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1. Introduction  1 

The tendency to selectively publish statistically significant or theory-confirming results may 2 

distort the conclusions drawn from published empirical research (Ioannidis, 2005; Glaeser, 3 

2011; Ioannidis and Doucouliagos, 2013). In the case of Granger causality testing, spuriously 4 

statistically significant results can be generated if the lag length of the underlying vector 5 

autoregressive (VAR) model is overfitted, which is increasingly likely the smaller the sample 6 

size. Overfitted lag lengths can occur in standard research designs and they also provide 7 

increased opportunities for p-hacking. p-hacking refers to researchers running many analyses 8 

but then only selecting the analyses with statistically significant estimates for the final 9 

publication (Simonsohn et al., 2014). In this article, we simulate the complete process of 10 

Granger causality testing including p-hacking, and we examine how meta-regression models 11 

can help identifying genuine Granger causality if the primary literature is distorted by p-hacked 12 

Granger causality tests.  13 

The current practice of empirical research is largely based on rejecting null hypotheses by 14 

finding statistically significant results, usually determined by a p-value below 0.05.1 While 15 

misuse and misunderstanding of p-values is widespread (Wasserstein and Lazar, 2016), the 16 

academic publishing system favors statistically significant results for publication resulting in 17 

incentives for individual researchers to search for and select statistically significant results to 18 

be presented in submitted articles (Ioannidis, 2005; Glaeser, 2011). Vivalt (2017) provides 19 

empirical evidence for this selection in the case of impact evaluation studies by showing that 20 

marginally significant estimates are over-represented compared to marginally non-significant 21 

estimates. More generally, Brodeur et al. (2016) find a lack of p-values between 0.10 and 0.25 22 

among more than 50,000 estimates published in the American Economic Review, the Journal 23 

of Political Economy, and the Quarterly Journal of Economics. These missing test statistics 24 

can be retrieved just below the 0.05 threshold of statistical significance. Reviewing 159 meta-25 

analyses based on more than 60,000 estimates, Ioannidis et al. (2016) find that many research 26 

fields in empirical economics mainly present statistically significant estimates despite most 27 

underlying studies in those fields being underpowered, that is, using sample sizes that are too 28 

small to reliably detect the effect of interest. In regression analysis of observational data, p-29 

hacking is often based on omitted-variable biases that result from researchers varying the set 30 

of control variables included in the regression model. These omitted-variable biases help to 31 

                                                 
1 For an overview, see Cumming (2014). 
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generate statistically significant estimates even in the absence of a genuine effect (Leamer, 1 

1983; Bruns and Ioannidis, 2016; Bruns, 2017). 2 

In Granger causality testing, there is an additional layer of flexibility, as not only the set of 3 

control variables but also the lag length of the underlying VAR model needs to be selected. 4 

Granger causality test statistics are very sensitive to the lag length chosen for the underlying 5 

VAR model (e.g. Zapata and Rambaldi, 1997). Given the importance of this step in Granger 6 

causality testing, the choice of lag length is usually based on objective criteria. Frequently used 7 

lag length selection criteria are the Akaike information criterion (AIC) (Akaike, 1974) and the 8 

Bayesian information criterion (BIC) (Schwarz, 1978). However, these information criteria 9 

have a known tendency to overestimate and underestimate, respectively, the true lag length 10 

(Nickelsburg, 1985; Lütkepohl, 1985; Ozcicek and McMillin, 1999; Hacker and Hatemi-J, 11 

2008). In the absence of genuine Granger causality, overfitted VAR models also tend to lead 12 

to over-rejection of the null hypothesis of Granger non-causality compared to the rejection rate 13 

of a VAR model estimated with the true lag length (Zapata and Rambaldi, 1997). p-hacking 14 

can then be based on selection over various VAR models with different lag lengths. As 15 

overfitted lag lengths particularly occur in small samples (Lütkepohl, 2007, pp. 153-157), this 16 

source of false-positive findings of Granger causality may be prevalent in macroeconomic 17 

research using annual data.  18 

Many approaches have been developed to improve the probability of selecting the correct lag 19 

length. These approaches include corrections to the AIC or BIC in small samples (Hurvich and 20 

Tsai, 1989). The application of these approaches has, however, been limited and the VARs 21 

used in Granger causality testing are usually specified using the standard AIC and BIC, as is 22 

mostly the case in the Granger causality literature on energy consumption and economic growth 23 

(Bruns et al., 2014). 24 

Dealing with false-positive findings of Granger causality due to overfitted lag lengths is 25 

important, as researchers are incentivized to p-hack, and, as a result, many published Granger 26 

causality tests may be spuriously statistically significant. As Cumming (2014) points out, meta-27 

analytical thinking can help deal with biases and improve the reliability and credibility of 28 

empirical research. We propose a meta-regression model that synthesizes Granger causality 29 

tests from many primary studies to help identify the presence or absence of genuine Granger 30 

causality while controlling for potential biases.  31 
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Meta-regression analysis in economics was originally proposed to explain the variation in 1 

empirical findings (Stanley and Jarrell, 1989). Meta-regression analysis was further developed 2 

to identify genuine empirical effects while controlling for p-hacking based on sampling errors 3 

(Stanley, 2008; Bruns, 2017). These approaches use the concept of statistical power to 4 

determine if a genuine effect exists across a sample of primary studies. If there is a genuine 5 

effect, test statistics from the primary studies, such as the t-statistic for a regression coefficient, 6 

should increase with the degrees of freedom used in the underlying primary estimates, whereas 7 

in the absence of a genuine effect the test statistics should be unrelated to the degrees of 8 

freedom.  9 

Meta-regression models have been primarily developed for the synthesis of single regression 10 

coefficients, which consist of a point estimate and a standard error. The standard approach to 11 

testing for a genuine effect is to regress the ratio of the estimated coefficient and its standard 12 

error on a constant, the inverse of the standard error, and control variables. But Granger 13 

causality tests are usually 𝐹 or 𝜒2-distributed test statistics derived from restricting multiple 14 

coefficients in a model. So, both this and the potential false-positive findings of Granger 15 

causality due to overfitted lag lengths need to be taken into account in using meta-regression 16 

models to analyze Granger causality test statistics. 17 

Our meta-regression model for Granger causality tests regresses the probit-transformed 𝑝-18 

values of the original Granger causality test statistics on a constant, the square root of the 19 

degrees of freedom in the primary regressions, and the selected lag length from the primary 20 

studies. Using Monte Carlo simulations, we show that overfitted lag lengths and the 21 

corresponding prevalence of false-positive findings of Granger non-causality occur in many 22 

scenarios that are likely to be prevalent in macroeconomics. We also simulate empirical 23 

literatures that are distorted by p-hacking based on overfitting the lag length or exploiting 24 

sampling errors. Our results reveal that p-hacking based on overfitting lag lengths may result 25 

in empirical literatures that are characterized by false-positive findings of Granger causality. 26 

Our simulation results also show that our proposed meta-regression model can help identify 27 

whether statistically significant Granger causality tests in published studies stem from genuine 28 

Granger causality or from p-hacked Granger causality tests.  29 

We use the large literature that tests for Granger causality between energy use and economic 30 

output to evaluate how common spuriously significant Granger causality tests due to overfitted 31 

lag lengths are. We show that the excess significance in this literature can be explained by 32 
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overfitted lag lengths rather than the presence of linear Granger causality between energy use 1 

and economic output. These findings highlight how as a result of overfitted lag lengths a 2 

literature can appear to provide evidence for Granger causality when actually Granger causality 3 

appears to be absent.  4 

Section 2 of the paper discusses testing for Granger causality, overfitted lag lengths, p-hacking, 5 

and the meta-regression models. Section 3 describes the designs of the Monte-Carlo 6 

simulations and presents the results. Section 4 investigates the literature on energy use and 7 

economic output. Section 5 discusses the findings and Section 6 concludes. 8 

2. Meta-regression analysis of Granger causality tests 9 

2.1. Testing for Granger causality 10 

Granger (1969) introduced a concept of causality that is based on the idea that the future cannot 11 

cause the past. Assuming stationarity, a variable 𝑋 is said to Granger-cause a variable 𝑌 if past 12 

values of 𝑋 help explain the current value of 𝑌 given past values of Y and all other relevant past 13 

information 𝑈. Let 𝑈′ be the set of all information up to and including period t-1 apart from 14 

observations on 𝑋. If 𝐸(𝑌|𝑈) ≠  𝐸(𝑌|𝑈′), then X causes Y (Granger, 1988). In applied 15 

econometrics, the whole universe of information is not available, and the functional form is 16 

usually assumed to be linear. Hence, in practice, Granger causality tests are usually based on 17 

improved linear prediction within a specific model (Lütkepohl, 2007, pp. 41-43).  18 

As we focus our analysis on overfitting the lag length and p-hacking in Granger causality 19 

testing, we concentrate on the Granger causality testing procedure of Toda and Yamamoto 20 

