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Abstract
The last few years have seen a steady rise in the oc-
currence and sophistication of distributed denial of ser-
vice (DDoS) attacks. Volume-based attacks aggregate
at a target’s access router, suggesting that (i) detection
and mitigation is best done by providers in their net-
works; and (ii) attacks are most readily detectable at ac-
cess routers, where their impact is strongest. In-network
detection presents a tension between scalability and ac-
curacy. Specifically, accuracy of detection dictates fine
grained traffic monitoring, while performing such mon-
itoring for the tens or hundreds of thousands of access
interfaces in a large provider network presents serious
scalability issues. In this work we investigate the design
space for in-network DDoS detection and present a trig-
gered, multi-stage approach that addresses both scalabil-
ity and accuracy. Each successive stage can access finer
resolution data sets, and can perform deeper, more expen-
sive diagnostics if required. We argue that this approach
is applicable to any economically feasible, large scale,
DDoS detection system. Our second contribution is the
design and implementation of an operational instance of
our triggered, multi-stage approach. The attractiveness
of this system lies in the fact that it makes use of data
that is readily available to an ISP. Specifically, SNMP-
based anomalies trigger the collection of Netflow data
for detailed attack analysis. Aggregation and compres-
sion on the flow data is used to generate alarms concern-
ing possible attack targets. We evaluate the system using
SNMP and Netflow data collected from a large tier-1 ISP
and compare the results with alarms generated by a com-
mercial DDoS detection system. Our triggered approach
achieves high accuracy with fairly modest processing re-
quirements.

1 Introduction

Targeted Denial of Service and Distributed Denial of Ser-
vice attacks are continuously on the rise in the last few

years. Armies of botnets comprised of compromised
hosts can be utilized to launch attacks against specific In-
ternet users such as enterprises, campuses, web servers,
and homes. In this paper, we focus on an important class
of DDoS attacks, namely, brute force flooding attacks.
We observe that access links are typically the bottleneck
link for most Internet users, and that an attack can eas-
ily send sufficient traffic to a user to exhaust its access
link bandwidth capacity or overload the packet handling
capacity of the routers on either end of the link [7].

Brute force flooding attacks are easy for attackers to
launch but are difficult for targeted users to defend, and
therefore represent a clear and present threat to Internet
users and services. Given the limited capacity of most ac-
cess links on the Internet, a successful DDoS attack may
only involve relatively few attack sources. In addition,
the size of some reported attack networks [25] suggests
that a determined attacker might be capable of overload-
ing even the largest access links. From a user’s perspec-
tive, a bandwidth attack means itsin-boundcapacity is
exhausted by the incoming attack. Given that a user of-
ten controls only one end of the access link, for exam-
ple via a Customer Equipment or CE router (see Fig. 1,
while its ISP controls the other end (referred to as C-PE,
or Customer-Provider Edge router in Figure 1), once an
access link is overloaded there is precious little that the
target of the attack can do without the assistance of its
ISP. In fact, even automated DDoS related mechanisms
originating from the customer side of an access link be-
comes useless once the access link itself is overloaded.

For these brute force bandwidth attacks, we therefore
reason that a very promising architecture is one that per-
forms in-network detection and mitigationof DDoS at-
tacks by the service provider. With respect to mitigation,
since it isupstreamof users’ access links, an ISP may
defend against bandwidth attacks by deploying appropri-
ate network filters at network routers to drop malicious
packets, or alternatively using routing mechanisms to fil-
ter packets through scrubbers [1]. With respect to de-
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Figure 1: Components of a Provider Network

tection, the key challenge is to come up solutions that
satisfy multiple competing goals of scalability, accuracy,
and cost-effectiveness. Specifically, accurate detection
demands fine grained traffic monitoring, while perform-
ing such detection and monitoring for the tens or hun-
dreds of thousands of access interfaces in a large provider
network presents serious scalability and cost issues.

In this paper, we present a general framework for a trig-
gered multi-stage infrastructure for detection and diagno-
sis of brute-force flooding Denial of Service attacks. The
first level of the multi-stage approach consists of a low
cost anomaly detection mechanism that can provide in-
formation to traffic collectors and analyzers to reduce the
search space for traffic analysis in both temporal and spa-
tial dimensions. Successive levels of the triggered frame-
work, invoked on-demand and thereforemuch less fre-
quently, then operate on data streams of progressively
increasing granularity (e.g., flow level or packet level
traces), and perform detection and diagnostic methods of
increasing computational cost and complexity. This ar-
chitecture fits well with the hierarchical and distributed
nature of the network. The first stage requires simple
enough processing capability to be implemented in dis-
tributed fashion for all customer-facing interfaces. The
later processing capabilities can be more centralized and
thus shared by many edge routers.

We have designed and implemented an operational
DDoS detection system based on the triggered multi-
stage architecture within a tier-1 ISP. Our system makes
use of two sources of data: SNMP and Netflow, both
of which are readily available in commercial routers to-
day. We adopt a two-stage approach in our system. In
the first stage, we detect volume anomalies using sim-
ple low-cost SNMP data feeds such as packets per sec-
ond. These anomaly incident reports are then used to
trigger flow-collectors that collect Netflow records for
the appropriate routers, interfaces, and time periods. We
then perform automated analysis of the flow information
using uni-dimensional aggregation and clustering tech-
niques. There are advantages of using only data sources
that are readily available. For example, given the ubiq-

uitous availability of SNMP data for all router interfaces,
our system is able to perform the first stage analysis di-
rectly on traffic rates of all customer-facing interfaces,
which, by their bottleneck nature, are those most affected
by attacks. As a comparison, many commercial DDoS
offerings, including the one discussed later in this paper,
deploy monitoring solutions in the core or at the peer-
ing edges in order to minimize the number of monitoring
devices (thus cost) required. Such schemes are likely to
miss smaller attacks which, while large relative to the tar-
geted interface, are small amongst aggregate traffic in the
core. In contrast, our system has ubiquitous monitoring
but no additional cost, and can perform anomaly detec-
tion considering both traffic volume and link speed for all
customer-facing interfaces.

There are two key contributions of our work. First,
we propose, design and evaluate a triggered infrastructure
that meets the constraints of operational cost and com-
plexity, and also substantially raises the bar in terms of
detection and diagnostic capabilities with respect to DoS
attacks. Putting the pieces together to build such an oper-
ational system is a non-trivial task. Second, we believe
that the system that we have designed can be used as
a well-documented, vendor-independent benchmark, to
quantify the extent and magnitude of attacks, using data
that is readily available to most providers.

