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Abstract

The accuracy of the classical heat conduction model, known as Fourier’s
law, is highly questioned, dealing with the micro and nanosystems and
biological tissues. In other words, the results obtained from the clas-
sical equations deviate from the available experimental data. It means
that the continuum heat diffusion equation is insufficient and inappro-
priate for modeling heat transport in these cases. There are several
techniques for modeling non-Fourier heat conduction. In the present
paper, we place our focus on the dual-phase-lag (DPL) approach. The
DPL model, as a popular modification of Fourier’s law, has already
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been utilized in numerous situations, such as simulating ultrafast laser
heating and heat conduction in carbon nanotubes. There has been a
sharp increase in research on non-Fourier heat conduction in recent
years. Several studies have been performed in the fields of thermoe-
lasticity, thermodynamics, transistor modeling, and bioheat transport.
This review presents the most recent non-Fourier bioheat conduc-
tion works and the related thermodynamics background. The various
mathematical tools, modeling different thermal therapies, and relevant
criticisms and disputes are discussed. Finally, the novel and other pos-
sible studies are also presented to provide a better overview, and the
roadmap to the future research and challenges ahead is drawn up.

Keywords: Nonequilibrium thermodynamics, bioheat, non-Fourier heat
conduction models, dual-phase-lag models
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1 Introduction

The delayed differential equation for non-Fourier heat conduction was first
suggested by Tzou [1–6]1 with the following constitutive equation for the heat
flux:

q(t+ τ1,x) = −λ∇T (t+ τ2), (1)

called dual-phase-lag (DPL) equation. The content of the equation is that the
temperature, T , and the heat flux, q, are delayed by τ1 and τ2 periods. Here
λ denotes the thermal conductivity coefficient of the theory, which becomes
identical with the Fourier one if the delay times are zero. In the present review,
we aim to briefly present the non-Fourier models, and their relation with the
DPL concept. Additionally, as there are numerous experimental results in the
literature, we want to collect and summarize them as much as possible, in
order to offer a clearer picture about the state-of-the-art understanding and
achievements.

Since 1994, the number of publications about non-Fourier heat conduction
models involving time lag has been incredibly increased. In fact, the develop-
ment of novel models in order to modify the results of classical equations such
as Fourier law with less computational cost and more simplicity has attracted
notable attention. Recently, as the DPL model is intended to replace the
Fourier law, that new approach has been tested by simulating the heat trans-
port, e.g., in micro and nanoscales [8], ultrafast processes [9, 10], living tissues
[11], and carbon nanotube [12]. Figure 1 presents the number of publications
after 1995 obtained by searching the keyword ‘dual-phase-lag’ in Scopus and
Web of Science databases. It is seen that the amount of research in the field

1Actually the expression ‘dual-phase-lag’ appears in the review of Özisik and Tzou [7].
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Fig. 1 Statistics of publication history and future prediction for the number of publications,
including research papers, book chapters, review papers in the last two decades and the
future decade calculated, based on searching the keyword ‘dual-phase-lag’ in Scopus and
Web of Science databases.

of non-Fourier DPL heat conduction has experienced a sharp increase after
about 2013, and that trend probably will continue. Ghazanfarian et al. [13]
published a review paper and gathered various aspects of the lagging heat
models, including mathematical models, solution methods, and applications.

Despite the broad areas of applications the acceptance of the DPL model
was controversial. The theoretical background, particularly the compatibility
with basic physical principles, was criticized in several research papers. In this
review, we focus on two challenging topics of the field. First, the theoretical
background is surveyed (Sec. 2), and the conditions of validity of the DPL
concept is outlined. Then a review about bioheat modelling follows (Sec. 3),
including the related solution methods. The review of developments of the
lagging models in other fields such as thermoelasticity and microscale heat
transport could be the topic of other review studies.

2 Thermodynamics of heat conduction

2.1 Theoretical studies

2.1.1 Derivation of the Fourier equation

Heat conduction is the most frequent dissipative phenomenon, occurring
in numerous engineering problems. Therefore, it is a starting point for all
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thermodynamic theories, particularly nonequilibrium thermodynamics. The
distinctive property of heat conduction is that it does not have a reversible
part, contrary to the dissipation-free mechanical systems. Fourier’s law is a
prototype of the constitutive equations leading to a parabolic partial differ-
ential equation. Its simple classical derivation in irreversible thermodynamics
is based on the second law of thermodynamics. We begin with the balance of
internal energy. It is best written in a substantial form:

ρė+∇ · q = 0, (2)

where ρ is the mass density, e is the specific internal energy, q is the heat flux,
which is the conductive part of the current density of internal energy. The
overdot denotes the substantial time derivative (i.e., d

dt = ∂
∂t + v · ∇) and ∇·

is the divergence operator. Here, internal energy is considered to be conserved
with zero source term. In the classical local equilibrium situation the entropy
depends only on the internal energy, and its derivative respect to the internal
energy is the reciprocal temperature, this is true for the densities and for the
specific entropy s, too,

ds

de
(e) =

1

T
.

Then, the temperature depends on the internal energy, and T : e→ T (e) is the
caloric equation of state. In order to close (2), we need a relation between the
heat flux q and the temperature T . This relation is the so-called constitutive
function that connects these field variables and is restricted by the second
law of thermodynamics. As it is a constitutive relation, it reflects material
properties and behavior. Its form can be determined using general principles by
the second law, exploiting the requirement of non-negative entropy production
Σ. The entropy inequality is conveniently written as

ρṡ+∇ · J = Σ ≥ 0, (3)

in which s is the specific entropy. The fundamental question is the form of
the entropy flux J. Eq. (3) is a conditional inequality, where the balance of
internal energy (2) must be considered as a constraint. According to Classical
Irreversible Thermodynamics, both the entropy flux and entropy production
can be determined with the following straightforward calculation,

ρṡ(e) +∇ · J =
ρė

T
+∇ · J = ∇ ·

(
J− q

T

)
+ q∇ · 1

T
≥ 0. (4)

where the balance of internal energy (2) is also exploited. The entropy flux is
fixed by eliminating the first term in the last equality, that is,

J =
q

T
.
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Thus the entropy production simplifies to

Σ = q · ∇ 1

T
≥ 0.

The simplest solution of this inequality is linear. For isotropic materials it is
an isotropic expression, with a scalar coefficient, therefore

q = λT∇
1

T
= −λ∇T. (5)

This is called Fourier’s law, and λ = λT
T 2 is the Fourier heat conduction coef-

ficient with λT being a thermodynamic - Onsagerian - conduction coefficient.
The second law requires λT > 0, otherwise, the entropy could decrease in
closed systems as well. Substituting the caloric equation of state, T (e), and
the Fourier law into the balance of internal energy, one obtains the parabolic
Fourier heat equation:

ρcṪ −∇ · (λ∇T ) = 0, (6)

in which c = de
dT is the specific heat. In case of constant coefficients ρ, c, λ,

particular initial-boundary value problems have unique solution and also are
well-posed [14]. It is remarkable that in the case of Neumann boundary con-
ditions, from the zero temperature gradient follows that the heat flux is zero
at the boundary, qbou = 0.

2.1.2 Application limits of the Fourier equation

The above derivation of the Fourier equation is based on the principle of local
thermodynamic equilibrium and the continuum hypothesis. The state of the
system, in this case, can be described by local thermodynamic potentials that
depend only on the spatial variable and time through thermodynamic param-
eters. Accepting the local equilibrium hypothesis is possible only if the rate
of change in the system macroparameters due to external influences is much
less than the rate of system relaxation to local equilibrium [15, 16]. In other
words, one can introduce

v1 = L/t0; v2 = l/τ

two characteristic speeds, where v1 is the linear rate of parameter change and
v2 is the rate of disturbance propagation. The first one is caused by asymmet-
ric boundary conditions (e.g., isothermal displacement rate), and characterized
by the system size L and the time (t0) of the process until equilibrium is
established. Regarding the second one, v2 is the rate of disturbance propa-
gation, which is characteristic for the internal system, independently of the
boundary conditions. In a statistical context, l is the characteristic scale of
the microstructure, and τ is the relaxation time characterizing the free path
time of the microparticles. Hence, the infinite rate of disturbance propagation
described by the parabolic transport equations is related to the fact that the
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relaxation time is assumed to be zero. Consequently, the disturbance propa-
gates instantaneously. To eliminate this disadvantage in parabolic equations,
it is necessary to develop a mathematical theory to describe the transport
processes occurring under locally nonequilibrium conditions. Various methods
can be used to describe these processes, such as thermodynamic, molecular-
kinetic, and phenomenological, as well as those based on the random walk
theory and the thermal memory concept [15–18]. In most of these methods, the
conditions of local thermodynamic equilibrium and the continuum hypothesis
are violated, the molecular-atomic structure of matter is taken into account,
resulting in a delay in transport time.

Biomaterials, active matter are not in local thermal equilibrium, therefore
classical Fourier theory cannot be applied without any further ado. However,
their internal structure is complex at the mesoscopic level, therefore direct
microscopic derivations cannot be applied.

2.1.3 Paradoxes: relation of memory and speed

There is one crucial assessment of the parabolic Fourier heat equation from a
physical point of view. This is the problem of infinite signal propagation speed,
the so-called heat conduction paradox. This is an inevitable mathematical fact,
but it is not a sufficient reason to look for non-parabolic models. The primary
implicit motivation behind it is an expectation attributed to special relativity.
However, this expectation is completely unfounded due to several reasons.

1. The practical and theoretical range of validity of the Fourier theory deter-
mines finite signal propagation speeds, and, for usual materials, is far below
the speed of light. The practical limit is the sensitivity of measurements,
and the theoretical limit is the validity range of the theory being a contin-
uum [19–21]. For instance, in the case of fluids, the temperature field must
not vary too rapidly over the average mean free path, 〈d〉, and average time
between collisions, 〈t〉, of microscopic constituents (particles or elementary
excitations): [

1

T

∂T

∂x

]
<<

1

〈d〉
,

[
1

T

∂T

∂t

]
<<

1

〈t〉
.

For water in room temperature the first condition gives the speed limit
vmax = λ

ρc〈d〉 ≈ 14m/s.

2. For a symmetric hyperbolic partial differential equation with a finite speed
of signal propagation on nonrelativistic space-time, the propagation speed
is a material property and has nothing to do with special relativity. It can
be larger or smaller than the speed of light, depending on the parameters
in the differential equation. More importantly, the underlying theory itself
does not restrict the propagation speed from the above [21, 22].

However, according to the first point, a particular solution of a parabolic
equation with given initial and boundary conditions determines the domain
of applicability. For instance, the gradient in the above inequality is time and
space-dependent. Therefore when the condition is violated, we are beyond the
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range of validity of the Fourier heat equation. Consequently, a new approach
is necessary. This must be a theory that improves the problematic aspects
such as limiting the too high theoretical propagation speed of the continuum
limit. We have arrived at the starting point, but with a clarified motivation
in the background: to improve the parabolic theory’s performance, one should
consider a memory, a delay in the response of the physical system. From a
technical point of view, memory effects are represented in three different forms:
a strong time nonlocality with memory functionals, weak time nonlocality with
time derivative expansions, and a directly delayed mathematical description.
These three realizations are related to each other, as explained in the next
section.

2.1.4 Various memory types

A particular form of memory is inertia. In systems with inertia, the motion does
not stop when the force diminishes. From a mathematical point of view, the
representation of inertia requires additional state variables, e.g., momentum
in mechanics and heat flux in heat conduction. In heat conduction, the time
derivative of the heat flux appears in the constitutive equation, and one obtains
the so-called Maxwell-Cattaneo-Vernotte (MCV) equation:

τ q̇ + q = λT∇
1

T
= −λ∇T. (7)

Here, τ is the relaxation time, expressing inertial effects in heat conduction.
This equation was suggested intuitively by Maxwell [23], Cattaneo [24] and
Vernotte [25]. The elimination of the heat flux leads to a telegraph-type,
damped wave propagation equation for heat conduction. The MCV equation
can be formulated equivalently in the framework of Gurtin-Pipkin theory, with
the following convolution integral,

q(t,x) = −
∫ t

−∞
κ(t− s)∇T (s,x)ds,

where the memory kernel is κ(s) = λ
τ e
− sτ [26–28]. This is the previously men-

tioned strong time nonlocality utilizing a memory functional. Analogously,
one may imagine that there is a time difference, a delay, a lag between the
temperature and heat. That is, the Fourier law is modified as

q(t+ τ1,x) = −λ∇T (t+ τ2),

suggested by Tzou in the dual-phase-lag theory, as it was already mentioned
in the Introduction (1). Thus one obtains a delay partial differential equation,
for which by applying the first-order Taylor series expansion, it reproduces the
MCV equation with τ = τ1 − τ2.