(1995) that avoids the potential occurrence of additional biases due to pre-testing the order of 21 

integration or cointegration. This testing procedure is frequently applied in the energy-growth 22 

literature. Toda and Yamamoto (1995) show that if a VAR in levels is augmented by the 23 

number of lags equal to the highest degree of integration, a Wald test that does not restrict the 24 

augmenting lags is asymptotically χ2-distributed irrespective of the order of integration and 25 

cointegration. Hence, we can test for Granger causality by estimating the following VAR 26 

(ignoring any deterministic components) and testing restrictions on its coefficients:  27 𝑌𝑡 = Π1𝑌𝑡−1 + ⋯ + Π𝑝𝑌𝑡−𝑝 + Π𝑝+1𝑌𝑡−𝑝−1 + ⋯ + Π𝑝+𝑑𝑚𝑎𝑥𝑌𝑡−𝑝−𝑑𝑚𝑎𝑥 + 𝜀𝑡   (1) 28 

where 𝑌𝑡 is a 𝑘 × 1 vector of variables, Π𝑖 is a 𝑘 × 𝑘 matrix of coefficients, 𝜀𝑡 is a 𝑘 × 1 vector 29 

of errors, p denotes the lag length and 𝑑𝑚𝑎𝑥 is the maximal order of integration. We can test 30 
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for Granger causality from 𝑌(𝑎) to 𝑌(𝑏), where the superscripts denote two individual variables 1 

in 𝑌𝑡, using 𝐻0: Π1𝑎𝑏 = Π2𝑎𝑏 … = Π𝑝𝑎𝑏 = 0, where the superscripts denote the 𝑎th column and 2 𝑏th row of Π𝑖. Stacking the coefficient matrices as Π = 𝑣𝑒𝑐[Π1, Π2, … , Π𝑝+𝑑𝑚𝑎𝑥 ] and letting 3 𝑅 be the matrix of restrictions so that 𝑅Π = 𝑣𝑒𝑐[Π1𝑎𝑏 , Π2𝑎𝑏 , … , Π𝑝𝑎𝑏], then 𝐻0: 𝑅Π = 0 can be 4 

tested by a Wald test: 5 

𝑊𝑝 = (𝑅Π̂)′[𝑅Σ̂𝑝𝑅′]−1𝑅Π̂          (2) 6 

where 𝑊 is asymptotically χ𝑝2  distributed with 𝑝 degrees of freedom, Σ̂𝑝 is the estimated 7 

covariance matrix of (1) and Π̂ is the estimate of Π. 8 

2.2. Overfitted lag lengths and p-hacking 9 

It is common to estimate many different VAR models in the research process. p-hacking refers 10 

to the selective presentation of those VAR models that guarantee a p-value below the typical 11 

thresholds of statistical significance for the Granger causality test of interest, while a potentially 12 

large number of estimated VAR models remain unreported (Simonsohn et al., 2014). For 13 

example, p-hacking can be based on omitted-variable biases if the researcher varies the set of 14 

control variables until a p-value below the desired significance level is obtained (see for 15 

example, Leamer, 1983; Bruns and Ioannidis, 2016; Bruns, 2017). But p-hacking can be also 16 

based on sampling errors if researchers vary the sample by, for example, changing the years 17 

and/or countries included in a panel data set (Bruns, 2017).2  18 

In Granger causality testing, an additional layer of flexibility in the research design is 19 

introduced by the need to specify a lag length for the underlying VAR model. The choice of 20 

the lag length in VAR models is mainly an empirical question, as economic theory is usually 21 

not very specific about the temporal dimension of economic dynamics. Although there are 22 

various methods for determining the lag length, information criteria, such as the AIC and BIC, 23 

are most commonly used. It is well known that the BIC is consistent in estimating the correct 24 

lag length while the AIC overfits (Lütkepohl, 2007, pp. 146). However, these asymptotic 25 

properties may have little relevance for lag length selection in economic time series. In contrast 26 

to the high frequency data widespread in finance, macroeconomic time series usually consist 27 

                                                 
2 Variation of the set of analyzed countries or years may of course also change the effect that is estimated if there 

is heterogeneity in the effect of interest. Thus, p-hacking based on sampling errors may easily become p-hacking 

based on selection from heterogeneity in the effect of interest.  
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of a few decades of quarterly or annual data. Hence, there is usually a small to moderate number 1 

of observations.  2 

Accordingly, it is the performance of information criteria in small and moderate sample sizes 3 

that matters in applied macroeconometrics. Although the exact frequency with which the 4 

correct lag length (𝑝∗) is chosen may vary with respect to the specific DGP, systematic patterns 5 

can be identified when information criteria are used (for an overview see Lütkepohl, 2007, pp. 6 

146-157). The probability to overfit a VAR(𝑝∗) model by ℎ lags is given by 7 

𝑃[𝐼𝐶(𝑝∗) > 𝐼𝐶(𝑝∗ + ℎ)] = 𝑃 [𝑙𝑛|Σ̂𝑝∗| − 𝑙𝑛|Σ̂𝑝∗+ℎ| > 𝑐𝑇 𝑝∗ 𝑞2 ℎ𝑇 ]    (3) 8 

where 𝐼𝐶 is the information criterion, Σ̂𝑝∗ is the estimated covariance matrix of the VAR(𝑝∗) 9 

model, T is the number of observations, q is the dimension of the VAR model, and 𝑐𝑇 is a 10 

penalty term. If there are few degrees of freedom, the sampling variability of Σ̂ will be large. 11 

As a result, the variance of 𝑙𝑛|Σ̂𝑝∗| − 𝑙𝑛|Σ̂𝑝∗+ℎ| can become large while the penalty term is not 12 

affected by sampling variability. Accordingly, the probability of overfitting is higher, the lower 13 

the number of degrees of freedom. Moreover, given that the AIC uses 𝑐𝑇 = 2 and the BIC uses 14 𝑐𝑇 = ln (𝑇), the penalty term is systematically larger for the BIC than for AIC if T > 7. 15 

Therefore, the probability that the 𝐼𝐶 suggests an overfitted VAR is larger for the AIC than for 16 

the BIC. Analogously, the probability of underfitting a 𝑉𝐴𝑅(𝑝∗) model by h lags is given by  17 

𝑃[𝐼𝐶(𝑝∗) > 𝐼𝐶(𝑝∗ − ℎ)] = 𝑃 [𝑙𝑛|Σ̂𝑝∗−ℎ| − 𝑙𝑛|Σ̂𝑝∗| < 𝑐𝑇 𝑝∗ 𝑞2 ℎ𝑇 ].    (4) 18 

The potentially large variance of 𝑙𝑛|Σ̂𝑝∗−ℎ| − 𝑙𝑛|Σ̂𝑝∗| due to sampling variability for low 19 

degrees of freedom implies that there is also an increased probability of underfitting. As the 20 

penalty term is larger for the BIC, the probability of underfitting is larger for the BIC than for 21 

the AIC. These patterns have been shown in simulations for a variety of DGPs including VARs 22 

with high lag lengths (Nickelsburg, 1985) and low lag lengths (Lütkepohl, 1985) as well as 23 

stable and unstable VARs under situations with homoscedasticity or ARCH (Hacker and 24 

Hatemi-J, 2008) and symmetric or asymmetric lag lengths (Ozcicek and McMillin, 2010). 25 

VAR models with overfitted lag lengths tend to over-reject the null hypotheses of Granger non-26 

causality compared to the rejection rate of a VAR model estimated with the true lag length 27 

(Zapata and Rambaldi, 1997). As a result, overfitted VAR models lead to an increased rate of 28 

false-positive findings of Granger causality. p-hacking based on overfitted lag lengths occurs 29 
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if researchers use overfitted lag lengths to produce statistically significant estimates, which 1 

they then select for presentation in the final paper. 2 

It is important to emphasize that published articles that use overfitted VAR models with 3 

spuriously significant Granger causality tests are not necessarily the result of p-hacking. The 4 

use of information criteria is a standard approach to specify the lag length suggested in many 5 

econometric textbooks, and overfitted lag lengths can also occur even if researchers do not 6 

select a few VAR models from a large set of estimated VAR models for the final publication. 7 

2.3. Meta-regression model for Granger causality tests 8 

The following basic meta-regression model for Granger causality test statistics (Bruns et al., 9 

2014) aims to identify whether there is genuine Granger causality in the presence of p-hacking 10 

based on sampling errors but not based on overfitted lag lengths: 11  𝑧𝑖𝑔𝑐 =  𝛼𝐵𝑔𝑐 +  𝛽𝐵𝑔𝑐 √𝑑𝑓𝑖 +  𝜀𝑖𝑔𝑐         (5) 12 

where 𝑑𝑓𝑖 is the degrees of freedom of a single equation of the VAR used in primary study 𝑖 13 

and 𝑧𝑖𝑔𝑐 = Φ−1(1 − 𝜋𝑖𝑔𝑐), where 𝜋𝑖𝑔𝑐
 is the 𝑝-value of study 𝑖 and Φ−1 is the inverse 14 

cumulative distribution function of the standard normal distribution, also known as probit. 15 

