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Abstract years. Armies of botnets comprised of compromised
The last few years have seen a steady rise in the okests can be utilized to launch attacks against specific In-
currence and sophistication of distributed denial of seternet users such as enterprises, campuses, web servers,
vice (DDoS) attacks. Volume-based attacks aggregassd homes. In this paper, we focus on an important class
at a target’s access router, suggesting that (i) detecti@f DDoS attacks, namely, brute force flooding attacks.
and mitigation is best done by providers in their netWe observe that access links are typically the bottleneck
works; and (ii) attacks are most readily detectable at adink for most Internet users, and that an attack can eas-
cess routers, where their impact is strongest. In-netwoily send sufficient traffic to a user to exhaust its access
detection presents a tension between scalability and daik bandwidth capacity or overload the packet handling
curacy. Specifically, accuracy of detection dictates fineapacity of the routers on either end of the link [7].

grained traffic monitoring, while performing such mon-  Bruyte force flooding attacks are easy for attackers to
itoring for the tens or hundreds of thousands of accesgunch but are difficult for targeted users to defend, and
interfaces in a large provider network presents serioigerefore represent a clear and present threat to Internet
scalability issues. In this work we investigate the desigQisers and services. Given the limited capacity of most ac-
space for in-network DDoS detection and present a trigcess links on the Internet, a successful DDoS attack may
gered, multi-stage approach that addresses both scalalihly involve relatively few attack sources. In addition,
ity and accuracy. Each successive stage can access fifif size of some reported attack networks [25] suggests
resolution data sets, and can perform deeper, more expghat a determined attacker might be capable of overload-
sive diagnostics if required. We argue that this approagRg even the largest access links. From a user’s perspec-
is applicable to any economically feasible, large scal@jve, a bandwidth attack means itsboundcapacity is
DDoS detection system. Our second contribution is th@xhausted by the incoming attack. Given that a user of-
design and implementation of an operational instance @n controls only one end of the access link, for exam-
our triggered, multi-stage approach. The attractivenegse via a Customer Equipment or CE router (see Fig. 1,
of this system lies in the fact that it makes use of dat@hile its ISP controls the other end (referred to as C-PE,
that is readily available to an ISP. Specifically, SNMPr Customer-Provider Edge router in Figure 1), once an
based anomalies trigger the collection of Netflow dataccess link is overloaded there is precious little that the
for detailed attack analysis. Aggregation and compresarget of the attack can do without the assistance of its
sion on the flow data is used to generate alarms concengp, |n fact, even automated DDoS related mechanisms
ing possible attack targets. We evaluate the system usiggginating from the customer side of an access link be-
SNMP and Netflow data collected from a large tier-1 ISR.omes useless once the access link itself is overloaded.
and compare the results with alarms generated by & COM-gqr these brute force bandwidth attacks, we therefore

mercial DDoS detection system. Our triggered approaqRason that a very promising architecture is one that per-
achieves high accuracy with fairly modest processing rgg msin-network detection and mitigatioof DDoS at-

quirements. tacks by the service provider. With respect to mitigation,
since it isupstreamof users’ access links, an ISP may
1 Introduction defend against bandwidth attacks by deploying appropri-
ate network filters at network routers to drop malicious
Targeted Denial of Service and Distributed Denial of Serpackets, or alternatively using routing mechanisms to fil-
vice attacks are continuously on the rise in the last fewer packets through scrubbers [1]. With respect to de-



uitous availability of SNMP data for all router interfaces,
our system is able to perform the first stage analysis di-
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by attacks. As a comparison, many commercial DDoS
offerings, including the one discussed later in this paper,
deploy monitoring solutions in the core or at the peer-
ing edges in order to minimize the number of monitoring
devices (thus cost) required. Such schemes are likely to
miss smaller attacks which, while large relative to the tar-
geted interface, are small amongst aggregate traffic in the
core. In contrast, our system has ubiquitous monitoring
but no additional cost, and can perform anomaly detec-
tection, the key challenge is to come up solutions thdion considering both traffic volume and link speed for all
satisfy multiple competing goals of scalability, accuracycustomer-facing interfaces.
and cost-effectiveness. Specifically, accurate detection There are two key contributions of our work. First,
demands fine grained traffic monitoring, while performwe propose, design and evaluate a triggered infrastructure
ing such detection and monitoring for the tens or hunthat meets the constraints of operational cost and com-
dreds of thousands of access interfaces in a large providaexity, and also substantially raises the bar in terms of
network presents serious scalability and cost issues. detection and diagnostic capabilities with respect to DoS
In this paper, we present a general framework for a trigattacks. Putting the pieces together to build such an oper-
gered multi-stage infrastructure for detection and diagnd@tional system is a non-trivial task. Second, we believe
sis of brute-force flooding Denial of Service attacks. Théhat the system that we have designed can be used as
first level of the multi-stage approach consists of a lovi2 Well-documented, vendor-independent benchmark, to
cost anomaly detection mechanism that can provide ifuantify the extent and magnitude of attacks, using data
formation to traffic collectors and analyzers to reduce thihat is readily available to most providers.
search space for traffic analysis in both temporal and spa-We review the related work in Section 2 before de-
tial dimensions. Successive levels of the triggered fram&cribing our architecture for scalable DDoS detection in
Work, invoked on-demand and therefaraich less fre- Section 3. Section 4 describes the SpeCifiC implementa-
guently then operate on data streams of progressiveﬂpn based on collection of Netflow records triggered by
increasing granularity (e.g., flow level or packet leveSNMP anomalies. We evaluate the performance of the
traces), and perform detection and diagnostic methods 8ystem in Section 6, demonstrating both the efficacy and
increasing computational cost and complexity. This arthe operational feasibility. We conclude in Section 7.
chitecture fits well with the hierarchical and distributed
nature of the ne_twork. Th_e first sta_lge requires gimp_lg Related Work
enough processing capability to be implemented in dis-
tributed fashion for all customer-facing interfaces. Then the context of triggered measurements ATMEN [14]
later processing capabilities can be more centralized agflovides a general communication framework. Our work
thus shared by many edge routers. could utilize such a framework if available, however, AT-
We have designed and implemented an operation®EN does not address the detection of DDoS attacks.
DDoS detection system based on the triggered multi- The spectrum of anomaly detection techniques ranges
stage architecture within a tier-1 ISP. Our system makdsom time-series forecasting [5, 24] and signhal process-
use of two sources of data: SNMP and Netflow, botling [4], to network wide approaches for detecting and di-
of which are readily available in commercial routers to-agnosing network anomalies [15, 32]. These approaches
day. We adopt a two-stage approach in our system. Bre intended for detecting coarse-grained anomalies, and
the first stage, we detect volume anomalies using sindo not necessarily provide the diagnostic capability re-
ple low-cost SNMP data feeds such as packets per seqdired for large-scale DDoS detection.
ond. These anomaly incident reports are then used toAlso related to our multi-stage approach are techniques
trigger flow-collectors that collect Netflow records forfor fine grained traffic analysis, using flow or packet-
the appropriate routers, interfaces, and time periods. Weeader data. Techniques for performing detailed multi-
then perform automated analysis of the flow informatiomlimensional clustering at scale [9, 30] to generate con-
using uni-dimensional aggregation and clustering tecteise traffic summary reports, are of particular interest to
niques. There are advantages of using only data sourcatsack detection. Other solutions for online traffic anal-
that are readily available. For example, given the ubigysis use either optimized data structures and/or counting
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Figure 1: Components of a Provider Network



