [9], Connor [1], Maddox [5], Pehlivan and Fisher [8], Malkowsky and Savaş [6].

2. MAIN RESULTS

In this section, we extend Δ^{m}-lacunary strongly convergent sequences which were defined by B.C. Tripathy, M. Et and S. Mahanta [10], and give the relation between Δ^{m}-lacunary strong convergence and Δ^{m}-lacunary strong convergence with respect to a modulus.

Definition 2.1. Let f be a modulus function. We define the following sets

$$
\begin{aligned}
N_{\theta}^{0}\left(\Delta^{m}, f\right) & =\left\{x \in w: \lim _{r} h_{r}^{-1} \sum_{k \in I_{r}} f\left(\left|\Delta^{m} x_{k}\right|\right)=0\right\} \\
N_{\theta}\left(\Delta^{m}, f\right) & =\left\{x \in w: \lim _{r} h_{r}^{-1} \sum_{k \in I_{r}} f\left(\left|\Delta^{m} x_{k}-\ell\right|\right)=0, \text { for some } \ell\right\} \\
N_{\theta}^{\infty}\left(\Delta^{m}, f\right) & =\left\{x \in w: \sup _{r} h_{r}^{-1} \sum_{k \in I_{r}} f\left(\left|\Delta^{m} x_{k}\right|\right)<\infty\right\}
\end{aligned}
$$

If we take $f(x)=x$ then we obtain the sequence spaces $N_{\theta}^{0}\left(\Delta^{m}\right), N_{\theta}\left(\Delta^{m}\right)$ and $N_{\theta}^{\infty}\left(\Delta^{m}\right)$ from the above sequence spaces.

Theorem 2.2. The sets $N_{\theta}^{0}\left(\Delta^{m}, f\right), N_{\theta}\left(\Delta^{m}, f\right)$ and $N_{\theta}^{\infty}\left(\Delta^{m}, f\right)$ are linear spaces.

Proof. We consider only $N_{\theta}\left(\Delta^{m}, f\right)$. Let $x, y \in N_{\theta}\left(\Delta^{m}, f\right)$ and $\alpha, \gamma \in C$. Then there exist positive integers K_{α} and M_{γ} such that $|\alpha| \leq K_{\alpha}$ and $|\gamma| \leq M_{\gamma}$. From the definition of f and Δ^{m} we have

$$
\begin{aligned}
& \quad h_{r}^{-1} \sum_{k \in I_{r}} f\left(\left|\Delta^{m}\left(\alpha x_{k}+\gamma y_{k}\right)-\left(\alpha \ell_{1}+\gamma \ell_{2}\right)\right|\right) \leq \\
& K_{\alpha} h_{r}^{-1} \sum_{k \in I_{r}} f\left(\left|\Delta^{m} x_{k}-\ell_{1}\right|\right)+M_{\gamma} h_{r}^{-1} \sum_{k \in I_{r}} f\left(\left|\Delta^{m} y_{k}-\ell_{2}\right|\right) \rightarrow 0, \quad r \rightarrow \infty .
\end{aligned}
$$

Thus $N_{\theta}\left(\Delta^{m}, f\right)$ is a linear space.
Lemma 2.3. [8] Let f be a modulus function and let $0<\delta<1$. Then for each $x>\delta$ we have $f(x) \leq 2 f(1) \delta^{-1} x$.

Theorem 2.4. Let f be a modulus function. Then $N_{\theta}\left(\Delta^{m}\right) \subset N_{\theta}\left(\Delta^{m}, f\right)$.
Proof. Let $x \in N_{\theta}\left(\Delta^{m}\right)$. Then we have

$$
\begin{equation*}
\tau_{r}=h_{r}^{-1} \sum_{k \in I_{r}}\left|\Delta^{m} x_{k}-\ell\right| \rightarrow 0 \quad \text { as } \quad r \rightarrow \infty, \text { for some } \ell . \tag{2.1}
\end{equation*}
$$

Let $\varepsilon>0$ and choose δ with $0<\delta<1$ such that $f(u)<\varepsilon$ for every u with $0 \leq u \leq \delta$. Then we can write

$$
\begin{aligned}
& h_{r}^{-1} \sum_{k \in I_{r}} f\left(\left|\Delta^{m} x_{k}-\ell\right|\right)= \\
& h_{r}^{-1} \sum_{k \in I_{r},\left|\Delta^{m} x_{k}-\ell\right| \leq \delta} f\left(\left|\Delta^{m} x_{k}-\ell\right|\right)+h_{r}^{-1} \sum_{\substack{k \in I_{r},\left|\Delta^{m} x_{k}-\ell\right|>\delta \\
h_{r}^{-1}\left(h_{r} \varepsilon\right)+h_{r}^{-1} 2 f(1) \delta^{-1} h_{r} \tau_{r}}} f\left(\left|\Delta^{m} x_{k}-\ell\right|\right) \leq
\end{aligned}
$$

from Lemma 2.3. Therefore $x \in N_{\theta}\left(\Delta^{m}, f\right)$.
Theorem 2.5. Let f be a modulus function, if $\lim _{t \rightarrow \infty} \frac{f(t)}{t}=\beta>0$, then $N_{\theta}\left(\Delta^{m}, f\right)=N_{\theta}\left(\Delta^{m}\right)$.