Larger values of 𝑧𝑖𝑔𝑐
 indicate smaller 𝑝-values and, consequently, higher levels of statistical 16 

significance. The direction of Granger causality tested is given by 𝑔 = 1, … , 𝑞 denoting the 17 

equation in the VAR and 𝑐 = 1, … , 𝑞 denoting the variable in equation 𝑔 so that, for example, 18 𝑔 = 1 and 𝑐 = 2 represents Granger causality from the second variable to the dependent 19 

variable in the first equation of the VAR.3  20 

If there is no genuine effect, the probit transformation of the 𝑝-values results in a normally 21 

distributed dependent variable with mean zero. Hence 𝜀𝑖𝑔𝑐 has desirable properties for a 22 

regression residual. In the presence of genuine Granger causality, Toda and Yamamoto’s 23 

Granger Causality test statistic follows a non-central χ2-distribution and the level of statistical 24 

significance increases as 𝑑𝑓𝑖 increases (𝛽𝐵𝑔𝑐 > 0). Conversely, in the absence of genuine 25 

Granger causality, 𝑑𝑓𝑖 should be unrelated to the levels of statistical significance.4  26 

                                                 
3 This basic model may be augmented by other control variables and interactions between the controls and the 

degrees of freedom variable in actual applications – see Section 4 of this article or Bruns et al. (2014) for more 

details.  
4 Please note that this only holds if the VAR model is correctly specified and, for example, omitted-variable biases 

are absent. We discuss this in the empirical application in Section 4. 
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In sampling error-based p-hacking, large estimates of the VAR coefficients are required to 1 

achieve statistical significance when there are few degrees of freedom, whereas smaller 2 

estimates of the VAR coefficients are sufficient when there are many degrees of freedom. 3 

Hence, the 𝑝-values will be unrelated to the degrees of freedom if the primary literature 4 

exclusively consists of statistically significant results generated by using sampling errors. 5 

Simulations show that meta-regression models of this type can control for this type of p-6 

hacking (Stanley, 2008; Bruns, 2017) and, thus, 𝐻0: 𝛽𝐵𝑔𝑐 ≤ 0 tests for the presence of genuine 7 

Granger causality. Figure 1 shows how the meta-regression model would behave in three 8 

different idealized situations. 9 

 10 

Fig. 1 Properties of the basic meta-regression model are shown. Each graph is a hypothetical illustration 11 

of the relationship between probit-transformed p-values and √𝑑𝑓 in the following three different 12 

situations: (a) in the absence of genuine Granger causality, (b) in the absence of genuine Granger 13 

causality but with p-hacking based on sampling errors, and (c) in the presence of genuine Granger 14 

causality. The dotted line indicates the 0.05 significance level (𝑧𝑔𝑐 = 1.64). Data points above this line 15 

are statistically significant and data points below this line are statistically non-significant. The red solid 16 

line illustrates the fit of the basic meta-regression model.  17 

As discussed in Section 2.2, overfitting the lag length might be used to consciously or 18 

unconsciously find statistically significant Granger causality tests. Meta-regression analysis 19 

can help to identify the presence of genuine Granger causality if spuriously significant Granger 20 

causality tests due to overfitted lag lengths are present in the literature. Overfitted lag lengths 21 

and the corresponding over-rejection of Granger non-causality leads to large values of 𝑧𝑔𝑐 22 

compared to the values of 𝑧𝑔𝑐 that we can expect for models estimated with the true lag length 23 



10 

 

10 

 

and these large values of 𝑧𝑔𝑐 are more common in small samples. Therefore, we can expect 1 

that 𝛽𝐵𝑔𝑐
 is biased downwards compared to the true relation between 𝑧𝑔𝑐 and √𝑑𝑓. This 2 

downward bias in 𝛽𝐵𝑔𝑐
 reduces the power of the basic meta-regression model. We suggest 3 

controlling for the underlying lag length of the VAR model in the meta-regression model to 4 

account for this source of bias: 5 𝑧𝑖𝑔𝑐 =  𝛼𝐸𝑔𝑐 + 𝛽𝐸𝑔𝑐 √𝑑𝑓𝑖 + 𝛾𝑔𝑐 𝑝𝑖 +  𝑣𝑖𝑔𝑐 .       (6) 6 

We refer to this model as the extended meta-regression model for Granger causality tests.5 In 7 

the presence of p-hacking based on exploiting sampling errors and overfitting the lag lengths, 8 

there is still evidence for genuine Granger causality if we can reject 𝐻0: 𝛽𝐸𝑔𝑐 ≤ 0. Fig. 2 9 

illustrates for idealized data the expected behavior of the two meta-regression models in the 10 

presence of overfitted lag lengths and the corresponding over-rejection of Granger non-11 

causality. In the absence of a genuine effect, the regression slope for the basic meta-regression 12 

model is usually negative, while the coefficient of √𝑑𝑓 is zero for the extended meta-regression 13 

model. Hence, 𝛽𝐵𝑔𝑐 < 0 may be used as an indication that overfitted lag lengths and the 14 

corresponding over-rejection of the null of Granger non-causality are present in the literature. 15 

In the presence of a genuine effect, both 𝛽𝐵𝑔𝑐
 and 𝛽𝐸𝑔𝑐

 are positive but 𝛽𝐸𝑔𝑐
 is larger indicating 16 

that overfitted lag lengths reduce the power of the basic meta-regression model compared to 17 

the extended meta-regression model.6 18 

                                                 
5 While Toda and Yamamoto test statistics tend to underreject if the VAR model is underfitted and to overreject 

if the VAR model is overfitted, this is not generally the case for all Granger causality test procedures (Zapata and 

Rambaldi, 1997). Therefore, one can consider using dummy variables for each lag length in an extended meta-

regression model rather than a continuous variable if other types of Granger causality tests are analyzed. 
6 Note that if genuine Granger causality is present, overrejection of the null of Granger non-causality compared 

to a model with the true lag length is not common to all types of Granger causality tests (Zapata and Rambaldi, 

1997). 
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 1 

Fig. 2 Properties of both the basic and extended meta-regression model are shown in the presence of 2 

overfitted lag lengths. The green crosses represent Granger causality test statistics that are statistically 3 

significant due to overfitted lag lengths. The red solid line represents the basic meta-regression model 4 

and the blue dashed line represents the extended meta-regression model that controls for the lag lengths. 5 

Please see the caption of Fig. 1 for additional information. 6 

3. Monte Carlo simulation 7 

3.1. Design 8 

3.1.1. No p-hacking 9 

First, we analyze how prevalent overfitted lag lengths and the corresponding false-positive 10 

findings of Granger causality would be if the authors of primary studies use standard research 11 

designs and do not engage in any p-hacking. We then examine how well the basic and extended 12 

meta-regression models perform in this case. 13 

For each simulated meta-regression analysis, we generate 𝑖 = 1, … , 𝑠 underlying primary 14 

studies with meta-analysis sample sizes 𝑠 = 10, 20, 40, 80. The sample size of each primary 15 

study, 𝑛𝑖, is selected by first drawing a number from a gamma distribution with scale parameter 16 𝜎2(𝜇−30) and shape parameter 
(𝜇−30)2𝜎2  to which we then add 30 and round to the nearest integer. 17 

This allows us to vary the mean 𝜇 and the variance 𝜎2 independently and it ensures that 𝑛𝑖 =18 30 is the smallest primary sample size. We consider 𝜇 = 35, 40, 50, 60 and 𝜎2 = 25, 100, 225 19 

to mirror a wide span of primary sample size distributions ranging from rather small primary 20 
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sample sizes typical for annual data in macroeconomics to larger primary sample sizes that are 1 

more likely to be present in quarterly or monthly data in macroeconomics. 2 

Annual macroeconomic time series often start in 1970 but may start earlier or later. For 3 

example, most series in the World Bank Development Indicators start in 1980. If the meta-4 

analyst considers primary studies using annual data published in the last 15 years, the primary 5 

sample sizes may range between 30 and 55, though some primary studies may use time series 6 

for specific countries that are substantially longer. Such a distribution is mirrored by 𝜇 = 40 7 

and 𝜎2 = 100 illustrated in Fig. 3. The 10% (90%) quantile is 31 (53) and the distribution is 8 

right skewed and allows for the presence of some large primary sample sizes. A similar but 9 

more symmetric distribution with less probability mass on larger primary sample sizes is given 10 

by 𝜇 = 40 and 𝜎2 = 25. This distribution is also illustrated in Fig. 3 and provides a 10% (90%) 11 

quantile of 34 (47). Quarterly time series provide more frequent observations but are often 12 

available for fewer years. If the meta-analyst considers studies published in the last 15 years, 13 

the primary sample sizes may range between 40 and 80 with some larger samples. Fig. 3 14 

illustrates how these primary sample sizes are mirrored by 𝜇 = 60 and 𝜎2 = 152 leading to a 15 

distribution with a 10% (90%) quantile of 43 (80). 16 

 17 

Fig. 3 Distributions of primary sample sizes for different combinations of 𝜇 and 𝜎2 are shown. 18 

