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ABSTRACT
The sources of lag (the delay between input action and
output response) and its effects on human performance are
discussed. We measured the effects in a study of target
acquisition using the classic Fitts’ law paradigm with the
addition of four lag conditions. At the highest lag tested
(225 ins), movement times and error rates increased by 64%
and 21490 respective y, compared to the zero lag condition.
We propose a model according to which lag should have a
multiplicative effect on Fitts’ index of difficulty. The model
accounts for 9470 of the variance and is better than
alternative models which propose only an additive effect for
lag. The implications for the design of virtual rerdity
systems are discussed.
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INTRODUCTION
Human interaction with computers is two-way. As
participants in a closed-loop system, we issue commands
through a computer’s input chatmels and receive results fed
back on output channels. Subsequent input depends on the
latest output. Not surprisingly, performance is adversely
affected when the feedback is subject to delay or lag.
Fortunately, lag is negligible in many interactive computing
tasks, such as text entry or cursor movement in word
processing.

The opposite extreme is remote manipulation systems,
where the human operator is physically displaced from the
machine under control. The lag may be due to mechanical
linkages or to transmission delays in the communications
channel. In controlling a space vehicle on a distant moon or
planet, for example, transmission delays, or lag, maybe on
the order of several minutes.
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Somewhere in the middle is virtual reality (VR), a genre of
interactive system relying heavily on the 3D tracking of
hand, head, and/or body motion in a simulated 3D
environment. The pretense of reality requires a tight link
between the user’s view of the environment and the actions
– usually hand or head motions – that set the view. When
changes in the environment lag behind input motions, the

loss of fidelity is dramatic. Although this has been noted in
VR research, empirical studies to measure lag and to
evaluate its impact on human performance are rare. In this
paper, we describe an experiment to measure and model the
speed, accuracy, and bandwidth of human motor-sensory
performance in interactive tasks subject to lag.

The Source of Lag
Lag is inevitable and can be attributed to properties of input
devices, software, and output devices. The sampling rate
for input devices and the update rate for output devices are
major contributors. Input devices are usually sampled at
fixed rates in the range of 10 to 60 samples per second. A
60 Hz rate (every 16.67 ms) is possible when synchronizing
with the vertical retrace of many CRT displays. On
average, this component of lag is half the retrace period or
8.3 ms. Alone, this is negligible. (8.3 ms is the period of
flicker in a fluorescent light fixture driven by a 60 Hz full-
wave rectified power source. The flicker is undetectable by
the human eye.)

Lag is increased further due to “software overhead” - a
loose expression for a variety of system-related factors.
Communication modes, network configurations, number
crunching, and application software all contibute.

Lag will increase dramatically when output requires
substantial computation for graphic rendering. A frame
rate of 10 Hz is considered minimat to achieve “retd time”
animation. Since the construction of the frame onty begins
when the position is known, the potential for parallel
processing is limited. Using standard double buffering (in
which the frame is only presented once fully drawn), there
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is a minimum 100 ms lag to the start of the frame display
interval and a lag of 150 ms to the middle of the frame
display interval.

In VR, lag is very much present. It is associated mostly
with three-dimensional tracking devices attached to the
hand or head, as well as the lag caused by the low frame
rates. Typical devices include the Polhemus lsotrak (used
on the VPL DataGlove) and the Ascension Bird. These
devices (i.e., their interfaces) must transmit six degree-of-
freedom position and orientation data to the host computer
at a high rate while acting in concert with competing
processes in the complete VR environment. Maintaining
negligible lag is usually not possible.

In one of the few empirical studies on lag, Liang, Shaw, and
Oreen [9] describe an experiment to measure the lag on a
Polhemus lsotrak. They found lags between 85 ms and 180
ms depending on the sampling rate (60 Hz vs. 20 Hz) and
communications mode (networked, polled, continuous
output, direct, and client-server). Although the software
was highly optimized to avoid other sources of lag, their re -
suits are strictly best-case since an “application” was not
present. A filtering algorithm was proposed to compensate
for lag by anticipating head motion.

The communication link becomes more of a bottleneck as
the number of sensors and their resolution increases. The
CyberGlove by Virtual Technologies provides greater
resolution of finger position than many gloves by including
more sensors – up to 22 per glove. However,
correspondingly more data are required. At the maximum
data rate of 38.4 kilobaud, it takes about 5 ms just to relay
the data to the host. Although, individual sensors can be
disabled to increase throughput for simple motions, a
tradeoff is evident between the desire to resolve intricate
hand formations and the requisite volume of “immediate”
data. If we speculate on future interaction scenarios with
full body suits delivering the nuances of complex motions –
a common vision in VR – then it is apparent that lag will
substantially increase simply due to the quantity of data.