Proof. By Theorem 2.4, we need only show that $N_{\theta}\left(\Delta^{m}, f\right) \subset N_{\theta}\left(\Delta^{m}\right)$. Let $\beta>0$ and $x \in N_{\theta}\left(\Delta^{m}, f\right)$. Since $\beta>0$, we have $f(t) \geq \beta t$ for all $t \geq 0$. Hence we have

$$
h_{r}^{-1} \sum_{k \in I_{r}} f\left(\left|\Delta^{m} x_{k}-\ell\right|\right) \geq h_{r}^{-1} \sum_{k \in I_{r}} \beta\left|\Delta^{m} x_{k}-\ell\right|=\beta h_{r}^{-1} \sum_{k \in I_{r}}\left|\Delta^{m} x_{k}-\ell\right|
$$

Therefore we have $x \in N_{\theta}\left(\Delta^{m}\right)$.
In Theorem 2.5, the condition $\beta>0$ can not be omitted. For this consider the following example.

Example 2.6. Let $f(x)=\ln (1+x)$. Then $\beta=0$. Define $\Delta^{m} x_{k}$ to be h_{r} at the $\left(k_{r-1}+1\right)-$ th term in I_{r} for every $r \geq 1$ and $x_{i}=0$ otherwise. Note that $x \notin \ell_{\infty}\left(\Delta^{m}\right)$. Then we have

$$
h_{r}^{-1} \sum_{k \in I_{r}} f\left(\left|\Delta^{m} x_{k}\right|\right)=h_{r}^{-1} \ln \left(1+h_{r}\right) \rightarrow 0, \quad \text { as } \quad r \rightarrow \infty
$$

and so $x \in N_{\theta}\left(\Delta^{m}, f\right)$, but

$$
h_{r}^{-1} \sum_{k \in I_{r}}\left|\Delta^{m} x_{k}\right|=h_{r}^{-1} h_{r} \rightarrow 1, \quad \text { as } \quad r \rightarrow \infty,
$$

and so $x \notin N_{\theta}\left(\Delta^{m}\right)$.
Theorem 2.7. Let $m \geq 1$ be a fixed integer, then
(i) $N_{\theta}^{0}\left(\Delta^{m-1}, f\right) \subset N_{\theta}^{0}\left(\Delta^{m}, f\right)$;
(ii) $N_{\theta}\left(\Delta^{m-1}, f\right) \subset N_{\theta}\left(\Delta^{m}, f\right)$;
(iii) $N_{\theta}^{\infty}\left(\Delta^{m-1}, f\right) \subset N_{\theta}^{\infty}\left(\Delta^{m}, f\right)$;
and the inclusions are strict.
Proof. The proof of the inclusions follows from the following inequality

$$
h_{r}^{-1} \sum_{k \in I_{r}} f\left(\left|\Delta^{m} x_{k}\right|\right) \leq h_{r}^{-1} \sum_{k \in I_{r}} f\left(\left|\Delta^{m-1} x_{k}\right|\right)+h_{r}^{-1} \sum_{k \in I_{r}} f\left(\left|\Delta^{m-1} x_{k+1}\right|\right)
$$

To show the inclusions are strict, let $\theta=\left(2^{r}\right)$ and $x=k^{m}$. Then $x \in$ $N_{\theta}^{\infty}\left(\Delta^{m}, f\right)$, but $x \notin N_{\theta}^{\infty}\left(\Delta^{m-1}, f\right)$. If $x=\left(k^{m}\right)$, then $\Delta^{m} x=(-1)^{m} m$! and $\Delta^{m-1} x_{k}=(-1)^{m+1} r!\left(k+\frac{(m-1)}{2}\right)$.
Theorem 2.8. Let $\theta=\left(k_{r}\right)$ be a lacunary sequence. If $1<\liminf _{r} q_{r} \leq$ $\lim \sup _{r} q_{r}<\infty$, then $\left|\sigma_{1}\right|\left(\Delta^{m}, f\right)=N_{\theta}\left(\Delta^{m}, f\right)$, where

$$
\left|\sigma_{1}\right|\left(\Delta^{m}, f\right)=\left\{x \in w: \frac{1}{n} \sum_{k=1}^{n} f\left(\left|\Delta^{m} x_{k}-\ell\right|\right)=0, \text { for some } \ell\right\}
$$