 19 

We generate data for the primary studies using four DGPs (Table 1). All four DGPs have a true 20 

lag length of three (𝑝 = 3) so that we can illustrate both underfitting and overfitting. Following 21 
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Zapata and Rambaldi (1997), all DGPs imply that 𝑋 causes 𝑌 but not vice versa, which allows 1 

us to evaluate the size and power of the meta-regression models using the same DGP.  2 

DGP1 is a bivariate VAR process with two unit roots. We set the two coefficients on the 3 

diagonal of each matrix equal in order to focus on the ability of the meta-regression models to 4 

detect the causal effect, which is determined by the off-diagonal coefficients. DGP1a and 5 

DGP1b only differ with respect to the strength of the causal effect with DGP1b having a larger 6 

casual effect, allowing us to evaluate the performance of meta-regression models for different 7 

sizes of causal effects. DGP2 is a bivariate VAR process with one unit root so that the model 8 

is cointegrated. DGP2a and DGP2b only differ with respect to the causal effect with DGP2b 9 

having a larger causal effect. The residuals are modeled as 𝜖𝑡~𝑁(0, Ω) where Ω = I or Ω =10  [ 1 0.50.5 1 ] so that there are two cases for each DGP.  11 

For each primary study 𝑖, we draw three starting values for 𝑋 and 𝑌 from standard normal 12 

distributions and generate 𝑛𝑖 + 50 observations using one of the DGPs. Afterwards we delete 13 

the first 50 observations to reduce dependence on the starting values.  14 

Each primary study determines the optimal lag length (𝑝 =  1, … , 5) for the VAR in levels 15 

using either the AIC or BIC. Subsequently, the lag length is augmented with the maximum 16 

order of integration of one. As a result, the minimum number of degrees of freedom that a 17 

primary study can have is 11. Finally, each primary study applies a Wald test to the lags of the 18 

independent variable ignoring the additional augmenting lag which produces Granger causality 19 

tests for 𝑋 causes 𝑌 and 𝑌 causes 𝑋 for each DGP.  20 

We apply the basic and extended meta-regression model to the 𝑠 primary studies and evaluate 21 

their size and power in identifying genuine Granger causality. We use 1000 iterations for each 22 

of the 768 scenarios (#𝑠 ∗ #𝜇 ∗ #𝜎2 ∗ #𝐷𝐺𝑃 ∗ #𝐼𝐶 ∗ #Ω ). We use the same simulated data set 23 

to also evaluate how prevalent overfitted lag lengths and the corresponding over-rejections of 24 

the null of Granger non-causality are for a given primary sample size distribution (𝜇 and 𝜎2). 25 

There are 150,000 Granger causality test statistics for each combination of DGP, IC, and Ω.  26 

  27 
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Table 1 Overview of data-generating processes  1 

Name Vector autoregressive model 

DGP1a 

 

[𝑌𝑡𝑋𝑡] =  [1.5 0.40 1.5] [ 𝑌𝑡−1𝑋𝑡−1 ] + [−0.25 −0.20 −0.25] [ 𝑌𝑡−2𝑋𝑡−2 ] +  [−0.25 −0.20 −0.25] [ 𝑌𝑡−3𝑋𝑡−3 ] +  [𝜀1𝑡𝜀2𝑡] 
DGP1b [𝑌𝑡𝑋𝑡] =  [1.5 0.80 1.5] [ 𝑌𝑡−1𝑋𝑡−1 ] + [−0.25 −0.40 −0.25] [ 𝑌𝑡−2𝑋𝑡−2 ] +  [−0.25 −0.40 −0.25] [ 𝑌𝑡−3𝑋𝑡−3 ] +  [𝜀1𝑡𝜀2𝑡] 

 

DGP2a 

 

[𝑌𝑡𝑋𝑡] =  [1.5 0.40 1.5] [ 𝑌𝑡−1𝑋𝑡−1 ] + [−0.5 0.20 −0.25] [ 𝑌𝑡−2𝑋𝑡−2 ] +  [−0.25 −0.20 −0.25] [ 𝑌𝑡−3𝑋𝑡−3 ] + [𝜀1𝑡𝜀2𝑡] 
 

DGP2b [𝑌𝑡𝑋𝑡] =  [1.5 0.80 1.5] [ 𝑌𝑡−1𝑋𝑡−1 ] + [−0.5 0.40 −0.25] [ 𝑌𝑡−2𝑋𝑡−2 ] +  [−0.25 −0.40 −0.25] [ 𝑌𝑡−3𝑋𝑡−3 ] + [𝜀1𝑡𝜀2𝑡] 
3.1.2. Theory-confirmation bias 2 

We also examine the case where researchers search for theory-confirming and statistically 3 

significant Granger causality tests. Suppose theoretical considerations suggest that there is a 4 

causal effect from 𝑌 to 𝑋, when in fact causality is actually absent in this direction and may or 5 

may not be present from 𝑋 to 𝑌. If these theoretical considerations dominate the empirical 6 

literature, researchers may p-hack to confirm these theoretical presumptions by consciously or 7 

unconsciously overfitting the lag length.  8 

We again generate primary sample sizes, 𝑛𝑖, as described in section 3.1.1. Each study tests for 9 

Granger causality from 𝑌 to 𝑋 based on a VAR model that is specified using the AIC and a 10 

VAR model that is specified using the BIC. Each primary study then selects for publication the 11 

test of Granger causality from 𝑌 to 𝑋 that is more statistically significant. Moreover, we 12 

consider that ℎ% (where ℎ = 0, 25, 50, 75, or 100) of the primary studies not only select the 13 

more statistically significant result for causality from 𝑌 to 𝑋 from the AIC- and BIC-specified 14 

models, but they also search further samples of data (e.g. other countries or time periods) until 15 

they find Granger causality from 𝑌 to 𝑋 that is statistically significant at the 0.05 level. We 16 

simulate this by generating further samples from the relevant DGP and fitting VAR models to 17 

them using the AIC and BIC until the more statistically significant Granger causality test from 18 
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𝑌 to 𝑋 is statistically significant at the 0.05 level. This gives further opportunities to generate 1 

apparently significant results due to sampling errors and overfitted lag lengths. 2 

As a result, the primary literature is composed of ℎ% primary studies with statistically 3 

significant Granger causality tests from 𝑌 to 𝑋 due to p-hacking based on exploiting sampling 4 

errors and overfitting lag lengths. The remaining (1 − ℎ)% primary studies only search for the 5 

desired result by specifying the lag length of the VAR model using the AIC and BIC and 6 

selecting the more significant result in the direction of 𝑌 to 𝑋. If these (1 − ℎ)% primary 7 

studies do not obtain a statistically significant and theory-confirming result, they publish their 8 

findings anyway. The outcome is an empirical literature that provides systematic support for a 9 

false theory that increases with h. We use 1000 iterations for each of the 1920 scenarios (#𝑠 ∗10 #𝜇 ∗ #𝜎2 ∗ #𝐷𝐺𝑃 ∗ #ℎ ∗ #Ω ). As we did in the case without p-hacking, we use this simulated 11 

data to also evaluate the prevalence of overfitted lag lengths and the corresponding over-12 

rejections of the null of Granger non-causality for a given primary sample size distribution (𝜇 13 

and 𝜎2). 14 

3.2. Results 15 

3.2.1. No p-hacking 16 

Our results show that overfitting occurs frequently for the AIC, whereas the BIC tends to 17 

underfit the true lag length. Both the AIC and the BIC overfit when the degrees of freedom are 18 

small. In the presence of genuine Granger causality (i.e. tests of 𝑋 causes 𝑌), the 𝑝-values of 19 

the Granger causality tests are largely below the nominal significance level of 0.05. In the 20 

absence of genuine Granger causality (i.e. tests of 𝑌 causes 𝑋), the 𝑝-values of the Granger 21 

causality tests tend to become smaller – i.e. more statistically significant – as the lag length 22 

increases. Overfitted VAR models have 𝑝-value distributions with a smaller mean than the 23 

VAR model with the true lag length of three mirroring over-rejection of the null of Granger 24 

non-causality. Underfitted VAR models have 𝑝-value distributions with a larger mean 25 

compared to the VAR model with the true lag length mirroring under-rejection. Fig. 4 26 

illustrates these findings for DGP2a with Ω = I, and Appendix A1 shows the results for the 27 

remaining DGPs. The simulation reveals that, especially when the AIC is used, overfitted lag 28 

lengths and over-rejection of the null of Granger non-causality occur frequently in a variety of 29 

scenarios that mirror actual research in empirical macroeconomics. 30 
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 1 