We have seen three different ways to consider memory effects, the iner-
tial terms, the memory functionals, and the time-lag modifications. They are
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seemingly more or less equivalent in the case of temperature representation,
i.e., when only the temperature T is used as a field variable after eliminating
the heat flux, with the energy balance Eq. (2). Although different approaches
can lead to the same PDE for the temperature, they still differ in the con-
stitutive part, which restricts how the initial and boundary conditions can be
defined. Therefore, they stand for a different physical meaning as well. The
differences come into the light when one attempts to solve these models with
time-dependent heat flux boundary conditions numerically and analytically.
Also, their application to practical problems, especially with nonlinearities can
highlight the essential differences, both for mathematical and physical aspects.
The aforementioned constitutive equations restrict how the boundary condi-
tions can be formalized. This is discussed later in Section 2.4. Moreover, it
is noticeable that these approaches can be consistent on the level of memory
extensions. However, when one must go beyond the MCV equation and a sim-
ple memory effect is not enough, the different approaches are more likely to
deviate from each other. In order to understand their possible limitations, one
should analyze the principles behind the derivation of the Fourier law.

2.1.5 Fundamental principles: space-time and the second law

We have already mentioned the mathematical requirements, in particular, well-
posedness. From a physical point of view, there are two further fundamental
aspects: heat conduction is a continuum phenomenon, therefore requires a
space-time representation. On the other hand, it is a dissipative phenomenon
as well, thus it must be compatible with the second law of thermodynamics.
One can observe the appearance of these aspects in the heuristic derivation of
Fourier’s law from classical irreversible thermodynamics in Section 2.1.1.

First of all, one should realize that the substantial time derivatives, the con-
ductive current densities in the internal energy, and the entropy balances are
tools to attach the reference frame to the flow of the material. Substantial time
derivatives are equal with partial time derivatives in the case of rigid heat con-
ductors when the heat-conducting substance does not move. Also, the internal
energy itself is the difference of total and kinetic energies based on the con-
cept of comoving energy, as it is clear from the transformation properties [29].
Fourier’s law is objective, but the generalizations with time derivatives such
as the MCV equation, the material frame indifference is open and discussed
question [30–32]. It is crucial when memory effects are mixed with spatial non-
locality and mechanical couplings [33, 34]. The dual time lag approach is not
space-time compatible, e.g., violates the homogeneity of time, one of the basic
requirements of any space-time. Also, the separation of time from space, as
appears in both the memory integrals and in time lag equations, cannot survive
relativistic generalizations. A covariant, objective representation is inevitable
since the Minkowski form is absolute, but space and time are reference frame-
dependent. Let us emphasize here that it is an unavoidable aspect also in a
nonrelativistic framework, where time is absolute instead of the light speed
[33, 35].
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The second fundamental aspect is the second law and the consequent
entropy balance analysis. A theory that violates the second law is not accept-
able. Therefore, the entropy function and the entropy inequality are good
starting points for generalizations. The direct time lag approach neglects this
requirement, consequently, encounters conceptual, mathematical and stability
problems [28, 36–43]. According to these results DPL model can be compati-
ble with the second law only if a differential version is considered and in case
of particular conditions for the parameters (see also [44]). Those conditions
look compatible with the principle of fading memory. In the case of memory
kernels, this principle is a particular form of the second law. However, it is
not constructive, especially for spatial nonlocality, in which case, extra space
derivatives and spatial scaling properties appear, e.g., at the nano level.

2.1.6 Theories of heat conduction beyond Fourier

Any method or theoretical framework requires benchmarks, tests of perfor-
mance. Firstly, they must be able to predict experimentally observable effects.
The various empirical extensions of the Fourier equation, see, e.g., [45, 46],
provide a reasonable test area. Their mathematical and physical consistency
are different, and also, the experimental observations may be confusing, but a
uniform theoretical background could clarify the conditions of their validity.

Secondly, a macroscopic theoretical framework must be compatible with the
kinetic theory of gases. Rarefied gases have the best understood microscopic
composition among continua. The macroscopic equations from the moment
series expansion of kinetic theory are instructive in this respect. It is remark-
able that kinetic theory alone, with its specific assumptions about the structure
of materials, cannot substitute a thermodynamic treatment. The experimen-
tally observed validity of the macroscopic constitutive equations, in particular
the Fourier’s law, does not depend on the particular microscopic structure.
The second law and the space-time requirements of nonequilibrium thermo-
dynamics are universal, independent of material composition and properties.
Therefore their consequences are universal as well. Now, considering the previ-
ously mentioned space-time and second law-related requirements, the inertial
and memory effects are best introduced by the extension of the thermody-
namic state space with new fields, called internal variables. In the following,
we show the simplest possible example, Fourier’s theory is extended by a sin-
gle internal variable. Here we do not use any sophisticated space-time concepts
beyond the already introduced ones except that entropy flux will be consid-
ered as a constitutive quantity restricted by the second law. For that purpose,
it is convenient to use Nýıri multipliers [47].

Several theoretical frameworks extend the classical thermodynamic state
space with additional fields. The theories where the second law plays a cru-
cial role are Rational Extended Thermodynamics (RET) [48, 49], Extended
Irreversible Thermodynamics (EIT) [50–54], Non-Equilibrium Thermodynam-
ics with Internal Variables (TIV) [47, 55–57] and Rational Thermodynamics
(RT) [58–61]. The relation of these theories to the previously mentioned
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requirements (well-posedness, second law, and space-time) and benchmarks
(experimental, kinetic theory compatibility) are very different, and also, their
applicability is not the same (see also [62]). RET, EIT, and TIV are construc-
tive. RT is capable of checking the second law compatibility of the suggested
constitutive equations. RET, EIT, and TIV pay attention to the compatibility
with the kinetic theory of gases, where RET is the most strictly compatible,
TIV is the least compatible, and EIT is situated between them. Furthermore,
the symmetric hyperbolic structure of the equations is essential. In RET, the
construction method exploits the thermodynamic potentials to get symmetric
hyperbolic evolution equations. EIT is open for the possibility, while in TIV
the second law compatibility is the most important, and the entropy produc-
tion inequality is the basis of construction. On the contrary, these approaches
can be compatible with each other under certain conditions.

2.1.7 Memory and spatial nonlocality

In a complete theory, the inertial effects cannot be separated from a gradient
extension. Memory effects require nonlocal modification, due to the space-time
representation. Let us demonstrate the interplay of time derivatives, gradient
terms and the differences of the previously mentioned theories with the exam-
ple of TIV using a single internal variable. The thermodynamic state space is
spanned by the internal energy e, and a vectorial internal variable ξ. Therefore,
the specific entropy depends on these variables s(e, ξ), and the thermostatic
relations, the potential properties of the thermodynamic state space are given
in the traditional form of differentials with the following Gibbs relation,

de = Tds− TZ · dξ, (8)

where
∂s

∂e
|ξ =

1

T
,

∂s

∂ξ
|e = Z.

The Gibbs relation is a convenient form to introduce the partial derivatives of
the thermodynamic potentials [63]. It is also important to consider the entropy
flux as a constitutive quantity. In this respect, Nýıri (or current) multipliers
provide the necessary flexibility. In our case J = b · q, that is we assume that
there is no entropy flux if the heat flux is zero and the second order tensor b
is the Nýıri multiplier. It is a constitutive quantity, a function, whose form is
restricted by the second law. With these assumptions the entropy production
can be calculated as

ρṡ(e, ξ) +∇ · J =
ρė

T
+ ρZ · ξ̇ +∇ · J =

−∇ · q
T

+ ρZ · ξ̇ + (∇ · b) · q + b : ∇q =

(∇ · b) · q + ρZ · ξ̇ +

(
b− 1

T
I

)
: ∇q ≥ 0, (9)
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in which double dot denotes the trace of product of two second order tensors,
A : B = Tr(A · B), and I is the identity tensor. The constitutive quantities
are b, q and the evolution equation of the internal variable

ξ̇ = Ξ(e, ξ).

That is an important feature of internal variable theories, the right hand
side is to be determined constitutively, including the differential operator, Ξ.
Therefore, the last line of Eqs. (9) is a quadratic expression of thermodynamic
fluxes and forces, where the thermodynamic fluxes are the constitutive mul-
tipliers in the quadratic expression of the entropy production (see Table 1).
This assumption is in complete agreement with Onsager’s idea [64].

Classical thermal Extended thermal Internal

Fluxes q b− 1
T I ξ̇

Forces ∇ · b ∇q Z

Table 1. Thermodynamic fluxes and forces
The classical linear solution of the inequality for isotropic materials is the

following:

q = l1∇ · b + l12Z, (10)

ρξ̇ = l21∇ · b + l2Z, (11)

b− 1

T
I = k1(∇q)s0 + k2∇ · qI + k3(∇q)as, (12)

where (∇q)s0 = 1
2 (∇q + ∇q∗)/2 − ∇ · qI/3) is the symmetric traceless part

of the second order tensor, the so-called deviatoric part, where ∗ denotes its
transpose. Also, (∇q)as = 1

2 (∇q − ∇q∗)/2 is the antisymmetric part. The
coefficients are not arbitrary, they are restricted by the following inequalities:

l1 ≥ 0, l2 ≥ 0, l1l2 −
(l12 + l21)2

4
≥ 0, k1, k2, k3 ≥ 0. (13)

This is the consequence of the second law inequality, the requirement of non-
negative entropy production. Moreover, these relations are essential when the
coefficients are state-dependent, e.g., the thermal conductivity depends on the
temperature. That dependence affects the other parameters, and therefore,
the treatment of nonlinear problems are not starightforward and could be
model-dependent. In regard to the DPL equation, these properties are missing.

Then one can easily eliminate the Nýıri multiplier, b, using (12). The inter-
nal variable field, ξ, can be eliminated as well, assuming a particular equation
of state for Z. If the nonequilibrium field contributes quadratically to the inter-
nal energy, that is, s(e, ξ) = ŝ(e−mξ2/2), one obtains Z = −mξ, and in case
of constant coefficients a straightforward calculations leads to the following
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evolution equation of heat flux

τ q̇ + q = λ∇ 1

T
+ λ̂

d

dt

(
∇ 1

T

)
+ λκ1∇ · ∇q +

λ̂κ1
d

dt
(∇ · ∇q) + λκ2∆q + λ̂κ2

d

dt
(∆q) . (14)

The time and space derivatives are commutative in rigid heat conductors. The
parameters in Eq. (14) are defined as τ = ρ

ml2
, λ = l1l2−l12l21

l2
, λ̂ = ρl1

ml2
,

κ1 = k1+2k2+3k3
6 and κ2 = k1−k3

2 . Remarkable, that all these coefficients are
nonnegative except the last one. One can see that Eq. (14) is a generalization
of both the Fourier’s law, Eq. (5), and the MCV equation, Eq. (7), and incor-
porates several other ones [56], seemingly including the Jeffreys-type and the
Guyer-Krumhansl equations. It is also remarkable that the coefficients are not
independent and the second law, the inequalities in (13) require τ0 ≥ 0, λ ≥ 0,

λ̂ ≥ 0 and κ1 > 0.
Noticeably, the Guyer-Krumhansl equation is obtained when l1 = 0. The

heat flux q is proportional to the internal variable ξ, according to (10), because
Z = −mξ. Therefore, a rescaling of the internal variable leads to the Extended
Thermodynamic theories with the heat flux as an independent field, and the
Nýıri multiplier b as the flux of the heat flux in the balance form (11). It is also

remarkable that in this case λ̂ = 0 and l12l21 ≤ 0, due to the third inequality
of (13), thus still λ ≥ 0.

By keeping the terms in the left and right sides of the Eq. (14), the resulting
equation for temperature will be parabolic. For the convenience, let us write
Eq. (14) in one spatial dimension and in the form in which all derivatives
are kept, the coefficients are written according to the dimensions fulfilment
condition,

q + τ
∂q

∂t
= −λF

∂T

∂x
− λF τ

∂2T

∂x∂t
+ l2

∂2q

∂x2
+ l2τ

∂3q

∂x2∂t
, (15)

where λF is the Fourier thermal conductivity coefficient; τ is the heat flux
and temperature gradient relaxation coefficient; and l is the free path length of
the energy carriers, which can be related to the characteristic size of material
heterogeneities. Note that λF = λ/T 2 was assumed to be constant in the
derivation and also in Eq. (15), the relaxation coefficients for the heat flux and
temperature gradient and heat flux derivatives are assumed to be the same.
The fact that the relaxation coefficient condition does not coincide with those
given in Eq. (14), is an experimental question. More importantly, they are
positive (see (13)) and the dimensions of the terms with derivatives in Eq. (15)
that coincide with the one in Eq. (14) remains the same. By substituting
Eq. (15) into the internal energy balance equation, the following equation for
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temperature is obtained,

∂T

∂t
+ τ

∂2T

∂t2
= α

∂2T

∂x2
+ (ατ + l2)

∂3T

∂x2∂t
+ l2τ

∂4T

∂x3∂t
, (16)

with α = λ/(ρc) thermal diffusivity. It is apparent that Eq. (16) is parabolic
because it contains two terms with mixed derivatives and lacks a term with
a third time derivative which can occur only when Eq. (15) contains the
τ2∂2q/∂t2 term. One hyperbolic equation for heat conduction can be obtained
using ballistic conductive constitutive equation of [57] or the second-order
heat flux in [16],

q = −λ∂T
∂x
− λτT

∂2T

∂x∂t
− (τT + τq)

∂q

∂t
− τT τq

∂2q

∂t2
+ l2

∂2q

∂x2
, (17)

where τT and τq are the relaxation times for the heat flux and temperature
gradient. By substituting Eq. (17) into the heat balance equation, the following
equation is derived

∂T

∂t
+ (τT + τq)

∂2T

∂t2
+ τT τq

∂3T

∂t3
= α

∂2T

∂x2
+ (ατq + l2)

∂3T

∂x2∂t
. (18)

This is also the so-called T-wave equation that can be connected to the second-
order expansion of Eq. (1). However, the coefficients are interpreted differently:
while the Taylor series expansion of Eq. (1) would result in coefficients with
time delays, Eq. (18) corresponds to the ballistic-diffusive model. The structure
of the equation is the same in both cases. Please note that the higher-order
approximations of a thermodynamic theory are thermodynamically consistent,
too. Moreover, heat flux is not a scalar quantity, and higher-order tensorial
properties of heat conduction are not trivial, neither in the case of isotropic
materials [65].