algorithms [33, 13, 10] for detecting heavy-hitters. collection complexity arises from the fact that data
Moore et al [21], detect attacks utilizing the fact thatstreams have to be selected from monitoring points
many types of attacks generdiackscattetraffic unin-  (links/routers), and either transported to an analysis en-
tentionally. Network telescopes and honeypots [29] havgine (possibly centralized) or provided as input to local
also been used to track botnet and scan activity. Sonoketection modules. The computation complexity arises
of the early DoS attacks typically used source addre$§som the algorithms for analyzing the collected data, and
spoofing to hide the sources of the attacks, and this mthe sheer size of the datasets. We observe that not all
tivated a large body of literature on IP traceback. Prodetection algorithms have the same complexity: the dif-
posed solutions include packet marking [26, 23], hasHerences arise both from the type of data streams they op-
based traceback [27], and reverse path flooding [6].  erate on and the type of analysis they attempt to perform.

There are also several proprietary DDoS detection sys- As a simple example, consider two types of data
tems available [3, 19]. In our evaluation, we compare thetreams that are available from most router implementa-
set of alarms generated by LADS with those generated lpns: simple traffic volume statistics that are typically
a commercial system deployed at a Tier-1 ISP. transported using SNMP, and Netflow like flow-records.

There are several recent proposals for mitigating Dofrom an operational perspective, enabling the collection
attacks. Many solutions rely on infrastructural supof the different data sets on routers incurs significantly
port for either upstream filtering [17], or using over-different costs. There are three main cost factors: (i)
lays [12, 28]. Recent work also focuses on re-designingie memory/buffer requirements on routers, (ii) the in-
networks providing a framework of capabilities to pre-crease in router load due to the monitoring modules, and
vent flooding attacks [31, 2]. Several proposals [11, 22jjii) bandwidth consumption caused by transporting the
focus on end-system solutions combining specific typefeasured data. The SNMP data has coarse-granularity
of Turing tests and admission control to enable servers #nd the typical analysis methods that operate on these
deal with flooding attacks and flash crowds gracefullyare ||ghtwe|ght time-series ana|ysis methods [5, 24, 4]
Mirkovic et al. [20] provide an excellent taxonomy of The Netflow data contains very fine grained information,

DDosS attacks and defenses. and as a result is a much larger dataset (in absolute data
volume). It is easy to see that the flow data does permit
3 Scalable In-Network DDoS Detection the same kind of volume based analysis that can be done

with the SNMP data set by simply aggregating the flow

Having argued for the necessity of in-network DDoS dedata into traffic counts. However more pOWErfUl analySiS
tection (and mitigation) in Section 1, we now consider thé&an extract greater benefit of the finer-granularity data us-
implications of this approach for building a detection sysing sophisticated algorithms [9, 30], for culling out traffi
tem in a large provider network. Like any anomaly detecPatterns that are “interesting”.
tion system the main requirement for LADS is accuracy, The presence of heterogeneous data sources which of-
i.e., having a low false alarm and miss rate. The seder varying degrees of detection power at different com-
ond requirement is timeliness: to be of practical value autation and collection costs raises interesting design
detection system should provide near real time detectiaquestions. At one extreme we could envision running
of attacks to allow mitigation mechanisms to be appliedsophisticated anomaly detection algorithms on the fine
Third, to be useful a detection system should cover all (agranularity data (i.e., Netflow) on a continuous basis. The
most) customers of a provider. The number of customerther extreme in the design space would be an entirely
could range from hundreds for a very small provider tdight-weight mechanism that operates only on the coarse-
hundreds of thousands for large providers. granularity data. Both these extremes have their potential
These requirements have significant system scalabilipitfalls. The light-weight mechanism incurs very little
implications: (i) Is it feasible to collect detailed enoughcomputational cost, but potentially has to make compro-
information to allow attack detection on a per-customemises on the enhanced diagnostic capabilities that the fine
basis? (ii) Is it feasible to perform in timely fashion thegrained analysis provides. A key observation in this re-
processing involved with the detection on a per-custom@ard is that close to the attack target, e.g., at the customer
basis? Next we present our triggered multistage DDo&ccess link, detection of brute force flooding attacks be-
detection approach and explore several possible impleeme reasonably easy, although it might generate false
mentation alternatives. alarms, and lack the ability to generate diagnostic attack
reports of use to operators. The heavy-weight mecha-
nism, on the other hand, incurs a much higher collection
and computation cost. Also such mechanisms potentially
There are two sources of complexity and problems ddperate in aminfocusednanner, i.e., without knowledge
scale in our contextCollectionand Computation The about the seriousness of the incidents that actually need

3.1 Triggered Multistage DDoS Detection



Volume anomaly detection: Traffic anomalies on vol-
ume and link utilization data available from egress inter-
faces, are often good indicators of flooding attacks, and
hence can be used to trigger further investigation. Metrics
of interest, that are available from most current router im-
plementations, include the traffic volume (either in bytes
per second or packets per second), router CPU utiliza-
operators’ attention. Operating in such an agnostic sefion, and packet drop counts. Our implementation uses
ting may in fact be as detrimental to the accuracy as thgylume anomalies on the packets per second and is de-
false positive rate may be intolerably high. scribed in detail in Section 4.1. The basic idea behind
Our work attempts to find a operationally convenienbur approach involves the use of a time series of link uti-
space between these extremes. The key idea in our dization to model the expected future load on the link and
proach is to usgossibleanomalous events detected into then detect significant deviations from this expected
coarse grained datdoseto the attack target, tiocusthe  behavior.
search for anomahes N more detailed dat_a. Spec'f'canﬁsing traffic distribution anomalies: Lakhina et al. [16]
WE propose a ”'ggefed multistage detection meChamsgi]scuss the use of distributions, specifically using the en-
in which the successive stages can have access to and gp-

erate on data streams of increasing granularity. Potenti py of distributions for diagnosing anomalies in net-
. . 99 Y. ﬁorks. The key idea here is that many common attacks
anomalous events in earlier stages serve as triggers