Fig. 4 Prevalence of overfitted lag lengths and the corresponding over-rejection of the null of Granger non-2 

causality is shown for DGP2a. The first column shows the histograms of selected lag lengths in simulated primary 3 

studies across all meta-sample sizes (𝑠 = 10, 20, 40, 80) resulting in 150,000 observations using a primary sample 4 

size distribution with 𝜇 = 40, 𝜎2 = 100, and Ω = I. The second column presents the boxplots of degrees of 5 

freedom by lag length. The box represents the interquartile range and the whiskers extend to the largest data point 6 

within 1.5 times the interquartile range. The third column shows the boxplots of p-values in simulated primary 7 

studies in the presence of Granger causality, whereas the fourth column presents the boxplots of p-values in the 8 

absence of Granger causality. A lag length of one was selected for less than 0.1% of primary studies and these 9 

findings are not reported. 10 

Fig. 5 shows how the type I errors of both meta-regression models vary with the meta-sample 11 

size for DGP2a and DGP2b (the cointegrated DGP). The type I errors of the basic meta-12 

regression model are mostly smaller than the type I errors of the extended meta-regression 13 

model due to the downward bias of 𝛽𝐵𝑔𝑐
. The type I errors of the extended meta-regression 14 

model are largely below but close to the nominal significance level of 0.05. This shows that 15 𝛽𝐸𝑔𝑐
 is still biased downwards. DGP1 shows the same patterns as DGP2 (See Appendix A1 for 16 

DGP1). 17 
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 1 

Fig. 5 Type I errors of both the basic and extended meta-regression models for DGP2a and DGP2b are shown. 2 

Type I errors of 𝐻0: 𝛽𝐵𝑔𝑐 ≤ 0 (circles) and 𝐻0: 𝛽𝐸𝑔𝑐 ≤ 0 (triangles) for DGP2a (black) and DGP2b (red) with Ω =3 I are reported if the AIC (upper row) or the BIC (lower row) is used for small primary sample sizes distributions 4 

in column one and two and a larger primary sample size distribution in column three. 5 

Fig. 6 shows the power of both meta-regression models in identifying genuine Granger 6 

causality in relation to the meta-sample size for DGP2a and DGP2b. For very small meta-7 

sample sizes, the basic model can have higher power than the extended model as adding the 8 

lag length as a control variable reduces the degrees of freedom of the meta-regression model. 9 

However, as the meta-analysis sample size increases, the power of the extended model 10 

increases more strongly than the power of the basic model. The difference between the basic 11 

and extended meta-regression model is especially large for low primary study sample size 12 

means, as the probability of overfitting is larger in small samples. The difference between these 13 

two meta-regression models diminishes as the variance, 𝜎2, of the primary sample sizes or the 14 

mean, 𝜇, become larger. The difference is higher if the actual causal effect is small, as the 15 

downward bias of 𝛽𝐵𝑔𝑐
 in the basic model results more easily in acceptance of 𝐻0: 𝛽𝐵𝑔𝑐 ≤ 0 16 

even though genuine Granger causality is present. Using the BIC results in a larger difference 17 

between the basic and extended meta-regression models than using the AIC, though overfitted 18 
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lag lengths are actually more prevalent for the AIC. The reason is that the use of BIC leads to 1 

overfitted VAR models with exceptionally small degrees of freedom. The difference between 2 

the two meta-regression models decreases if the VAR errors are correlated. 3 

 4 

Fig. 6 Power of both the basic and extended meta-regression models for DGP2a and DGP2b are shown. Power 5 

curves of 𝐻0: 𝛽𝐵𝑔𝑐 ≤ 0 (circles) and 𝐻0: 𝛽𝐸𝑔𝑐 ≤ 0 (triangles) for DGP2a (black) and DGP2b (red) with Ω = I are 6 

reported if the AIC (upper row) or the BIC (lower row) is used for small primary sample sizes distributions in 7 

column one and two and a larger primary sample size distribution in column three. 8 

Power increases if the primary sample size distribution becomes larger or if the actual causal 9 

effect is larger, and it decreases if the VAR errors are correlated across equations. DGP1 shows 10 

the same patterns as DGP2 but with systematically smaller power revealing cointegration as an 11 

important determinant of power (See Appendix A1 for DGP1).7 12 

                                                 
7 As an anonymous reviewer pointed out, economic time series may often be highly persistent but stationary 

(Nelson and Plosser, 1982). We also considered a VAR process that is stationary, but its two largest characteristic 

roots are 0.95:  [𝑌𝑡𝑋𝑡] =  [0.95 −0.4750 0.95 ] [ 𝑌𝑡−1𝑋𝑡−1 ] +  [0.25 −0.1250 0.25 ] [ 𝑌𝑡−2𝑋𝑡−2 ] + [−0.2375 0.118750 −0.2375] [ 𝑌𝑡−3𝑋𝑡−3 ] + [𝜀1𝑡𝜀2𝑡]. 
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3.2.2. Theory-confirmation bias 1 

In the second simulation design, the primary study authors search for statistically significant 2 

and theory-confirming results, that is Granger causality from 𝑌 to 𝑋, where genuine Granger 3 

causality is actually absent. Fig. 7 shows that overfitted VAR models are more prevalent in this 4 

case, indicating that p-hacking is based on both overfitted lag lengths and sampling errors. A 5 

large amount of excess significance is present for 𝑌 causes 𝑋, indicating how distorted an 6 

empirical literature could become.8 7 

The type I errors of both meta-regression models are again well below the nominal significance 8 

level of 0.05. Fig. 8 shows how they vary with the degree of p-hacking for DGP2a and DGP2b. 9 

Even though there is excess significance for 𝑌 causes 𝑋, the meta-regression models do not 10 

lead to false-positive findings of genuine Granger causality. Compared to the previous case 11 

without p-hacking, the type I errors of the basic model are even smaller indicating the increased 12 

presence of overfitted VAR models that increase the downward bias of 𝛽𝐵𝑔𝑐
. But the type I 13 

errors of the extended model are increased so that there is now a greater difference between the 14 

basic and extended models. The type I errors of both meta-regression models show little 15 

reaction to the degree of p-hacking except when h = 100, and even then the errors are smaller 16 

not larger. DGP1 shows the same patterns as DGP2 but with generally lower power and a 17 

smaller difference between the two meta-regression models (see Appendix A2). 18 

Figure 9 shows how the power of both models varies with the degree of p-hacking for DGP2. 19 

p-hacking based on exploiting sampling errors and overfitting lag lengths has little impact on 20 

the power of both meta-regression models. They reliably identify whether statistically 21 

significant Granger causality tests are based on genuine Granger causality or based on p-22 

hacking. DGP1 shows the same patterns as DGP2 (see Appendix A2). 23 

                                                 
The simulation findings are similar to those of DGP1a and, therefore, are not reported. Notable differences are 

that a lag length of 1 has the highest frequency to occur for both AIC and BIC, correlated errors increase the 

difference between the basic and extended meta-regression model, and type I errors have a tendency to be larger 

and to exceed 0.05 if BIC is used in the primary studies. 
8 We also analyzed a case in which primary studies select for any statistically significant Granger causality test 

irrespective of the direction of causality. In this case almost no selection bias occurs as genuine Granger causality 

is present in all DGPs and this genuine Granger causality usually provides a statistically significant Granger 

causality test that can be selected for publication. 
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1 

Fig. 7 Prevalence of overfitted lag lengths and the corresponding over-rejection of the null of Granger non-2 

causality is shown for DGP2a in the presence of theory-confirmation bias (ℎ = 75). See caption of Fig. 4 for 3 

further details. 4 

5 

Fig. 8 Type I errors of both the basic and extended meta-regression models for DGP2a and DGP2b in the 6 

presence of theory-confirmation bias are shown. Type I errors of 𝐻0: 𝛽𝐵𝑔𝑐 ≤ 0 (circles) and 𝐻0: 𝛽𝐸𝑔𝑐 ≤ 0 (triangles) 7 

for DGP2a (black) and DGP2b (red) with Ω = I are reported in relation to the share of p-hacked studies (ℎ =8 0, 25, 50, 75, 100) with 𝑠 = 40 for small primary sample size distributions in column one and two and a larger 9 

primary sample size distribution in column three. 10 

 11 

Fig. 9 Power of both the basic and extended meta-regression model for DGP2 in the presence of theory-12 

confirmation bias is shown. Power curves of 𝐻0: 𝛽𝐵𝑔𝑐 ≤ 0 (circles) and 𝐻0: 𝛽𝐸𝑔𝑐 ≤ 0 (triangles) for DGP2a (black) 13 
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and DGP2b (red) with Ω = I are reported in relation to the share of p-hacked studies (ℎ = 0, 25, 50, 75, 100) with 1 𝑠 = 40 for small primary sample size distributions in column one and two and a larger primary sample size 2 

distribution in column three. 3 

4. p-hacking in the energy-growth literature 4 

4.1. Background and data 5 

In this section, we investigate the source of statistically significant Granger causality tests in 6 

the literature that explores the relationship between energy use and economic output. We select 7 

studies that use the Toda-Yamamoto procedure from the data set compiled by Bruns et al. 8 