We review the related work in Section 2 before de-
scribing our architecture for scalable DDoS detection in
Section 3. Section 4 describes the specific implementa-
tion based on collection of Netflow records triggered by
SNMP anomalies. We evaluate the performance of the
system in Section 6, demonstrating both the efficacy and
the operational feasibility. We conclude in Section 7.

2 Related Work

In the context of triggered measurements ATMEN [14]
provides a general communication framework. Our work
could utilize such a framework if available, however, AT-
MEN does not address the detection of DDoS attacks.

The spectrum of anomaly detection techniques ranges
from time-series forecasting [5, 24] and signal process-
ing [4], to network wide approaches for detecting and di-
agnosing network anomalies [15, 32]. These approaches
are intended for detecting coarse-grained anomalies, and
do not necessarily provide the diagnostic capability re-
quired for large-scale DDoS detection.

Also related to our multi-stage approach are techniques
for fine grained traffic analysis, using flow or packet-
header data. Techniques for performing detailed multi-
dimensional clustering at scale [9, 30] to generate con-
cise traffic summary reports, are of particular interest to
attack detection. Other solutions for online traffic anal-
ysis use either optimized data structures and/or counting
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algorithms [33, 13, 10] for detecting heavy-hitters.
Moore et al [21], detect attacks utilizing the fact that

many types of attacks generatebackscattertraffic unin-
tentionally. Network telescopes and honeypots [29] have
also been used to track botnet and scan activity. Some
of the early DoS attacks typically used source address
spoofing to hide the sources of the attacks, and this mo-
tivated a large body of literature on IP traceback. Pro-
posed solutions include packet marking [26, 23], hash-
based traceback [27], and reverse path flooding [6].

There are also several proprietary DDoS detection sys-
tems available [3, 19]. In our evaluation, we compare the
set of alarms generated by LADS with those generated by
a commercial system deployed at a Tier-1 ISP.

There are several recent proposals for mitigating DoS
attacks. Many solutions rely on infrastructural sup-
port for either upstream filtering [17], or using over-
lays [12, 28]. Recent work also focuses on re-designing
networks providing a framework of capabilities to pre-
vent flooding attacks [31, 2]. Several proposals [11, 22]
focus on end-system solutions combining specific types
of Turing tests and admission control to enable servers to
deal with flooding attacks and flash crowds gracefully.
Mirkovic et al. [20] provide an excellent taxonomy of
DDoS attacks and defenses.

3 Scalable In-Network DDoS Detection

Having argued for the necessity of in-network DDoS de-
tection (and mitigation) in Section 1, we now consider the
implications of this approach for building a detection sys-
tem in a large provider network. Like any anomaly detec-
tion system the main requirement for LADS is accuracy,
i.e., having a low false alarm and miss rate. The sec-
ond requirement is timeliness: to be of practical value a
detection system should provide near real time detection
of attacks to allow mitigation mechanisms to be applied.
Third, to be useful a detection system should cover all (or
most) customers of a provider. The number of customers
could range from hundreds for a very small provider to
hundreds of thousands for large providers.

These requirements have significant system scalability
implications: (i) Is it feasible to collect detailed enough
information to allow attack detection on a per-customer
basis? (ii) Is it feasible to perform in timely fashion the
processing involved with the detection on a per-customer
basis? Next we present our triggered multistage DDoS
detection approach and explore several possible imple-
mentation alternatives.

3.1 Triggered Multistage DDoS Detection

There are two sources of complexity and problems of
scale in our context:CollectionandComputation. The

collection complexity arises from the fact that data
streams have to be selected from monitoring points
(links/routers), and either transported to an analysis en-
gine (possibly centralized) or provided as input to local
detection modules. The computation complexity arises
from the algorithms for analyzing the collected data, and
the sheer size of the datasets. We observe that not all
detection algorithms have the same complexity: the dif-
ferences arise both from the type of data streams they op-
erate on and the type of analysis they attempt to perform.

As a simple example, consider two types of data
streams that are available from most router implementa-
tions: simple traffic volume statistics that are typically
transported using SNMP, and Netflow like flow-records.
From an operational perspective, enabling the collection
of the different data sets on routers incurs significantly
different costs. There are three main cost factors: (i)
the memory/buffer requirements on routers, (ii) the in-
crease in router load due to the monitoring modules, and
(iii) bandwidth consumption caused by transporting the
measured data. The SNMP data has coarse-granularity
and the typical analysis methods that operate on these
are lightweight time-series analysis methods [5, 24, 4].
The Netflow data contains very fine grained information,
and as a result is a much larger dataset (in absolute data
volume). It is easy to see that the flow data does permit
the same kind of volume based analysis that can be done
with the SNMP data set by simply aggregating the flow
data into traffic counts. However more powerful analysis
can extract greater benefit of the finer-granularity data us-
ing sophisticated algorithms [9, 30], for culling out traffic
patterns that are “interesting”.

The presence of heterogeneous data sources which of-
fer varying degrees of detection power at different com-
putation and collection costs raises interesting design
questions. At one extreme we could envision running
sophisticated anomaly detection algorithms on the fine
granularity data (i.e., Netflow) on a continuous basis. The
other extreme in the design space would be an entirely
light-weight mechanism that operates only on the coarse-
granularity data. Both these extremes have their potential
pitfalls. The light-weight mechanism incurs very little
computational cost, but potentially has to make compro-
mises on the enhanced diagnostic capabilities that the fine
grained analysis provides. A key observation in this re-
gard is that close to the attack target, e.g., at the customer
access link, detection of brute force flooding attacks be-
come reasonably easy, although it might generate false
alarms, and lack the ability to generate diagnostic attack
reports of use to operators. The heavy-weight mecha-
nism, on the other hand, incurs a much higher collection
and computation cost. Also such mechanisms potentially
operate in anunfocusedmanner, i.e., without knowledge
about the seriousness of the incidents that actually need
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Figure 2: Triggered Multistage DDoS Detection

operators’ attention. Operating in such an agnostic set-
ting may in fact be as detrimental to the accuracy as the
false positive rate may be intolerably high.

Our work attempts to find a operationally convenient
space between these extremes. The key idea in our ap-
proach is to usepossibleanomalous events detected in
coarse grained datacloseto the attack target, tofocusthe
search for anomalies in more detailed data. Specifically
we propose a triggered multistage detection mechanism
in which the successive stages can have access to and op-
erate on data streams of increasing granularity. Potential
anomalous events in earlier stages serve as triggers for
later stages to selectively collect more fine grained data
on which more sophisticated anomaly detection can be
performed. This approach is depicted in Figure 2. Intu-
itively the triggered approach helps focus our resources
intelligently, by performing inexpensive operations early
on, while allowing for sophisticated, data and compute
intensive tasks in the later stages of the multi-stage trig-
gered approach to get better incident diagnostics.