Proof. Suppose that $\liminf _{r} q_{r}>1$, then there exists $\delta>0$ such that $q_{r}=$ $\frac{k_{r}}{k_{r-1}} \geq 1+\delta$ for all $r \geq 1$. Furthermore we have $\frac{k_{r}}{h_{r}} \leq \frac{(1+\delta)}{\delta}$ and $\frac{k_{r-1}}{h_{r}} \leq \frac{1}{\delta}$, for all $r \geq 1$. Then we may write

$$
\begin{align*}
& \frac{1}{h_{r}} \sum_{i \in I_{r}} f\left(\left|\Delta^{m} x_{i}\right|\right)=\frac{1}{h_{r}} \sum_{i=1}^{k_{r}} f\left(\left|\Delta^{m} x_{i}\right|\right)-\frac{1}{h_{r}} \sum_{i=1}^{k_{r-1}} f\left(\left|\Delta^{m} x_{i}\right|\right) \tag{2.2}\\
& \quad=\frac{k_{r}}{h_{r}}\left(k_{r}^{-1} \sum_{i=1}^{k_{r}} f\left(\left|\Delta^{m} x_{i}\right|\right)-\frac{k_{r-1}}{h_{r}}\left(k_{r-1}^{-1} \sum_{i=1}^{k_{r-1}} f\left|\Delta^{m} x_{i}\right|\right)\right)
\end{align*}
$$

Now suppose that $\lim \sup _{r} q_{r}<\infty$ and let $\varepsilon>0$ be given. Then there exists j_{0} such that for every $j \geq j_{0}$

$$
A_{j}=\frac{1}{h_{j}} \sum_{i \in I_{j}}\left[f\left(\left|\Delta^{m} x_{i}\right|\right)\right]<\varepsilon
$$

We can also choose a number $M>0$ such that $A_{j} \leq M$ for all j. If $\lim \sup _{r} q_{r}<\infty$, then there exists a number $\beta>0$ such that $q_{r}<\beta$ for every r. Now let n be any integer with $k_{r-1}<n<k_{r}$. Then

$$
\begin{aligned}
n^{-1} \sum_{i=1}^{n} f\left(\left|\Delta^{m} x_{i}\right|\right) \leq & k_{r-1}^{-1} \sum_{i=1}^{k_{r}} f\left(\left|\Delta^{m} x_{i}\right|\right) \\
= & k_{r-1}^{-1}\left\{\sum_{i \in I_{1}} f\left(\left|\Delta^{m} x_{i}\right|\right)+\ldots+\sum_{i \in I_{r}} f\left(\left|\Delta^{m} x_{i}\right|\right)\right\} \\
= & k_{r-1}^{-1}\left\{\sum_{j=1}^{j_{0}} \sum_{i \in I_{j}} f\left(\left|\Delta^{m} x_{i}\right|\right)+\sum_{j=j_{0}+1}^{r} \sum_{i \in I_{j}} f\left(\left|\Delta^{m} x_{i}\right|\right)\right\} \\
\leq & k_{r-1}^{-1}\left\{\sum_{j=1}^{j_{0}} \sum_{i \in I_{j}} f\left(\left|\Delta^{m} x_{i}\right|\right)+\varepsilon\left(k_{r}-k_{j_{0}}\right) k_{r-1}^{-1}\right\} \\
= & k_{r-1}^{-1}\left\{h_{1} A_{1}+h_{2} A_{2}+\ldots+h_{j_{0}} A_{j_{0}}\right\} \\
& \quad+\varepsilon\left(k_{r}-k_{j_{0}}\right) k_{r-1}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \leq k_{r-1}^{-1}\left(\sup _{1 \leq i \leq j_{0}} A_{j}\right) k_{j_{0}}+\varepsilon\left(k_{r}-k_{j_{0}}\right) k_{r-1}^{-1} \\
& <M k_{r-1}^{-1} k_{j_{0}}+\varepsilon \beta
\end{aligned}
$$

which yields that $x \in\left|\sigma_{1}\right|\left(\Delta^{m}, f\right)$.

References

[1] J.S. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. (32) (1989), 194-198
[2] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow J. of Math. (21) (1995), 377-386
[3] A.R. Freedman, J.J. Sember and M. Raphael, Some Cesaro-type summability spaces, Proc. London Math. Soc. (37(3)) (1978), 508-520
[4] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. (24) (1981), 169-176
[5] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philo. Soc. (100) (1986), 161-166
[6] E. Malkowsky and E. Savas, Some λ-sequence spaces defined by a modulus, Archivum Math. (36) (2000), 219-228
[7] H. Nakano, Concave modulars, J. Math. Soc. Japan (5) (1953), 29-49
[8] S. Pehlivan and B. Fisher, Lacunary strong convergence with respect to a sequence of modulus functions, Comment Math. Univ. Carolin (36) (1995), 69-76
[9] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. (25) (1973), 1973-1978
[10] B.C. Tripathy, M. Et and S. Mahanata, On a class of generalized lacunary difference sequences defined by Orlicz function (Submitted).

Department of Mathematics, Faculty of Science and Arts, Firat University, 23119 Elazig, TÜRKÍYE

E-mail address: rcolak@firat.edu.tr

[^0]: 1991 Mathematics Subject Classification. Primary: 40C05, Secondary: 46A45 .
 Key words and phrases. Difference sequence, lacunary sequence, modulus function.