The Effeot of Lag
Although lag has been acknowledged and quantified as a
compromising parameter in VR systems, and its effect on
human performance appears to be considerable, the
evidence for this is mostly anecdotal.

In a recent newspaper article touting the promise of VR as a
tool for artists [4], lag was cited as a hindrance to user
interaction. “The display is low-resolution and cartoonist
and because of the enormous computing power needed to
generate the environments, there tends to be a brief but
noticeable time lag between turning your head and seeing
the new point of view” (p. Cl). Specific effects on human
performance were not cited, however.

On intuitive grounds, Pausch notes that low-latency is
significantly more important than high-quality graphics or

stereoscope [13]. His low-end VR system emphasized
presence (i.e., low lag) over output graphics by maintaining
seven screen updates per second with wire frame images.

In an experiment with force feedback Brooks, Ouh-Young,
Batter, and Kilpatrick [1] concluded that screen updates are
needed 15 times per second minimum in maintaining the
illusion of continuous change in the force sensed. Even at
this rate, subjects objected to the “sponginess” of the feel.
Others cite “motion sickness” as a by-product of lag with
head-mounted displays [6, 8].

The cognitive co-processor architecture from Xerox PARC
[3], in order to maintain the illusion of reality, adopts a
“governor” mechanism to ensure the screen is updated
every 100 ms - the time for perceptual processing. If
loading increases, cooperating rendering processes reduce
the quality of the output to maintain the 10 frame per
second refresh rate. This is in keeping with Pausch’s claim
that maintaining low lag is more important than high-
resolution graphic output.

Empirical measurements of effect of lag on human
performance are rare. There was some research in the
1960s (e.g., [7, 14]) relating to the design of controllers for
remote manipulations ystems; however the lags tested were
extremely long (up to several seconds). In one instance, the
apparatus was mechanical [14], and in another lag was
programmed as an exponential time constant preventing the
cursor from fully reaching a target unless a deliberate
overshoot was programmed [7]. In both cases movement
time increases due to lag were dramatic – well in excess of
the amount of lag. Since lag is on the order of a few
hundred milliseconds in VR, its effect on human
performance is less apparent.

Lag and the Spaect-Accuraoy Tradaoff
Certainly, the presence of lag in interactive environments
will increase the time to complete motor-sensory tasks; but
the extent of the “cost” is uncertain. Error rates may also
increase due to lag.

As the difficulty of tasks increases, the degradation in
performance may increase non-linearly with lag. To test
this, we call on Fitts’ law [5], whereby the difficulty of a
target acquisition task is rated in “bits” as

()ID=logz ;+1 (1)

where A is the amplitude or distance to the target and W is
the width or size of the target. Equation 1 is a variation
known as the Shannon formulation [10].

In repeated trials, if the mean difficulty of a range of tasks
(1D, in bits) is divided by the mean movement time to
complete the tasks (MT, in seconds), then the dependent
vtiable bandwidth (B W, in bits/s) emerges. (Fitts called
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this the index of performance, 1P.) Furthermore, if ID is
calculated using the effective target width (We), adjusted

for errors or spatial variability in responses, then bandwidth
encompasses speed and accuracy.l This provocative
measure – somewhat analogous to efficiency – holds
tremendous promise for measurement and evaluation in
human-computer interfaces (e.g., [2]). Adjusting for error
rates, the effective index of difficulty is

ZDC= Iogz (#-+1)
e

(2)

(3)

The prediction model for movement time may be obtained
through linear regression as follows:

A4T=a+b IDe (4)

The slope reciprocal, I/b, is often interpreted as bandwidth.
Provided the intercept is small, l/bin Equation 4 will be
very similar to the bandwidth calculated using Equation 3.

It has been suggested that target acquisition may consist of
a succession of discrete movements, each subdividing the
target space until the probe is within the target, similar to a
binary search. The index of difficulty can be interpreted as
a measure of the number of movements required (averaged
over a number of trials). The effect of lag, therefore, should
occur at each of the discrete movement stages. To
accmnrnodate lag in our model, we multiply by the index of
difficulty. Thus, we replace the conventional single
parameter Fitts’ law model (Equation 4) with

A4T=a+(b+c LAG) IDe, (5)

where the additional coefficient, c, is the weighting for the
bg xID interaction. Conveniently, in the absence of lag
Equation 5 reduces to Equation 4.

