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Abstract— This paper investigates the problem of global
exponential lag synchronization of a class of switched neural
networks with time-varying delays via neural activation function
and applications in image encryption. The controller is dependent
on the output of the system in the case of packed circuits, since
it is hard to measure the inner state of the circuits. Thus, it is
critical to design the controller based on the neuron activation
function. Comparing the results, in this paper, with the existing
ones shows that we improve and generalize the results derived
in the previous literature. Several examples are also given to
illustrate the effectiveness and potential applications in image
encryption.
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I. INTRODUCTION

HYBRID systems have been investigated extensively with

the rapid development of intelligent control. As a

special case of hybrid systems, switched systems consist of a

family subsystems, which are controlled by a switching rule.

In reality, many systems can be modeled as switched systems,

switched circuits, switched networks, and so on. Considerable

attention has been drawn to the theoretical analysis of switched

systems [1].

Meanwhile, synchronization of neural networks has

attracted great attention due to its potential applica-

tions in many fields such as secure communications,

biological systems, information science, image encryption,
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pseudorandom number generator, and adaptive dynamic pro-

grammer [2]–[14]. Synchronization phenomena including

complete synchronization [15]–[17], generalized synchroniza-

tion [18], phase synchronization [19], and lag synchroniza-

tion [20] have been investigated. In connected electronic

networks, time delays are unavoidable due to finite signal

transmission times, switching speeds, and the complete

synchronization of neural networks with time delays hard

to implement effectively, but we can implement lag

synchronization.

Several control methods have been proposed for the lag

synchronization of delayed neural networks, such as

periodically intermittent control in [21]–[23]. Exponential

stability criteria are derived for the synchronization error sys-

tems with constant time delays in [21] and [22], however, these

criteria are not applicable for systems with time-varying

delays. Meanwhile, only asymptotical stability criteria

are derived for synchronization error systems in [23].

Li and Bohnerb [24] investigated the exponential synchro-

nization of chaotic neural networks via linear matrix inequality

techniques. However, there are a few results on global expo-

nential lag synchronization of switched neural networks.

Motivated by the above discussion, in this paper, we

investigate the problem of globally exponential lag syn-

chronization for a class of switched neural networks with

time-varying delays. It is worth pointing out that, the proposed

problem is nontrivial because of the difficulties such as the

controller is designed via the neuron activation function.

The rest of this paper is organized as follows. In Section II,

preliminaries are given. In Section III, a new model of

synchronization error system is formulated within a unified

framework. In Section IV, synchronization of switched neural

networks is discussed by the controller based on the neuron

activation function. Several sufficient conditions are derived

to ensure the synchronization of switched neural networks.

Analysis has been made on results in this paper and the

previous ones. In Section V, two illustrative examples are

discussed to demonstrate the effectiveness of the theoretical

analysis. Finally, the conclusion is drawn in Section VI.

II. PRELIMINARIES

Denote u = (u1, . . . , un)T, |u| as the absolute-value vector,

i.e., |u| = (|u1|, |u2|, . . . , |un |)T, ||x ||p as the p-norm of

vector x , 1 ≤ p < ∞. ||x ||∞ = maxi∈{1,2,...,n} |xi | is the
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Fig. 1. Synchronization scheme of coupled memristive neural networks.

infinity norm of vector x . Denote ||D||p as the p-norm of the

matrix D. Denote C as the set of continuous functions.

A set of neural networks is considered as the individual

subsystems of the switched neural network. The driving

switched neural network is described as follows:

ẋ(t) = −Cl x(t) + Al f (x(t)) + Bl f (x(t − τ (t))) + I (1)

where l is a switching signal taking its value in the

finite set I = {1, . . . , N}, which means that the

matrices (Al , Bl, Cl ) are allowed to take values in the finite

set {(A1, B1, C1), . . . , (AN , BN , CN )}. The parameters of

system (1) are utilized to reflect the switched property of

the electronic elements in neural networks, such as switched

resistors and so on.

Throughout this paper, we assume that the switching rule l is

known priori to the receiver and its instantaneous value

is available in real time. The initial condition of system (1) is

in the form of x(t) = φ(t) ∈ C([−χ, 0], Rn), χ = max{τ̄ },
where τ̄ = max1≤l≤N τ l , 0 ≤ τl(t) ≤ τ l .