3.2 Design Alternatives

While our approach generalizes to any number of detec-
tion stages, the system described in this paper is limited
to two stages. Specifically, for the lightweight anomaly
detection we make use ofvolume anomaly detectionon
SNMP data. For the second stage we use a combination
of rule-based detection and automated uni-dimensional
clusteringon sampled Netflow data. In this section we
briefly describe our selected methods as well as other po-
tential alternatives.

3.2.1 Lightweight Anomaly Detection

As the name suggests the key constraint here is that the
method not require significant processing so that it can be
applied to a large number of interfaces. Since the output
of this stage triggers more detailed analysis in the second
stage, false positives are less of a concern than false neg-
atives. In other words, a false positive from the first stage
will only cause more unnecessary work to be done in the
second stage (and hence not necessarily much of a con-
cern for the operator who only sees the final alarms after
the second stage), whereas a false negative would cause
an attack to be missed altogether.

Volume anomaly detection: Traffic anomalies on vol-
ume and link utilization data available from egress inter-
faces, are often good indicators of flooding attacks, and
hence can be used to trigger further investigation. Metrics
of interest, that are available from most current router im-
plementations, include the traffic volume (either in bytes
per second or packets per second), router CPU utiliza-
tion, and packet drop counts. Our implementation uses
volume anomalies on the packets per second and is de-
scribed in detail in Section 4.1. The basic idea behind
our approach involves the use of a time series of link uti-
lization to model the expected future load on the link and
to then detect significant deviations from this expected
behavior.

Using traffic distribution anomalies: Lakhina et al. [16]
discuss the use of distributions, specifically using the en-
tropy of distributions for diagnosing anomalies in net-
works. The key idea here is that many common attacks
can be identified by substantial changes in specific distri-
butions, such as the traffic observed on source and desti-
nation addresses and ports. While the use of distribution
information in their work was primarily to augment vol-
ume anomaly detection, we can use the distributions as a
trigger for further analysis. The use of such more infor-
mative metrics for diagnosis, may not necessarily reduce
the collection cost, since computing these metrics may in
fact need access to very fine-grained traffic information,
but they can potentially reduce the computation cost.

3.2.2 Focused Anomaly Detection

Even though our staged approach will reduce the search
space for the second stage detection significantly, the
scale of the problem is such that computational overhead
remains a concern. Of course accuracy of detection is the
other main criteria for this stage.

Rule-based detection:It is well-documented that most
common denial of service attacks fall under a small num-
ber of categories, that can be easily captured with a small
set of rules for detection. For example, a large number
of ICMP ECHO or TCP SYN messages going to a single
destination IP address is often indicative of a flooding at-
tack. Another option is to usebotnet blackliststo check
if the set of source addresses that occur frequently in the
traffic belong to known compromised machines (referred
to as zombies) used for launching attacks. Rule-based ap-
proaches have near-term appeal since they typically have
low false-positive rates, even though their detection ca-
pabilities are limited to the set of attacks spanned by the
rule-sets.

Automated Uni-dimensional clustering: Our specific
implementation for the second stage involves the use of
uni-dimensional functionality of hierarchical aggregation
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algorithms. Conceptually, uni-dimensional clustering at-
tempts to discover heavy-hitters along source/destination
prefixes, using some thresholding scheme to compress re-
ports along the prefix hierarchy. Since the computational
overhead with performing uni-dimensional aggregation
is fairly low, and the functionality provided is sufficient
for investigating most known types of DDoS attacks we
choose this approach. Our implementation, which can
be viewed as a combination of uni-dimensional cluster-
ing and rule-based approaches, is described in detail in
Section 4.2.

Automated Multi-dimensional clustering: Multi-
dimensional clustering provide another alternative for the
second stage detection [9, 30]. The basic theme of these
approaches is to abstract the standard IP 5-tuple (sr-
caddr, dstaddr, protocol, srcport, dstport) within multi-
dimensional clustering techniques to report traffic pat-
terns of interest. Typically, the size and complexity of the
generated clusters can be reduced substantially by tuning
the technique to report only interesting clusters, those that
either have a high volume or those that have a significant
deviation from an expected norm1.

3.3 Benefits and Pitfalls

In this section we discuss some of the benefits and poten-
tial pitfalls of our approach. We first presents the benefits
of our triggered approach.

Detecting high-impact attacks– Since our triggers are
generated close to the customer egresses, we are more
likely to detect attacks that actually impact the end-
user. Note that this is in contrast to more centralized ap-
proaches, even those that work on more fine-grained data
feeds2. For example, by monitoring SNMP byte counts
on a T1 access link it is straight forward to determine
when the link is being overloaded. Looking for the same
information from a different vantage point, e.g., at a set
of major peering links is a much more challenging task.
Not only could the traffic flowing towards the T1 inter-
face be spread across many such peering interfaces, but
the traffic will be hidden inside an overwhelming amount
of other traffic on the peering links.
Efficient data collection – The fact that our approach
works with different data sources of differing granular-
ity also has the advantage of efficient data collection.
Specifically, for our implementation where we use SNMP
data for the first stage detection, this data is lightweight

1Despite this tunability, our experimentation with the publicly avail-
able multi-dimensional clustering tool, Autofocus [9], showed that this
approach was still too compute intensive for the volume of data to be
analyzed.

2Due to cost and operational constraints commercial vendor detec-
tion systems are typically constrained to operate in such a centralized
model, using feeds near the core of the network.

enough that it can be collected on the access routers with-
out imposing significant load. The Netflow data, on the
other hand, can be more efficiently collected at more
powerful core routers so that access routers are not bur-
dened with this more heavy weight process, especially
when the access router is under attack.
Reduced computation cost– We use high cost opera-
tions and expensive algorithms in a focused manner, and
also significantly reduce the data volumes that the expen-
sive operations need to handle.
Low operational complexity – The different stages
are fairly simple and easy to understand, and vendor-
independent. Managing the operation should be really
simple. More importantly, our implementation works
with data streams that are already available to most
provider networks, and deploying our design does not in-
cur any overhead in terms of instrumenting new monitor-
ing capabilities or deploying special hardware for collec-
tion and analysis.
Near real-time incident reports – Since the computa-
tional complexity is significantly reduced, we can oper-
ate the system in near real-time, without dependence on
specialized hardware or data structure support.
Flexibility – Our approach is flexible in two aspects. First
we can easily accommodate other data streams as and
when they are available. Second, within each stage the
performance and algorithms can be optimized to reach
desired levels. For example, our first stage triggers cur-
rently use simple time-series volume anomaly detection.
It is fairly easy to augment this step with other data
streams, and traffic statistics, or alternatively use other
anomaly detection methods for the same data stream.