. . . An be identified by substantial changes in specific distri-
later stages to selectively collect more fine grained da%‘utions such as the traffic observed on source and desti-
on which more sophisticated anomaly detection can '

erformed. This anproach is depicted in Fiqure 2 Intl?l_(faation addresses and ports. While the use of distribution
! - P P 9 ' information in their work was primarily to augment vol-
itively the triggered approach helps focus our reSourCe e anomaly detection, we can use the distributions as a
intelligently, by performing inexpensive operations garl '

trigger for further analysis. The use of such more infor-

on, while allowing for sophisticated, data and Compu.t?native metrics for diagnosis, may not necessarily reduce

intensive tasks in the later stages of thg multi-.stage "9he collection cost, since computing these metrics may in
gered approach to get better incident diagnostics. fact need access to very fine-grained traffic information,

but they can potentially reduce the computation cost.
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Figure 2: Triggered Multistage DDoS Detection

3.2 Design Alternatives _
3.2.2 Focused Anomaly Detection

While our approach generalizes to any number of detec- .
tion stages, the system described in this paper is Iimite%ven though our staged approach will reduce the search

to two stages. Specifically, for the lightweight anomaIySpace for the second stage detection significantly, the

detection we make use blume anomaly detectiomn scale of the problem is such that computational overhead

SNMP data. For the second stage we use a combinatiof 1anS & concern. of course accuracy of detection is the
er main criteria for this stage.

of rule-based detection and automated uni-dimensiondl
clusteringon sampled Netflow data. In this section weryje-hased detection:It is well-documented that most
briefly describe our selected methods as well as other peommon denial of service attacks fall under a small num-
tential alternatives. ber of categories, that can be easily captured with a small
set of rules for detection. For example, a large number
of ICMP ECHO or TCP SYN messages going to a single
destination IP address is often indicative of a flooding at-

As the name suggests the key constraint here is that tHiek- Another option is to usieotnet blacklistgo check

method not require significant processing so that it can JbtN€ Set of source addresses that occur frequently in the

applied to a large number of interfaces. Since the outplfﬁaffic belong to known compro_mised machines (referred
s zombies) used for launching attacks. Rule-based ap-

of this stage triggers more detailed analysis in the secor@ @ . i
stage, false positives are less of a concern than false ngpaches have near-term appeal since they typically have
atives. In other words, a false positive from the first stag@"V false-positive rates, even though their detection ca-

will only cause more unnecessary work to be done in th@abnmes are limited to the set of attacks spanned by the

second stage (and hence not necessarily much of a cdHle'setS'

cern for the operator who only sees the final alarms aftéxutomated Uni-dimensional clustering: Our specific

the second stage), whereas a false negative would catisglementation for the second stage involves the use of
an attack to be missed altogether. uni-dimensional functionality of hierarchical aggregati

3.2.1 Lightweight Anomaly Detection



algorithms. Conceptually, uni-dimensional clustering atenough that it can be collected on the access routers with-
tempts to discover heavy-hitters along source/destinatimut imposing significant load. The Netflow data, on the
prefixes, using some thresholding scheme to compress mther hand, can be more efficiently collected at more
ports along the prefix hierarchy. Since the computationglowerful core routers so that access routers are not bur-
overhead with performing uni-dimensional aggregatiodened with this more heavy weight process, especially
is fairly low, and the functionality provided is sufficient when the access router is under attack.

for investigating most known types of DDoS attacks weReduced computation cost- We use high cost opera-
choose this approach. Our implementation, which cations and expensive algorithms in a focused manner, and
be viewed as a combination of uni-dimensional clusteralso significantly reduce the data volumes that the expen-
ing and rule-based approaches, is described in detail give operations need to handle.

Section 4.2. Low operational complexity — The different stages
are fairly simple and easy to understand, and vendor-

dimensional clustering provide another alternative fer thir_ldependent. Managing the op_eration shou!d be really
second stage detection [9, 30]. The basic theme of the%nple' More importantly, our implementation works

approaches is to abstract the standard IP 5-tuple (éllxgth'data streams that are glready avgilable to most
caddr, dstaddr, protocol, srcport, dstport) within multiprowdernetworks, and deploying our design does not in-

dimensional clustering techniques to report traffic pai;(—:ur any overhead in terms of instrumenting new monitor-

terns of interest. Typically, the size and complexity of thdn9 capabilities or deploying special hardware for collec-

generated clusters can be reduced substantially by tuniﬂ%ﬂ and an_aIyS|_s. ) )
ar real-time incident reports — Since the computa-

the technique to report only interesting clusters, thoae th )

either have a high volume or those that have a significaHPnal complexn.y IS 3|gn|f|cantly reQuced, we can oper-
deviation from an expected nortn ate the system in near real-time, without dependence on

specialized hardware or data structure support.
] ) Flexibility —Our approach s flexible in two aspects. First
3.3 Benefits and Pitfalls we can easily accommodate other data streams as and

In this section we discuss some of the benefits and potevﬁ'-hen they are available. Second, within each stage the

L . performance and algorithms can be optimized to reach
tial pitfalls of our approach. We first presents the benefitg ™ . : :

. esired levels. For example, our first stage triggers cur-
of our triggered approach.

rently use simple time-series volume anomaly detection.
Detecting high-impact attacks— Since our triggers are It is fairly easy to augment this step with other data
generated close to the customer egresses, we are meteams, and traffic statistics, or alternatively use other
likely to detect attacks that actually impact the endanomaly detection methods for the same data stream.
user. Note that this is in contrast to more centralized ap-

proaches, even those that work on more fine-grained datajy oy triggered approach, there are three potential pit-
feeds”. For example, by monitoring SNMP byte countsajis. The first pitfall is one relating to possible unde-
on a T1 access link it is straight forward to determingjraple interactions between the trigger stage and the de-
when the link is being overloaded. Looking for the samggjled analysis stage. While our approach allows for each
information from a different vantage point, e.g., at a se¢omponent to be optimized in isolation, optimizing the
of major peering links is a much more challenging taskgyerall system performance would require a detailed un-
Not only could the traffic flowing towards the T1 inter- gerstanding of the interfaces and interactions between
face be spread across many such peering interfaces, Bifferent components. Managing and optimizing such
the traffic will be hidden inside an overwhelming amo“”?nulti-componentsystems is inherently complicated — we
of other traffic on the peering links. believe our specific implementation is based on a clean
Efficient data collection — The fact that our approach set of interfaces, are sufficiently decoupled, and hence
works with different data sources of differing granularnzye very few undesirable interactions.

ity also has the advantage of efficient data collection. ¢ second, more serious problem, is one of misses
Specifically, for our implementation where we use SNMR) . 1o the triggered approaches. While the triggers re-

data for the first stage detection, this data is lightweighj,ce the operational complexity, they may be doing so