In the next section we describe an experiment using a target
acquisition task to measure the effect of lag on the speed,
accuracy, and bandwidth of human performance in motor-
sensory tasks on interactives ystems.

METHOD

Subjaots
Eight subjects from the University of British Columbia
(where the second author was on sabbatical) served as paid

lThe method for transforming W to We was first presented

in 1960. See Welford [15, p. 147] or MacKenzie [10] for
detailed discussions.

volunteers. All subjects had prior experience using a
mouse.

Apparatus
A Silicon Graphics personal IRIS with a standard CRT and
au optical mouse was used. The C-D gain of the mouse was
set to one.

The cursor was a 7 x 7 pixel green square with a 1 pixel
black dot in the centre (1 pixel= 0.035 cm). The goal was
to get the central dot within the target boundaries.

The software was optimized to reduce overhead. All mouse
samples and screen updates were synchronized to the
vertical retrace of the CRT (60 Hz). Lag was introduced by
buffering mouse samples and delaying processing by
multiples of the screen refresh period (16.67 ms
increments). The minimum lag was, on average, half the
retrace period, or 8.3 ms.

Procedure
The following discrete target acquisition task was used At
the initiation of a trial the cursor appeared 300 pixels from
the left side of the screen, and the target appeared to the
right of that position by the appropriate amplitude for that
trial. Target width varied but target height was consistently
400 pixels. The subject completed a trial by moving the
cursor so that the black dot in the centre of the cursor was
somewhere over the target. The target was selected by
pressing one of the mouse buttons.

To initiate the next trial, the subject lifted the mouse,
moved it to the right of the mouse pad, and swept it across
to the left side of the mouse pad. This comectly positioned
the mouse to start the next trial, which followed after an
interval of 2 seconds.

Subjects were demonstrated the task and allowed warm-up
trials prior to each change in experimental condition.

Design
A 4 x 3x 4 fully within-subjects repeated measures design
was used. The factors were lag (8.3, 25, 75, & 225 ins),
target amplitude (A = 96, 192 & 384 pixels), and target
width ( W = 6, 12, 24, & 48 pixels). The A-W conditions
yielded six levels of task difficulty, ranging from 1.58 bits
to 6.02 bits.

A block consisted of 56 trials arranged as follows: For each
lag, testing was done for 3 amplitudes and 4 widths yielding
4 groups of 12 trials. However, at the start of each group
two practice trails were given to familiarize the subject with
that particular lag. Thus we obtain,

2+12 trials with lag 1,
2+12 trials with lag 2,
2+12 trials with lag 3, and
2+12 trials with lag 4.

These groups were given in a random order for each trial
block.
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Lag (ins) Performance Degradation

Measure 8.3 25 75 225 at Lag= 225 msa

Movement Time (ins) 911 934 1059 1493 63.9%

Error Rate (%) 3.6 3.6 4.9 11.3 214%

Bandwidth (bits/s) 4.3 4.1 3.5 2.3 46.5’XO

arelative to lag = 8.3 ms

Fiaure 1. Mean scores and performance degradation in movement time, error rate, and
b~dwidth over four levels ;f lag. -

Each subject received 24 blocks of 56 trials where the
blocks consisted of the 24 possible orders of 4 lags. The 24
blocks were given in a unique random sequence for each
subject. Additionally, at the start of each session, the
subject received a practice block of trials, selected at
random. Subjects completed all blocks in either two or
three sessions.

RESULTS AND DISCUSSION
As expected, there were significant main effects for lag on
movement time (F3,21= 208.7, p < .0001), emor rate (F’3,21
= 4.71, p < .05), and bandwidth (F3,21 = 227.7, p < .0001).

Figure 1 gives the mean scores for each level of lag as well
as the percentage degradation at 225 ms lag compared to
the measures at a negligible lag of 8.3 ms. (Recall that 8.3
ms is as close to zero lag as was possible given the 60 Hz
sampling rate for the mouse.)

Error rates were quite reasonable (under 5%) except at the
highest lag of 225 ms where they were over 11%. The
bandwidth figures of around 4 bits/s for the lags up to 75
ms are similar to those found elsewhere (e.g., [12]).

A lag of 225 ms relative to 8.3 ms increased the mean
movement time by 1493 - 911 = 582 ms, or 63.9~o.
Similarly, error rates increased by 214% and bandwidth
dropped by 46.5%. These represent dramatic performance
costs. The high error rate at 225 ms lag indicates that the
performance degradation is more serious than suggested
solely on the basis of the extra time to complete tasks.
Subjects natural tendency to anticipate motions was
severely compromised by the lag. Adopting an open-loop
or “wait-and-see’! strategy would solve this (as noted by
Sheridan & Ferrell [14]), but would further increase
movement times.

