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Abstract
Alignment-free algorithms can be used to estimate the similarity of biological
sequences and hence are often applied to the phylogenetic reconstruction of
genomes. Most of these algorithms rely on comparing the frequency of all the distinct
substrings of fixed length (k-mers) that occur in the analyzed sequences.
In this paper, we present Logic Alignment Free (LAF), a method that combines
alignment-free techniques and rule-based classification algorithms in order to assign
biological samples to their taxa. This method searches for a minimal subset of k-mers
whose relative frequencies are used to build classification models as
disjunctive-normal-form logic formulas (if-then rules).
We apply LAF successfully to the classification of bacterial genomes to their
corresponding taxonomy. In particular, we succeed in obtaining reliable classification
at different taxonomic levels by extracting a handful of rules, each one based on the
frequency of just few k-mers.
State of the art methods to adjust the frequency of k-mers to the character distribution
of the underlying genomes have negligible impact on classification performance,
suggesting that the signal of each class is strong and that LAF is effective in identifying it.

Keywords: Supervised classification, Alignment-free sequence comparison, Bacterial
taxonomy

Background
The field of biological sequence analysis relies on mathematical, statistical, and computer
science methods for discovering similarities among different organisms, understanding
their features and their structure, detecting ancestry, relatedness, evolution, and common
functions.
Several well-established sequence comparison algorithms are based on sequence align-

ment: they compute sequence similarity by aligning portions of sequences (e.g., subse-
quences) that have common nucleotide assignments. The alignments of two or more
sequences are scored according to the number of common nucleotides. Such methods
can be exact or heuristic. Among exact methods, Smith-Waterman [1] and Needleman-
Wunsch [2] use dynamic programming techniques. The first performs local sequence
alignment: it detects the common regions between two sequences by comparing segments
of all possible lengths. The second is a global alignment algorithm, designed to align entire
sequences. In order to reduce the computational burden of exact methods, several heuris-
tic algorithms have been designed, the most renowned being FASTA [3] and BLAST [4].
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For the comparisons of more than two sequences, there are ad-hoc algorithms like Mus-
cle [5], ClustalW [6], Motalign [7], and Mafft [8]. Alignment-based sequence analysis
algorithms have a very high computational cost, especially when applied to a large set of
sequences [9]. Other problems may also be encountered when performing alignment on
genome sequences, related with the presence of non-coding subsequences, or simply with
the computational burden associated with the alignment of whole genomes [10].
In order to address these issues, alignment-free sequence analysis methods can be

considered. Such algorithms are mainly classified in two groups: methods based on
sequence compression and methods that rely on the frequencies of the subsequences
(oligomers) [9].
The first class of methods compute a model that succinctly describes the sequence, and

assess the similarity of the sequences by analyzing their compressed representations, e.g.,
Kolomogorov complexity [11] or Universal Sequence Maps [12].
In this work we focus on the second class of methods, alignment-free algorithms that

rely on oligomer frequencies and map two strings X and Y onto corresponding multi-
dimensional vectors X and Y; these vectors are indexed by a number of substrings in
the given alphabet (a typical case is when all possible substrings of a predefined length
k are used). X[W ] and Y[W ] – the element of X and Y associated with substring W –
contain the number of occurrences of W in X and Y respectively. Often the number of
occurrences is normalized and converted into a measure of statistical surprise using the
length and distribution of characters in each string. Standard distance functions on vec-
tors are then applied to X and Y, allowing the original strings to be compared by classical
distance-based algorithms.
Alignment-free algorithms are currently the most scalable class of methods for recon-

structing phylogenetic trees from thousands of large, distantly-related genomes and
proteomes [13, 14].
The success of alignment-free methods rests on extensive information on the substring

composition of genomes and on codon-usage biases, cumulated over approximately fifty
years, with particular emphasis on prokaryotes: from the first studies of GC content [15],
to the first detection of biases in the composition of pairs and quadruples of adjacent
nucleotides [15–21], to the discovery of species-specific frequencies of 4-mers and 8-mers
preserved in DNA fragments ranging from 40 kilobases to 400 bases [22–26], to more
recent, unsupervised classifications [27–29] and more complex protein motifs [30].
Since the very beginning, most such studies have relied on some form of noise filtration,