In our triggered approach, there are three potential pit-
falls. The first pitfall is one relating to possible unde-
sirable interactions between the trigger stage and the de-
tailed analysis stage. While our approach allows for each
component to be optimized in isolation, optimizing the
overall system performance would require a detailed un-
derstanding of the interfaces and interactions between
different components. Managing and optimizing such
multi-component systems is inherently complicated – we
believe our specific implementation is based on a clean
set of interfaces, are sufficiently decoupled, and hence
have very few undesirable interactions.

The second, more serious problem, is one of misses
due to the triggered approaches. While the triggers re-
duce the operational complexity, they may be doing so
by compromising the sensitivity of the system, i.e., by in-
creasing the false negative rate. Attacks that can cause the
greatest disruption in terms of traffic engineering, routing
etc., are volume attacks, which will invariably show up as
volume anomalies on the egress interfaces closest to the
customers. Since our focus is on such flooding attacks,
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there is almost no impact on the false negative rate. By
only looking at volume based attacks, we are substan-
tially reducing the search space and the false alarm rate,
and the benefits we gain in terms of operational simplicity
and reduced false alarm rate greatly outweigh the negli-
gible decrease in the detection sensitivity.

The last potential pitfall, is related to the ability of the
monitoring infrastructure to sustain data collection dur-
ing attacks. While collecting low-volume SNMP feeds is
not a serious overhead, collecting flow records at the cus-
tomer egresses and transporting them back to a central-
ized processing engine is clearly infeasible during vol-
ume floods, since the access link is already overloaded,
and reporting large volumes of flow records can only
worsen the access link congestion. Large providers typ-
ically deploy flow collectors at core network elements,
which are usually well-provisioned, and they can subse-
quently map the flow records to the appropriate egresses
using routing and address space information. Thus, there
will be be no perceivable reduction in the data quality and
collection capabilities during attacks.

4 Implementation

We implemented LADS as anoff-line DDoS detection
system within a tier-1 ISP. The described implementation
works on the real data of the tier-1 ISP and is only clas-
sified asoff-line in that the data provided to the system
might be substantially delayed and, therefore, is not suit-
able for generating alarms in real time. We are actively
working on deploying the system in anon-lineenviron-
ment in which real-time data feeds are available, and our
performance evaluation Section 6.1 indicate that our de-
sign and implementation will be adept to the task of on-
line monitoring.

In our implementation we use SNMP data to compute
our low level triggers and Netflow data to decide if the
observed traffic indicates a potential attack. We describe
each of the components in the remainder of this section.

4.1 Lightweight Anomaly Detection:
SNMP

The first stage of the detection system, uses SNMP link
utilization data to report volume anomaly triggers. Fig-
ure 3 provides a conceptual overview of our SNMP
anomaly detection module. Specifically, we are inter-
ested in flow anomalies on egress interfaces that are as-
sociated with customer networks, since volume based
DDoS attacks will be most visible at the egress links of
the customers under attack. The SNMP data is being col-
lected on an on-going basis and contains CPU and link
loads (in terms of octet and packet) counts. Since most
DDoS attacks use small packets [18] we use the egress
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Figure 3: Overview of SNMP Anomaly Detection

TIMEDOMAIN MODELING(TS, W, N)

� TS is the training set
� W is the number of weeks
� N is the number of data points per week

1 for i← 1 To N
do

2 P (i)← MEAN(TS(1 : W, i))
3 P ′ ← DENOISE(P )
4 V (i)← VARIANCEMODEL(TS, P ′, W, N)
5 return P’,V

Figure 4: Time Domain Modeling Procedure

packet counts (i.e., with reference to Figure 1, the C-PE
interface towards the customer) to detect volume anoma-
lies.

To keep the operational, storage and computation re-
sources low we devised a simple trigger algorithm with
good performance (as we will show in Section 6). Con-
ceptually, the trigger algorithm uses a prediction model
which indicates an expected mean and an expected vari-
ance for the traffic time series, and assigns a deviation
score, in terms of the number of standard deviations away
from the mean that the given observation is found to be.
Borrowing some formal notation from [24] one can think
of the traffic time series, denoted byT (t) as being com-
posed of three components,T (t) = P (t) + V (t) + A(t),
where P (t) represents the predicted mean traffic rate,
V (t) represents the stochastic noise that one expects for
the traffic, andA(t) is the anomaly component.

ANOMALY DETECTION(T, TS, W, N)

� T is the new time series
� TS is the historical time series
� W is the number of weeks for building model
� N is the number of data points per week

1 (P, V )← TIMEDOMAIN MODELING(TS, W, N)
2 for i← 1 To N

do
3 D(i)← (T (i)− P (i))/V (i)
4 Do TEMPORALCLUSTER(D, αtrigger , αadd, keepalive)
5 Use filtering rules on clustered alarms

Figure 5: Outline of overall SNMP anomaly detection
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Our algorithm, depicted in Figure 4, works as follows.
For each customer interface, we take the lastk weeks of
data. We build an empirical mean-variance model using
these by simple point-wise averaging, assuming a basic
periodicity of one week. For example, for estimating the
expected traffic for the 5 minute intervalFri 9:00-9:05
am, we take thek past Fridays and average of the ob-
servations for this time duration. Next, as the training
data might contain DDoS attacks and is finite in size we
perform a de-noising step using a Fourier transform from
which we pick the top 50 energy coefficients. In the final
step, for each point per week (e.g., Fri 9:00-9:05, Mon
21:00-21:05), the algorithm determines the variance over
the lastk observed data points with respect to the de-
noised mean model.

The implicit assumption in the method is that the basic
periodicity of the traffic data is one week, which has been
used in other traffic analysis on such datasets [24].

The real-time anomaly detection is then performed us-
ing the algorithms described in Figure 5 and Figure 6. At
a high level we use the estimated mean and the deviation
time series to obtain deviation scores for the new obser-
vations. We use a natural definition of the deviation as
D(t) = (T (t)− P (t))/V (t), which represents the num-
ber of standard deviations away from the prediction that
the observed data point is. Once the deviation scores have
been computed, we perform a simple heuristic temporal
clustering procedure to report anomalous incidents to the
flow collector and analyzer. Temporal clustering can re-
duce the load on the collection mechanism by reducing
the number of queries that we issue to the collector. Such
a load reduction is indeed significant, as many attacks last
quite long [18]. The clustering method operates based on
two pre-defined deviation score thresholds, the event trig-
ger threshold and the event extension threshold, as well
as a keep alive time. The actual clustering procedure is
simple: it tries to extend the current active event, if the
new observation has a deviation score that exceeds the
event extension thresholdαadd, within a time duration of
keepalive, since the start of the event. If there is no ac-
tive ongoing event, it creates a new event if the observed
deviation score is higher than the event trigger threshold.