It is clear that Eq. (18) is hyperbolic. The exact analytical calculations
present that depending on the values τq, τT , l, the equation can describe dif-
fusion as well as wave and ballistic heat exchange modes. The last two can be
observed in nanofilms with a thickness comparable to the free path length of
the microparticles and also in superfluid He-4.

In RET and EIT, the thermodynamic state variable is the heat flux from
the beginning and has a balance form evolution such as (11). These are postu-
lated and not derived. Consequently, one cannot get the Jeffreys-type equation,
the second term on the right hand side is missing. In RET, the symmetric
hyperbolic structure and the particular form of the source terms reduce the
number of independent material parameters compared to EIT or TIV. Further
differences are analyzed in [66–68].

The collection of thermodynamic theories is not complete without mention-
ing GENERIC [69], the conservation-dissipation formalism [70], and the Sym-
metric Hyperbolic and Thermodynamically Compatible (SHTC) equations
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[71]. The symmetric hyperbolicity, i.e., the Hamiltonian structure, acts as a
basic requirement. In the present review, we focus on theories of heat conduc-
tion with experimental predictions or experimental comparisons, and in this
respect, the aforementioned theories are poor.

2.1.8 Further memories, inertia of the inertial terms

A straightforward generalization is when one looks for an inertial effect regard-
ing the nonequilibrium field, the memory of the memory effect. Practically,
this means looking for a theory with further, higher-order time derivatives in
the evolution equation beyond the MCV term, for instance, the one needed to
describe ballistic propagation. Ballistic propagation was predicted theoretically
with kinetic theory for rarefied gases.

In phonon hydrodynamics, it is attributed to the free propagation of the
particles when the average mean free path is larger than the characteristic
length of the system. For phonons, for the quanta of lattice oscillations, free
propagation means propagation with the speed of sound. From a continuum
point of view, it is the limit of ideal elasticity. Ballistic propagation with a
speed of sound is a thermoelastic effect in a continuum framework. Therefore,
mechanics and thermodynamics should be carefully analyzed and coupled in
any continuum framework when modeling ballistic propagation [72–75]. In
RET and EIT, where the structure of the evolution equations follows from the
momentum series expansion of kinetic theory, the highest speed of propagation
approaches the speed of sound, which is characteristic for ballistic propagation,
when the number of moments is high [48, 49].

The direct coupling of an integral model of collisionless propagation of bal-
listic phonons to an MCV-like diffusive continuum theory is a separate theory,
called ballistic-diffusive [76, 77]. A third approach to ballistic propagation
is possible with a direct continuum point of view. Introducing a second ten-
sorial internal variable in addition to the vectorial one in Section 2.1.7. [57]
gives a clear connection to thermal and mechanical interaction, including the
propagation of thermal disturbances with the speed of sound and the thermal
expansion effect [63, 78–81]. This leads to Eq. (18) as a special case. It is also
remarkable that the integro-differential equations of the ballistic-diffusive the-
ory can be substituted with a two-component differential model, coupling an
MCV-type propagation to a Guyer-Krumhansl-type propagation of the diffu-
sive and ballistic heat carriers [53]. The conceptual RET and TIV-based models
are best compared in case of rarefied gases, which is analogous to ballistic
heat propagation. Although the experiments are less technical, their evaluation
demands to investigate other, not straightforward aspects such as mass density
dependence of material properties [68, 82–84]. Continuum mechanics and heat
conduction are strongly related. Ballistic heat conduction is the benchmark
where the continuum and kinetic theories can be compared and tested.
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2.2 Heat conduction experiments

The previous considerations, and particularly Eq. (14), are independent of any
assumptions regarding the structure of the material. It can either be a biologi-
cal tissue or a piece of rock. The compatibility with kinetic theory and special
relativity are mentioned only as benchmarks. The assumptions are the sec-
ond law, energy conservation, and material symmetries. The internal variable
is a general method of quantitative characterization of the deviation from the
local equilibrium: it can express different structural effects, like local multi-
temperature nonequilibrium, material heterogeneity, delay in heat conduction,
and so on. We have seen that it can be eliminated for isotropic materials, and
we obtain the corresponding modifications of the Fourier law.

Other approaches, such as DPL or fractional derivative models, have a
weaker theoretical background; however, they can be suitable in particular
cases. How much are theories helpful in the interpretation of observations?
The experimental tests are essential in distinguishing between the various the-
ories because new observations may require more insight and a more detailed
understanding of the particular phenomenon. Nevertheless, one must design
the experiments in a way to keep the focus on the material behavior. For
instance, separate the effect of source terms from the constitutive model. This
way, it becomes possible to distinguish between various phenomena, and it
significantly aids the proper interpretation of the observed data. The subse-
quent experimental studies summarize the phenomena which can be purely
understood and modeled with generalized models.

2.2.1 Experimental studies

The existence of numerous theoretical models requires a reliable selection cri-
terion and validation method in which the experiments stand as the most
substantial feedback for the theories. The previous decades were a fruitful era
in that respect, starting from the predictions of low-temperature phenomena,
which were followed by different room temperature observations. Now, let us
summarize the known heat conduction modes:

• diffusive: this is modeled by the classical Fourier’s law,
• second sound: this is a damped wave propagation of heat, which falls beyond

Fourier’s law and thus requires its generalization including memory effects,
• ballistic: a thermo-mechanical phenomenon in which heat is conducted with

the speed of sound, this is the fastest mode of heat conduction,
• over-diffusive: although it is also a diffusive mode, its observation requires

heterogeneous material structure, which cannot be modeled with the Fourier
equation.

In the following, we go along the experimental background, especially about
the interpretation of measured temperature signals. Usually, the experiments
are performed using a laser flash or heat pulse-type experimental apparatus.
The sample is thermally excited on its front side by a short heat pulse, and
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the temperature is recorded on the other side. This is a standard method to
measure the thermal diffusivity and is also suitable due to the wide range of
time scales that can be investigated [85]. There are geometrical restrictions
in order to keep the heat conduction phenomenon on a one-dimensional level
as much as possible. However, this is true only for uniform excitation on the
surface and isotropic materials. The history of non-Fourier heat conduction
has begun with the theoretical predictions of Onsager, Tisza, and Landau.
While Onsager argued about probable microstructural reasons for deviation
from Fourier’s law [86], such as for heterogeneous materials, Tisza and Landau
- in some sense, analogously - considered a two-fluid model for superfluid states
of helium [87, 88]. In between, the common ground lies in the existence of
parallel conduction channels inside the material, which might occur both in
heterogeneous materials and at low-temperature states.

2.2.2 Low-temperature heat conduction

Most frequently, the second sound was observed in low-temperature situations
[89–91]. This was first measured by Peshkov in 1944, using superfluid helium II
[92]. The superfluid state still has great importance from many aspects such as
turbulence [93–96], phase diagrams [97, 98], viscosity properties [99], and how
they affect the outcome of a thermal process [100–103]. Several questions arise
about the propagation speed of the second sound. Its modeling requires, e.g.,
the Maxwell-Cattaneo-Vernotte equation [23–25], the first - hyperbolic - exten-
sion of Fourier’s law. The predicted characteristic wave speed is v =

√
α/τ

in which α is the thermal diffusivity, and τ is the relaxation time. Their ratio
characterizes the observed wave, and therefore, the thermophysical properties.
However, as many authors pointed out [104–107], the propagation speed is
highly nonlinear. Consequently, all the thermal parameters must depend on
the temperature [108]. Depending on the material, that change could cover an
order of magnitude, especially close to 0 K [109–111].

Notably, including such nonlinear behavior in the heat conduction model
is possible only with an established thermodynamic background since the
coefficients are not independent of each other. The Onsagerian relations con-
nect them, the temperature dependence of thermal conductivity influences
the other parameters [112]. This is entirely missing from the DPL model. It
has far-reaching consequences. It turned out that the temperature dependence
of relaxation time necessarily implies the temperature dependence of mass
density [112], and thus the physical interpretation demands a complete thermo-
mechanical framework. Hence we arrive at ballistic propagation, which is an
elastic wave carrying heat. From a continuum point of view, it is induced by
thermal expansion [72–75], and always has the speed of sound [113]. Moreover,
beyond the temperature dependence of material parameters (both thermal and
mechanical), an explicit coupling between the thermal and mechanical field
could occur [49, 57]. Consequently, the description of ballistic heat conduction
requires a model with multi-level couplings, either on the level of the con-
stitutive equation or the balance equations, including the state dependence
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of parameters. That multi-level way of thinking is also characteristic in the
GENERIC approach [114, 115].

Later on, the famous result of Guyer and Krumhansl - the so-called window
condition - significantly helped the experimental research to find the opti-
mal frequency for the excitation and make visible the wave phenomenon of
heat conduction in solids too [116, 117]. Unfortunately, such window condi-
tion for ballistic propagation does not exist. As McNelly’s Ph.D. thesis reflects
[113], it is difficult to observe the ballistic modes experimentally. The suc-
cessful observations required extremely pure crystals [118], mostly made from
NaF. Moreover, the appearance of the ballistic signal is very sensitive for the
temperature, probably due to the state dependence of material properties,
including the thermal expansion coefficient. Sadly, there is no accurate data on
the thermal and mechanical properties. Furthermore, its accurate quantitative
reproduction using a computer simulation is almost impossible since temper-
ature scales are missing from the experimental data in many cases, beyond
knowing the proper material parameters [119, 120].

Despite these difficulties, a few authors have achieved results in modeling
ballistic propagation, together with second sound. Ma [121, 122] extended the
complex viscosity model of Rogers [123, 124] and Landau [125], first including
both the longitudinal and transversal ballistic modes, with moderate success.
Dreyer and Struchtrup [49] applied the RET framework [48, 83], a phonon
hydrodynamical model in which three momentums are considered. Despite the
improper propagation speeds appearing in their simulations, they provided
the first characteristically acceptable reproductions. Later, Kovács and Ván
[120], using the internal variable framework [63, 126], compatible with the RET
model [68], quantitatively reproduced two series of experiments with predicting
the temperature dependence of relaxation time.

2.2.3 Room temperature experiments

Analogously to the macro-scale low-temperature situation, ballistic and sec-
ond sound effects could appear both in rarefied and nano-systems under room
temperature conditions [127]. That is more visible through the eye of kinetic
theory, in which the Knudsen number characterizes the ‘rareness’ of the system.
For instance, phonon hydrodynamics is applicable for processes with ‘high’
Knudsen number (usually, high means > 0.01) [128]. In such a situation, sec-
ond sound and ballistic propagations become experimentally visible. A rarefied
phonon gas model is utilized in the RET approach to understand these phe-
nomena. This problem is analogous to gases of real molecules at low-pressure
states in which the mean free path becomes large enough to reach the limit
for observation and has a significant influence on the transport process.

Rarefied gases

Based on the computer simulations of ballistic conduction, it has become
apparent that the proper coupling between the heat flux and thermal pres-
sure stands as an indispensable requirement to include the ballistic effects. In
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that particular case of rarefied gases, the situation remains the same, except
that the pressure is now the complete mechanical pressure. Consequently, one
needs the generalization of the Navier-Stokes-Fourier system, in which it is
worth separating the deviatoric and spherical parts of the pressure tensor
[68, 82, 129–131] since they represent different couplings due to their differ-
ent tensorial order. Consequently, the deviatoric and spherical parts have a
separate time evolution equation with different relaxation times. This is a key
point here since the compressibility attributes are crucial, hence the spherical
part could possess a significantly different time scale than the deviatoric one
[127, 131–135].