either assuming an independent and identically distributed source or a Markov source of
low order (i.e., normalizing the raw frequencies using their expectation and or variance
according to the specified sources). Markov chains inferred from genomes have indeed
been shown to reproduce large fractions of the frequency distribution of k-mers in the
original genomes [23, 31, 32].
So far, classification has always relied on the frequency of all k-mers [27, 33], and min-

imality in phylogenetic signal has been investigated with respect to the length of the
strings from which k-mers are extracted, rather than to the space of features used for
classification. This trend continues inmodern applications of k-mer composition to anno-
tating and binning metagenomic reads [34]: increasingly more sophisticated heuristics
have allowed to reliably classify reads ranging from one kilobase to 75 bases, under a
variety of species abundance scenarios [35–40]. However, fundamental questions on the
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distribution and concentration of phylogenetic signal in the space of all k-mers are still
open and scarcely investigated. Among the few attempts in this direction, we mention the
use of singular value decomposition (SVD [41, 42]) and of irredundant shared substrings
[43] in phylogeny reconstruction, the use of few selected k-mers in barcoding genes [44],
and early attempts at classifying protein families using the frequency of a small set of
dipeptides [45].
In this work, we search for a minimal set of k-mers whose frequency is sufficient to clas-

sify entire genomes. Specifically, we focus on logic formulas (if-then rules) whose attributes
W are k-mers, and whose values fX(W ) are relative frequencies in a genome X, possibly
corrected by expected counts. An example of such a formula could be:

if (f (ACGT) > 0.15) ∧ (f (GGCT) < 0.6) then X ∈ T

where T is a taxonomic unit (for example, E. coli) at a given taxonomic rank (for example,
at the species level). Similar to recent DNA barcoding efforts, such formulas approximate
a unique signature of set T , but they work on entire genomes rather than on few specific
genes, and they do not require T to be at the species level [44, 46]. Contrary to markers
[47–49], the k-mers in such formulas need not to be genes, they need not to be rare
in the genomes they characterize, they need not to be absent from the genomes they
do not characterize. Contrary to discriminating substrings (see e.g. [50] and references
therein), formulas can use multiple substrings to classify, and they can link frequencies
with conjunctions and disjunctions.
In this paper, we experiment with four rule-based algorithms [51] that extract clas-

sification models in the form of logic formulas and we compare them with other
state-of-the-art classifiers, such as Support Vector Machines [58, 69] and Nearest Neigh-
bor [70]. Surprisingly, it turns out that we can reliably classify genomes at multiple
taxonomic levels using a limited number of formulas, each involving few, short k-mers.
Moreover, standard noise filtration methods have minimum impact on classification per-
formance, suggesting that noise is automatically dampened by the formula-extraction
algorithms.

Methods
In this section, we present the Logic Alignment Free (LAF) technique and software pack-
age. The aim of LAF is to classify biological sequences and assign them to their taxonomic
unit with the aid of a supervised machine learning paradigm [51] (see subsection Super-
vised machine learning and rule-based classification algorithms for more details). LAF
uses a feature vector representation of the biological sequences, and gives them as input
to rule-based classification algorithms (for a detailed analysis of rule-based classification
methods, see [52]).
In [53], LAF has been already successfully applied to the classification of selectively

constrained DNA elements, which are not alignable and do not come from the same gene
regions.
Conversely, here we present the method in detail, provide the scripts and the software,

and describe its application to bacterial genomes. In the following subsections, we illus-
trate the feature vector representation technique, the rule-based classification algorithms,
and their integration in the LAF framework.
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Representing the sequences as feature vectors with alignment-free methods

The most widespread alignment-free methods compute the frequencies of the substrings
in the biological sequences, called k-mers (where k is the length of the substring). For each
sequence, the substring frequencies are then represented in a vector, called frequency
vector [12, 54–57]. Each element of this vector expresses the frequency of a given k-mer,
computed by scanning a sliding window of length k over the sequence.
More formally [9], let S be a sequence of n characters over an alphabet �, e.g. � =