Consider the following response system:
ẋ(t) = −Cl x(t) + Al f (x(t)) + Bl f (x(t − τ (t))) + I. (2)

Define an indicator function �(t) = (�1(t), . . . ,�N (t))T ,

where

�l(t) =

⎧

⎨

⎩

1, when the switched system is described

by the lth mode(Al , Bl, Cl )

0, otherwise

(3)

with l = 1, . . . , N . Then, the driving switched neural

network (1) can be represented by

ẋ(t) =
N

∑

l=1

�l(t)(−Cl x(t) + Al f (x(t))

+ Bl f (x(t − τ (t))) + I ). (4)

It follows that
∑N

l=1 �l(t) = 1 under any switching rules.

Assume the response system has the same switching law as

the driving system

ẏ(t) =
N

∑

l=1

�l(t)(−Cl y(t) + Al f (y(t))

+ Bl f (y(t − τ (t))) + I + ul(t)) (5)

where ul(t)(l = 1, . . . , N) are the controllers. The initial

condition of system (5) is in the form of y(t) = ϕ(t) ∈
C([−τ̄ , 0], Rn).

The synchronization scheme of coupled switched neural

networks can be presented as in Fig. 1, in which, we have

the synchronization error state via the compare units and the

control input.

In this paper, we assume the following.

A1: For i ∈ {1, 2, . . . , n}, the activation function fi is

Lipchitz continuous; and ∀r1, r2 ∈ R, there exists real

number ιi such that

0 ≤ fi (r1) − fi (r2)

r1 − r2
≤ ιi .

A2: For i ∈ {1, 2, . . . , n}, τi (t) satisfies

0 ≤ τi (t) ≤ τ̄i , τ̇i (t) ≤ µi < 1.

To derive sufficient conditions for the global exponential lag

synchronization of system (4) with system (5), we will need

the following lemmas.

Lemma 1 [25]: Given any real matrices X, Z , P of

appropriate dimensions and a scalar ε0 > 0, where P > 0,

the following inequality holds:

X T Z + Z T X ≤ ε0 X T P X + ε−1
0 Z T P−1 Z .
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In particular, if X and Z are vectors, X T Z ≤ 1/2

(X T X + Z T Z).

III. NEW MODEL FOR THE SYNCHRONIZATION

ERROR SYSTEM

It is hard to obtain real-time inner states of the integrated

and packed circuit, the output of this circuit can be utilized to

measure such packed circuit. Therefore, we aim to design a

controller of the circuit based on its output function, which is

also called activation function in neuromorphic circuit, and to

reach lag synchronization [y(t) → x(t − ξ) for some constant

lag time ξ > 0]. The error system can be obtained as

ė(t) =
N

∑

l=1

�l(t)(−Cle(t) + Al
(e(t))

+ Bl
(e(t − τ (t))) + ul(t)) (6)

where e(t) = (e1(t), e2(t), . . . , en(t))
T is the lag-

synchronization error, and

ei (t) = yi (t) − xi (t − ξi ). (7)

The neural activation functions with/without delays are


(e(t)) = (
1(e1(t)), . . . ,
n(en(t)))
T

= f (e(t) + x(t − ξ)) − f (x(t − ξ))


(e(t−τ (t))) = (
1(e1(t − τ1(t))), . . . ,
n(en(t − τn(t))))
T

= f (e(t − τ (t)) + x(t − τ (t) − ξ))

− f (x(t − τ (t) − ξ)).

In the case of packed circuits, it is hard to measure the inner

state of the circuits, the controller is dependent on the output

of the systems. An output controller is designed in this paper

as follows:

ul(t) = Kl
(e(t)) (8)

where Kl = (kli j )n×n is a constant gain matrix to be deter-

mined to synchronize the drive and response systems, and


(e(t)) is the output function without delays.

With controller (8), the error system (6) is transformed into

ė(t) =
N

∑

l=1

�l(t)(−Cle(t) + Âl
(e(t)) + Bl
(e(t − τ (t))))

(9)

where ÂL = (âli j )n×n = (ali j + kli j )n×n .