The ballistic contribution is visible at very low pressures, under around
100 Pa, and observed as a change in the speed of sound with respect to
the mass density variation [136–140]. Therefore, the mass density dependence
of the material parameters and other coefficients (the thermal conductivity,
shear and bulk viscosities, relaxation times, and all the coupling parameters)
must be implemented in a particular way. That specificness originates from
the kinetic theory: one of the early results in kinetic theory argues about the
constant-mass density independent-behavior of viscosity and thermal conduc-
tivity, which necessarily leads to non-zero viscosity at zero pressure. This is
not proved experimentally but based on an extrapolation to the zero density
[141]. Different experiments proved its opposite [142]. That kind of ’contra-
diction’ resulted in the differentiation between the ’physical’ (i.e., theoretical)
and ’effective’ (measurable) viscosities [127]. Later, in kinetic theory, Knudsen
number-based corrections are appeared for viscosity, based on measurements,
both in the dense and rarefied domains [143, 144]. Moreover, considering ideal
gas equations of state, one obtains a particular scaling property of the model
in the dispersion relations: the propagation speed depends on the frequency/-
pressure (ω/p) ratio. However, that scaling property is immediately violated if
any of the material parameters is a function of mass density or other equations
of state are applied, even in the classical case of the Navier-Stokes-Fourier
system.

Consequently, the complete success of the experimental evaluation depends
on the proper mass density dependence in the model. Using a continuum the-
ory, we note the freedom to choose the form of each coefficient. Basically,
it offers infinitely many possibilities that can be narrowed down with the
kinetic theory, for instance. However, utilizing an internal variable framework,
it turned out that ω/p scaling is not necessary to evaluate the rarefied gas
experiments, only if all the frequency and pressure data are known, which is
the most likely situation since these are controlled parameters together with
the temperature [127]. Thus the continuum approach offers multiple possibil-
ities to evaluate a measurement, depending on the mass density dependence.
This also holds for the EIT framework [145–147].
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Nano-scaled experiments

Due to the microscopic spatial scale, the experimental aspects change. The
interpretation of material parameters and state variables becomes more dif-
ficult, also the measurements themselves. For instance, temperature loses its
primary role. Instead, the thermal and electrical resistances are more accessible
to measure [148]. Returning to the heat pulse experiments, it is also possible
to conduct such measurement with thin films [149], however, on much shorter
time scales. While the heat pulse lasts around 1 µs for low-temperature exper-
iments, in that case, it is decreased to 100 − 200 fs. The usual thickness of a
nanofilm is 200 − 2000 Å, and its temperature change induces the transient
behavior of surface reflectivity on the time scale of picoseconds [150]. Recently,
the group of Siemens, Hoogeboom-Pot, and Lee et al. [151–153] obtained con-
vincing results about observing a ballistic propagation at room temperature.
The next difficulty emerged when the size-dependence of material parameters
is observed for nanomaterials (e.g., for films and tubes) [154–165]. In par-
ticular, the so-called superlattices possess a specific behavior: their thermal
conductivity non-monotonously depends on their period thickness [166–168].
This is probably caused by the parallel heat conduction channels, each having
different characteristic spatial scales. Its quantitative modeling is possible but
is still an open question [53, 168, 169].

Heterogeneous materials

Almost every real - not ideal - material is heterogeneous in some sense, e.g.,
due to the presence of porosity, material composition, and artificially created
inclusions. Although there are a few famous experiments in the literature, such
as the ones performed by Mitra et al. [170], and Kaminski [171], those data
could not be reproduced by any others and thus widely criticized [172–176].
Usually, the deviation from Fourier’s law is tried to be found in a waveform,
similarly to second sound, and modeled with the Maxwell-Cattaneo-Vernotte
equation. Unfortunately, none of the experiments show temperature waves,
and in most cases, the MCV equation failed to explain the results. However,
there are also exceptions: despite the lack of heat waves, the MCV equation
could be useful [177, 178], but this is not the general case. When the MCV
equation fails, the (DPL) models are generally considered. The DPL concept
lies on a Taylor series expansion of a constitutive equation, with violating
basic physical principles due to various reasons [28, 36–41, 43, 179]. Despite
its popularity, especially in the biological literature, the DPL model cannot be
the following standard equation in the engineering practice after Fourier’s law
due to its numerous shortcomings.

The usual way to model heterogeneous materials is to implement every
particular information about the material structure as much as possible. For
instance, in biological situations, the spatial distribution and placement of
artery-vein pairs are built-in, together with the requirement of the exact knowl-
edge about the velocity field of blood flow [180–184]. In other cases, such as
foams, a statistical approach is more popular, also for the same motivation.
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Fig. 2 Rear side temperature history from a heat pulse experiment on a metal foam sample,
and its evaluation using the Fourier equation [190].

However, such detailed modeling of experimental results is not possible due
to our limited knowledge, solely in exceptional situations. There is a dedi-
cated research direction to derive and apply an effective thermal model on
various material types2. An experimental campaign is performed to investi-
gate various materials with the heat pulse measurement technique, such as
several rocks, metal foams, and 3D printed samples [185–189]. Rocks are out-
standing because they consist of different porosity, micro-crack distribution,
and their composition is also varying. In these experiments, a particular non-
Fourier phenomenon can be observed, different from the others; this is called
over-diffusive propagation, see Figures 2 and 3 for details.

Apparently, this is not a wave-like phenomenon but a diffusive one with
multiple conduction channels. That sort of deviation characteristically occurs
in any of these heterogeneous materials. This series of measurements is fur-
ther motivated by the Guyer-Krumhansl (GK) equation, in which the Fourier
equation appears together with its time derivative. That equation is obtained
from (14) if l1 = 0, i.e., it is part of the ballistic heat conduction equation.
Expressing the partial differential equation for the temperature in one spatial
dimension with the help of (2) it has the form

τ∂ttT + ∂tT = α∂xxT + l2∂txxT (19)

where τ is the relaxation time, α = λ/(ρc) and l2 being a dissipation param-
eter. When l2/τ = α, the solution of the Fourier equation is recovered, this is
called Fourier resonance condition [191], and no deviation takes place. How-
ever, when the ratio of l2/τ differs from the thermal diffusivity α, then the
two conduction channels (and their characteristic time scale) differs from each

2Find here: irrev.energia.bme.hu

irrev.energia.bme.hu
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Fig. 3 Rear side temperature history from a heat pulse experiment results on a metal foam
sample, and its evaluation using the Guyer-Krumhansl equation [190].

other, the Fourier resonance ceases, and the deviation becomes observable.
Furthermore, this also reflects the existence of different time and spatial scales
of the constituents. That model is successfully applied for rocks, foams, and
biological materials, too.

Analogously, moisture diffusion problems are similar, both on mathemat-
ical and physical levels [192, 193]. For example, Wong et al. [194] managed
to experimentally observe a surprisingly similar deviation than in the case
of over-diffusive heat conduction. This is repeated for several compounds,
and they also concluded that parallel diffusion processes are the source for
such a phenomenon, occurring in heterogeneous materials [195]. For a more
comprehensive review of experiments, we refer to [126, 196].

2.3 Notes on the solution methods

We have seen several heat conduction models with different concepts in the
background in the previous sections. In order to make them applicable for
practical engineering problems or even evaluate an experiment, one needs to
utilize a reliable solution method that can reflect their physical content accu-
rately. However, that task carries a lot of physical and mathematical aspects,
such as the treatment of initial and boundary conditions. They originate in
the structure of constitutive equations. While Fourier’s law provides equality
between the heat flux and the temperature gradient, the generalized consti-
tutive equations are partial differential equations themselves and may contain
further spatial derivatives as well. It affects the definition of boundary condi-
tions, e.g., it is no longer possible to define the flux-type boundary condition
using the temperature gradient alone. This is a key point in solving general-
ized models that must be answered [75, 189, 197], and cannot be avoided when
an infinite spatial domain is considered [198–200].
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The solution for that difficulty appears differently in analytical and numer-
ical methods. When one chooses to solve the system of partial differential
equations analytically, there are multiple possibilities. First, one can decide
which state variable will be the primary one, i.e., in generalized heat equations,
the temperature and the heat flux are the possible choices. These are called
temperature and heat flux representations of the same model. For instance,
Eq. (19) is a temperature representation of the GK model. Consequently,
in this case, the other variable is eliminated. For example, solving the GK
equation for a heat pulse boundary condition, i.e., with time-dependent heat
flux on the boundary, it is worth using the heat flux as a primary field vari-
able. After having the solution of the heat flux, the temperature history can
be recovered using the balance equation [197]. That methodology works for
higher-order systems, too [75].

The other way is that no primary field variable is chosen, and thus no
variable is eliminated. In that form, the Galerkin solution method is preferred.
Similarly to the variable separation methods, the solution is represented by a
complete orthonormal set of functions. Sine and cosine functions are a suitable
choice. The nonzero boundary conditions can be separated with an auxiliary
function, and the homogeneous boundary conditions are satisfied. Moreover, in
that way, it becomes possible to implement Robin-type boundary conditions,
too [189].

The numerical treatment of the boundaries is also tricky due to the
same reason. Its advantage is that various types of boundary conditions and
geometries are possible to handle without significant inconvenience, but the
implementation of boundary conditions is different. For instance, all field
quantities are placed on the nodes in conventional finite element methods.
Therefore, such discretization requires the parallel and compatible definition
of boundary conditions for all field variables. In other words, when a time-
dependent heat flux is prescribed on the boundary, it is unknown how to
calculate the temperature at the same node in parallel with the heat flux. At
this moment, this is an open question for nonlocal models, and thus such allo-
cation of field quantities is not advantageous. Since the phase lag models have
only memory-type generalizations, they are more easily fit to the framework
of finite element methods [201–207].

Regarding the initial conditions, the methodology also differs from the
usual one, independently of the level of generalization. In the case of non-
Fourier equations, the initial temperature history is not enough, one other
initial condition is necessary. It could be the initial heat flux distribution or
the initial time derivative of the temperature. Only the latter can be valid
when using the temperature representation of a heat equation. In the case of a
nonequilibrium initial condition, the initial time derivative must be compatible
with the constitutive equation.

In [208, 209], the modeling capabilities of COMSOL v5.3a is tested on gen-
eralized heat equations and compared to an analytically validated numerical
method [208]. It turned out that nonlocal terms (e.g., the Laplacian of the heat
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Fig. 4 The 1D discretization of the Guyer-Krumhansl equation.

flux in the GK equation) make the appropriate physical content unattainable
with this method, independently of the time-stepping and asking a notable
computational resource. This attribute is entirely on spatial discretization.
That problem can be addressed using a staggered field in space that makes
the finite differences similar to the finite volume techniques, except that the
balances remain in their strong form. Hence the field variable for which the
boundary condition is defined remains on the boundary, but all the others are
shifted inside the domain by a half step. These represent the volume aver-
age of the small cell, see Figure 2.3 for the concept details. We note that this
method demands a thermodynamically compatible structure of constitutive
and balance equations, constrained by the second law of thermodynamics. Fur-
thermore, when the physical situation requires boundary conditions for more
than one field variable, as an example for a thermo-mechanical problem, it is
still doable without any further restrictions if the structure of the equations
allows that step. This is independent of the coordinate system and realizable,
e.g., in cylindrical coordinates as well.

Finally, we mention the importance of time-stepping algorithms. Together
with the spatial discretization, the numerical scheme can produce artifi-
cial errors like dissipation and dispersion, independent of their accuracy
[126, 209, 210]. For diffusive problems, these are hardly visible, and only a
thorough analysis can show their presence. However, for wave propagation -
especially for elastic waves in ballistic heat conduction or in purely mechani-
cal problems; they have outstanding importance in obtaining an efficient and
reliable solution. Here, the difficulty arises from the physical content: elastic
waves are non-dissipative, thus the total energy of the wave must be preserved.
Consequently, the numerical scheme must satisfy that requirement and must
be free from dissipative and dispersive errors. This is achievable even with a
first-order accurate time-stepping method, called semi-implicit Euler, the sim-
plest realization of symplectic integrators [211–214]. Its realization is as easy
as any other finite difference method, but the order of updating the field vari-
ables becomes essential. Despite the low accuracy, even this method can be
satisfactory. Moreover, conserving the total energy is also advantageous for
dissipative systems, therefore the solution also preserves this strong physical
property [209].

We have seen that theoretical requirements not only helpful but essential
to solve the equations and this way to evaluate experiments. Neglecting or
disregarding these aspects may lead to instabilities, unphyiscal solutions and
entirely prevents the reliable application of the modeling equation.
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3 Bioheat lagging models

The DPL model with the two defined phase lag parameters is found to be an
eligible method for heat conduction modeling in the linear regime [1, 4]. The
heat flux relaxation time τq and the temperature gradient phase lag τT defined
in the DPL model impact the thermal responses. In recent years, much atten-
tion has been devoted to non-Fourier bioheat transport, where the DPL model
is combined with the existent bioheat equation to model the bioheat transfer
processes accurately. This is in contrast to the enumerable studies in other
fields of heat conduction such as thermal transport in transistors [215–224].
It is remarkable that in almost all bioheat calculations, only the differential
version of the DPL constitutive equation is applied. Although the DPL model
has the same T-representation as the Guyer-Krumhansl equation, their consti-
tutive parts differ, therefore, they also differ in their physical meaning, which
has numerous consequences on their interpretation and solution method, too.
In the following, we do not change the original terminology of the publications.