After detecting the SNMP anomalies, we perform ad-
ditional filtering steps to allow the operators to remove
known or uninteresting anomalies. In particular we per-
form the following steps.

• Absolute volume threshold – This threshold is used
to remove all SNMP alarms which do not have
an average bandwidth of more than a pre-defined
threshold. This allows the operator to specify a min-
imum attack rate of interest, to reduce the overall
workload for the flow collector.
• SNMP measurement anomalies – We remove

anomalies in the SNMP data caused by router re-

sets and SNMP implementation bugs. In particular
we remove the first SNMP counters after a reset as
well as measurements which indicate a bandwidth
utilization of more then the physical bandwidth3.

At the end of the SNMP anomaly stage, we receive a
set of alarms, specified by the egress interface on which
the anomaly was observed, and the start and timestamps
of the anomaly incident. These alarms are then used to
trigger Netflow collectors for detailed investigation.

TEMPORALCLUSTER(D, αtrigger , αadd, keepalive)

� D is the deviation score time series
� αtrigger is trigger deviation score threshold
� αadd is the score threshold for extending an event
� keepalive is the time for which an event is active
� The output is the set of alarms

1 for i← 1 To N
� Flag keeps track whether there is an ongoing alarm
� T is the current time
� ST keeps track of event times

do
2 if (Flag = TRUE)

then
3 if D(i) ≥ αadd

4 then Extend the event
� E is the current event

5 ∆T ← T − ST (E)
6 if ∆T ≥ keepalive
7 then Flag ← FALSE

else
8 if D(i) ≥ αtrigger

then
9 Create a new event E’

10 Flag ← TRUE
11 ST (E′)← T
12 Return alarms with durations and scores

Figure 6: Temporal clustering to cluster deviation scores

4.2 Focused Anomaly Detection: Netflow

The second stage of our DDoS detection system analysis
the Netflow data as shown in Figure 7. At a high level we
perform the following steps for each SNMP alarm:

• Collect all Netflow records for the egress interface
indicated by the first stage trigger.
• Build three Netflow record sets containing

– Records with the TCP SYN flag set (SYN set)
– Records with the TCP RST flag set (RST set)
– Records for the ICMP protocol (ICMP set)

3Even though the number of such events is low, they do occur daily
on a large network.

7



UNI

AGGREGATION

DIMENSIONA L

ALL FLOWS

SYN FLOWS

ICMP FLOWS

RST FLOWS

REPORTS

ALARM

SPECIFICITY
CUSTOMER INTERFACE

IP PREFIX RANGE

DURATION & RATE

FLOW 

PARTITIONING

COLLECTION
AND

THRESHOLD, 

SNMP
ALARMS

Figure 7: Incident diagnosis using flow data

– All flow records

• For each set report the traffic volumes for all
destination prefixes with a prefix length larger than
a /28, use the uni-dimensional clustering algorithm
described in Figure 8. Generate a final bandwidth
attack alarm if the all-set has a /28 which carries
more traffic then the configurable Bandwidth Attack
Threshold. Generate final SYN/ICMP/RST alarm
if the corresponding SYN/ICMP/RST flow data
indicate a IP prefix range which carries more
traffic than the configurable SYN/ICMP/RST
Threshold. Instead of using a fixed rate threshold
across all alarms, we use a duration-adaptive rate
threshold, that attempts to balance the sensitiv-
ity between high intensity low duration attacks,
and relatively lower intensity but higher duration
attacks. This can be achieved by using a simple
depreciation approach, so that the rate threshold
is a monotonically decreasing function of the
alarm duration. Our current implementation uses
a geometrically decreasing depreciation, where
the average rate for longer duration events will
be generated according to the following formula
Rate(Duration) = Rate(BaseDuration) ∗
DecreaseFactorDuration/BaseDuration, where
the BaseDuration is 300 seconds, and the
DecreaseFactor is set to0.95.

The procedure for uni-dimensional clustering is de-
scribed in Figure 8. There are two steps of the uni-
dimensional clustering: Aggregation and Reporting. The
aggregation step simply counts the total traffic volume
received by each distinct destination prefix, larger than
a minimum prefix-range size, denoted byMinPrefix.
Since we are interested in DDoS attacks on customer
egress links, we can afford to perform the traffic ag-
gregation on smaller prefix ranges, than would be the
case for more general purpose traffic analysis applica-
tions [9, 33, 30]. Thus the compute and memory over-
head during the aggregation phase is upper-bounded by
the size of the prefix range size we are interested in. For
example, we are only interested in the traffic intended for
prefixes larger than a /28, which can be potential attack

targets. The next step is theReportingstage, which uses
the aggregated counters to decide whether to report the
particular prefix range as being a potential attack target.
The reporting step we use shares conceptual similarity
with the work of Estan et al. [9] and Singh et al. [33], to
generate traffic summaries indicating heavy-hitters. In-
tuitively, we generate reports on larger prefixes, if they
carry substantially more traffic than a previously reported
smaller prefix range, and if they are above the absolute
volume threshold. We scale the absolute volume thresh-
old according to the size of the prefix range by a mul-
tiplicative Specificityparameter that determines the scal-
ing factor. We chose this approach due to its simplicity
and we observe that the diagnostic capability provided
by our approach is sufficient for detecting DDoS attacks,
and generating alarm reports comparable to commercial
DDoS solutions (Section 6.4). We also found in our eval-
uation that this approach is computationally efficient, in
terms of memory and processing time, which make it a
viable alternative for near real time analysis.

5 Experimental Setup

To evaluate our LADS implementation we collected
SNMP and Netflow data for a subset of the access in-
terfaces of a tier 1 ISP ranging from T1 to OC48 speeds.
We describe this data collection next followed by a de-
scription of the LADS parameter settings we used.

5.1 Data Description

For our LADS evaluation we collected SNMP and Net-
flow data for a 22000 subset of interfaces within a large
ISP. To allow our evaluation to be repeatable during de-
velopment we archived all relevant data for an 11 day
period in August 2005 with the exception of the SNMP
data used which was archived for a period in excess of 12
months.

In particular we collected the following datasets:

SNMP Our SNMP dataset contains the in and out byte
and packet counts for all interfaces considered. Currently
we only utilize the packet out counts which count the
packets from the ISP to the customer.