IV. MAIN RESULTS

To gain the main results, the following lemma is

introduced. The initial condition of system (9) is in the form of

e(t) = ϕ(t) − φ(t − ξ) ∈ C([−τ̄ + ξ, ξ ], Rn).

Lemma 2: For the lag-synchronization error system (9), if

there exist a positive number λ and positive definite diagonal

matrices L = diag{ι1, ι2, . . . , ιn}, ̥ = diag(̥1, ̥2, . . . , ̥n),

R = diag(r1, r2, . . . , rn), and

�l = −2λ̥L−1 − �l + R + 2||̥||||Bl||2 I < 0

where λ = min
l=1,2,...,N

{λmin{Cl}}, �l = (�li j )n×n with

�lii = −2̥i âlii , and �li j = −(̥i âli j + ̥ j âl j i), for i �= j ,

such that V̇ (t)|(9) ≤ −βλ/2eT (t)e(t), where

V (t) = β

2
eT (t)e(t) + 2

n
∑

i=1

̥i

∫ ei (t)

0


i (s)ds

+
n

∑

i=1

∫ t

t−τi (t)


2
i (ei (s))ri ds. (10)

Proof: Let V1(t) = 1/2eT (t)e(t), V2(t) =
2

∑n
i=1 ̥i

∫ ei (t)
0


i (s)ds +
∑n

i=1

∫ t

t−τi (t)

2

i (ei (s))ri ds.

Then

V (t) = βV1(t) + V2(t)

where the scalar β > 0. Then

V̇ (t) = β V̇1(t) + V̇2(t)

where

V̇1(t) =
N

∑

l=1

�l(t)
(

− eT (t)Cl e(t) + eT (t) Âl
(e(t))

+ eT (t)Bl
(e(t − τ (t)))
)

V̇2(t) = 2

n
∑

i=1

̥i

T
i ėi (t)

+
n

∑

i=1

ri

(


T
i (ei (t))
i (ei (t)) − (1 − τ̇ (t))
T

i

(ei (t − τ (t)))
i (ei (t − τ (t)))
)

= 2
T (e(t))̥ė(t) + 
T (e(t))R
(e(t))

− (1 − τ̇ (t))
T (e(t − τ (t)))R
(e(t − τ (t)))

= 2

N
∑

l=1

�l(t)
(

− 
T (e(t))̥Cle(t)

+ 2
T (e(t))̥ Âl
(e(t))

+ 2
T (e(t))̥Bl
(e(t − τ (t)))
)

+ 
T (e(t))R
(e(t))

− (1−τ̇ (t))
T (e(t−τ (t)))R
(e(t−τ (t))).

As V̇1(t) can be presented as

V̇1(t) =
N

∑

l=1

�l(t)

⎛

⎝ − eT (t)Cl e(t) +
(

eT (t)
(Cl)

1
2

√
2

)

×
√

2(Cl)
−1
2 Âl
(e(t)) +

(

eT (t)
(Cl )

1
2

√
2

)

×
√

2(Cl)
−1
2 B
(e(t − τ (t)))

⎞

⎠.
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By Lemma 1

V̇1(t)

≤ 1

2

N
∑

l=1

�l(t)
(

− eT Cle(t) + 2
T (e(t)) ÂT
l C−1

l Âl
(e(t))

+ 2
T (e(t − τ (t)))BT
l C−1

l Bl
(e(t − τ (t)))
)

≤ 1

2

N
∑

l=1

�l(t)
(

− eT (t)Cl e(t) + 2||C−1
l |||| Âl ||22

× 
T (e(t))
(e(t)) + 2||C−1
l ||||Bl||22

× 
T (e(t − τ (t)))
(e(t − τ (t)))
)

≤ −λ

2

N
∑

l=1

�l(t)e
T (t)e(t)

+
N

∑

l=1

�l(t)
(

||C−1
l |||| Âl||22
T (e(t))
(e(t))+||C−1

l ||||Bl||22

× 
T (e(t − τ (t)))
(e(t − τ (t)))
)

≤ −λ

2
eT (t)e(t) + M
T (e(t))
(e(t))

+ M
T (e(t − τ (t)))
(e(t − τ (t)))

where

M = max
l=1,...,N

{

λ−1|| Âl ||22, λ−1||Bl ||22
}

≥ 0.