Such an increase in bioheat studies can be attributed to two related rea-
sons. The first one is very much associated with the advancing technology
in medicine. This improvement makes the required experimental data more
accessible, resulting in the acquisition of reliable methods for predicting ther-
mal behavior in living tissues. The second reason is that advanced modeling
can greatly help biomedical treatments and the development of new tech-
niques. From a medical point of view, a thorough comprehension of thermal
responses of biological tissues is required to ensure the patients’ safety during
hyperthermia and cryotherapy. The study of skin bio-thermomechanics is also
essential for military and space operations to provide astronauts and army
personnel with complex clothes for thermal protection. The above examples
show, that bioheat studies are prominent and non-negligible in many aspects
of human life. Here we review the most recent literature regarding this con-
sequential topic. In particular, the most challenging topics in bioheat heat
transport considering the DPL heat conduction model within the last five years
are presented.

3.1 Thermal treatment

Many studies have been devoted to the investigation of the momentous topic
of hyperthermia treatment of biological tissues. To be more precise, nowadays,
the thermal therapy of different unhealthful organs of the human body has been
the topic of numerous inquiries. In a research project, the treated forearm has
been studied, solving the Pennes Bioheat Transfer Equation (PBHTE) [225].
The PBHTE model is among the first bioheat thermal models, considering
several biological effects as source terms in the energy balance. For instance,
metabolism and blood perfusion are the most frequent terms.

Generally, by decreasing the body metabolism, increasing the blood per-
fusion rate in tissue, and applying a fluctuating heat flux, instead of uniform
heat flux on the surface of forearm skin, it is feasible to optimize the thermal
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treating of the damaged tissue without causing lesion such as burn injuries to
the other healthy parts. This study has not contemplated the non-Fourier heat
transfer behavior in the living tissues, resulting in under/over-estimating the
calculated parameters. An important step forward is adding the phase lagging
phenomenon to the PBHTE model. Work on modeling the heat transport in
complex organs with the DPL model has been lately done [226].

In more detail, the thermal processes in the polyp-colon system during
the electrosurgical polypectomy are studied. This medical surgery technique
is usually carried out simultaneously as the colonoscopy is used to remove
the abnormal growths from the colon (the large intestine). During this elec-
trosurgical polypectomy procedure, a polypectomy snare is fastened around
the stalk of the polyp. Then, the electric current will be applied to the snare
for a few seconds. This causes the polyp stalk to be detached from the colon
wall. The PBHTE differential equations describing the processes during the
polypectomy have been solved using the control volume method. The simula-
tion results help the endoscopists by letting them know the optimal time and
parameters of the electric current flow depending on the geometry and size
of the polyp. More fully, the predicted rate of the thermal damage of the tis-
sue obtained by the Arrhenius damage integral, the electric field distribution
profile, and the thermal processes occurring in the polyp-colon domain, can
be utilized to optimize the endoscopic instrument parameters for the clinical
applications. As mentioned before, the bioheat transfer problems in the living
biological tissues should be simulated using the bioheat models based on the
non-Fourier heat conduction, i.e., the GK or the DPL model.

In the mentioned work, these procedures have not been considered. The
authors indicate that the lack of experimental data of the phase lag times for
the colon and polyp tissues are the main difficulties, but they confirm that the
non-Fourier models will be taken into account in their future works. Here, we
should mention the experimental study by Liu et al. in which the phase lag
times for the living tissues are predicted [227]. Various DPL applications for
thermal therapy of ill tissues are presented in the following.

3.1.1 Modeling of radiofrequency (RF)/microwave(MW)
ablation

Latterly, an initiative more accurate method for modeling the RF/MW abla-
tion remedy of the cancerous tissues has been proposed by Singh and Melnik
[228, 229]. A coupled thermo-electro-mechanical model has been developed
while considering both tissue shrinkage and expansion. Also, the coupled model
considers the non-Fourier effects by including the single-phase-lag (SPL) and
dual-phase-lag (DPL) models of bioheat transfer during the high-temperature
thermal ablation by MWA and RFA. The authors have reported that neglecting
the mechanical coupling during the modeling of MWA results in an underesti-
mated temperature distribution. It also emphasizes the significant contribution
of the mechanical terms in the internal energy. Furthermore, there is a notable
deviation between the predicted damage volume acquired from the coupled
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thermo-electro-mechanical model of MWA considering Fourier and non-Fourier
models.

Additionally, the effect of non-Fourier-based coupled thermo-electro-
mechanical coupling is reported to be less pronounced in RFA as compared to
the MWA. However, using the newly proposed model could lead to more accu-
rate predictions of the temperature distribution and the damage volume during
the RFA. In addition, thermal ablation as a non-aggressive method is often
used to destroy the defective tissues in the heart. In both thermal RF ablation
and cryo-ablation, this technique is utilized to treat heart arrhythmia. Newly, a
two-dimensional coupled thermo-electro-mechanical model has been developed
and employed to treat the heat process during the thermal catheter ablation.
The model incorporating both tissue contraction and expansion during the
MWA and RFA procedures considers DPL-BHTE along with Helmholtz har-
monic wave equation, the modified stress-strain, and the thermo-elastic wave
equations [228].

The agreement with experiments can be improved by taking into account
the temperature dependence of transport coefficients (e.g., electrical and
thermal conductivities). It increases the importance of a physically and math-
ematically consistent thermodynamic theory. Otherwise, the results could be
misleading and cannot be applied to further problems. The obtained temper-
ature profile is found to be smaller than that of the Fourier prediction. This
finding is in contrast to what was obtained in [230, 231].

3.1.2 Magnetic hyperthermia

The one-dimensional dual-phase-lag bioheat transfer model for the bilayer liv-
ing tissues during the magnetic fluid hyperthermia treatment is modeled using
the finite element Legendre wavelet Galerkin method (FELWGM) in [230].
This model can be used for an effective MFH treatment of bilayer tissues.
The FELWGM converts the contemplated problem into a system of algebraic
equations. The obtained results present no notable difference for the Fourier
or non-Fourier boundary conditions.

The effect of time delays only appears in the tumor region. In detail,
the temperature increase is characterized by τq and decreases with the aug-
mentation of τT in the tumor zone. This study suggests FCC FePt magnetic
nanoparticle (MNP) as the most effective MNP used for the thermal treatment.
The effect of various magnetic heat source parameters such as magnetic induc-
tion, frequency, the diameter of magnetic nanoparticles, the volume fraction
of magnetic nanoparticles, and ligand layer thickness has been investigated.
The physical property of these parameters has been described in detail dur-
ing the magnetic fluid hyperthermia (MFH) treatment, and also the clinical
application of MFH in oncology is discussed.

A nonlocal dual-phase-lag (NL-DPL) model, which provides the effects of
thermomass and size-dependent thermophysical properties at nanoscale, is also
developed for MFH treatment [232, 233]. The effect of size-dependent char-
acteristics, the Dirichlet, Neumann, and Robin boundary conditions, and the
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phase lag parameters in the tumor and normal zones of the bilayered structure
under the MFH therapy are discussed. The finite difference scheme and Leg-
endre wavelet Galerkin technique, which modifies the problem into a system of
algebraic equations, are utilized. It is obtained that as the characteristic length
increases, the temperature also grows. In other words, this work confirms that
the NL-DPL model is more realistic than the usual DPL model at nanoscale.
The nonlocal parameters are found to affect the first layer consisting of the
cancerous cells, which are exposed to the injected magnetic nanoparticles. The
NL-DPL model predicts that the treatment time, an essential issue for thermal
therapy is less than that of the DPL model. Although this study lacks verifi-
cation, it can be practically beneficial due to the annunciation of the thermal
therapy time reduction, an important parameter for patients’ comfort.

Recently, K.C. Liu and his colleagues have also studied magnetic hyperther-
mia under the dual-phase-lag platform [234–236]. Moreover, the generalized
dual-phase-lag model of bioheat transfer has been developed to investigate the
heat transfer inside the living tissues induced by a Gaussian spatial source.
Furthermore, a hybrid numerical scheme is developed, combining Laplace
transform with hyperbolic shape function technique in order to ease the
implementation of complex geometries and interfaces with singular points.
Regarding the blood temperature, a criterion is developed that limits the power
dissipation in magnetic hyperthermia for safe treatment. Also, these studies
reveal that due to the Gaussian distribution of magnetic particles, it is not
easy to obtain the temperature distribution within the tumor.

It has been illustrated that a longer exposure time is required for complete
ablation of the tumor, even the tumor temperature has exceeded 42 ◦C. Briefly,
the mentioned studies solve the generalized dual-phase-lag bioheat transfer
model and point out that the heating time and power density are critical to
prevent thermal damage and must be controlled in hyperthermia. Although the
scrutinies by Li and his coauthors answer the challenges for solving the bioheat
transfer model for concentric bilayered solid spheres, developing full models
considering the existent fluid dynamics in the organs can be taken as the next
step. At last, it should be noted that as there exist significant challenges in find-
ing the reliable temperature profiles inside the living tissues during the MNP
hyperthermia treatment, the development of reliable and accurate numerical
models is indispensable [237]. On the other side, the temperature profile in
the living tissues during the MNP hyperthermia therapy is determined using
the nonlinear form of the DPL model [238]. The concentration of the injected
magnetic particles is experimentally found to be a Gaussian distribution, and
the governing PDE is solved in the Laplace transform domain. It is presented
that the tumor, the tissue, and the thermal damage quantity are effectively
affected by the nonlinear and linear effects of the phase-lag times.



Springer Nature 2021 LATEX template

CONTENTS 29

3.1.3 Modeling the treatment through Focused Ultrasound
(FU)

Thermal treatment of the benign thyroid tumor with FU has been recently
numerically investigated [239]. In greater detail, the ultrasound irradiation
with different powers of 3 W, 5 W, and 7 W and the frequency of 3 MHz has
been applied to the multilayer model of the neck consisting of the internal
organs, extending from the skin toward the thyroid gland, and constructed
from the CT-scan images. It is stated that the considered number of layers has
a significant effect on the calculated parameters.

For instance, the obtained maximum acoustic pressure in the multilayer
model is 1.18 times more than that of the common two-layer model, where
the two layers of water and tumoral tissue are considered only. The thermal
wave, the DPL, and traditional Pennes bioheat transfer models are solved to
study the temperature profile. For the power 3W, the temperature distribution
obtained by the non-Fourier thermal models presents the maximum temper-
ature with time delays of 11.32, 5.66, and 2.86 s that are 20.51% 14.1% and
8.65% lower than that of the Fourier model. As the power of the transducer
increases, the deviation from the Fourier results also increases. Also, the effect
of the phase lags on the area near the necrotic tumoral zone is studied. It is
figured out that the region with irreversible thermal damage shrinks for the
3 W power and 5.66 s time delay and no necrosis of the thyroid nodule occurs.
Besides, in another recent study, the proposed model is improved by consid-
ering the effect of the interfacial convective heat transfer between the blood
vessels and the extravascular matrix [240]. Also, very recently, High Intensity
Focused Ultrasound (HIFU) as an appropriate treatment for thermal ablation
has been proposed in [241]. An effective HIFU thermotherapy for precisely pre-
dicting biological tissue temperature profile has been announced. Moreover,
in-vitro experiments were performed to validate the numerical results.

3.1.4 Laser therapy

The laser interstitial thermal therapy (LITT), a novel technique for the treat-
ment of primary and metastatic tumors, has been simulated using the DPL
model [242]. Similar to the other thermal treatments, the efficiency of the
method depends on the success of the temperature control, which relies on the
living tissues’ thermal properties. In particular, the DPL equation has been
investigated numerically. Furthermore, the geometrical structures affect the
thermal response as well as the overshooting phenomenon in biological tis-
sues. It should be noted that the modeling of the more realistic cases of study,
including the consideration of the blood vessel in the tissue and also the non-
uniform perfusion are desirable for obtaining accurate prediction of the LITT
result.

The human tooth composed of enamel, dentin, and pulp with unstructured
shape, uneven boundaries, and realistic thicknesses under the effect of laser
irradiation has been modeled using the DPL heat conduction model [243]. It
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has been concluded that the heat flux phase lag significantly affects the tem-
perature profile at early stages, while the temperature gradient phase lag is
more important at later stages. The outputs are validated with the experi-
mental results by taking τq = 16ms and τT = 2ms. Besides, the authors have
published a work in 2018 reporting the simulation of laser irradiated tooth
with the three-phase-lag bioheat transfer model. The phase lags are found to
be τq = 16ms, τT = 6ms, and τν = 2ms [244]. In the first work mentioned
above, the DPL model with the determined phase lags is introduced to be the
suitable model for the description of the non-Fourier heat transfer in teeth.
Therefore, the debate arises: what is the necessity of the second research [244].