{A,C,G,T}, and let k ∈ [1 . . . n]. If K is a generic substring of S of length k, K is
called a k-mer. Let the set V = {K1,K2, . . . ,Km} be all possible k-mers over �, and
define m = |�|k to be the size of set V. The k-mers are computed by counting the
occurrences of the substrings in S with a sliding window of length k over S, starting at
position 1 and ending at position n − k + 1. A vector F contains for each k-mer the
corresponding counts F = c1, c2, . . . , cm. The frequencies are then computed accord-
ingly and stored in a vector F ′ = f1, f2, . . . , fm; for a k-mer Ki, the frequency is defined
as fi = ci

n−k+1 .
These numerical representations of the sequences allow the use of statistical and

mathematical techniques; indeed, the most used approach for sequence comparisons in
alignment-free vector representations are distance measures, such as the Euclidean dis-
tance and the d2 distance [9]. While the authors of [56] use feature vector representation
in combination with supervised machine learning methods, specifically Support Vector
Machines [69] for biological and text sequences, here we propose to analyze the frequency
vectors with rule-based supervised machine learning algorithms. The effectiveness of this
technique is investigated and tested on bacterial sequences.

Supervised machine learning and rule-based classification algorithms

The aim of this step is to classify the biological sequences into their taxonomic unit. Once
the sequences are represented in a vector space, it is possible to analyze them by adopting
a supervised machine learning approach, sketched in the following.
Given a set B of biological sequences, each assigned to a taxon (training set), a classifier

is trained with these sequences in order to compute a classification model that predicts
the taxon of each sequence from the values of its vector space representation. An addi-
tional set of sequences with known taxa is used to evaluate whether the model computed
on the training set is able to predict correctly the taxa (the latter is called test set). For
assessing the performance of the classifier we adopt the accuracy measure (A), also called
correct rate A = c

t , where c is the number of correct classified sequences in the test set
and t is the number of total sequences in the test set.
We focus on a particular type of classification methods - rule-based classifiers - which

express the classificationmodel in propositional logic form (e.g., if-then rules). Rule-based
classifiers have the main advantage of being able to control their dimension (in this case,
the number of k-mers used), they are easily interpretable, and can straight-forwardly
be integrated with other contextual knowledge. Several rule-based classification meth-
ods are proposed in the literature; in LAF we adopt the following ones: Data Mining Big
(DMB) [59, 60], RIDOR [61], PART [62], and RIPPER [63]. All these methods use distinct
rule extraction approaches, but – as we will see later – perform very well on the ana-
lyzed data sets of bacterial sequences. We report a brief description of these methods in
the following.
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Data Mining Big (DMB) [60, 64, 65] is a rule-based classification software designed for
biomedical data. It adopts optimization models that are formulated and solved in order
to deal with the different steps of the data mining process. Five main steps are performed
by DMB:

1. discretization: conversion of numeric attributes into nominal (discrete);
2. discrete cluster analysis: samples that are similar in the discretized space are

clustered and dimension-reduced accordingly;
3. feature selection: the most relevant attributes for classification purpose are selected;
4. rule extraction: small and effective rules are extracted from training data and

verified on test data;
5. classification: the extracted rules are used to classify new samples.

RIDOR [61] performs rule extraction directly from the training data set. The first step
is the computation of a default rule for the most frequent class (e.g., “all sequences are E.
coli”). Then, it computes exception rules that represent the other classes (e.g., “except if
freq(ACGT) < 0.45 then the sequences are S. aureus”).

PART [62] performs rules extraction with an indirect method. It uses the C4.5 decision
tree based classification algorithm [66], which computes a pruned decision tree for a given
number of iterations. The best performing tree in terms of classification performances is
chosen by PART and converted to rules for every species.

RIPPER [63] is a direct rule extractionmethod based on a pruning procedure, whose aim
is to minimize the error on the training set; it performs the following steps: i) growth of
the rules; ii) pruning of the rules; iii) optimization of the model; iv) selection of the model.
In the first step, thanks to a greedy procedure, RIPPER extracts many classification rules.
Then, the rules are simplified and optimized in step two and three, respectively. Finally,
the best model (i.e., set of rules) is selected.