As ei (t)
i (t) ≥ ι−1
i (
i (t))

2, we have

− 2
T (e(t))̥

N
∑

l=1

�l(t)Cle(t)

≤ −2
T (e(t))̥

N
∑

l=1

�l(t)Cl L−1
(e(t)).

Therefore

V̇2(t) ≤ 2
T (e(t))̥

×
N

∑

l=1

�l(t)
(

− Cl L−1
(e(t))

+ 2
T (e(t))̥ Âl
(e(t))

+ 2
T (e(t))̥Bl
(e(t − τ (t)))
)

+ 
T (e(t))R
(e(t))

− (1 − µ)
T (e(t − τ (t)))R
(e(t − τ (t)))

≤ −
T (e(t))(2λ̥L−1)
(e(t))

−
N

∑

l=1

�l(t)
(


T (e(t))�l
(e(t)) − 2||̥||||Bl||2

× 
T (e(t))||||
(e(t − τ (t)))||
)

+ 
T (e(t))R
(e(t))

− (1 − µ)
T (e(t − τ (t)))R
(e(t − τ (t))). (11)

Furthermore, we can obtain

2||̥||||Bl||2||
T (e(t))||||
(e(t − τ (t)))||
≤ ||̥||||Bl||2

(


T (e(t))
(e(t))

+ 
T (e(t − τ (t)))
(e(t − τ (t)))
)

. (12)

From (11) and (12), we have

V̇2(t)

≤
N

∑

l=1

�l(t)
(


T (e(t))
(

− 2λ̥L−1 − �l + R + ||̥||||Bl||2
)

× 
(e(t)) − 
T (e(t − τ (t)))
(

(1 − µ)R

− ||̥||||Bl||2
)


(e(t − τ (t)))
)

.

As �l < 0, there exists ν > 0 such that �l + 2ν I < 0. Define

R = max
l=1,...,N

{

1

1 − µ

(

||̥||||Bl||2 + ν
)

}

I > 0.

Then, we can obtain

V̇2(t)≤−ν
T (e(t))
(e(t))− ν
T (e(t−τ (t)))
(e(t−τ (t))).

Let

β =
{

ν
̟ M

, M > 0

1, M = 0

where ̟ ≥ 1. Then, V̇ (t) ≤ −βλ/2eT (t)e(t).

Moreover, we can obtain the following theorem.

Theorem 1: Assume that the conditions in Lemma 2 hold,

then the driving system (4) is globally exponentially lag

synchronized with the response system (5).

Proof: Let λ = minl=1,...,N {λmin{Cl}}. As V (t) defined

in Lemma 2 is a positive definite and radially unbounded

Lyapunov functional. We can choose a positive number ǫ > 0

to satisfy

ǫβ − λβ + 2ǫ||L̥|| + 2ǫτ̄eǫτ̄ ||L2 R|| < 0. (13)

By Lemma 2, we can obtain

d

dt
{eǫt V (t)}

= eǫt (ǫV (t) + V̇ (t))

≤
N

∑

l=1

�l(t)e
ǫt

(

ǫ

(

β

2
eT (t)e(t) + 2

n
∑

i=1

̥i

∫ ei (t)

0


i (s)ds

+
n

∑

i=1

∫ t

t−τi (t)


2
i (ei (s))ri ds

)

− βλ

2
eT (t)e(t)

)

≤ 1

2

N
∑

l=1

�l(t)e
ǫt

(

ǫβeT (t)e(t) − βλeT (t)e(t)

+ 4ǫ

n
∑

i=1

̥i

∫ ei (t)

0


i (s)ds

)

+ ǫeǫt
n

∑

i=1

∫ t

t−τi (t)


2
i (ei (s))ri ds.
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Since

n
∑

i=1

̥i

∫ ei (t)

0


i (s)ds

≤
n

∑

i=1

̥i

∫ ei (t)

0

ιi sds ≤ 1

2
eT (t)L̥e(t)

then

d

dt
(eǫt V (t))

≤ 1

2

N
∑

l=1

�l(t)e
ǫt

(

ǫβeT(t)e(t) − βλeT(t)e(t)+ 2ǫeT(t)L̥e(t)