1Despite this tunability, our experimentation with the polylavail-  BY compromising the se!'lsitivity of the system, i.e., by in-
able multi-dimensional clustering tool, Autofocus [9]psted that this ~ creasing the false negative rate. Attacks that can cause the
approach was still too compute intensive for the volume ¢& da be greatest disruption in terms of traffic engineering, rogltin
analyzed. : : : etc., are volume attacks, which will invariably show up as
Due to cost and operational constraints commercial vendtaced . .
tion systems are typically constrained to operate in suckrarglized VOlUMe anomalies on the egress interfaces closest to the

model, using feeds near the core of the network. customers. Since our focus is on such flooding attacks,

Automated Multi-dimensional clustering:  Multi-




there is almost no impact on the false negative rate. By | reautme ANOMALY
only looking at volume based attacks, we are substan- | "o F’ DETECTION F’
tially reducing the search space and the false alarm rate,
and the benefits we gain in terms of operational simplicity
and reduced false alarm rate greatly outweigh the negli- F—
gible decrease in the detection sensitivity. MODEL

The last potential pitfall, is related to the ability of the
monitoring infrastructure to sustain data collection dur- ) )
ing attacks. While collecting low-volume SNMP feeds is  Figure 3: Overview of SNMP Anomaly Detection
not a serious overhead, collecting flow records at the cus-
tomer egresses and transporting them back to a CentrairMEDOMAINMODELING(TS, W,N)
ized processing engine is clequy |'nfea5|ble during vol- > TS is the training set
ume floods, since the access link is already overloaded, > W is the number of weeks

and reporting large volumes of flow records can only > N is the number of data points per week
worsen the access link congestion. Large providerstyR- ¢, 1 1o N

FILTERING

TEMPORAL
CLUSTERING

OTHER
DATA
SOURCES

ically deploy flow collectors at core network elements, do

which are usually well-provisioned, and they can subse, P(i) — MEAN(TS(1 : W, 1))

qguently map the flow records to the appropriate egressgs P’ < DENOISEP) ’

using routing and address space information. Thus, the&e V(i) « VARIANCEMODEL(T'S, P, W, N)

will be be no perceivable reduction in the data quality ang

. o . return P,V
collection capabilities during attacks.

Figure 4: Time Domain Modeling Procedure

4 Implementation : . .
P packet counts (i.e., with reference to Figure 1, the C-PE

We implemented LADS as aaff-line DDoS detection interface towards the customer) to detect volume anoma-

system within a tier-1 ISP. The described implementatiohes-
works on the real data of the tier-1 ISP and is only clas- To keep the operational, storage and computation re-
sified asoff-line in that the data provided to the systemsources low we devised a simple trigger algorithm with
might be substantially delayed and, therefore, is not sui0od performance (as we will show in Section 6). Con-
able for generating alarms in real time. We are activelgeptually, the trigger algorithm uses a prediction model
working on deploying the system in am-line environ- Which indicates an expected mean and an expected vari-
ment in which real-time data feeds are available, and o@nce for the traffic time series, and assigns a deviation
performance evaluation Section 6.1 indicate that our d&core, in terms of the number of standard deviations away
sign and implementation will be adept to the task of onfrom the mean that the given observation is found to be.
line monitoring. Borrowing some formal notation from [24] one can think
In our implementation we use SNMP data to computé€f the traffic time series, denoted liy(t) as being com-
our low level triggers and Netflow data to decide if theposed of three components(t) = P(t) + V(t) + A(t),
observed traffic indicates a potential attack. We describ@here P(t) represents the predicted mean traffic rate,

each of the components in the remainder of this sectionV (¢) represents the stochastic noise that one expects for
the traffic, andA(t) is the anomaly component.

4.1 Lightweight Anomaly  Detection:

SNMP ANOMALY DETECTION(T, T'S, W, N)
The first stage of the detection system, uses SNMP link > T is the new time series
utilization data to report volume anomaly triggers. Fig- > TS is the historical time series
ure 3 provides a conceptual overview of our SNMP 1~ W is the number of weeks for building model
anomaly detection module. Specifically, we are inter- ~ N is the number of data points per week
ested in flow anomalies on egress interfaces that are as- (P, V') « TIMEDOMAINMODELING(T'S, W, N)
sociated with customer networks, since volume base#l for;« 1ToN
DDoS attacks will be most visible at the egress links of do
the customers under attack. The SNMP data is being ca- D(i) « (T (i) — P(4))/V (%)
lected on an on-going basis and contains CPU and link Do TEMPORALCLUSTER(D, Qtriggers Qadds keepalive)
loads (in terms of octet and packet) counts. Since most Use filtering rules on clustered alarms

DDoS attacks use small packets [18] we use the egresEigure 5: Outline of overall SNMP anomaly detection
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Our algorithm, depicted in Figure 4, works as follows.
For each customer interface, we take the kagteeks of
data. We build an empirical mean-variance model using
these by simple point-wise averaging, assuming a basic
periodicity of one week. For example, for estimating the )
expected traffic for the 5 minute interveti 9:00-9:05 At the end of the SNMP anomaly stage, we receive a
am, we take thek past Fridays and average of the ob-Set of alarms, specified by the egress mterfacg on which
servations for this time duration. Next, as the trainingn® anomaly was observed, and the start and timestamps
data might contain DDoS attacks and is finite in size wéf the anomaly incident. These alarms are then used to

sets and SNMP implementation bugs. In particular
we remove the first SNMP counters after a reset as
well as measurements which indicate a bandwidth
utilization of more then the physical bandwidth

perform a de-noising step using a Fourier transform frorfigger Netflow collectors for detailed investigation.

which we pick the top 50 energy coefficients. In the final
step, for each point per week (e.g., Fri 9:00-9:05, Mon
21:00-21:05), the algorithm determines the variance over
the lastk observed data points with respect to the de-
noised mean model.

The implicit assumption in the method is that the basic
periodicity of the traffic data is one week, which has been
used in other traffic analysis on such datasets [24].