Logic Alignment Free (LAF) method

Rule-based classifiers have been successfully used in the analysis of aligned sequences,
e.g., in [59] and [60], where the classification of biological sequences to their species is
performed by considering only sequences from the same gene region. In this case the
rule-extraction procedure identifies exact gene regions and nucleotide assignments that
are specific to a species; an example of such a rule could be ‘’if pos354 =T of gene 16S
then the sequence belongs to E. Coli”.
Here we test a method for classifying biological sequences without the strict require-

ment of overlapping gene regions and of calculating an alignment, referred to as
Logic Alignment Free (LAF). It is based on the frequency vector representation of the
sequences. The method allows to classify non coding DNA that is not alignable [53], and
whole genomes, whose alignments are very computationally demanding. LAF adopts a
supervised machine learning procedure, where a labeled training set of whole genomes is
considered (labels in this case would be associated to the taxon). LAF would then operate
with the following steps, if we take into account every genome g of the input data set:
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• The genome g is reverse complemented, the k-mers with k ∈ [3 . . . 6] are counted
and stored in a frequency vector F ′;

• A matrix that contains all frequency vectors is created; the rows of the matrix are
associated to the k-mers and the columns to the sequences (an example is given in
Table 1);

• The frequencies are discretized with theMDL procedure [67] before applying RIDOR,
PART and RIPPER, while DMB provides its own built-in discretization method;

• A set of four rule-based classifiers (e.g., DMB, RIDOR, PART and RIPPER) take the
matrix as input and extract the classification models and specimen to taxonomic unit
assignments;

• The above is repeated for different combinations of training/test sets.

For a compact overview of the method the reader may refer to the LAF flow chart
drawn in Fig. 1. To compute k-mer counts, we adopt the Jellyfish software [68]. Data dis-
cretization is performed using MDL [67] or the DMB internal procedure. As rule-based
classifiers implementations we employ the Weka [67] and the DMB packages. The LAF
method is deployed in a software package available at dmb.iasi.cnr.it/laf.php.

Data sets of bacterial genomes

In order to prove the validity of the LAF technique, we chose to test the method for
the classification of biological sequences belonging to the bactria domain. We down-
loaded 1964 bacterial genomes from the NCBI genomes database (www.ncbi.nlm.nih.
gov/genome/browse/). For every downloaded sequence, we query the NCBI taxonomy
service (scripts are available at dmb.iasi.cnr.it/laf.php) to retrieve the full lineage, i.e.,
Species, Genus, Order, Class, Phylum. In order to perform an effective classification,
we do not take into consideration under-represented species and therefore we filter out
sequences with less than nine specimens. This step is necessary to perform a proper train-
ing of the classifiers. The final filtered data set is composed of 413 sequences with 25
species, 21 genera, 14 orders, 9 classes, and 6 phyla. Additionally, we also report the per-
formances on the original data set (1964 bacterial genomes, 1157 species, 590 genera, 120
orders, 57 classes, and 36 phyla).

Results and discussion
We apply LAF to the previously described filtered data set of bacterial genomes, setting
k ∈ [3 . . . 6] and using the four already mentioned rule-based classification algorithms by
adopting a 10-fold cross validation sampling scheme. We show also the results on the
original data set composed of 1964 sequences. Additionally, we compare the results of

Table 1 Example of frequencies vectors matrix extracted by LAF and provided as input to rule-based
classifiers

Seq1 Seq2 . . . Seqn−1 Seqn
E. Coli E. Coli . . . S. Aureus S. Aureus

AAA 0.46 0.26 . . . 0.24 0.26

AAC 0.12 0.16 . . . 0.23 0.24

AAG 0.13 0.23 . . . 0.23 0.22

. . . . . . . . . . . . . . . . . .

dmb.iasi.cnr.it/laf.php
www.ncbi.nlm.nih.gov/genome/browse/
www.ncbi.nlm.nih.gov/genome/browse/
dmb.iasi.cnr.it/laf.php
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Fig. 1 Flow chart of the LAF method

LAF with respect to the Support Vector Machine (SVM) classifier [69] and with respect
to a Nearest Neighbor approach [70].
First, we test LAF on the filtered raw sequences without any preprocessing, obtain-

ing very good classification performance. The accuracy of the classification algorithms
for k = 4 and multiple taxonomic levels is summarized in Table 2. We focus on k = 4
here since it is the smallest value to achieve good classification performances: increasing
k slightly improves classification performances, but also complexity and computational
time. We justify the choice of k = 4 providing experimental evidence in Table 3 by focus-
ing on the order level since similar performance is obtained at other levels. We can see
that the classification accuracy only slightly increases by raising the value of k, but com-
plexity and computational time significantly do. We provide also an example in Fig. 2 that
shows the accuracy and computational time of RIPPER with respect to increasing values
of k. The k-mers extraction is linear in the size of the input, but it is worth noting that for
greater values of k the required IO bandwidth and the size of the data matrices exponen-
tially increase [68], slowing down the k-mers extraction and the classification processes.
Additionally, the value of k = 4 resonates with a number of previous studies [71–73].
In Table 2, we report the average accuracy over all classification algorithms on the fil-