Task difficulty (lD) also had a significant effect on
movement time (F’5,35 = 116.8, p < .0001) and error rates

(F5,35 = 6.70, p < .0005).2 As well, there was a significant
lug xZD interaction effect on movement time (FI5,105 = 30.4,

p < .0001) and error rate (F’ls, 105= 2.42, p < .005). The

interaction is easily seen in Figures 2 and 3. As tasks get
more difficult, performance degradation increases,
particularly at 75 ms and 225 ms lag.

MT

(ins)

2500-

Lag

2000 “ * 8.33 ms
+ 25rns
* 75ms

1500

- ~

+ 225 ms

1000

500

0
0123456 7

ID (bits)

Figure 2. Movement time vs. index of task
difficulty over four lag conditions.

2Note ID rather than ID ~ was used in the ANOVA and in

Figures 2 and 3 showing the lag xID interaction. This was
necessary since effects in an analysis of vmiance must be
nominal variables. After the transformation, lDe beeomes a
random variable. IDe was used in calculating B W and in
building the regression models.
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difficulty (}De, adjusted for errors) or lag. The fit is poor in

both cases.

25

1

20- Lag

Rate

(%) ‘0:

5-

0
0123456 7

ID (bits)

Figure 3. Error rate vs. index of task difficulty
over four lag conditions.

A Predktion Model
Rather than present Fitts’ law models under each lag
condition, we feel it more relevant to integrate lag with
Fitts’ index of task difficulty in a single prediction model.
This idea is developed in the series of models shown in
Figure 4.

The first two entries are simple linear regression models,
predicting movement time solely on the index of task

The third and fourth models in Figure 4 combine lDe and

lag using multiple regression. The third entry is the
traditional multiple regression model with IDe and lag

entered a separate predictors. The fit is very good (1? =
.948) with the model accounting for 89.8’% of the variance
in the observed movement times. However, the fit is
improved (1? = ,967) in the fourth model which
accommodates the interaction effect seen in Figures 2 and 3
and discussed earlier. The result is a model which accounts
for 93.5% of the variance in observations. Rounding the
coefficient 1.03 to 1.00 yields

MT= 230 + (169+ LAG) IDe (6)

At lag= O, this reduces to

MT= 230 i- 169 IDe, (’7)

which is the same as a model found in a separate study also
using a mouse in a discrete target selection task (see [11]
Eq. 4). Each millisecond of lag in Equation 6 adds 1 ins/bit
to the slope of the prediction line.

Although we must be cautious in extrapolating beyond the
225 ms lag used in the present experiment, it is easy to see
that further increases in lag will bear severe costs in
performance, particularly with difficult tasks. As a simple
example, at lag= 500 ms and ID = 7 bits, the predicted time
to complete a target selection task using Equation 5 is 5.9s.
The same task in the absence of lag will take about 1.4 s.
(Note that the prediction carries a 4% probability of error
because the model was adjusted for errors.)

Model for MT (ms)a F@ Variance Explained

MT=435+1901D~ r = .560 31.3%

MT= 894 + 46 LAG r = .630 39.8%

MT= -42 + 246 lDe + 3.4 LAG R = .948 89.8%

MT= 230+ (169 + 1.03 LAG) /De R = .967 93.5%

aLAG in ms, /De in bits

bn = 48, p <.0001 for all models

Figure 4. Prediction models for movement time based on lag and the
index of task difficulty.
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CONCLUSIONS
Lag has been shown to degrade human performance in

motor-sensory tasks on interactive systems. At 75 ms lag,
the effect is easily measured, and at 225 ms performance is
degraded substantially. A model has been presented
showing a strong multiplicative effect between lag and Fitts’
index of difficulty. The model explains 93.5% of the
variation in observations.

These findings are of particular and immediate value to
designers of interactive 3D computing systems, such as
virtual reality. The present study is only a first step,
however, since we investigated 2D movements only. A 3D
exploration of the human performance cost of lag is needed
using a task such as grasping for objects in 3-space with an
input glove while viewing the scene through a head-
mounted display.

Lag must be taken seriously and recognized as a major
bottleneck for usability. The current attitude of
acknowledging lag but “learning to live with it” will be
increasingly unacceptable as VR systems shift from
research curiosities to application tools. Whether through
additional parallel processors or through higher
performance hardware, such systems must deliver a faithful
recasting of reality in order to garner user acceptance. A
major component of this is the delivery of near-immediate
response of graphic output to input stimuli.
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