+ ǫeǫt

n
∑

i=1

∫ t

t−τi (t)


2
i (ei (s))ri ds

)

≤ 1

2
eǫt

(

ǫβ − λβ + 2ǫ||L̥||
)

eT (t)e(t)

+ ǫeǫt
n

∑

i=1

∫ t

t−τi (t)


2
i (ei (s))ri ds. (14)

Changing the integral of the second term on the right-hand

side of (14)

ǫ

∫ s

0

eǫt
n

∑

i=1

∫ t

t−τi (t)


2
i (ei (ς))ri dςdt

= ǫ

n
∑

i=1

∫ s

0

eǫt

∫ t

t−τi (t)


2
i (ς)ri dςdt

≤ ǫ

n
∑

i=1

∫ s

−τ̄

∫ min{ς+τ̄ ,s}

max{ς,0}
eǫt dt
2

i (ei (ς))ri dς

≤ ǫ

n
∑

i=1

∫ s

−τ̄

(∫ ς+τ̄

ς

eǫt dt

)


2
i (ei (ς))ri dς

≤
n

∑

i=1

∫ s

−τ̄

τ̄eǫ(ς+τ̄ )
2
i (ei (ς))ri dς

≤
n

∑

i=1

∫ s

−τ̄

τ̄eǫ(ς+τ̄ )e2
i (ς)ι2i ri dς

≤ τ̄eǫτ̄ ||L2 R||
∫ s

−τ̄

eǫςeT (ς)e(ς)dς

≤ τ̄eǫτ̄ ||L2 R||
( ∫ 0

−τ̄

eǫςeT (ς)e(ς)dς

+
∫ s

0

eǫςeT (ς)e(ς)dς

)

. (15)

By (13)–(15), we have

eǫs V (s) − V (0)

≤ 1

2

(

ǫβ − λβ + 2ǫ||L̥|| + 2ǫτ̄eǫτ̄ ||L2 R||
)

×
∫ s

0

eǫteT (t)e(t)dt + ǫτ̄eǫτ̄ ||L2 R||
∫ 0

−τ̄

eǫteT (t)e(t)dt

≤
(

ǫτ̄ ||L2 R||
∫ 0

−τ̄

eǫt dt

)

||ψ||2 ≡ H1||ψ||2.

Thus

V (t) ≤ (V (0) + H1||ψ||2)e−ǫt ∀t > 0 (16)

where

V (0) = β

2
eT (0)e(0) + 2

n
∑

i=1

qi

∫ ei (0)

0


i (s)ds

+
n

∑

i=1

∫ 0

−τi (t)


2
i (ei (s))ri ds

≤ 1

2
(β + 2||̥L|| + 2τ̄ ||L2 R||)||ψ||2

≡ H2||ψ||2.

By (10) and (16), we have

β

2
eT (t)e(t) ≤ V (t) ≤ (H1 + H2)||ψ||2e−ǫt ∀t > 0.

Thus, we have

||e(t)|| ≤
√

2

β
(H1 + H2)||ψ||e− ǫ

2 t (17)

which implies the drive system (4) is globally exponentially

lag synchronized with the response system (5). This completes

the proof.

By Theorem 1, we can obtain the following corollary.

Corollary 1: The drive system (4) is globally exponen-

tially lag synchronized with the response system (5), if

there exist positive definite matrices L = diag{ι1, ι2, . . . , ιn},
̥ = diag{̥1, ̥2, . . . , ̥n}, R = diag{r1, r2, . . . , rn} and a

positive definite symmetric matrix M , such that

�̂l = −2λ̥L−1 − �l + R + M+||̥||2||M−1||||Bl||22 I < 0

(18)

where λ = min
l=1,...,N

{Dl}, �l = (�li j )n×n with �lii = −2̥i âlii ,

and �li j = −(̥i âli j + ̥ j âl j i ), for i �= j .

Proof: By Lemma 1

1

||̥||||Bl||2
M + ||̥||||Bl||2M−1 ≥ 2I

then

M + ||̥||2||M−1||||Bl||22 I ≥ M + ||̥||2||Bl ||22M−1

≥ 2||̥||||Bl||22 I.