tered data set. We note that the best results (98% accuracy) are obtained for the phylum
level – the highest in the taxonomy. Accuracy remains greater than 96% at lower lev-
els as well. According to the average over all taxonomic levels, RIDOR exhibits the best
performance.
Moreover, we compare LAF with respect to the Support Vector Machine (SVM) clas-

sifier. We adopt the Weka implementation of SVM (called SMO) with a linear kernel
and a soft margin. We obtain an accuracy of 99% on the filtered data sets with a 10-fold
cross validation sampling scheme, which slightly outperforms LAF. But we remark that

Table 2 Percent accuracy of the rule-based classifiers for each taxonomic unit (10-fold cross
validation) on the filtered data set

Level RIPPER RIDOR PART DMB Avg± std.dev

Species 93.21 97.33 96.36 97.61 96.13± 2.0

Genus 93.98 98.79 97.10 98.44 97.08± 2.2

Order 98.79 99.27 98.31 98.58 98.74± 0.4

Class 96.50 97.81 98.79 97.06 97.79± 0.9

Phylum 96.88 98.78 98.07 98.53 98.06± 0.8

Avg± std.dev 95.87± 2.2 98.40± 0.8 97.72± 1.0 98.24± 0.4 97.55± 1.0

The best performances are highlighted in bold for each taxon
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Table 3 Accuracy (ACC) [%] and computational times (T) [sec] on the order level with different
values of K

Data set Classifier K=3 K=4 K=5 K=6

ACC T ACC T [s] ACC T ACC T

Original RIPPER 64.50 37.08 69.82 83.53 69.76 203.53 69.92 765.34

Original RIDOR 61.63 71.17 62.25 320.72 64.19 1509.75 64.75 10320.40

Original PART 65.37 12.67 67.05 24.58 67.77 70.13 70.02 280.23

Original SVM 70.69 605.55 85.37 937.32 88.59 1312.52 89.56 2020.60

Original NN 83.27 9.56 85.67 12.13 86.49 19.34 87.06 114.48

Filtered RIPPER 98.79 0.82 98.79 1.55 99.27 4.56 98.79 27.76

Filtered RIDOR 96.12 1.58 99.27 3.05 96.36 26.16 97.33 34.31

Filtered PART 97.34 0.51 98.31 1.00 97.58 2.28 97.09 23.11

Filtered SVM 99.56 10.62 99.87 11.58 99.65 13.10 99.68 14.71

Filtered NN 99.45 1.99 99.93 3.30 99.34 3.70 99.63 4.18

Average - 83.67 75.2 86.63 139.88 86.90 316.51 87.38 1360.51

SVM outputs just a single classification model that cannot be easily interpreted by human
experts.
Finally, we evaluate also the performances of the Nearest Neighbour (NN) classifier by

using the Weka implementation of NN (called IBk) and by setting the number of neigh-
bours to 1, the NN search algorithm to linear, and by adopting the Euclidean distance.
Also in this case we obtain an accuracy of 99% on all filtered data sets with a 10-fold cross
validation sampling scheme, but no human readable classification model.
Conversely to NN and SVM, the rule-based classification methods adopted by LAF

provide sets of similar rules than can be analyzed, compared, and evaluated by the user.
Here we consider as a sample the rules at the species level extracted by DMB, reported
in Table 4. A representative example of such family of rules is the one for Helicobacter

Fig. 2 Accuracy and computational times of RIPPER with respect to increasing values of k on the original
data set
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Table 4 A sample of classification rules at the species level extracted by the DMB software. f (W)

represents the relative frequency of substringW in a genome, multiplied by 105 for readability