In other words, it is not yet established which non-Fourier model, TPL or
DPL, is better in the prediction of the experimental results. Further, these
studies use different τT s for the two models of TPL and the DPL, which is also
debatable. Dealing with thermal therapy of the damaged tissues, the cancer-
ous skin tissue ablation has been numerically investigated [245]. Laser ablation
as an efficient method of thermal treatment for tumorous tissue increases the
temperature of the tumor cells. Consequently, irreversible burn and defor-
mation result in protein denaturation and cell membrane dissolution, which
themselves destroy the cancerous cells. Three models (Pennes, thermal wave,
and DPL) have been used for the investigation of two different laser irradia-
tion approaches of the tissue, which highly depend on the absorbent or scatter
feature of the skin.

These three models, solved with a finite element method, are reported to
present a significantly different temperature profile. More precisely, it is stated
that heat flux and temperature gradient phase lags, and thermal conductivity
of the tumor affect the results substantially. On the other side, the specific heat
and the blood perfusion rate have a negligible impact on the thermal damage.
Although the verification is presented for the simplest available case, an exper-
imental validation for the specific situations of tumor ablation is still missing.
This expresses the severe desideratum for reliable, optimal in-vivo experiments
trying to overcome the limitations such as the injury caused. A precise study
modeling the laser-mediated therapy for port-wine stain (PWS), which is a
vascular skin disease caused by congenital vascular deformity, is performed in
[231]. The laser energy is absorbed mainly by the blood’s hemoglobin to form
clots, destroying the abnormal capillaries. The optical transmission and energy
deposition are calculated via Monte Carlo-based method, and the non-Fourier
heat conduction is treated solving the three-dimensional DPL model with the
temperature jump boundary condition [215, 216] model via using a three-level
finite difference method.

It is presented that τq and τT result in lower temperature distribution
than that of the estimations using Fourier’s law. This dependency is more
pronounced when the delay times are more significant. Also, the effect of τq is
more notable while the τT equalizes the temperature gradients at the interfaces
[230]. Such inconsistency can be attributed to the different dimensionality in
these two studies and the different types of the studied therapies.
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Applications with gold nanoparticles

It is confirmed that the thermal investigation of the biological tissue phantom
showing an optical inhomogeneity and embedding with the gold nanoshells,
under the effect of the pico-second laser irradiation, has been numerically
performed in [246]. The absorbing optical inhomogeneity demonstrates the
presence of the malignant cells. The gold nanoshells have been uniformly
dispersed over the body of the inhomogeneity to enhance the absorption
properties while maintaining the optical properties of the background at the
reference values. The generalized form of the Radiative Transfer Equation
(RTE) has been applied to model the light-tissue interaction using the dis-
crete ordinate method (DOM). Then, the obtained intensity distribution is
utilized to solve the generalized form of the non-Fourier heat conduction model,
i.e., the DPL bioheat transfer model. It is reported that adding nanoshells to
the optically inhomogeneous zone results in notable changes in optical prop-
erties leading to the localized increase in the temperature of the embedded
inhomogeneity.

Numerical and experimental investigation of the heat transport in the col-
lagen microstructures under the NIR laser irradiation, both for bare mimics
and with gold nanostructures infused, has been worked out in [247]. The non-
Fourier DPL model incorporated with the Pennes bioheat transfer equation is
solved using the COMSOL multiphysics software. The deviations of the max-
imum temperature calculated from the DPL and the Fourier models from the
obtained experimental value in pure collagen are reported to be 1 and 4 K,
respectively. These differences in the phantoms embedded with nanoparticles
are respectively 0.5 K and 4 K. Non-Fourier calculation is necessary while treat-
ing tissues; otherwise, the finding will be unrealistic from clinical perspectives
and lead to the damage of the healthy tissues.

In 2018, a study presenting the effect of the targeted gold nanostructure
injection on attaining the precise necrosis of the tumor and leaving the mini-
mum damage to the healthy tissue during the laser thermal therapy had been
accomplished [248]. More closely, combined diffusion and convective energy
equations were solved by the usage of the COMSOL Multiphysics software.
Furthermore, the heat propagation induced by the laser and together with the
thermal damage are modeled by the modified Beer-Lambert law and Arrhenius
equation, respectively. Related to the present review, a tumor-blood inhomo-
geneous inner structure is also studied under the basis of the non-Fourier DPL
bioheat transfer approach. The comparison between the non-Fourier results
and that of the classical Fourier approach establishes the considerable differ-
ence of the temperature profile during the initial phases of laser heating and
cooling, i.e., non-equilibrium condition. The outcomes converge at larger time
intervals.

The work presented by Yin et al. [249], the gold nanoparticles (GNPs)
enhanced laser-induced thermal therapy has been studied theoretically. The
bioheat transfer model under laser irradiation has been solved with the aid
of the finite element method. Yin et al. investigated the effect of numerous
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parameters such as the laser intensity, the anisotropic scattering characteris-
tics of nanoparticles, convective heat transfer coefficient, and the treatment
strategy. It is reported that the oblique and vertical laser incident have the
same efficacy for the single-dose therapy, where the whole tumor is damaged in
a one-time step. While during fractional therapy, the influence of the oblique
laser irradiation is more than that of the vertical one.

Comparison with HIFU. The thermo-mechanical responses of the living tis-
sue under the effect of continuous and pulse mode heating during HIFU and
LITT subjected to intravenous injection of GNPs, are studied in [250]. Like the
other treatments, the goal is to reach maximum necrosis of the tumors with
the least healthy tissue destruction and the least nociceptive pain. Accurately
describing, a three-dimensional multilayered breast tissue including the tumor
and also the multilevel artery and vein has been investigated. The tumor was
treated with ultrasound focusing on its location during HIFU therapy, while
in the LITT therapy, the thin catheter inside the tumor heats the region.

The lagging time model is dealt with concurrently solving the coupled
radiative transfer, Helmholtz, momentum, DPL equations and equilibrium
equations for optics, acoustics, fluids, temperature and mechanical fields via
COMSOL Multiphysics software. It is affirmed that as opposed to the con-
tinuous mode of heating, the tissue temperature rise in pulse mode leads to
a better-targeted tumor necrotic damage while keeping the encircling healthy
tissues untouched. The non-homogeneous impacts of multilevel artery/vein in
tissue are stated to be more significant during LITT in comparison to HIFU.

On top of that, the effect of the artery/vein existence is found to be more
pronounced over the pulsed mode of heating. Further, the thermoelastic stiff-
ness of the tissue is lower for the pulse heating, causing less nociceptive pain
in comparison to the continuous energy agitation. Moreover, the large blood
vessels are declared to be momentous in increasing the stiffness of the tissue.
In the presence of the GNPs, the optical and acoustic properties of the tissue
are reinforced. This enhancement itself results in modification of the thermal
and elastic demeanor of the tissue during the therapy. This study also provides
experimental work on agar-based tissue phantoms. The validation of the simu-
lation results of the FU heating is performed using the acquired experimental
data.

Pain assessment. Continuing the previous work, recently, the numerical
assessment of the induced nociceptive pain during the thermal ablation has
been performed by calculating the viscoelastic deformation via modeling the
thermomechanical response of the tissue [251]. Again, the DPL and Pennes
bioheat model coupled to the equilibrium equations are solved using the
COMSOL Multiphysics to calculate the thermal and mechanical fields in the
triple-layered skin structure. Furthermore, an in vitro investigation of the
single-layered tissue phantom has been performed to validate the numerical
results. That paper further tackles the question of which intravenous (IV) and
intratumoral (IT) infusion of the silica-gold nanoparticles leads to the more
precise and uniform necrosis of the malignant tissues during laser therapy. The
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computation suggests that the IT scheme presents more precise tumor abla-
tion and less thermally induced skin deformation in comparison to that of
the IV scheme [252]. Although this work exhibits novelty in investigating the
effect of gold nanoshells’ presence on more successfully laser irradiation of the
abnormal tissues, uncertain values of the relaxation times have been taken into
account during the modeling. Using the newly obtained values [227] will make
the next step to be taken more firmly for achieving more accurate results.

3.2 Thermal protective clothing

A dual-phase lag model of the bioheat transfer equation is used to anticipate
the burning time. Although there are many methods to ascertain the skin burn
level at the clinical level, only a few methods are appropriate for assessing the
protective clothing. Basically, the methods fall into two categories: empirical
criterion prediction and theoretical approaches. An empirical criterion uses the
accumulated skin surface energy in specified times to find the onset of second-
degree skin burn. The latter is a more complex approach, including a heat
transfer and a burn model, which designates the exact degree of burn based
on the inner skin temperature.

Zhai and Li have reviewed different burn prediction techniques which are
used in clothing [253]. These methods are founded on experiments performed
on living bodies getting in touch with hot water or exposed to radiant sources.
Hence, the protective fabrics between the heat source and skin can make the
prediction methods inaccurate due to the block of some incident heat and
the fabrics’ change of the heat form. Accordingly, new technologies should
be used to scrutinize the accurate and efficient prediction methods for both
cases of burning. On the other hand, the review dealing with experimental
and numerical studies of thermal injury of the skin and subdermal tissues has
been written [254]. The first part of the review concerns experimental research
containing burn conventions and prevailing imaging techniques. The existing
numerical models for the tissue burn and relevant computational simulations
are reviewed in the second part. This review concludes that although many
studies are devoted to the simulation of the pathology and pathogenicity of the
tissue burn, there is limited information concerning the appearance of defor-
mation in the tissue characteristics, including mechanical, thermal, electrical,
and optical properties.

3.3 Cryoablation

Cryosurgery or cryoablation is a non-invasive technique for the treatment of
cancerous tissues. A study using the immersed boundary method (IBM) for
simulation of the cryofreezing biological liver tissue while adding a heat source
in the bioheat transfer equation has been first performed by Ge et al. [255]. The
obtained results for the liver tissue with temperature-dependent thermophysi-
cal properties have been shown to present good consistency with the available
data from the previous numerical and experimental works. Also, a heat source
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due to the blood flow in the embedded vessel significantly affects the tempera-
ture distribution. In detail, while the distance between the cryoprobe and the
major blood vessel varies, the ice fronts 0 ◦C and -40 ◦C also change, up to
35% under 500 s.

The most critical parameter dealing with DPL bioheat modeling is the
determination of the phase lags. In this paper, the τq and τT are both taken to
be 0.001s. This value is different from what is expected recently, and the rea-
son for such a choice has not been cleared out in the manuscript. Further, in
2017, the problem of biological tissue freezing was modeled with the thermal
interactions between the cryoprobe tip and soft tissue being described using
the DPL model [256]. The explicit finite difference method is used, and the
freezing process modeling is performed based on the newly defined parame-
ter, called substitute thermal capacity. Despite the previously mentioned work
[255], the present work has provided a detailed discussion on the suitable val-
ues of the relaxation time, τq, and thermalization time, τt. More, this work has
interestingly stated that the increase in the relaxation time makes the differ-
ences between DPL results and that of the Pennes solutions larger, while such
growth for thermalization time offsets the divergences between the DPL and
the Pennes solutions.

This can be justified as the large τq presents a significant lag of the
heat flux and consequently makes the thermal accumulation that opposes
the thermal equilibrium and results in fluctuation. However, a high value of
τT demonstrates a conspicuous lag of temperature gradient, decreasing the
thermal accumulation and accordingly improving the thermal balance. Hence,
larger τq, takes away the system from the equilibrium situation and makes
the obtained result more deviated from the Pennes’ solutions. The accuracy
of the method has been verified by comparing the obtained results with the
one adopted from the Pennes equation and the experimental data. In the fol-
lowing, a two-dimensional DPL model is developed to study the phase change
in a heat transfer process during the lung cancer cryotherapy [257]. The gov-
erning DPL bioheat conduction model is worked out numerically using the
enthalpy-based finite difference method. Contemplating the non-ideal behav-
ior of the tissue, heat source terms, metabolism and the blood perfusion, the
study inquires about the effects of phase lags on the obtained heat flux and
temperature-dependent parameters during the freezing process.

The phase lags are taken to be τq = 10s and τT = 10s, which are close
to the experimentally verified phase lags. Remarkable efficacy on the inter-
face positions and the temperature distribution is reported. Furthermore, it is
obtained that among the DPL, hyperbolic and parabolic models, the entire tis-
sue freezing time is the least and the largest, respectively, for the parabolic and
hyperbolic model while it presents the moderate value for the DPL model [258].
On the other hand, a new modified Legendre wavelet Galerkin method describ-
ing bioheat transfer during cryosurgery of lung cancer has been developed
[259]. The lung tissue cooled by a flat probe with its temperature decreasing
linearly with time is modeled. The essential novelty of this paper is the new
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suggested method for modeling the freezing process. Considering the cooling
procedure occurred in three stages of cooling up to the liquid temperature
10 ◦C, cooled up to the freezing temperature 80 ◦C, and cooling up to the
lethal temperature with the whole region to be divided into the liquid, mushy
and solid zones, respectively.