The real-time anomaly detection is then performed us-1
ing the algorithms described in Figure 5 and Figure 6. At
a high level we use the estimated mean and the deviation
time series to obtain deviation scores for the new obser-
vations. We use a natural definition of the deviation as
D(t) = (T(t) — P(t))/V(t), which represents the num- 2
ber of standard deviations away from the prediction that
the observed data pointis. Once the deviation scores havé
been computed, we perform a simple heuristic temporaf
clustering procedure to report anomalous incidents to the
flow collector and analyzer. Temporal clustering can re-9
duce the load on the collection mechanism by reducing®
the number of queries that we issue to the collector. Suchl
aload reduction is indeed significant, as many attacks last
quite long [18]. The clustering method operates based or$
two pre-defined deviation score thresholds, the event trig-
ger threshold and the event extension threshold, as we®
as a keep alive time. The actual clustering procedure &)
simple: it tries to extend the current active event, if thell
new observation has a deviation score that exceeds thd

EMPORALCLUSTER(D, (rigger, Qadd, keepalive)

> D is the deviation score time series
D> ayrigger 1S trigger deviation score threshold
> aqq IS the score threshold for extending an event
> keepalive is the time for which an event is active
> The output is the set of alarms
fori— 1ToN
> Flag keeps track whether there is an ongoing alarm
> T is the current time
> ST keeps track of event times
do
if (Flag=TRUE)
then
if D(i) > qadd
then Extend the event
> E is the current event
AT — T — ST(E)
if AT > keepalive
then Flag — FALSE
else
if D(Z) Z Qtrigger
then
Create a new event E’
Flag «+— TRUE
ST(E') «T
Return alarms with durations and scores

event extension threshodd, 4, within a time duration of  Figure 6: Temporal clustering to cluster deviation scores

keepalive, since the start of the event. If there is no ac-
tive ongoing event, it creates a new event if the observed

deviation score is higher than the event trigger thresholdl.2  Focused Anomaly Detection: Netflow

After detecting the SNMP anomalies, we perform ad-
ditional filtering steps to allow the operators to remove
known or uninteresting anomalies. In particular we pe
form the following steps.

e Absolute volume threshold — This threshold is used
to remove all SNMP alarms which do not have
an average bandwidth of more than a pre-defined
threshold. This allows the operator to specify a min-
imum attack rate of interest, to reduce the overall
workload for the flow collector.

The second stage of our DDoS detection system analysis
rt_he Netflow data as shown in Figure 7. At a high level we
perform the following steps for each SNMP alarm:

e Collect all Netflow records for the egress interface

indicated by the first stage trigger.

¢ Build three Netflow record sets containing

— Records with the TCP SYN flag set (SYN set)
— Records with the TCP RST flag set (RST set)
— Records for the ICMP protocol (ICMP set)

e SNMP _me_asurement anomalies — We remove sgyen though the number of such events is low, they do occly dai
anomalies in the SNMP data caused by router resn a large network.



targets. The next step is tieportingstage, which uses
the aggregated counters to decide whether to report the
particular prefix range as being a potential attack target.
The reporting step we use shares conceptual similarity
with the work of Estan et al. [9] and Singh et al. [33], to

ALARM
REPORTS

/ALFLOWS

SNEONS THRESHOLD, ffaUSTOMER\NTERFA\(\fE‘I generate traffic summaries indicating heavy-hitters. In-
NP FLOWS | SPECIFICITY IP PREFIXRANGE tuitively, we g(_enerate report_s on larger p_refixes, if they
RSTFLOWS | | DURATIONRATE | carry substantially more traffic than a previously reported

smaller prefix range, and if they are above the absolute

volume threshold. We scale the absolute volume thresh-

old according to the size of the prefix range by a mul-

tiplicative Specificityparameter that determines the scal-

_ ing factor. We chose this approach due to its simplicity

e For _eac_h set _report_the traff_|c volumes for allang we observe that the diagnostic capability provided
destination prefixes with a prefix length larger than,y oy approach is sufficient for detecting DDoS attacks,
a /28, use the uni-dimensional clustering algorithmyng generating alarm reports comparable to commercial
described in Figure 8. Generate a final bandwidtihpos solutions (Section 6.4). We also found in our eval-
attack alarm if the all-set has a /28 which carriegation that this approach is computationally efficient, in

more traffic then the configurable Bandwidth Attackierms of memory and processing time, which make it a
Threshold. Generate final SYN/ICMP/RST alarmyigp|e alternative for near real time analysis.

if the corresponding SYN/ICMP/RST flow data

indicate a IP prefix range which carries more .

traffic than the configurable SYN/ICMP/RST 2 Experimental Setup

Threshold. Instead of using a fixed rate threshold

across all alarms, we use a duration-adaptive ratd evaluate our LADS implementation we collected

threshold, that attempts to balance the sensiti\ISNfNIP an;j Ngtflow data fo.r a fsubset of the access én'
ity between high intensity low duration attacks,z/‘f/r adces o_ba t'ﬁ_r 1d|SP rar|1|g|n_g rom Tlf tlcl) OC;lespeZ S
and relatively lower intensity but higher duration e describe this data collection next followed by a de-

attacks. This can be achieved by using a Simplgcription of the LADS parameter settings we used.
depreciation approach, so that the rate threshold o
is a monotonically decreasing function of the5.1 Data Description

alarm duration. Our current implementation use
a geometrically decreasing depreciation, wher

Figure 7: Incident diagnosis using flow data

— All flow records

or our LADS evaluation we collected SNMP and Net-
the average rate for longer duration events wil ow data for a 22000 sut_)set of interfaces within a large
be generated according to the following formuIaSP' To allow our e\{aluatlon to be repeatable during de-
Rate(Duration) — Rate(BaseDuration) velt_)pm.ent we archived e_all relevant da_lta for an 11 day
Decrease FactorPuration/BascDuration  where period in Aug_ust 2005 Wlt_h the except!on pf the SNMP
the BaseDuration is 300 seconds, and the datattrj]sed which was archived for a period in excess of 12

. months.

Decreaselactor 1s s€t100.95. In particular we collected the following datasets:

The procedure for uni-dimensional clustering is de-

scribed in Figure 8. There are two steps of the uni®NMP Our SNMP dataset contains the in and out byte

dimensional clustering: Aggregation and Reporting. Thénd packet_gounts for all interfaces considgred. Currently
aggregation step simply counts the total traffic volum&/€ only utilize the packet out counts which count the
received by each distinct destination prefix, larger thaRackets from the ISP to the customer.

a minimum prefix-range size, denoted byinPrefiz. NetFlow Data The NetFlow data contains sampled Net-
Since we are interested in DDoS attacks on custom&tow records covering the entire backbone network. The
egress links, we can afford to perform the traffic agrecords are based on 1:500 packet sampled data. The
gregation on smaller prefix ranges, than would be theampling is performed on the router and the records
case for more general purpose traffic analysis applicare subsequently smart sampled to reduce the volume.
tions [9, 33, 30]. Thus the compute and memory overn smart sampling, flow records representing total bytes
head during the aggregation phase is upper-bounded byeater than a thresholdof 20MBytes are always sam-
the size of the prefix range size we are interested in. Fpted, while smaller records are sampled with a probabil-
example, we are only interested in the traffic intended faty proportional to their size. Appropriate renormaliza-
prefixes larger than a /28, which can be potential attadion of the reported bytes yield unbiased estimates of the



UNIDIMENDIONAL CLUSTERING(MinPre fix, Threshold, Speci ficity)

> MinPrefix is the minimum prefix length — Set to 28, MaxPrefixtie maximum IP prefix length (32 for IPv4)
> Threshold is given in terms of an attack rate, Specificitysedifor compressing the report — Setto 1.5