A. baumannii f (GTAC) ≥ 229.10 ∧ f (TGCA) ≥ 515.63

B. cereus 384.04 ≤ f (CTCA) < 490.11 ∧ 819.04 ≤ f (TCCA) < 875.80

B. animalis 762.28 ≤ f (TCCA) < 819.04 ∧ 469.35 ≤ f (TGCA) < 515.63

B. longum f (GTAC) ≥ 229.10 ∧ 330.52 ≤ f (TGCA) < 376.80

B. aphidicola 57.77 ≤ f (AGGC) < 182.81

C. jejuni 490.11 ≤ f (CTCA) < 596.17 ∧ 353.97 ≤ f (CTGA) < 451.85

C. trachomatis 305.55 ≤ f (GGAC) < 393.10 ∧ 875.80 ≤ f (TCCA) < 932.56

C. botulinum 371.77 ≤ f (ACTC) < 434.37 ∧ 112.00 ≤ f (GCAC) < 261.71

C. diphtheriae 819.04 ≤ f (TCCA) < 875.80 ∧ 423.07 ≤ f (TGCA) < 469.35

C. pseudotuberculosis 875.80 ≤ f (TCCA) < 932.56 ∧ 423.07 ≤ f (TGCA) < 469.35

E. coli 710.86 ≤ f (GCAC) < 860.58 ∧ 415.84 ≤ f (GCTA) < 525.98

F. tularensis 592.00 ≤ f (TCCA) < 648.76 ∧ 330.52 ≤ f (TGCA) < 376.80

H. influenzae 549.73 ≤ f (CTGA) < 647.60 ∧ 130.47 ≤ f (GGAC) < 218.01

H. pylori 5.56 ≤ f (GTAC) < 42.82

L. monocytogenes 411.43 ≤ f (GCAC) < 561.15 ∧ 305.55 ≤ f (GGAC) < 393.10

M. tuberculosis 649.71 ≤ f (ATCA) < 772.78

N. meningitidis 590.29 ≤ f (GATA) < 754.27 ∧ 376.80 ≤ f (TGCA) < 423.07

P. marinus (f (AGGA) < 602.46 ∨ f (AGGA) ≥ 706.28) ∧ f (GCTA) < 856.37

∧117.33 ≤ f (GTAC) < 154.58

S. enterica 525.98 ≤ f (GCTA) < 636.11 ∧ 393.10 ≤ f (GGAC) < 480.64

S. aureus 1082.23 ≤ f (GATA) < 1246.22 ∧ f (GTAC) ≥ 229.10

S. pneumoniae 393.10 ≤ f (GGAC) < 480.64 ∧ 154.58 ≤ f (GTAC) < 191.84

S. pyogenes 596.06 ≤ f (AGTA) < 733.86 ∧ 1082.23 ≤ f (GATA) < 1246.22

S. suis 918.25 ≤ f (GATA) < 1082.23 ∧ 330.52 ≤ f (TGCA) < 376.80

S. islandicus 218.01 ≤ f (GGAC) < 305.55 ∧ 284.24 ≤ f (TGCA) < 330.52

Y. pestis 596.17 ≤ f (CTCA) < 702.24 ∧ f (CTGA) ≥ 941.24

pylori: ”if 5.56 ≤ f (GTAC) < 42.82 then the sample is Helicobacter pylori”. Here f (K) is
the frequency of substring K (for readability, the frequency values are multiplied by 105).
We observe that the same 4-mer is able to distinguish 3 and 2 bacterial species with

different frequency values, respectively, and that twenty 4-mers suffice to separate all the
25 species. The classification rules are also very concise, since most of them are com-
posed only by the conjuction of the conditions on two 4-mers (in the logic jargon, such
rules are conjunctive clauses composed of two literals). In general, the rules computed
for distinct species do not seem to use disjoint, species-specific sets of k-mers, suggest-
ing that discrimination critically depends on the frequency of a k-mer rather than on its
simple presence or absence in a species. Additional considerations derive from the granu-
larity of the adopted discretization. The method allows to specify up-front the number of
intervals used to discretize the frequency values of each k-mer, and then searches for an
optimal discretization under this condition. From the experimental results we conclude
that the number of intervals in which frequencies are discretized has minimal effects on
classification quality, provided that at least 3 intervals are used (results not reported).
Moreover, we show the results on the original data set of all rule-based algorithms and

compare them with SVM and NN in Table 5. It is worth noting that the methods are
not able to classify the bacteria genomes at species level, because of under representation
(i.e., there are many species with just one or two sequences). At higher taxonomic levels



Weitschek et al. BioDataMining  (2015) 8:39 Page 10 of 13

Table 5 Percent accuracy of the classifiers for each taxonomic unit (10-fold cross validation) on the
original data set