The problem is converted into a boundary value problem in stage one
and the moving boundary value problem in stages two and three. Finally, the
problem shifted to the generalized system of Sylvester equations and is solved
using the Bartels-Stewart algorithm of the generalized inverse. With the value
of phase lags to be unknown, the temperature distribution and moving layer
thickness in all stages and regions are traced to predict maximum damage to
the infected tissue and the minimum detriment to the healthy lung tissues.
While the present calculation is performed for the one-dimensional case [259],
the auxesis to the two-dimensional one is carried out in more recent work of
the same group [260].

3.3.1 Cryopreservation

Cryopreservation is a procedure preserving the biological tissues while mak-
ing the less severe failures to the physical and functional properties. Such
preservation is achieved by exposing the tissues to very low cryogenic tem-
peratures involving a more significant heat removal rate. The Pennes bioheat
model is used for two-dimensional numerical modeling of the cryopreserva-
tion operation. In detail, using the Finite Volume Method for discretization
while utilizing the Tridiagonal Matrix Algorithm to solve the discretized alge-
braic equations, the temperature distribution is obtained [261]. Moreover, the
solid-liquid interface is tracked with the Enthalpy-Porosity method during the
freezing process. In the abovementioned modeling, two cases with different
methods of treating the tissue freezing implying from one side and the two
sides are studied.

It is found that the freezing rate of tissue is doubled as the cooling process
is changed from one-side freezing to the two-side one. More importantly, the
lower value of blood perfusion rate is observed to lead to the lower value of the
final temperature of the tissue. In other words, the tissue with a high blood per-
fusion rate will freeze to the lower cooling medium temperature. The metabolic
heat generation has been found to take no substantial role in the temperature
profile of the healthy tissue. To conclude this section, we emphasize that these
studies’ essential and useful extension treats the more realistic cases of three-
dimensional systems. In other words, future investigations should be devoted
to the more reliable and accurate three-dimensional study of bioheat problems.

3.4 Bio thermo-viscoelastic/mechanical model

There have been many works on the viscoelastic properties of biological tis-
sues. However, the coupled thermal and mechanical behavior of the biological
tissues based on the viscoelastic theory has been investigated recently, and
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the dual-phase-lag thermo-viscoelastic model is developed [262]. Further, the
transient behavior in tumor and normal tissues have also been studied. It has
been reported that although the absolute values of displacement and stress
are smaller in comparison to the obtained values from the conventional ther-
moelastic model, the viscoelastic parameter has little effect on the value of the
temperature.

This means that during the hyperthermia treatment for the cases with the
same thickness and time parameters, the thermal deformation damage of the
thermoelastic model is more severe than that of the thermo-viscoelastic model.
In this study, it is considered that the tumor and normal tissues have linear
viscoelastic properties. It has been also emphasized that an extension to the
nonlinear generalized thermo-viscoelastic model should be performed to reach
more realistic results. On the other hand, the thermomechanical interactions
in anisotropic soft tissues are studied using a new boundary element algorithm
[263]. The governing equations are based on the DPL bioheat transfer and
Biot’s theory. Both equations are solved independently. First, the temperature
distribution is found by solving the DPLBHT equation with the Boundary Ele-
ment Method (BEM). Secondly, the displacement components distributions are
obtained by resolving the mechanical equation with the convolution quadra-
ture boundary element method (CQBEM). The CQBEM with low CPU and
low memory usage is a suitable technique for handling soft tissues with com-
plicated shapes. The subsequent bioheat and mechanical linear equations are
solved via a transpose-free quasi-minimal residual (TFQMR) solver that imple-
ments a dual-threshold incomplete LU factorization preconditioner to improve
the total CPU time. Good consistency between the obtained BEM results and
that of the analytical, FDM, and FEM is reported.

This is true while the computational cost, including the CPU-time, mem-
ory, and disc space for the BEM, is much lower than the other methods.
Further, a theoretical analysis on the thermo-mechanical responses of the
human tissue under the effect of a moving laser beam during the thermal
ablation is performed [264]. The skin’s thermo-mechanical responses through-
out the therapy are studied using a mechanical model that includes an elastic
plate established on a viscoelastic foundation. The model is studied utiliz-
ing the DPL bioheat conduction model, the Kirchhoff hypothesis, and the
Kelvin-Voigt rheological model. The governing equations are solved analyti-
cally using the Green function method. It is found that the increment of τq and
τT increases and decreases the deflection and stress magnitude, respectively. In
addition, the growing laser moving speed is found to reduce the temperature
and deformation magnitude while it extends the thermo-mechanical response
zone.

Besides, a thermo-mechanical model taking into account the non-Fourier
effects in the skin tissues via the DPL model is developed for the EEDs [265].
This model anticipates the human tissue sensitivities, the temperature, and
the stress distributions, in the EED/skin system. The governing equations are
solved using the Green function method. In this work, the phase lag parameters
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needed for the DPL model are obtained from the two-temperature model and
are validated by the experiments. The integrated analytical framework, consist-
ing of the thermo-mechanical model for the temperature and stress, Arrhenius
burn model for the thermal damage, modified Hodgkin-Huxley model for noci-
ceptor transduction, and the gate control theory for the pain modulation and
perception, is defined to quantify skin pain sensation in terms of the nox-
ious stimuli from EEDs. This study can be considered as the pioneering work
dealing with pain management, leading to the less irritating real clinical prac-
tice. The effect of the heat flux and temperature gradient phase lags on the
magnitude of the deflection and stress has been investigated.

Also, the influence of the moving laser beam speed presents that the incre-
ment of the velocity will reduce the magnitude of the temperature and the
deformation but enlarge the thermo-mechanical response zone. On the other
side, the bio thermomechanical behavior in a cancerous layer within the con-
text of Lord-Shulman theory is studied using the thermo-viscoelasticity model
considering varying thermal conductivity and rheological properties of the vol-
ume [266]. The Laplace transform technique is employed to solve the problem
in the transformed domain. It is claimed that the thermal conductivity and
volume unwinding parameters affect the circulations notably.

The thermomechanical coupling is a research area where a consistent
thermodynamical approach is available and can improve the modeling [63, 126].

3.5 Comparison with experiments

To ensure that we are stepping in the right way, studies, including the verifi-
cation with the experiments, are mandatory. The Achilles heel in the context
of this area of research is the lack of experimental validation. Among the more
than hundreds of papers dealing with dual-phase-lag bioheat studies, there are
not too many that consider such verification [246, 247, 252, 265, 267, 268].
Although Maillet has mentioned a few relatively old articles dealing with vali-
dating non-Fourier models for bioheat transfer [196], it is worthwhile to review
the most recent ones. In a study, a tissue phantom and ex-vivo bovine liver tis-
sues were heated by the focused ultrasound (FU) [227]. The case is also studied
using heat conduction models such as the Pennes equation, bioheat trans-
fer thermal wave model, and the DPL equation. The findings establish that
the Pennes equation accurately predicts the initial temperature increase for a
homogeneous tissue phantom while the prediction deviates from the measured
temperature with increasing FU irradiation time. Further, the experimental
response is closer to the temperature calculated by the non-Fourier models for
the heterogeneous liver tissues, especially the DPL model. In other words, the
DPL model can predict the temperature repercussions in biological tissues due
to the increment of the phase lag, which specifies the micro-structural thermal
interactions. This detailed study inaugurates more accurate clinical treatment
plans for thermal therapies. In addition, the temperature profile in the skin tis-
sue has been obtained using the highly nonlinear DPL bioheat transfer model
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during the thermal therapy treatment of the tumor [269]. The hybrid numer-
ical procedure solves the proposed case based on the spatial discretization
technique and the Runge-Kutta method. The calculated temperature distri-
bution presents a good consistency with the experimental data. Also recently,
Saeed and Abbas have studied the transient phenomena in spherical biolog-
ical tissue under the effect of the laser heat source [270]. The finite element
approach uses the quadratic elements to solve the highly nonlinear hyperbolic
bioheat second-order differential equations. The obtained numerical results
were compared with the experimental data. The collation demonstrates that
the developed mathematical model is an efficacious tool to estimate the heat
transfer in the spherical biological tissues. We also note that for a DPL model,
the nonlinearities cannot be accounted reliably due to the lack of thermody-
namic background. Therefore, while there are promising results, one needs to
keep in mind the shortcomings as well.

3.6 Newly evolved mathematical methods

Due to the intense need for accurate and precise prediction of the situation
during the hyperthermia treatment of the cancerous tissues to achieve justified
temperature control, seeking reliable methods is one of the most serious topics
for studies, including non-Fourier equations. Hence, many efforts have also
been made to find efficient methods for solving systems of partial differential
equations. The general boundary element method is used to solve the 3-D
DPL equation fulfilling the Dirichlet or the Neumann boundary conditions and
the initial value [271]. The numerical calculation is verified by comparing the
results with the analytical solution of the 1D boundary initial value problem,
artificially extended to the 3D one. Furthermore, the heat transfer phenomenon
occurring in the 3D domain of the heated tissue is investigated. The values of
τq and τT are not yet correctly assessed. For example, Vedavarz et al. [272]
predicted that the value of τq for biological tissues lies between 10-1000s and
1-100s, respectively, for the cryogenic and room temperature.

Consequently, the interval boundary element method for transient diffu-
sion problems may be broadened to the presented general boundary element
method. Furthermore, an approximate analytical solution of the dual-phase-
lag bioheat transfer equation utilizing the finite element Legendre wavelet
Galerkin (FEWGM) is developed in [273]. FEWGM minimizes the error and
also produces a higher degree of accuracy. With selecting the Gaussian distri-
bution as the heat source, this study affirms that the effect of the τq on the
heat transfer process is negligible while τT effectively affects the procedure.
This finding is questioned in the present research. The FELWGM is also used
to model the DPL bioheat transfer model in the presence of the metabolic
and modified Gaussian external heat source [230]. With selecting the suitable
values of the modified Gaussian external heat source parameters, the results
are found to present good consistency with the exact solution. Thermal dam-
ages are as well observed to depend on the boundary condition. In spite of the
previous work, the authors have announced the effect of both τq and τT on
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the temperature profile at the target area during the therapy for this type of
heat source. On top of that, a method with less computational cost has been
recently suggested to solve a highly complex nonlinear dual-phase-lag (DPL)
equation [274].

The boundary value bioheat problem is converted to an initial value prob-
lem using the finite difference method. The Runge-Kutta method is then
utilized to find the dimensionless temperature profile. The effect of various
properties such as blood perfusion rate and thermal relaxation time of heat
flux and different boundary conditions is investigated in this work. The topic
of nonlinear DPL has also been investigated in [275] where the semi-analytical
solutions of the nonlinear DPL using the Galerkin weighted residuals method
are acquired. The nonlinearity appears due to the temperature-dependent
thermal properties, including the blood perfusion rate, heat conductivity, and
metabolic heat. It is concluded that the temperature-dependent metabolic
heat generation and blood perfusion results in much higher temperature in the
tumor zone. Also, the temperature-dependent thermal conductivity is found
to cause the decrement of tumor temperature. Despite the existence of the
clinical records, this research only presents a synopsis verification with one
analytical result.

3.6.1 Generalized DPL model (GDPL)

An analytical investigation of the 1D nonequilibrium heat transfer in bio-
logical tissues during laser irradiation has been established by solving the
generalized dual-phase-lag (GDPL) equation [267]. The problem includes a
non-homogeneous, time-dependent laser heat source. The GDPL is worked out
by volume averaging the local instantaneous energy equation for blood and tis-
sue eliminating the blood temperature at the end. Then, the derived energy
equation for the tissue temperature can be treated by applying the separation
of variables and Duhamel’s superposition integral method for both absorbing
and scattering tissues. The obtained temperature from the generalized DPL
equation is lower than the one which is attained via the classical Pennes bioheat
transfer. This reduction is attributed to contemplated heat convection between
the blood vessels and the tissue. This research concludes that the generalized
DPL equation reduces to the classical Pennes heat conduction equation by let-
ting both τT and τq equal to zero. This is straightforward as, in that case, the
time delays disappear. Also, when both time delays are equal, Fourier’s solu-
tion is recovered, similarly when Fourier resonance occurs in the GK equation.
This finding is in agreement with the work by Afrin et al. [276] and is also
emphasized in [277].

Besides, two-dimensional exact analytical analysis of the Fourier/non-
Fourier bioheat transfer equations for skin tissue subjected to an instantaneous
heating condition is studied [278]. The effects of blood perfusion and metabolic
heat generation on thermal behavior are also investigated. A hybrid analyt-
ical scheme comprising the Laplace transform method in conjunction with
the separation of variables technique and inversion theorem is developed, and
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the DPL and Pennes models are solved. It is established that the DPL bio-
heat transfer equation considering the effects of blood perfusion and metabolic
heat generation reduces to the Pennes bioheat transfer equation when τq =
τT . The appearance of τT makes the heat diffusion in the tissue easier and
consequently results in increased thermal damage. Simultaneously, burn time
decreases while the thermal relaxation times on the BCs become negligible. In
the GDPL model, based on the theory of porous media, the phase lag times
are described in terms of the properties of the blood and tissue, interphase
convective heat transfer quotient, and the blood perfusion rate.