1 Aggregation:Read flow records and update traffic counts for each uniquix fretween MinPrefix and MaxPrefix
2 Reporting:for i «— MaxPrefix DownToMinPrefix
do
3 for each PrefixP of prefix-lengthi
do
> We use the IP/Prefix notatiof,/{i} refers to prefixP with a prefixmask of length
4 AbsoluteT hreshold «— Speci ficityMaerPrefiz=i) s Threshold
5 if i # MaxPrefix
6 then CompressThreshold «— Specificity x PredictedVol(P/{i})
7 else CompressThreshold < 0
8 ReportT hreshold < MAX (AbsoluteT hreshold, CompressT hreshold)
9 if Volume(P) > ReportThreshold
10 then Report alarm on prefi®/{i} with rate Volume(P)
11 PredictedVol(P/{i—1}) «— MAX(PredictedVol(P/{i — 1}), Volume(P))

Figure 8: Procedure for uni-dimensional prefix aggregadioth generating compressed reports

traffic bytes prior to sampling [8]. In the resulting datadue to its deployment locations and configuration (we

set each record represent on average at least 20MByteasfly collect high priority alarms) the commercial system

data. After collecting the records we also annotate eachight not detect some of the DDoS attacks which are de-

record with its customer egress interface (if it was notectable with our system.

collected on the egress router) using route simulation and

tag recordg which could have been' observed twice' withig_z System Configuration

the collection infrastructure to avoid double counting of

netflow records. In terms of the specifics of our implementation, our
approach requires a number of configurable parameters

Commercial-alarms The tier-1 ISP currently has a com- which we set to the following values:

mercial DDoS detection system deployed at key loca-

tions within its network. We collected the high prior- SNMP training period We set the training period for

ity DDoS alarms from this commercial DDoS detectionmodel building for the SNMP anomaly detection to be

system. The alarms where combined into attack recor@Wweeks.

if we found multiple alarms for the same target withAbsolute Volume Threshold The absolute volume

an idle time of less then 15 minutes in between alarmshreshold provides a lower bound on DDoS attacks we

Even though we are not aware of the detailed algorithmgetect in the SNMP data. We set this value to 250kbps

used within this product our operational experience inwhich considering that the smallest link size in the Tier-1

dicates that the system detects most large DDoS attaci&P’s network is a T1 (1.5Mbps) allows us to detect any

while generating a manageable amount of high prioritgizable attack on any interface under consideration.

alarms. The system is deployed in a substantial fraction, e\ score Threshold The threshold on the deviation
of the core of the ISP at high speed interfaces and, thergéore which triggers an SNMP based alarm. We evaluate

fore, only analyzes aggregate customer traffic. Again Wg,o sensitivity and overhead for different threshold val-

used route simulation to determine the egress interfa%s in Section 6.2.2. For our evaluation we use an Event
of the attack traffic. This dataset is used to compare OW e Threshold of 5

approach to a commercially available system which re-

quires additional hardware deployment. In an ideal scg€mporal Clustering Parameters The temporal clus-
nario, we would like to evaluate the false positive and€/ing procedure uses an Event Extension Threshold and
false negative rates of our implementation against sonfeK€epAlive duration value, for deciding on combining
absolute ground truthHowever, we are not aware of anySNMP alarms. We set the event extension threshold to be

system which can generate such ground truth at the sc&]@!f the Event Score Threshold, and the KeepAlive dura-
that are of interest for our system. Hence, we use tHiPn to be 15 minutes.

commercial detection system as a basis for comparis@andwidth Attack Threshold This threshold is applied
with our implementation even though we are aware thab determine within the netflow data if a particular inci-



dent should be reported as a potential DDoS attack, @fata extraction, de-noising, and model extraction for all

none of the other DDoS related signatures (e.g. high vothe 22000 interfaces. This is not a concern since this part
umes of SYN, ICMP, or RST packets) are present. We sef the analysis can be performed offline, and the overhead
this threshold to a high-intensity threshold of 26 MUps is acceptable as it is not on the critical path for near real-
targeted at a single /32 behind a customer interface. Thiene attack detection.

rate for alarms of longer duration will be lower due to the

rate depreciation described in Section 4.2. The thresholgﬁ\a/vf 1932§r2teer(ijozihinnghePa?/iTS EQZ:eﬂa%Tjiifgrr:clgszg;

for Ia_rger preflxgs (u_pto / 28) are scaled according to thSOOMhZ SUN Ultra. The anomaly detection stage
algorithm described in Figure 8. . : :

was parallelized using 6 processes, and it takes roughly
SYN/ICMP/RST Threshold This threshold is applied 11.2 seconds to report the deviation scores, for each
to determine within the netflow data if a particular in-5 minute interval, across the 22000 interfaces used in our
cident could be considered a SYN, ICMP or RST atevaluation. The biggest bottleneck for our performance
tack. Currently we set this rate to a high intensity rate ofs the extraction of flow records for each reported alarm
2.6 Mbps, averaged over a 300 second interval. Againieven after the reduction due to the triggers), the main
we use a similar rate depreciation function for longer dureason being that (a) all flow data is currently compressed
ration alarms. to meet the storage constraints, and (b) the flow data is
collected on a per-collector basis and not indexed based
on the egress interface. Even with these performance in-
hibitors, it takes around 212.5 seconds to map the flow

In this section we evaluate LADS. In Section 5 we deplata for each 5 minute interval, to the appropriate egress

scribed the data that we used in our evaluation as Winterfaces and collect the flow data that needs to be ana-

as the specific parameters chosen for the different pa Vszed' W_e note that this_time can be_ reduced significantly
of our system. We first study our system performancey indexing the data using appropriate database technol-

in Section 6.1, followed by an evaluation of the SNMPPYY-
based trigger phase in Section 6.2, before analyzing the The last stage of our analysis does the uni-dimensional

6 Experimental Results

incidents generated by our system in Section 6.3. aggregation on the collected flow data, taking approxi-
mately 40 seconds for each 5 minute interval. Thus, for
6.1 Performance each 5 minute interval of data arriving at the process-

ing engine, the total time that is needed to analyze the

The data was collected using an existing SNMP and Netlata and report the alarms is the sum of the time taken to
flow data collection infrastructure. The SNMP data is begenerate deviation scores, the time taken to extract flow
ing collected by a commercial of the shelf SNMP collec-data for the triggered data, and the time taken to process
tion tool which seems to scale easily to large networkghe flow data, which is equal tbl.2 + 212.5 + 40 =
The Netflow collection system on the other hand wa863.7seconds to process each 5-minute interval. The re-
specifically build for this large ISP and is described irsulting maximum latency with which we will report an
more detail in [8]. Currently this infrastructures mongor alarm is, therefore, at most 263.7 seconds (or less than
in excess of one petabyte of data each day. 5 minutes), implying that even with our current unopti-

Using these existing data sources we implemented oarized implementation we can perform the near realtime
data extraction using a combination of flat files and an iranalysis. On a more state of the art platform (900MhZ Ul-
house database system. All our data-extraction, and antiaSparcs are quit dated) , and with additional optimiza-
ysis modules were implemented in Perl, with very fewtions both in our implementation and the data indexing
performance optimizations. The model-building phaswe expect to achieve substantially better performance.
uses additional MATLAB scripts for performing the de-
noising and cleaning operations described in Section 4.