Thus

−2λ̥L−1 − � + R + 2||̥||||Bl||2 I

≤ −2λ̥L−1 − �l + R + M + ||̥||2||M−1||||Bl||22 I

< 0. (19)

This proof is complete.

Let ̥ = M = I in Corollary 1, we obtain the following

corollary.

Corollary 2: The drive system (4) is globally exponen-

tially lag synchronized with the response system (5), if

�l = (�li j )n×n is positive definite, and ||Bl ||2 ≤ (2π − 1)1/2,

where π = min1≤i≤n(λ/ιi ), and �lii = −2̥i âlii ,

�li j = −(̥i âli j + ̥ j âl j i ), for i �= j .
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Fig. 2. Transient behavior of the switched system (4) with the initial

value [0.2 − 0.2]T .

Some criteria about globally exponential stability can

be derived for the switched lag-synchronization error

system (9) with the controller of the neural activation

function [26]–[31]. The globally asymptotical stability

conditions for for the switched lag-synchronization error sys-

tem in [26, eq. (9)] and [27, eq. (9)] are presented as follows.

Corollary 3: The drive system (4) is globally exponen-

tially lag synchronized with the response system (5), if

�l = (�li j )n×n is positive definite, and ||Bl ||2 ≤ π , where

π = min1≤i≤n(λ/ιi ), and �lii = −2̥i âlii , �li j = −(̥i âli j +
̥ j âl j i), for i �= j .

Corollary 4: The synchronization error system (9) is

globally asymptotically stable if there exist a positive

definite diagonal matrices ̥ = diag{̥1, ̥2, . . . , ̥n},
R = diag{r1, r2, . . . , rn} such that

�̂l = −2ωI − �l + R + 2||̥||2||Bl ||22 I < 0 (20)

where ω = min1≤i≤n(̥iλ/ιi ), �l = (�li j )n×n with

�lii = −2̥i âlii , �li j = −(̥i âli j + ̥ j âl j i ), for i �= j .

The following inequality holds:

�̃l = −2ωI − �l + R + 2||̥||2||Bl ||22 I

≥ −2λ̥L−1 − �l + R + ||̥||2||Bl ||22 I (21)

where ω = min1≤i≤n(̥iλ/ιi ). This means the conditions

about stability criteria derived for switched neural networks

in [26] and [27] are more restrictive than those in Theorem 1.

Meanwhile, these results can only guarantee the globally

Fig. 3. (a) and (b) State trajectories of driving system (4) with the initial

value [0.2 − 0.2]T and slave system (5) with the initial value [0.5 − 0.5]T ,
when lag time ξ = 1.5.

asymptotical stability of the switched lag synchronization error

system (9).

V. ILLUSTRATIVE EXAMPLES

To show the effectiveness of the obtained results, two

illustrative examples are presented as follows.

Example 1: Consider a switched system (4) with

A =
[

1.8 10

0.1 1.8

]

, B =
[

−1.5 0.1

0.1 −1.5

]

fi (xi ) = 1

2
(|xi + 1| − |xi − 1|)

τi (t) = 0.97, i = 1, 2.

If x1(t) ≤ 0

C =
[

1.0 0

0 1.2

]

.

Else

C =
[

1.2 0

0 1.0

]

.

The initial values of driving system (4) is set to be

[0.2 − 0.2]T . In addition, the dynamical behaviors of this

system is shown as in Fig. 2, which is chaotic and can be

used in secure communications.

As

λ = min
l=1,2

{λmin{Cl}} = 1.
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Fig. 4. (a) and (b) State trajectories of driving system (4) with the initial

value [0.2 − 0.2]T and slave system (5) with the initial value [0.5 − 0.5]T ,
when lag time ξ = 0.8.

Obviously, there exists a positive definite diagonal matrix

̥ = diag{0.5, 0.5}, ν = 0.1, R = 1/(1 − µ){(||̥||
||B||2 + ν)I }, such that

�l = − Âl

to make

�l = −2λ̥L−1 − �l + R + ||̥||||Bl||2 I

= Kl +
[

3.3 11

1 3.3

]

< 0

therefore

Kl <

[

−3.3 −11

−1 −3.3

]

can make the lag-synchronization error system (9) globally

exponentially stable. However, ||B||2 = 1.6 > ̟ , which

means that the results in [26] cannot be used for the

lag-synchronization error system (9). To simulate the obtained

result, let

Kl =
[

−3.6 −11

−1 −3.6

]

.