(2014). Appendix A3 provides an overview of these 23 studies. As many studies report multiple 9 

estimates, the data set contains 126 Granger causality statistics in each direction. There are 66 10 

test statistics based on a lag length of one, 26 based on a lag length of two, and 34 that use a 11 

lag length of three for each direction of causality.9 12 

The average 𝑧𝑔𝑐 value in the sample for energy causes growth tests is 0.83, which corresponds 13 

to an average p-value of 0.20. The average 𝑧𝑔𝑐 value for growth causes energy tests is 1.03, 14 

which corresponds to an average p-value of 0.15. Both average 𝑝-values are considerably lower 15 

than we would expect in the absence of genuine Granger causality (average p-value = 0.5). Can 16 

this high level of average significance be explained by the presence of genuine Granger 17 

causality? 18 

We group the test statistics into three categories according to the primary VAR specifications 19 

used (Table 2). We have 66 observations that use a bivariate specification with energy 20 

consumption and economic output only. 19.70% of these bivariate specifications are 21 

statistically significant at the 0.05 level for a test of energy causes growth and 27.27% for a 22 

test of growth causes energy. The degrees of freedom are reasonably large and the chosen lag 23 

length small. We have 41 observations that use a primary VAR specification with capital and 24 

labor as additional control variables. In each direction of causality, almost half of these 25 

statistics are statistically significant at the 0.05 level. In addition, compared to the bivariate 26 

specification the number of degrees of freedom is low and the lag lengths are high. Finally, we 27 

have a third category that contains all remaining primary VAR specifications with various 28 

                                                 
9 We delete two test statistics from Esso (2010) as they are the only tests using a VAR model with a lag length of 

four in our sample.  
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control variables (CO2 emissions, energy prices, labor, capital, and population) but insufficient 1 

observations to group them into separate categories.  2 

Table 2 Properties of Granger causality tests 3 

Control variables 
Number of 

tests 

Number 

of 

studies 

Energy causes 

growth 
Growth causes energy  Percentiles of 𝒅𝒇 Number of lags 

   𝒑 < 0.05 𝒑 < 0.1 𝒑 < 0.05 𝒑 < 0.1 25 50 75 1 2 3 

None 66 6 0.20 0.23 0.27 0.38 28 35 38 47 18 1 

Capital and Labor 41 7 0.49 0.51 0.46 0.56 12 14 21 7 5 29 

Other 19 10 0.11 0.21 0.37 0.42 17 21 28.5 12 3 4 

Notes: df denotes degrees of freedom and 𝑝 denotes 𝑝-value 4 

4.2. Meta-regression analysis 5 

Granger causality tests are sensitive to the set of other relevant information taken into account 6 

(Granger, 1988). If researchers omit relevant variables they may obtain spurious findings of 7 

causality (Lütkepohl 1982; Stern, 1993). In the presence of omitted-variable biases in the 8 

primary literature, meta-regression models will also detect spurious “genuine effects” (Bruns, 9 

2017). By controlling for the different VAR specifications used in the primary literature the 10 

meta-analyst can use the meta-regression model to investigate whether a positive relation 11 

between 𝑧𝑔𝑐 and √𝑑𝑓 is due to omitted-variable bias or a genuine effect.10  12 

Furthermore, the addition of control variables to the primary VAR specification can deplete 13 

the degrees of freedom increasing the probability of overfitting the VAR model and obtaining 14 

spuriously significant Granger causality tests. In general, adding variables to the VAR model 15 

increases the penalty terms of the information criteria. But if the addition of variables is used 16 

to deplete the df leading to very low df, the increased variance of 𝑙𝑛|Σ̂𝑝∗| − 𝑙𝑛|Σ̂𝑝∗+ℎ| in (3) 17 

may exceed the increase in the penalty term implying a higher probability of overfitting  18 

We generalize the extended meta-regression model (6) to take the dependence between the 19 

Granger causality test statistics and the three primary VAR specifications into account, using 20 

the following regression: 21 

                                                 
10 If some relevant variables are not included by any primary study, it is impossible to identify a genuine effect 

using meta-regression analysis. Instead, meta-regression analysis may indicate the need for further research. 
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𝑧𝑖𝑔𝑐 = 𝛼1𝑔𝑐 + 𝛽1𝑔𝑐 √𝑑𝑓𝑖 + 𝐷𝐾𝐿(𝛼2𝑔𝑐 + 𝛽2𝑔𝑐 √𝑑𝑓𝑖) 1 

+ 𝐷𝑂𝑡(𝛼3𝑔𝑐 + 𝛽3𝑔𝑐 √𝑑𝑓𝑖)  + 𝛾𝑔𝑐 𝑝𝑖 + 𝜀𝑖𝑔𝑐
    (7) 2 

where 𝐷𝐾𝐿 = 1 if capital and labor are used as control variables in the primary VAR 3 

specification and is zero otherwise and 𝐷𝑂𝑡 = 1 if control variables other than capital and labor 4 

are used and is zero otherwise.11 We control for the lag lengths of the underlying VAR models 5 

with one continuous variable as the Granger causality test by Toda and Yamamoto (1995) 6 

results in over-rejection (under-rejection) of the null of Granger non-causality if the lag length 7 

is overfitted (underfitted) for both the presence and absence of genuine Granger causality. 8 

Accordingly, 𝐻0: 𝛽1𝑔𝑐 ≤ 0 tests for a positive relation between 𝑧𝑖𝑔𝑐
 and √𝑑𝑓𝑖 if the bivariate 9 

VAR specification was used and 𝐻0: 𝛽1𝑔𝑐 + 𝛽2𝑔𝑐 ≤ 0 tests for a positive relation between 𝑧𝑖𝑔𝑐
 10 

and √𝑑𝑓𝑖 if capital and labor are used as control variables.  11 

We carry out the inferences by using confidence intervals. The aim is to shift attention from 12 

statistical significance to the size of the coefficients (Cumming, 2014). Moreover, we bootstrap 13 

these confidence intervals, as the results of our Monte Carlo simulations (Section 3) indicate 14 

that both the basic and extended meta-regression model are under-sized, i.e. they reject the null 15 

less than the nominal significance level. Bootstrapping is known to perform well in these 16 

situations (MacKinnon, 2002).12 We use the bias-corrected and accelerated (𝐵𝐶𝑎) bootstrap to 17 

construct confidence intervals for each coefficient using 1000 iterations (Efron, 1978; DiCiccio 18 

and Efron, 1996).  19 

4.3. Results 20 

Table 3 presents the results of the meta-regression models for energy causes growth and vice 21 

versa.13 Columns (1) present the basic model. Here, the estimate of 𝛽𝐵𝑔𝑐
 is negative and the 22 

estimate of the constant is positive, as we would expect in the presence of overfitted lag lengths 23 

and the corresponding over-rejection for small 𝑑𝑓. The test for a positive relation between 𝑧𝑖𝑔𝑐
 24 

                                                 
11 Ideally, we would control for every different combination of primary control variables used in the literature. 

Unfortunately, the number of observations for most of these is very small. For example, only one article in our 

sample of Toda-Yamamoto tests controls for energy prices. Therefore, we have lumped primary studies with 

various control variables together into another category. 
12 We are thankful to an anonymous reviewer for making this point.  
13 We also conducted the analysis excluding Vaona (2010) who has the largest values of 𝑑𝑓 – 127 and 130 –more 

than double the next highest value of 49. The results remain qualitatively the same and are reported in Appendix 

A4. They indicate a stronger influence of overfitted lag lengths on the inference of the meta-regression models as 

we would expect when dropping observations with large 𝑑𝑓. 
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and √𝑑𝑓𝑖 is one-sided but the reported confidence intervals do not show evidence for such a 1 

positive relation for energy causes growth and vice versa. Columns (2) show the extended 2 

model. Adding the lag length as a control variable leads to estimates of both 𝛽𝐸𝑔𝑐
 and the 3 

constant that are close to 0 with the 0.95 confidence intervals including 0. As expected, the 4 

coefficient of the lag length variable is positive, and the 0.95 confidence interval does not 5 

include 0. Columns (3) show the generalized extended model (7) that tests for a positive 6 

relation between 𝑧𝑖𝑔𝑐
 and √𝑑𝑓𝑖 for each of the three primary VAR specification categories. For 7 

both energy causes growth and vice versa, we calculated the 0.90 confidence intervals of 𝛽1𝑔𝑐
 8 

and 𝛽1𝑔𝑐 + 𝛽2𝑔𝑐
 as the lower bound of these confidence intervals correspond to a one sided t-9 

test of a positive relation between 𝑧𝑖𝑔𝑐
 and √𝑑𝑓𝑖 at the 0.05 significance level for the 10 

specification without control variables and for the specification with capital and labor as control 11 

variables. For energy causes growth, these confidence intervals are [-0.33,0.14] and [-0.46, 12 

0.41] and for growth causes energy, [-0.43, 0.30] and [-0.43, 0.34] indicating no evidence for 13 

a positive relation between 𝑧𝑖𝑔𝑐
 and √𝑑𝑓𝑖.  14 

Fig. 10 shows that a lag length of three predominantly occurs for small df, and Granger 15 

causality tests obtained by a VAR model with a lag length of three tend to result in larger values 16 

of 𝑧𝑔𝑐. As outlined in Table 2, a lag length of three occurs almost exclusively for the primary 17 