The model-building phase which uses one month of
data per interface to get a mean-variance model for the
anomaly detection, takes roughly 26 hours to performthe.2  SNMP-based Trigger Evaluation

40ur implementation counts the total number of bytes and aets . ) o
base rate of 2000000 bytes every 300 seconds on the smastesam We evaluate our SNMP based trigger implementation in

ggﬁbwhich roughly translates into a raw data raté®8P35520=% ~  three stages. First, we discuss the choice of our trigger
Ds. . ) .

50ur actual implementation counts the number of distinct §lawd algorlthm_, then we Comp"’?re our mgg_er e_vents agam_St the
sets a threshold of 5 flows every 600 seconds, which trassiate an commermal-alarms and fma_“y we highlight the savings
absolute data rate GF20ME*8 ~ 9 6\ [bps. our triggered approach provides.

10



6.2.1 Choice of Algorithm 04

In the context of our system we are looking for a model 035y
which is efficient, works on historical data only and de-
tects anomalies early. Those requirements are motivated
by the facts that we have to perform this analysis in
real time on tens of thousand of times series to provide
DDoS alarms within a reasonable timeframe. Our mean-
variance based model provides these features, however,
one interesting question is how our results compare to the
results of more complicated algorithms. 85 o1 o015 02 025 03 035 04

Overhead: Flow data to be collecled/énalyzed

0.3

0.25F

0.2
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0.1r

Sensitivity: Fraction of alarms missed
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Erpirical ooF Figure 10: Tradeoff between sensitivity and scalability
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Figure 10 depicts the tradeoff between the sensitivity
of the triggers and the overall data complexity reduction
the trigger can achieve. We define as the sensitivity of
the trigger (for a particular deviation score threshold) th
percentage of commercial-alarms which match an SNMP
alarm for the threshold. The data complexity reduction
achieved by the trigger can be calculated in terms of the

Fraction of interfaces with score < x

o o o o o o
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] flow data that will be collected after the trigger step and

o1 ez s oi__os o5 o7 os o 3 which needs to be further analyzed. Ideally, we would
Figure 9: Correlation with the anomaly detection procelike to have a trigger that has perfect sensitivity (i.erpze
durein [24] false negative rate), that can also produce very low col-

Figure 9 depicts the correlation of our trigger algorithn{€Ction and computation overhead.
with the one proposed in [24]. The basic difference be- !t does appear that we can capture around 80-90% of

tween these approaches lies in the assumption about fAlbth® commercial-alarms purely by looking at the SNMP
variance of the time-series. We use an empirical datg_larms. As a tradeoff between sensitivity and data reduc-
driven approach while Roughan et al. [24] assume that tiP" We chose a 80% reduction rate (i.e., only 20% of
stochastic component s of the forpfz x P, wherea is the original flow data needs to be collected and analyzed
a peakedness factor, aiis the periodic component of in the second_stage of our sy_stem). This results in an
the time-series model (obtained using moving average§°”? overlap with the commercial-alarms and an anomaly
Figure 9 shows a correlation score of greater than 0.7 b etection threshold of 5 which we use for the remainder
tween these two methods for more than 75% of all th8' this paper. We will further discuss in Section 6.4 the
22000 interfaces selected for detection. Considering thgPMMmercial-alarms not covered, which do notfit the pro-

different detection methods and models will always hav8l€ Of attacks we expect to detect. From a provider per-
different sensitivities and that there is no ground trutt§Pective the alarms that are of paramountimportance are

available to us, we conclude that in our problem domaiH'©Se affect the customers the most, and typically these
the simple trigger model has similar properties to morére attacks which overload the egress link. If the misses

complex models and is adequate to perform the trigg‘g‘ccuron well-provisioned interfaces, this loss in sewsiti
function ity is not a serious concern.

Figure 11 shows the number of incidents per customer
interface per day over the 11 day evaluation period before
and after applying the Absolute Volume Threshold. It
Another interesting question is how frequently the SNMeems the Absolute Volume Threshold reduces the num-
based trigger would miss an attack in the commerciaPer of SNMP alarms on average by a factor of 6. For-
alarm set. It is important to repeat here that we betunately, in either case the number of alarms is quite low
lieve based on our operational experience that most suéRnsidering that these alarms are automatically processed
alarms are true and that the goal of the trigger phad®y the second phase of our detection system.
of our system is to reduce the data to a manageable
gmount_ not to remove all false positives. Thereforg, th8_3 Incident Analysis
interesting question is how many alarms present in the
commercial-alarm set do not trigger an SNMP alarm udNext we characterize the final alarm set our detection sys-
ing our model. tem generates after performing the netflow analysis de-

6.2.2 Accuracy
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a5 anomaly on the interface, and these hosts are receiving

addresses at a single egress interface into multiple aJarms
we only see a slightly higher alarm rate (around 18 per

o S~ — — hour) . Thatis not surprising considering that most (76%)

I P - o of the incidents involve only one IP address.

Another observation is that in around 19% of the cases
we get repeated alarms for the same IP address range
) _ ) ) ) within the same day. These alarms would most likely
scribed in Section 4.2. As previously described each fisy require one investigation attempt by the network op-
nal alarm specifies a duration, an egress interface, destor, Therefore, we believe that the above alarm rates

tination IP-prefixes along with type of the alarm typeyre actually an upper bound of the number of trouble tick-
(BW,SYN,RST,ICMP) and the bandwidth of the suS-g(g network operators need to process.

pected DDoS event which is the information we used for

the following graphs.
‘ — E;andw‘idth
I sYN 1
icmp
[ JRST 1

ol T ,7 a high data rate during this volume anomaly.