Set the initial states of slave system (9) is [0.5 − 0.5]T .

The state trajectories of driving system and slave system are

presented in Figs. 3–5 with the lag times ξ = 1.5, ξ = 0.8,

and ξ = 0, respectively, which illustrate the effectiveness of

the obtained results.

Algorithm 1 Transformation of Chaotic Signals

Initialization:

Set i ← 1; j ← 1; k ← 1;

1: while i �= m do

2: while j �= n do

3: z1(i, j) ← 1000 ∗
(

z1(k) − floor(z1(k))
)

;

z1(i, j) ← mod(z1(i, j), 256);

z2(i, j) ← 1000 ∗
(

z2(k) − floor(z2(k))
)

;

z2(i, j) ← mod(z2(i, j), 256);

z3(i, j) ← 1000 ∗
(

z3(k) − floor(z3(k))
)

;

z3(i, j) ← mod(z3(i, j), 256);

k ← k + 1;

j ← j + 1;

4: end while

i ← i + 1;

5: end while

Fig. 5. (a) and (b) State trajectories of driving system (4) with the initial

value [0.2 − 0.2]T and slave system (5) with the initial value [0.5 − 0.5]T ,
when lag time ξ = 0.

Example 2: Based on Example 1, the obtained results

can be applied in the field of digital signal processing, and

the algorithm is presented for a color picture F with a

size m × n × 3, as follows.

1) Separating color image F into three gray ones with

red, green, and blue, respectively, and via sort func-

tion to rearrange the pixels in each gray image,
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Fig. 6. (a) Original image. (b) Encrypted image.

Fig. 7. (a) Histogram of the original gray image. (b) Histogram of the
encrypted gray image.

therefore, three new ordered pixel series are obtained as

R(i, j), G(i, j), B(i, j), i ∈ {1, . . . , m}, j ∈ {1, . . . , n}.
2) Through driving system (4), two groups of time-

series chaotic signals obtained as zl(i, j) = xl(k),

Fig. 8. (a) Original image. (b) Encrypted image.

Fig. 9. (a) Gray image of the red channel of the original image. (b) Same
plots for the encrypted image.

k ∈ {1, . . . , mn}, l ∈ {1, 2}. As there are three gray

images needed to be encrypted, the third chaotic signal

can be set as z3(k) = 0.5(x1(k) + x2(k)). After certain

transformation, the chaotic signals can be presented as

in Algorithm 1.

3) Based on the proceeded chaotic signals and gray images,

the encrypted gray images can be obtained as the
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Fig. 10. (a) Gray image of the green channel of the original image. (b) Same
plots for the encrypted image.

Fig. 11. (a) Gray image of the blue channel of the original image. (b) Same
plots for the encrypted image.

following operation:

R(i, j) ← mod(R(i, j) ∗ 1000, 256) ⊕ z1(i, j)

G(i, j) ← mod(G(i, j) ∗ 1000, 256) ⊕ z2(i, j)

B(i, j) ← mod(G(i, j) ∗ 1000, 256) ⊕ z3(i, j).

4) Reorganizing R(i, j), G(i, j), and B(i, j), we can

obtain the encrypted color image.

As the decryption process is the same as the encryption

process, is omitted, we notice that as the existence of lag,

the decryption chaotic signal should be employed after ξ/h

signals, where h is the length of the iterative step. In addition,

two simulations about gray and color image encryption have

been provided in Figs. 6–11, which illustrate the applica-

tion potential of the lag synchronization of switched neural

networks in signal encryption. As the existence of the lag

between the coupled switched neural networks, decryption

chaotic signal should be adopted after certain iterative steps.

VI. CONCLUSION

As the applications of switched neural networks become

more and more popular, lag synchronization of such networks

becomes necessary. On the other hand, after the switched

neural networks have been packed, it is very hard to

measure their inner states. Therefore, the authors investigate

the problem of global exponential lag synchronization of a

class of switched neural networks with time-varying delays via

the neural activation controller. Two numerical examples were

provided to demonstrate the effectiveness and improvement of

the obtained results in this paper.
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