NetFlow Data The NetFlow data contains sampled Net-
Flow records covering the entire backbone network. The
records are based on 1:500 packet sampled data. The
sampling is performed on the router and the records
are subsequently smart sampled to reduce the volume.
In smart sampling, flow records representing total bytes
greater than a thresholdz of 20MBytes are always sam-
pled, while smaller records are sampled with a probabil-
ity proportional to their size. Appropriate renormaliza-
tion of the reported bytes yield unbiased estimates of the
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UNIDIMENDIONAL CLUSTERING(MinPrefix, Threshold, Specificity)

� MinPrefix is the minimum prefix length – Set to 28, MaxPrefix is the maximum IP prefix length (32 for IPv4)
� Threshold is given in terms of an attack rate, Specificity is used for compressing the report – Set to 1.5

1 Aggregation:Read flow records and update traffic counts for each unique prefix between MinPrefix and MaxPrefix
2 Reporting:for i←MaxPrefix DownToMinPrefix

do
3 for each PrefixP of prefix-lengthi

do
� We use the IP/Prefix notation,P/{i} refers to prefixP with a prefixmask of lengthi

4 AbsoluteThreshold← Specificity(MaxPrefix−i) × Threshold
5 if i 6= MaxPrefix
6 then CompressThreshold← Specificity× PredictedV ol(P/{i})
7 else CompressThreshold← 0
8 ReportThreshold← MAX(AbsoluteThreshold, CompressThreshold)
9 if V olume(P ) > ReportThreshold

10 then Report alarm on prefixP/{i} with rate Volume(P)
11 PredictedV ol(P/{i− 1})← MAX(PredictedV ol(P/{i− 1}), V olume(P ))

Figure 8: Procedure for uni-dimensional prefix aggregationand generating compressed reports

traffic bytes prior to sampling [8]. In the resulting data
set each record represent on average at least 20MByte of
data. After collecting the records we also annotate each
record with its customer egress interface (if it was not
collected on the egress router) using route simulation and
tag records which could have been observed twice within
the collection infrastructure to avoid double counting of
netflow records.

Commercial-alarmsThe tier-1 ISP currently has a com-
mercial DDoS detection system deployed at key loca-
tions within its network. We collected the high prior-
ity DDoS alarms from this commercial DDoS detection
system. The alarms where combined into attack records
if we found multiple alarms for the same target with
an idle time of less then 15 minutes in between alarms.
Even though we are not aware of the detailed algorithms
used within this product our operational experience in-
dicates that the system detects most large DDoS attacks
while generating a manageable amount of high priority
alarms. The system is deployed in a substantial fraction
of the core of the ISP at high speed interfaces and, there-
fore, only analyzes aggregate customer traffic. Again we
used route simulation to determine the egress interface
of the attack traffic. This dataset is used to compare our
approach to a commercially available system which re-
quires additional hardware deployment. In an ideal sce-
nario, we would like to evaluate the false positive and
false negative rates of our implementation against some
absolute ground truth. However, we are not aware of any
system which can generate such ground truth at the scale
that are of interest for our system. Hence, we use the
commercial detection system as a basis for comparison
with our implementation even though we are aware that

due to its deployment locations and configuration (we
only collect high priority alarms) the commercial system
might not detect some of the DDoS attacks which are de-
tectable with our system.

5.2 System Configuration

In terms of the specifics of our implementation, our
approach requires a number of configurable parameters
which we set to the following values:

SNMP training period We set the training period for
model building for the SNMP anomaly detection to be
5 weeks.

Absolute Volume Threshold The absolute volume
threshold provides a lower bound on DDoS attacks we
detect in the SNMP data. We set this value to 250kbps
which considering that the smallest link size in the Tier-1
ISP’s network is a T1 (1.5Mbps) allows us to detect any
sizable attack on any interface under consideration.

Event Score Threshold The threshold on the deviation
score which triggers an SNMP based alarm. We evaluate
the sensitivity and overhead for different threshold val-
ues in Section 6.2.2. For our evaluation we use an Event
Score Threshold of 5.

Temporal Clustering Parameters The temporal clus-
tering procedure uses an Event Extension Threshold and
a KeepAlive duration value, for deciding on combining
SNMP alarms. We set the event extension threshold to be
half the Event Score Threshold, and the KeepAlive dura-
tion to be 15 minutes.

Bandwidth Attack Threshold This threshold is applied
to determine within the netflow data if a particular inci-
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dent should be reported as a potential DDoS attack, if
none of the other DDoS related signatures ( e.g. high vol-
umes of SYN, ICMP, or RST packets) are present. We set
this threshold to a high-intensity threshold of 26 Mbps4,
targeted at a single /32 behind a customer interface. The
rate for alarms of longer duration will be lower due to the
rate depreciation described in Section 4.2. The thresholds
for larger prefixes (upto /28) are scaled according to the
algorithm described in Figure 8.

SYN/ICMP/RST Threshold This threshold is applied
to determine within the netflow data if a particular in-
cident could be considered a SYN, ICMP or RST at-
tack. Currently we set this rate to a high intensity rate of
2.6 Mbps5, averaged over a 300 second interval. Again,
we use a similar rate depreciation function for longer du-
ration alarms.

6 Experimental Results

In this section we evaluate LADS. In Section 5 we de-
scribed the data that we used in our evaluation as well
as the specific parameters chosen for the different parts
of our system. We first study our system performance
in Section 6.1, followed by an evaluation of the SNMP
based trigger phase in Section 6.2, before analyzing the
incidents generated by our system in Section 6.3.

6.1 Performance

The data was collected using an existing SNMP and Net-
flow data collection infrastructure. The SNMP data is be-
ing collected by a commercial of the shelf SNMP collec-
tion tool which seems to scale easily to large networks.
The Netflow collection system on the other hand was
specifically build for this large ISP and is described in
more detail in [8]. Currently this infrastructures monitors
in excess of one petabyte of data each day.

Using these existing data sources we implemented our
data extraction using a combination of flat files and an in-
house database system. All our data-extraction, and anal-
ysis modules were implemented in Perl, with very few
performance optimizations. The model-building phase
uses additional MATLAB scripts for performing the de-
noising and cleaning operations described in Section 4.

The model-building phase which uses one month of
data per interface to get a mean-variance model for the
anomaly detection, takes roughly 26 hours to perform the

4Our implementation counts the total number of bytes and setsa
base rate of 2000000 bytes every 300 seconds on the smart-sampled
data, which roughly translates into a raw data rate of2000000∗500∗8

300
≈

26Mbps.
5Our actual implementation counts the number of distinct flows and

sets a threshold of 5 flows every 600 seconds, which translates into an
absolute data rate of5∗20MB∗8

300
≈ 2.6Mbps.

data extraction, de-noising, and model extraction for all
the 22000 interfaces. This is not a concern since this part
of the analysis can be performed offline, and the overhead
is acceptable as it is not on the critical path for near real-
time attack detection.