VAR specification with capital and labor and the Granger causality tests with these control 18 

variables also have the highest levels of statistical significance, whereas Granger causality tests 19 

for VARs with capital and labor but smaller lag lengths tend to be non-significant. This 20 

indicates that additional control variables might be used to deplete df resulting in overfitted 21 

VAR models with statistically significant Granger causality tests. Given that the probability of 22 

overfitting increases with decreasing df, adding control variables to the primary VAR 23 

specification may facilitate the search for statistically significant results. 24 

This empirical application shows that there is no evidence for a genuine relation between 25 

energy use and economic output in bivariate VAR specifications or in VAR specifications with 26 

capital and labor as control variables – at least in this linear setup. But we find evidence that 27 

overfitted lag lengths and the corresponding false-positive findings of Granger causality are 28 

present in this literature.  29 

Both VAR specifications (bivariate and with capital and labor) may suffer from omitted-30 

variable biases that obscure a genuine relation. Bruns et al. (2014) find some evidence that 31 
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there appears to be genuine Granger causality from economic output to energy use if energy 1 

prices are controlled for, which mimics an energy demand function. Further research is needed 2 

to validate this finding. 3 

Table 3 Results of meta-regression models  4 

 Energy causes growth Growth causes energy 

 (1) (2) (3) (1) (2) (3) 

Constant 2.32 

(1.10, 3.46) 

-0.16 

(-1.64, 1.48) 

0.04 

(-1.44, 2.23) 

2.09 

(0.60, 3.62) 

-0.55 

(-2.22, 2.01) 

-0.35 

(-2.83, 2.54) 

df -0.28 

(-0.49, -0.07) 

-0.05 

(-0.27, 0.16) 

-0.06 

(-0.42, 0.16) 

-0.20 

(-0.48, 0.07) 

0.04 

(-0.30, 0.29) 

0.02 

(-0.46, 0.39) 

Lags  

 

0.73 

(0.36, 1.06) 

0.52 

(0.11, 1.04) 

 

 

0.77 

(0.32, 1.20) 

0.70 

(0.19, 1.21) 

KL   0.47 

(-3.03, 3.51) 

  0.44 

(-2.99, 3.89) 

KL*df   0.04 

(-0.50, 0.66) 

  -0.07 

(-0.65, 0.50) 

Other   -1.18 

(-5.49, 4.62) 

  -2.97 

(-8.76, 2.12) 

Other*df   0.22 

(-0.90, 1.02) 

  0.63 

(-0.42, 1.79) 

Obs. 126 126 126 126 126 126 

Adj. 𝑅2 0.06 0.17 0.18 0.02 0.13 0.12 

       

Notes: Bootstrapped 0.95 confidence intervals in parentheses. Coefficients whose confidence intervals do not include 

0 are in bold.  



26 

 

26 

 

 1 
Fig. 10 Relations of lag lengths, degrees of freedom, and levels of statistical significance in the empirical 2 

meta-sample are shown. The 𝑧𝑔𝑐  values are reported as function of √𝑑𝑓 for a lag length of one (𝑝 = 1), two 3 

(𝑝 = 2), and three (𝑝 = 3). The dashed line is at 1.64 separating the graph into statistically significant Granger 4 
causality tests (above) and statistically non-significant Granger causality tests (below) at the 0.05 level of 5 
significance. 6 

  7 

5. Discussion 8 

We show that overfitted lag lengths and the corresponding over-rejection of the null of Granger 9 

non-causality compared to a VAR with the correct lag length occur frequently in small to 10 

moderate sample sizes. This hampers inference on the presence of genuine Granger causality 11 

using meta-regression models. We show that the extended meta-regression model can adjust 12 

for overfitted lag lengths and improves power compared to the basic meta-regression model. 13 

The simulation results reveal that the basic meta-regression model finds it difficult to detect 14 

small genuine causal coefficients, as these are interpreted as the absence of genuine Granger 15 

causality. The extended model provides an improvement in power particularly for small 16 

genuine effects as it takes the overfitting into account. Economic effects are often small, 17 

highlighting how important the correction for overfitting is. Our application indicates no 18 

evidence for a genuine effect. These findings are supported by Bruns et al. (2014) who included 19 

“the degrees of freedom lost in fitting the model” as a control variable in their meta-regression 20 

model so that the square root of the degrees of freedom variable only reflects variation in the 21 

degrees of freedom due to variation in the sample size. This control variable is mainly 22 

determined by the chosen lag length and by the number of control variables added to the VAR 23 

model. The approach discussed here allows us to further disentangle the sources of spuriously 24 

statistically significant Granger causality tests. Overfitting of the lag length can occur in 25 
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bivariate VAR specifications with small sample sizes where the degrees of freedom lost in 1 

fitting the model may be low. Conversely, it is unlikely that overfitted lag lengths occur even 2 

if the degrees of freedom lost in fitting the model are large when the sample size is also large. 3 

In practice, the approach of Bruns et al. (2014) may or may not correlate with the approach 4 

used here depending on the sample. For our sample, the correlation coefficient between the 5 

number of lags and the degrees of freedom lost in fitting the model is 0.89 but the correlation 6 

need not be this high, particularly for higher-dimensional VAR models.  7 

As demonstrated here, meta-regression models can be a powerful tool for detecting biases and 8 

identifying genuine empirical effects. But challenges remain in the application of meta-9 

regression models to observational data (Bruns, 2017). More research is needed to better 10 

understand how meta-regression models can deal with various sets of control variables in the 11 

primary studies. We tested for a positive relation between probit transformed p-values and the 12 

square root of the degrees of freedom for each set of primary control variables by using dummy 13 

variables. If we would have found such a positive relationship, we could have then discussed 14 

whether the set of control variables is adequate or whether omitted-variable biases are likely to 15 

have caused this positive relationship. But this approach is only feasible if multiple primary 16 

studies with the same control variables are present in the literature, which may often not be the 17 

case, as publication requires novelty, which often means the inclusion of different control 18 

variables. 19 

The application reveals that researchers may add control variables to the VAR model to deplete 20 

the degrees of freedom resulting in an increased probability of generating false positive 21 

findings of Granger causality. While overfitted lag lengths can be used to p-hack, VAR models 22 

with overfitted lag lengths are not necessarily the result of p-hacking but they also occur in the 23 

use of standard research designs outlined in textbooks. For example, capital and labor are 24 

reasonable control variables to include in a test of Granger causality between energy use and 25 

economic output and the false-positive findings of Granger causality for this specification may 26 

be the result of researchers trying to estimate a better model. 27 

Generally, our findings contribute to the increasing body of evidence that biases and p-hacking 28 

may be prevalent in empirical economics research. They indicate the need for measures that 29 

improve the reliability and credibility of empirical research. One of these measures is to de-30 

emphasize null-hypothesis significance testing (for an overview see Cumming, 2014). As 31 

prominently pointed out by McCloskey and Ziliak (1996), statistical significance is often 32 
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falsely considered to represent economic significance. Researchers tend to chase p-values that 1 

are below some common threshold of statistical significance while the economic 2 

interpretability of the effect size remains neglected. Their critique is relevant to literatures that 3 

focus on Granger causality tests and largely ignore effect sizes. This is even more important 4 

where sample sizes are very large compared to macroeconomics, such as is often the case in 5 

finance or neuroscience. Even if a genuine effect is considered to be absent, (very) large sample 6 

sizes may often generate statistically significant estimates as even tiny biases will generate 7 

arbitrarily small p-values (Schuemie et al., 2014; Kim and Ji, 2015; Bruns and Ioannidis, 2016).  8 

 9 

6. Conclusions 10 

By modeling the complete process of Granger causality testing, we show that overfitted lag 11 

lengths and the corresponding over-rejection of the null of Granger non-causality are prevalent 12 

in a variety of scenarios mirroring research in macroeconomic time series analysis. Overfitting 13 

leaves empirical researchers with uncertainty about the reliability of inferences. Particularly, 14 

p-hacking based on overfitted lag lengths can lead to excess significance even though genuine 15 

Granger causality is absent. We introduce a meta-regression model that controls for spurious 16 

significance generated by overfitted lag lengths. The suggested model has higher power than 17 

the basic meta-regression model and both provide adequate type I errors. 18 

We apply the suggested meta-regression model to the large literature that tests for Granger 19 

causality between energy consumption and economic output. We generalize the meta-20 

regression models to the synthesis of different multivariate VAR models and find that this 21 

empirical literature shows no evidence for genuine Granger causality even though excess 22 

significance is present. Specifically, we find evidence that adding control variables to the 23 

primary VAR models can be used to deplete the degrees of freedom, which increases the 24 

probability of obtaining false-positive findings of Granger causality due to overfitted lag 25 

lengths.  26 

 27 

Data and computer code availability 28 

The data and code used in this paper (1. Code, 2. Data, 3. Detailed readme files) are collected 29 

in the electronic supplementary material of this article. 30 
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Appendix A1 1 