Level RIPPER RIDOR PART DMB SVM NN Avg± std.dev

Species - - - - - - -

Genus 54.17 47.67 50.17 48.54 - 73.04 45.60± 24.2

Order 69.82 62.25 67.05 63.78 85.37 85.68 72.32± 10.5

Class 75.08 69.92 71.76 72.05 88.43 89.10 77.72± 8.7

Phylum 75.85 70.99 56.77 71.45 85.93 86.08 74.51± 8.2

Avg± std.dev 68.73± 10.0 62.71± 10.7 61.44± 9.7 63.96± 11 64.93± 43.3 83.48± 7.1 67.54± 14.8

The best performances are highlighted in bold for each taxon

(class and phylum) we obtain more reliable results. We highlight that SVM and NN per-
form best, but they do not provide a human readable classification model as rule-based
classifiers, which permit to identify the different taxon specific k-mers.
In order to test their effect on the classification performance, we applied different

types of preprocessing to the filtered data set suggested in previous works [74–77] about
phylogenetic reconstructions of genomes with alignment-free algorithms.

• The first type consists in excluding all high-frequency and low-complexity substrings
[74] of a genome from its k-mer counts, using the DUST software implementation
provided by NCBI [78];

• A second type of preprocessing consists in replacing the frequency fT (W ) of a k-mer
W in a string T with a measure of the statistical significance of the event that W has
fT (W ) occurrences in T. Specifically, we assigned to a k-mer W the score
zT (W ) = (

pT (W ) − p̃T (W )
)
/p̃T (W ), where pT (W ) = fT (W )/(|T | − k + 1), and

where p̃T (W ) = pT (W [1..k − 1] ) · pT (W [2..k] )/pT (W [2..k − 1] ) is the expected
value of pT (W ) under the assumption that T was generated by a Markov process of
order k − 2 or smaller. This score has been shown to be critical in building accurate
phylogenies of distantly-related prokaryotes [75];

• We experimented with the estimator
p̃T (W ) = (

fT (W [1] ) · fT (W [2..k] ) + fT (W [1..k − 1] ) · fT (W [k] )
)
/2, derived under

the assumption thatW [2..k − 1],W [1] andW [k] occur independently in T [76];
• We also adopted an even simpler estimator, based on single-nucleotide frequencies

(see [9, 77] and references therein for alternative ways to compute p̃T (W )).

In our experiments, none of these preprocessing methods yielded a visible improve-
ment on classification quality, suggesting that noise is automatically dampened by the
formula-extraction algorithms run on raw frequencies. Nonetheless, we include in our
LAF package an implementation of all such filters, since they could be useful in other data
sets.

Conclusions and future work
The LAFmethod combines k-mer composition vectors and rule-based classification algo-
rithms to classify biological sequences. Such sequences do not need to be aligned or to
belong to the same gene. The method was applied to bacterial whole genomes, and it was
able to perform with accurate classification results and to identify common subsequences
(k-mers) in each taxon (class) of the data set.
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We compared our method with other state-of-the art classification methods and pro-
vided experimental results that show promising performance of LAF in particular in the
classification model extraction (i.e., specific k-mers for each taxon).
Several directions for future research stem from the results obtained in this paper: fur-

ther reducing the size of the classification models, analyzing more deeply the k-mers
selected by our models; and measuring how classification performance degenerates when
moving from whole genomes to short fragments.
Another possible way to further reduce the size of our models consists in building hier-

archical classification rules by extracting logic formulas that best discriminate between
elements in a taxonomic unit T and elements in parent(T )\T , where parent(T ) is
the parent of T in the taxonomic tree. Such result would look very similar to a decision
tree, and the corresponding k-mers could be related to the notion of crowns (see [79]).
Analyzing the actual k-mers selected by our models is another obvious open direc-

tion, for example in terms of syntactic similarity and positional correlations between the
k-mers that appear in the same formula, or in terms of enrichment of such k-mers in
regulatory regions or in gene families devoted to specific cellular processes.
It is also of interest the understanding of how the classification performance degener-

ates when moving from whole genomes to short fragments, for example by determining
how small a fragment we can classify correctly using the formulas learned from entire
genomes, or using new formulas learned from fragments. Abundance estimation in
metagenomic samples is also a natural application for the strong biases in the relative
frequency of k-mers that we report here: given a set of observed k-mer frequencies in a
sample, and a set of logic rules in sequenced genomes, the problem would then amount
to compute the most probable abundance of known species in the sample.
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