We generated the SNMP and final alarms for our en-
tire 11 day period on a heavily shared multi-processor
900MhZ SUN Ultra. The anomaly detection stage
was parallelized using 6 processes, and it takes roughly
11.2 seconds to report the deviation scores, for each
5 minute interval, across the 22000 interfaces used in our
evaluation. The biggest bottleneck for our performance
is the extraction of flow records for each reported alarm
(even after the reduction due to the triggers), the main
reason being that (a) all flow data is currently compressed
to meet the storage constraints, and (b) the flow data is
collected on a per-collector basis and not indexed based
on the egress interface. Even with these performance in-
hibitors, it takes around 212.5 seconds to map the flow
data for each 5 minute interval, to the appropriate egress
interfaces and collect the flow data that needs to be ana-
lyzed. We note that this time can be reduced significantly
by indexing the data using appropriate database technol-
ogy.

The last stage of our analysis does the uni-dimensional
aggregation on the collected flow data, taking approxi-
mately 40 seconds for each 5 minute interval. Thus, for
each 5 minute interval of data arriving at the process-
ing engine, the total time that is needed to analyze the
data and report the alarms is the sum of the time taken to
generate deviation scores, the time taken to extract flow
data for the triggered data, and the time taken to process
the flow data, which is equal to11.2 + 212.5 + 40 =
263.7seconds to process each 5-minute interval. The re-
sulting maximum latency with which we will report an
alarm is, therefore, at most 263.7 seconds (or less than
5 minutes), implying that even with our current unopti-
mized implementation we can perform the near realtime
analysis. On a more state of the art platform (900MhZ Ul-
traSparcs are quit dated) , and with additional optimiza-
tions both in our implementation and the data indexing
we expect to achieve substantially better performance.

6.2 SNMP-based Trigger Evaluation

We evaluate our SNMP based trigger implementation in
three stages. First, we discuss the choice of our trigger
algorithm, then we compare our trigger events against the
commercial-alarms and finally we highlight the savings
our triggered approach provides.
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6.2.1 Choice of Algorithm

In the context of our system we are looking for a model
which is efficient, works on historical data only and de-
tects anomalies early. Those requirements are motivated
by the facts that we have to perform this analysis in
real time on tens of thousand of times series to provide
DDoS alarms within a reasonable timeframe. Our mean-
variance based model provides these features, however,
one interesting question is how our results compare to the
results of more complicated algorithms.
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Figure 9: Correlation with the anomaly detection proce-
dure in [24]

Figure 9 depicts the correlation of our trigger algorithm
with the one proposed in [24]. The basic difference be-
tween these approaches lies in the assumption about the
variance of the time-series. We use an empirical data-
driven approach while Roughan et al. [24] assume that the
stochastic component is of the form

√
a× Pt, wherea is

a peakedness factor, andPt is the periodic component of
the time-series model (obtained using moving averages).
Figure 9 shows a correlation score of greater than 0.7 be-
tween these two methods for more than 75% of all the
22000 interfaces selected for detection. Considering that
different detection methods and models will always have
different sensitivities and that there is no ground truth
available to us, we conclude that in our problem domain
the simple trigger model has similar properties to more
complex models and is adequate to perform the trigger
function.

6.2.2 Accuracy

Another interesting question is how frequently the SNMP
based trigger would miss an attack in the commercial-
alarm set. It is important to repeat here that we be-
lieve based on our operational experience that most such
alarms are true and that the goal of the trigger phase
of our system is to reduce the data to a manageable
amount not to remove all false positives. Therefore, the
interesting question is how many alarms present in the
commercial-alarm set do not trigger an SNMP alarm us-
ing our model.
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Figure 10: Tradeoff between sensitivity and scalability

Figure 10 depicts the tradeoff between the sensitivity
of the triggers and the overall data complexity reduction
the trigger can achieve. We define as the sensitivity of
the trigger (for a particular deviation score threshold) the
percentage of commercial-alarms which match an SNMP
alarm for the threshold. The data complexity reduction
achieved by the trigger can be calculated in terms of the
flow data that will be collected after the trigger step and
which needs to be further analyzed. Ideally, we would
like to have a trigger that has perfect sensitivity (i.e., zero
false negative rate), that can also produce very low col-
lection and computation overhead.

It does appear that we can capture around 80-90% of
all the commercial-alarms purely by looking at the SNMP
alarms. As a tradeoff between sensitivity and data reduc-
tion we chose a 80% reduction rate (i.e., only 20% of
the original flow data needs to be collected and analyzed
in the second stage of our system). This results in an
85% overlap with the commercial-alarms and an anomaly
detection threshold of 5 which we use for the remainder
of this paper. We will further discuss in Section 6.4 the
commercial-alarms not covered, which do not fit the pro-
file of attacks we expect to detect. From a provider per-
spective the alarms that are of paramount importance are
those affect the customers the most, and typically these
are attacks which overload the egress link. If the misses
occur on well-provisioned interfaces, this loss in sensitiv-
ity is not a serious concern.

Figure 11 shows the number of incidents per customer
interface per day over the 11 day evaluation period before
and after applying the Absolute Volume Threshold. It
seems the Absolute Volume Threshold reduces the num-
ber of SNMP alarms on average by a factor of 6. For-
tunately, in either case the number of alarms is quite low
considering that these alarms are automatically processed
by the second phase of our detection system.

6.3 Incident Analysis

Next we characterize the final alarm set our detection sys-
tem generates after performing the netflow analysis de-
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Figure 11: Number of alarms per interface per day

scribed in Section 4.2. As previously described each fi-
nal alarm specifies a duration, an egress interface, des-
tination IP-prefixes along with type of the alarm type
(BW,SYN,RST,ICMP) and the bandwidth of the sus-
pected DDoS event which is the information we used for
the following graphs.
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Figure 12: Number of reported incidents (at egress inter-
face granularity) in 11 day period in Aug 2005

Figure 12 shows the number of these alarms during our
evaluation time6. Here we consider incidents at the gran-
ularity of egress interfaces, i.e., concurrent attacks against
multiple IP addresses on the same egress interface will
be considered one incident. We generate approximately
15 incidents per hour which seems reasonable consider-
ing that we monitor 22000 customer interfaces and that
this number of incidents could easily be handled by the
security staff of a large network provider. We note that
a large fraction of the incidents are reported as potential
bandwidth attacks. One possible explanation could be
that these incidents are bandwidth floods that are not nec-
essarily DDoS attacks, and are potentially false positives
from the perspective of attack detection. In the absence
of any ground truth regarding these incidents, we believe
there is utility in bringing such incidents to the notice of
network operators – since there was a definite volume

6Due to data collection issues we miss the data of the second Mon-
day in our evaluation time

anomaly on the interface, and these hosts are receiving
a high data rate during this volume anomaly.