 2 

Fig. 4a Prevalence of overfitted lag lengths and the corresponding over-rejection of the null of Granger non-3 

causality is shown for DGP1a. The first column shows the histograms of selected lag lengths in simulated primary 4 

studies across all meta-analysis sample sizes (𝑠 = 10, 20, 40, 80) with 𝜇 = 40, 𝜎2 = 100, and Ω = 𝐼. The second 5 

column presents the boxplots of degrees of freedom by lag length. The box represents the interquartile range and 6 

the whiskers extend to the largest data point within 1.5 times the interquartile range. The third column shows the 7 

boxplots of p-values in simulated primary studies for the presence of Granger causality, whereas the fourth column 8 

presents the boxplots of p-values in the absence of Granger causality.  9 

  10 
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 1 

Fig. 4b Prevalence of overfitted lag lengths and the corresponding over-rejection of the null of Granger non-2 

causality is shown for DGP1b. The first column shows the histograms of selected lag lengths in simulated primary 3 

studies across all meta-analysis sample sizes (𝑠 = 10, 20, 40, 80) with 𝜇 = 40, 𝜎2 = 100, and Ω = 𝐼. The second 4 

column presents the boxplots of degrees of freedom by lag length. The box represents the interquartile range and 5 

the whiskers extend to the largest data point within 1.5 times the interquartile range. The third column shows the 6 

boxplots of p-values in simulated primary studies for the presence of Granger causality, whereas the fourth column 7 

presents the boxplots of p-values in the absence of Granger causality.  8 

 9 
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 14 
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 17 
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 1 

Fig. 4c Prevalence of overfitted lag lengths and the corresponding over-rejection of the null of Granger non-2 

causality is shown for DGP2b. The first column shows the histograms of selected lag lengths in simulated primary 3 

studies across all meta-analysis sample sizes (𝑠 = 10, 20, 40, 80) with 𝜇 = 40, 𝜎2 = 100, and Ω = 𝐼. The second 4 

column presents the boxplots of degrees of freedom by lag length. The box represents the interquartile range and 5 

the whiskers extend to the largest data point within 1.5 times the interquartile range. The third column shows the 6 

boxplots of p-values in simulated primary studies for the presence of Granger causality, whereas the fourth column 7 

presents the boxplots of p-values in the absence of Granger causality. A lag length of one was selected for less 8 

than 0.1% of primary studies and these findings are not reported. 9 

 10 

 11 

 12 
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 1 

Fig. 5a Type I errors of both the basic and extended meta-regression models for DGP1a and DGP1b are shown. 2 

Type I errors of 𝐻0: 𝛽𝐵𝑔𝑐 ≤ 0 (circles) and 𝐻0: 𝛽𝐸𝑔𝑐 ≤ 0 (triangles) for DGP1a (black) and DGP1b (red) with Ω =3 I are reported if the AIC (upper row) or the BIC (lower row) is used for small primary sample sizes distributions 4 

in column one and two and a larger primary sample size distribution in column three. 5 
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Figure 6a: Power of Meta-Regression Models for DGP1a and DGP1b 1 

 2 

Fig. 6a Power of both the basic and extended meta-regression models for DGP1a and DGP1b are shown. Power 3 

curves of 𝐻0: 𝛽𝐵𝑔𝑐 ≤ 0 (circles) and 𝐻0: 𝛽𝐸𝑔𝑐 ≤ 0 (triangles) for DGP1a (black) and DGP1b (red) with Ω = I are 4 

reported if the AIC (upper row) or the BIC (lower row) is used for small primary sample sizes distributions in 5 

column one and two and a larger primary sample size distribution in column three. 6 
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Appendix A2 2 

 3 

Fig. 7a Prevalence of overfitted lag lengths and the corresponding over-rejection of the null of Granger non-4 

causality is shown for DGP1a in the presence of theory-confirmation bias (ℎ = 75). See caption of Fig. 4 for 5 

further details. 6 

 7 

 8 

Fig. 7b Prevalence of overfitted lag lengths and the corresponding over-rejection of the null of Granger non-9 

causality is shown for DGP1b in the presence of theory-confirmation bias (ℎ = 75). See caption of Fig. 4 for 10 

further details. 11 

 12 

13 

Fig. 7a Prevalence of overfitted lag lengths and the corresponding over-rejection of the null of Granger non-14 
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causality is shown for DGP2b in the presence of theory-confirmation bias (ℎ = 75). See caption of Fig. 4 for 1 

further details. 2 

 3 

Fig. 8a Type I errors of both the basic and extended meta-regression models for DGP1a and DGP1b in the 4 

presence of theory-confirmation bias are shown. Type I errors of 𝐻0: 𝛽𝐵𝑔𝑐 ≤ 0 (circles) and 𝐻0: 𝛽𝐸𝑔𝑐 ≤ 0 (triangles) 5 

for DGP1a (black) and DGP1b (red) with Ω = I are reported in relation to the share of p-hacked studies (ℎ =6 0, 25, 50, 75, 100) with 𝑠 = 40 for small primary sample size distributions in column one and two and a larger 7 

primary sample size distribution in column three. 8 

 9 

 10 

Fig. 9a Power of both the basic and extended meta-regression model for DGP1a and DGP1b in the presence of 11 

theory-confirmation bias is shown. Power curves of 𝐻0: 𝛽𝐵𝑔𝑐 ≤ 0 (circles) and 𝐻0: 𝛽𝐸𝑔𝑐 ≤ 0 (triangles) for DGP1a 12 

(black) and DGP1b (red) with Ω = I are reported in relation to the share of p-hacked studies (ℎ =13 0, 25, 50, 75, 100) with 𝑠 = 40 for small primary sample size distributions in column one and two and a larger 14 

primary sample size distribution in column three. 15 

 16 
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Appendix A3 1 

Table 4: Studies included in the empirical application   

Authors and date Countries Control variables 

Adom (2011) GHA - 

Alam et al. (2011) IND Employment, capital, CO2 

Bowden and Payne (2009) USA Employment, capital 

Ciarreta et al. (2009) PRT Energy price 

Esso (2010) 
CMR; COG; CIV; GHA; 

KEN; ZAF 
- 

Lee (2006) G-11 countries - 

Lotfalipour et al. (2010) IRN CO2 

Mehrara (2007) IRN, KWT, SAU - 

Menyah and Wolde-Rufael 

(2010a) 
USA CO2 

Menyah and Wolde-Rufael 

(2010b) 
ZAF Capital, CO2 

Payne (2009) USA Employment, capital 

Payne (2010) USA Employment, capital 

Sari and Soytas (2009) DZA, IND, NGA, SAU, VEN Employment, CO2 

Soytas et al. (2007) USA Employment, capital, CO2 

Soytas and Sari (2009) TUR Employment, capital, CO2 

Vaona (2012) ITA - 

Wolde-Rufael (2009) 17 African countries Employment; capital 

Wolde-Rufael (2010a) IND Employment; capital 

Wolde-Rufael (2010b) 
CHN; IND; JPN; KOR; ZAF; 

USA 
Employment; capital 

Wolde-Rufael and Menyah 

(2010) 
9 developed countries Employment; capital 

Zachariadis (2007) G7 countries - 

Zhang and Cheng (2009) CHN Capital; CO2; population 

Ziramba (2009) ZAF Employment 
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 7 
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Table 5: Results of the meta-regression models without Vaona (2010) 1 

 Energy causes Growth Growth causes Energy 

 (1) (2) (3) (1) (2) (3) 

Constant 3.20 

(1.84, 4.71) 

-0.39 

(-2.73, 1.91) 

0.80 

(-2.67, 3.84) 

3.30 

(1.86, 4.85) 

0.08 

(-2.76, 2.53) 

2.42 

(-2.42, 6.62) 

Df -0.46 

(-0.72, -0.21) 

-0.02 

(-0.35, 0.35) 

-0.18 

(-0.64, 0.34) 

-0.44 

(-0.72, -0.20) 

-0.05 

(-0.38, 0.34) 

-0.43 

(-1.07, 0.33) 

lags  

 

0.76 

(0.39, 1.21) 

0.48 

(-0.004, 1.02) 

 

 

0.68 

(0.21, 1.12) 

0.57 

(0.01, 1.12) 

KL   -0.11 

(-3.68, 3.33) 

  -1.68 

(-5.29, 3.03) 

KL*df   0.14 

(-0.47, 0.79) 

  0.31 

(-0.45, 0.93) 

Other   -1.84 

(-6.89, 4.22) 

  -5.37 

(-11.63, 0.78) 

Other*df   0.33 

(-0.94, 1.25) 

  1.04 

(-0.12, 2.35) 

Obs. 123 123 123 123 123 123 

Adj. 𝑅2 0.10 0.17 0.18 0.08 0.13 0.13 

Notes: Bootstrapped 0.95 confidence intervals in parentheses. Coefficients whose confidence intervals do not include 0 

are in bold. 
 2 