“?é s The number of distinct IP addresses involved in an at-
B2 tack might be a more reliable indicator of the work in-

§ 2t T volved analyzing these alarms than the number of egress
2 1sl ] interfaces. If we split all alarms which target multiple IP

5

Figure 11: Number of alarms per interface per day

6.4 Comparison with Commercial DDoS
Detection System

In this section we compare our final LADS alarms against
the commercial-alarms. Since the commercial DDoS de-
tection system only covers key locations and we only re-
ceive high level alarms from this system we would ex-
pect that our final alarm set contains substantially more
attacks then the commercial-alarms. This is indeed the
case in that the commercial system only reports 86 such
high level alarms involving the interfaces we analyzed,
whereas our system generated a total of 3314 final alarms,
over the 11 day period. Therefore, we mainly use this
) . .. data set to determine the false negative rate of our ap-
Figure 12: Nu_mb_er of reporteql |n(_:|dents (at egress 'mef)'roach since we expect that we should have detected most
face granularity) in 11 day period in Aug 2005 alarms which are also detected by the commercial sys-
Figure 12 shows the number of these alarms during o@m. We are currently investigating techniques for using
evaluation tim&. Here we consider incidents at the gran-historical uni-dimensional cluster reports (on a per-prefi
ularity of egress interfaces, i.e., concurrent attackgasia basis) to capture repeating bandwidth events which could
multiple IP addresses on the same egress interface wiiuse false positives in the current set of LADS band-
be considered one incident. We generate approximatew'dth alarms. Also, routing information could be used to
15 incidents per hour which seems reasonable considégstrict the set of alarms generated by our system to traf-
ing that we monitor 22000 customer interfaces and thdic covered by the commercial system, and so compare
this number of incidents could easily be handled by thgerformance with the same traffic set.
security staff of a large network provider. We note that Figure 13 presents a breakdown of the comparison
a large fraction of the incidents are reported as potentiaf our final alarms versus the commercial-alarms. The
bandwidth attacks. One possible explanation could bereakdown uses the following categories to classify the
that these incidents are bandwidth floods that are not ne86 alarms of the commercial system.
essarily DDoS attacks, and are potentially false positives
from the perspective of attack detection. In the absen®uccesses Between the LADS alarms and the
of any ground truth regarding these incidents, we believeommercial-alarms the interface matches, the IP
there is utility in bringing such incidents to the notice ofprefix alarmed matches, and the durations of the reported
network operators — since there was a definite volumalarms overlap.

Number of incidents
)
(o
o

Mon Tue Wed Thu Fri Sat Sun Tue Wed Thu Fri

6Due to data collection issues we miss the data of the secomd MoFouNd early i_nCidentS BetW?en the LADS alarms &_md
day in our evaluation time the commercial-alarms the interface matches, the ip ad-

12



dress alarmed matches, but we find the alarm slightly ear- I vt

. . 9% Bl svN
lier than what is reported. I cve

[ Jrst

Found late incidentsBetween the LADS alarms and the
commercial-alarms the interface matches, the ip address 29%
alarmed matches, but we find the alarm slightly later than

what is reported.

Threshold missesThe interface matches, we have an
SNMP volume anomaly, and we have flow data for the
incident that indicates a large number of flows to the IP,
but we missed alarming on the IP address during the sec-
ond phase of detection.

44%

Anomaly detection missesThis commercial-alarm did Figure 14: Breakdown of overlapping incidents

not generate an SNMP alarm on the reported interface, . i
i.e., the deviation score for the corresponding time in thBOrtion of the reported incidents which overlap are SYN

SNMP dataset is less than our SNMP alarm threshof¢Pods-
(which is set to 5 for our evaluation).

.

= All incidents
= = = Overlapping incidents |
1

Potential commercial-alarm false positiveThe inter-
face information and the anomaly match between our
SNMP alarm and the commercial-alarm, however, we
find little or no flow data for the corresponding attack tar-
get reported by the alarms.

o
©
T

o
®
T

0.7F

ol
)
T

Fraction of incidents
o o
S o
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The false negative rate of our system compared to

0.3

the commercial DDoS detection system is essentially the 02}

sum of the anomaly misses, and threshold misses. Man- 01}

ual analysis of the anomaly detection misses indicates T T e e
that all 7 SNMP anomaly misses are caused by relatively Rate of incident (Mbps)

small attacks on OC48 interfaces (2.48Gbit/sec). They  Figure 15: Rates of potential attack incidents
did not saturate the customer interface and therefore areangther dimension of comparing the final LADS
not in the category of DDoS attacks we want to detechiarms with the commercial solution is depicted in Fig-
The number of threshold misses on our system is lowyye 15 which shows the average bitrate according to our
just 1 incidents out of 86 incidents are dropped due to theatfiow records of the DDoS events alarmed on by our
threshold settings. Therefore we conclude that the overaysiem and the commercial DDoS detection system. The
false negative rate of our system, compared to a CoOmMefyeriapping incidents appear to have a minimum rate of
cial DDoS detection system, is 1 out of 80, or 1.25%. 1 Mbps, which is most likely due to the fact that we
only had access to the high priority alarms of the commer-
I successes 1% cial DDoS detection system. Interestingly, this makes the

- -oundkarl 8% . . . .

-ng"y high level alerts of this system unsuitable for detecting

E;hfeshf':ﬂwss DDoS attacks against small customer links. The system
nomalyMiss

therefore ranks attacks as high level alerts not by cus-
tomer impact (even a small attacked customer link has a
lot of customer impact for the customer using that link)
but by the overall attack size. This is of course less desir-
able, if the goal is to protect customers which subscribe
using various line rates. For 40% of the final LADS
alarms we find a reported bandwidth which is smaller
than 10Mbps’. Further investigation reveals that more
than 70% of these low volume alarms are in fact caused

by volume floods against low speed links.
To compare the type of attacks that are found in the

: "The rates for alarms of duration longer than 300 secondsbill
overlap between the vendor solution and our system VYoewer than the high intensity thresholds of 26 Mbps for thadwidth

give a breakdown of the 4 types of incideBandwidth,  4tacks, and 2.6 Mbps for SYN/RST/ICMP attacks, due to the da-
SYN, ICMP, RSTnh Figure 14. Interestingly, the largest preciation we discussed earlier.

[ JFaise

7%

Figure 13: Comparison with the proprietary system
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7 Conclusions [13]
We presented the design of a general triggered frame-
work for scalable threat analysis, and a specific impld14]
mentation based on SNMP and Netflow feeds derived
from a large Internet provider. Our evaluations and ex-
perience with large networking datasets demonstrate thg,
imminent need for such an approach. Our results indi-
cate that the particular system we built is adequate for
the task of detecting attacks at scale, and doing so witho]
significant reduction in operational complexity and com-
putational cost. Of particular practical significance is th
fact that our system uses data feeds that are readily avai
able to most providers.

There are several interesting directions for future workjz g)
Our evaluations demonstrate that our design is sufficient,
but we believe there is scope for improving the individual
components (anomaly detection, flow analysis). We aré®]
also investigating other ways in which we can confirm thé&0]
validity of the alarms generated by our system, including
those mentioned in Section 6.4. Finally, we are currentl
pursuing the implementation of more real time feeds t
our system to allow us to use it in an ongoing basis as a
online threat detection mechanism.

21]
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