The number of distinct IP addresses involved in an at-
tack might be a more reliable indicator of the work in-
volved analyzing these alarms than the number of egress
interfaces. If we split all alarms which target multiple IP
addresses at a single egress interface into multiple alarms,
we only see a slightly higher alarm rate (around 18 per
hour) . That is not surprising considering that most (76%)
of the incidents involve only one IP address.

Another observation is that in around 19% of the cases
we get repeated alarms for the same IP address range
within the same day. These alarms would most likely
only require one investigation attempt by the network op-
erator. Therefore, we believe that the above alarm rates
are actually an upper bound of the number of trouble tick-
ets network operators need to process.

6.4 Comparison with Commercial DDoS
Detection System

In this section we compare our final LADS alarms against
the commercial-alarms. Since the commercial DDoS de-
tection system only covers key locations and we only re-
ceive high level alarms from this system we would ex-
pect that our final alarm set contains substantially more
attacks then the commercial-alarms. This is indeed the
case in that the commercial system only reports 86 such
high level alarms involving the interfaces we analyzed,
whereas our system generated a total of 3314 final alarms,
over the 11 day period. Therefore, we mainly use this
data set to determine the false negative rate of our ap-
proach since we expect that we should have detected most
alarms which are also detected by the commercial sys-
tem. We are currently investigating techniques for using
historical uni-dimensional cluster reports (on a per-prefix
basis) to capture repeating bandwidth events which could
cause false positives in the current set of LADS band-
width alarms. Also, routing information could be used to
restrict the set of alarms generated by our system to traf-
fic covered by the commercial system, and so compare
performance with the same traffic set.

Figure 13 presents a breakdown of the comparison
of our final alarms versus the commercial-alarms. The
breakdown uses the following categories to classify the
86 alarms of the commercial system.

Successes Between the LADS alarms and the
commercial-alarms the interface matches, the IP
prefix alarmed matches, and the durations of the reported
alarms overlap.

Found early incidents Between the LADS alarms and
the commercial-alarms the interface matches, the ip ad-
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dress alarmed matches, but we find the alarm slightly ear-
lier than what is reported.

Found late incidentsBetween the LADS alarms and the
commercial-alarms the interface matches, the ip address
alarmed matches, but we find the alarm slightly later than
what is reported.

Threshold missesThe interface matches, we have an
SNMP volume anomaly, and we have flow data for the
incident that indicates a large number of flows to the IP,
but we missed alarming on the IP address during the sec-
ond phase of detection.

Anomaly detection missesThis commercial-alarm did
not generate an SNMP alarm on the reported interface,
i.e., the deviation score for the corresponding time in the
SNMP dataset is less than our SNMP alarm threshold
(which is set to 5 for our evaluation).

Potential commercial-alarm false positiveThe inter-
face information and the anomaly match between our
SNMP alarm and the commercial-alarm, however, we
find little or no flow data for the corresponding attack tar-
get reported by the alarms.

The false negative rate of our system compared to
the commercial DDoS detection system is essentially the
sum of the anomaly misses, and threshold misses. Man-
ual analysis of the anomaly detection misses indicates
that all 7 SNMP anomaly misses are caused by relatively
small attacks on OC48 interfaces (2.48Gbit/sec). They
did not saturate the customer interface and therefore are
not in the category of DDoS attacks we want to detect.
The number of threshold misses on our system is low -
just 1 incidents out of 86 incidents are dropped due to the
threshold settings. Therefore we conclude that the overall
false negative rate of our system, compared to a commer-
cial DDoS detection system, is 1 out of 80, or 1.25%.
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Figure 13: Comparison with the proprietary system

To compare the type of attacks that are found in the
overlap between the vendor solution and our system – we
give a breakdown of the 4 types of incidentsBandwidth,
SYN, ICMP, RSTin Figure 14. Interestingly, the largest
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Figure 14: Breakdown of overlapping incidents

portion of the reported incidents which overlap are SYN
floods.
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Figure 15: Rates of potential attack incidents

Another dimension of comparing the final LADS
alarms with the commercial solution is depicted in Fig-
ure 15 which shows the average bitrate according to our
netflow records of the DDoS events alarmed on by our
system and the commercial DDoS detection system. The
overlapping incidents appear to have a minimum rate of
10 Mbps, which is most likely due to the fact that we
only had access to the high priority alarms of the commer-
cial DDoS detection system. Interestingly, this makes the
high level alerts of this system unsuitable for detecting
DDoS attacks against small customer links. The system
therefore ranks attacks as high level alerts not by cus-
tomer impact (even a small attacked customer link has a
lot of customer impact for the customer using that link)
but by the overall attack size. This is of course less desir-
able, if the goal is to protect customers which subscribe
using various line rates. For 40% of the final LADS
alarms we find a reported bandwidth which is smaller
than 10Mbps7. Further investigation reveals that more
than 70% of these low volume alarms are in fact caused
by volume floods against low speed links.

7The rates for alarms of duration longer than 300 seconds willbe
lower than the high intensity thresholds of 26 Mbps for the bandwidth
attacks, and 2.6 Mbps for SYN/RST/ICMP attacks, due to the rate de-
preciation we discussed earlier.
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7 Conclusions

We presented the design of a general triggered frame-
work for scalable threat analysis, and a specific imple-
mentation based on SNMP and Netflow feeds derived
from a large Internet provider. Our evaluations and ex-
perience with large networking datasets demonstrate the
imminent need for such an approach. Our results indi-
cate that the particular system we built is adequate for
the task of detecting attacks at scale, and doing so with
significant reduction in operational complexity and com-
putational cost. Of particular practical significance is the
fact that our system uses data feeds that are readily avail-
able to most providers.

There are several interesting directions for future work.
Our evaluations demonstrate that our design is sufficient,
but we believe there is scope for improving the individual
components (anomaly detection, flow analysis). We are
also investigating other ways in which we can confirm the
validity of the alarms generated by our system, including
those mentioned in Section 6.4. Finally, we are currently
pursuing the implementation of more real time feeds to
our system to allow us to use it in an ongoing basis as a
online threat detection mechanism.
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