The 1D bioheat transfer with the pulse boundary heat flux is investigated
via the generalized dual-phase-lag model utilizing the hybrid application of the
Laplace transform technique and the modified discretization technique [279].
The obtained temperature distribution is far different from the one acquired
by the classical DPL model and the Pennes equation. The authors affirmed
that the GDPL equation is not reducible to the Pennes bioheat transfer one
for τq = τT or even for τq = τT = 0 s, in agreement with [279], but contrary
to [267, 276]. This research [279] claims that both phase lag times depend on
various parameters of the problem, such as porosity, heat capacities of blood
and tissues, coupling factors, and the ratio of thermal conductivity of the tissue
and the blood are not independent.

Furthermore, nonequilibrium effects during the laser irradiation of the liv-
ing tissue have been studied in [280]. Again, the hybrid Laplace transform and
the modified discretization technique are employed to solve the problem. The
dependence of the phase lag times on the porosity, heat capacities of blood
and tissues, coupling factor, and the ratio of the thermal conductivity of the
tissue and the blood are also considered.

Such reliance on the phase lag times has been missed in the previous studies
in which the phase lag times are considered independently. Also, the tran-
sient bioheat transfer in 3D living tissue under the effect of the laser radiation
internal heat source has been studied in [281]. The generalized DPL model is
used for the subdomain tissue, while the blood subdomain is modeled with an
ordinary differential equation. The formulated GDPL problem is worked out
employing the explicit scheme of the finite difference method. The calculation
has been performed for different porosity values, the ratio of blood volume
to the total volume. For a lower porosity, the temperatures and the degree of
tissue damage found through the Arrhenius integral are more significant than
that of the higher porosity. The blood perfusion rate in GDPL is presented in
an implicit way through the convection-perfusion coupling factor. The ther-
mally damaged (necrotic) tissue results in a zero perfusion rate, reducing the
value of the coupling factor and the porosity value and consequently increas-
ing the temperature. Moreover, the effective thermal conductivity is impacted
by the τT , τq.

Unlike the local equilibrium-based models, the phase lag times are not
independent for nonequilibrium situations. Hence, the generalized DPL model
based on the nonequilibrium heat transfer model is developed for finding the
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temperature distribution during the electromagnetic radiation thermal therapy
of the tumor inside the living tissue. The generalized DPL equation is solved
using a hybrid numerical framework well-established on the finite difference
scheme and the Chebyshev wavelet Galerkin method [282]. Additionally, it
is mentioned that a small number of Chebyshev wavelet basis functions are
sufficient for obtaining the desired accuracy. The authors state that the existing
convection-perfusion coupling factor in the generalized DPL equation results
in lower temperature at the position of the tumor in comparison to what is
obtained from the hybrid model based on the classical DPL and the Pennes
model. Also, more significant phase lag times cause lower temperatures at the
tumor position.

It is further confirmed that the larger porosity and interfacial convective
heat transfer yield lower temperatures. This recognition is absolutely in agree-
ment with the one obtained in [281], where the lower porosity is found to result
in higher temperature. Apart from that, the verification of the previous numer-
ical findings ascertains the correctness of the present numerical procedure.
Also, the nonequilibrium heat transfer in living biological tissues as porous
mediums has been investigated analytically in the context of the generalized
DPL model [283, 284].

3.6.2 Generalized boundary-element method (GBEM)

The heat transfer process in the 3D domain of bioheat tissues described via
the DPL bioheat equation is modeled with the general boundary element
method (GBEM) [271]. In GBEM, one of the types of the boundary element
method, the derivatives of temperature with respect to time are substituted
by the differential coefficients. The BEM itself decreases the problem’s spa-
tial dimensions by one and is also a method with high accuracy. Besides, the
local/temporary boundary heat fluxes and temperature are directly calculated.
The efficiency and exactness of the algorithm are verified by comparing the
results for the special case with the one obtained from the analytical solution.

Recently, the GBEM has been developed for the DPL heat conduction
model of 1D two-layered thin metal film [285], and 3D bilayered microdomain
[286]. Furthermore, the bioheat heat transfer process described by the DPL
equation and the appropriate boundary-initial value conditions has been inves-
tigated via the explicit scheme of the generalized finite difference method
(GFDM) for the first time in [287]. Most methods dealing with solving a partial
differential equation are based on one of the classic variants of the finite differ-
ence method (FDM), the control volume method, the finite element method
(FEM), or the boundary element method. The GFDM is, in a way, the bridge
between the classical FDM and FEM, resulting in the possibility of arbitrary
discretization of the domain. In [287], a cylindrical tissue with an internal heat
source is considered. In the given domain, the cloud of nodes is created with
an n-point star attributed to each node. The n-point star is constructed by the
central node and the surrounding points. The accuracy of numerical calcula-
tion is directly related to the point selection. Cases with various node density
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values and sizes of n-point stars have been numerically analyzed. Comparing
the obtained results with the ones calculated from the classical finite difference
method using fine mesh demonstrates a global error of less than one percent.

3.7 SPH method

Smoothed-particle hydrodynamics is a particle-based numerical method, which
has been extensively used for fluid mechanics or deforming domain problems.
Ghazanfarian et al. [288] developed the SPH method to solve the DPL/CV-
based bioheat model in the nonlinear regime. They found excellent agreement
between the results of the SPH method and other numerical techniques. How-
ever, there is a potential to develop the SPH method for high-dimensional cases
for bioheat non-Fourier problems, including coupled physical phenomena.

3.7.1 Statistical method

The thermal damage during the laser irradiation of the living biological tissues
is studied in the framework of the GDPL. In more detail, a sample-based
stochastic model has been used to deal with the GDPL problem. Although
the remarkable advancement in modeling and simulation of laser therapy has
been achieved, fewer studies are devoted to the unstable characteristics of
the thermal effects directly caused by the intrinsic uncertainties of the input
parameters and thermophysical properties [289].

The uncertainties are investigated for the input parameters, including laser
exposure time, blood perfusion, scattering coefficient, diffuse reflectance of
light, and phase lag times, which all are considered to obey the Gaussian
distributions of the uncertainty. When the distributions of input parameters
are obtained, Monte Carlo Sampling (MCS) is used to find the combination
of the input parameters. The input parameters, being randomly selected, are
joined together as one sample.

In stochastic modeling, the variabilities of the output parameters is assessed
in reliance on the uncertainty of the input parameters. Afrin and Zhang
have obtained that the effects of laser exposure time, phase lag times, and
the blood perfusion on the output parameters of maximum temperature and
the thermal damage overshadow the efficacy of the scattering coefficient and
the diffuse reflectance of light on the irradiated surface of tissues. Further,
a surrogate-based optimization framework has been implied to optimize the
thermal damage in the living biological tissues [290]. Every input variable indi-
vidually quadratically responds to the output parameters for highly absorbing
tissues.

3.7.2 Higher-order models

The thermal responses concerning nonequilibrium heat transport in biological
tissue, taking into account the second-order effects in lagging, are studied in
[291]. Strictly speaking, the non-Fourier bioheat transfer equation containing
the mixed-derivative terms and the higher-order derivatives of temperature
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relative to the time has been established. To overcome the mathematical diffi-
culties of this nonlinear DPL (NDPL) problem, a hybrid scheme of the Laplace
transform, and the modified discretization technique [292] in conjunction with
the hyperbolic shape functions is used to treat the present problem. It is con-
firmed that although the difference between the temperature obtained from
the higher-order NDPL and the DPL equation seems negligible, there exists
an apparent deviation within the computed results of the thermal damages
via the Arrhenius equation. This is ascribed to the nonlinear behavior of the
Arrhenius equation as a function of temperature.

3.7.3 Separation of variables techniques

The temperature distribution and thermal damage in skin tissues under the
pulse laser heating and fluid cooling are analyzed using the Pennes, MCV,
and DPL models. Specifically, the bioheat DPL model considering the gen-
eral boundary conditions is solved [293]. The second-order differential equation
with nonhomogeneous boundary conditions is dealt with by extending the
shifting variable method firstly established in [294]. In [293], the compari-
son of the thermal damage index, Ω, obtained via several thermal damage
models is performed. Most of the models have the form similar to the more
famous Arrhenius burn integration proposed by Henriques and Moritz, Ω =∫ t
0

A exp(−Ea/RT )dt with A, Ea, and R being, respectively, the material
frequency factor, the activation energy, and the universal gas constant [295].

Hence, the difference between the models directly relates to the discrep-
ancy of their coefficients which are implied in the burn damage integral. The
difference between the coefficients is attributed to the different experimental
databases used to delineate the models and also unlike focus while analyzing
the burn process. For all three models (Pennes, MCV, and DPL) under the
same condition, Ω of the Wu model is the largest while that of the Fugitt is
the lowest. Also, the Ω of the Henriques model is overestimated due to the
temperature-independent activation energy and the frequency factor. Further,
the effect of the simultaneous implication of pulsed heating and the cooling of
the skin for thermal therapy is studied. On the other hand, the exact analyt-
ical solution of temperature distribution in living tissues during the thermal
treatment is studied by solving 1-D Pennes’ bioheat equation (PBHE) with
the separation of variables technique [296].

The authors have claimed that most of the research has used the con-
stant initial steady temperature, which is not entirely appropriate for the
biological tissues for living cells. The authors have also asserted that the term
metabolic heat generation in the PBHE has been ignored in all previous liter-
ature. Contrary to this claim, the calculations in [278] include the metabolic
heat generation term. This work includes metabolic heat generation and inves-
tigates the biological tissues analytically for two different spatially dependent
and constant initial conditions. They compare the obtained temperature pro-
file with the available experimental data, and it is affirmed that the spatially
dependent steady-state initial condition is the best option for determining the
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thermal distribution in the living tissues. Here, we point out that nonhomo-
geneous initial conditions must be compatible with the constitutive equation
and that compatibility determines the initial time derivative. This property is
not investigated in general. Therefore, the related results must be treated with
reservations.

3.7.4 Fractional-order DPLBHT equation

In 2015, the fractional dual-phase-lag model combined with the correspond-
ing Pennes bioheat transfer equation was proposed [297]. Fractional calculus
is a concept defined for integrals and derivatives of arbitrary order. There
exist various definitions of fractional order differentiation, such as Grunwald-
Letnikov’s [298], Riemann-Liouville and Caputo’s [299] definition. Here, the
Caputo fractional derivative is substituted in the fractional DPLBH equation.
The fractional operators replace the two first-order time derivatives,

q(r, t) + ταq
∂α

∂tα
q(r, t) = −k{∇T (r, t) + τγT

∂γ

∂tγ
∇T (r, t)}

and also the phase lags τq and τT are substituted by ταq and τγT to preserve
the dimensions of the equation. The problem is analytically solved by applying
the Laplace and Fourier transforms, and the solutions are presented through
the Fox H-functions [300]. By fitting the fractional DPL predictions to the
available data for temperature distribution and using the nonlinear L–M least-
square algorithm for experimental data fitting, two relaxation times and the
orders of fractionality are found. Later, the thermal behavior in living biolog-
ical tissues is investigated using the time-fractional DPLBHT model with a
different technique [301, 302]. The living tissue is affected by the metabolic and
electromagnetic heat sources during the thermal treatment and the Dirichlet
boundary condition.

To reduce the time-fractional DPLBHT equation into the system of ordi-
nary differential equations, the spatial discretization framework in space is
applied with initial conditions in vector-matrix form. Subsequently, the time-
fractional ODEs are converted into the Sylvester matrix equation by using the
finite element Legendre wavelet Galerkin method (FELWGM) with the block
pulse function in terms of Caputo fractional order derivative. The present case’s
multi-resolution analysis of Legendre wavelets localizes small-scale variations
of the solution and the fast switching of functional bases. Good consistency
between the obtained results from the FELWGM and the exact solution is
reported. In brief, the time-fractional order derivative as an important param-
eter in thermal treatment of the cancerous tissues to accurately handle the
temperature is the objective of the mentioned paper. The 2D transient, DPL,
and variable-order fractional energy equation form of the bioheat transfer
equation are studied in [303]. The semi-discrete method based on the two-
dimensional Legendre wavelets (2D LWs) has been used. In brief, the main
problem is reduced to the easily solvable system of algebraic equations. Three
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different α are investigated from 0.5 to 1.0 and from 1.0 to 0.5. It is reported
that increasing α brings up more intense temperature peaks earlier. On the
other hand, the constant time-fractional order leads to a more uniform temper-
ature distribution. Presenting no verification with any of the available data, the
authors claim that their method’s stability and spectral accuracy are checked
with their results obtained for a numerical experimental example. Increasing
the fractional-order from α =0.1 to α =1.0 causes the augmentation of the
maximum temperature of the tissue for about 29%. Concerning this paper,
serious and critical problems are signified in a recently published comment
[304]. It is pointed out that the main equation in [303],

ρc
∂αT (x, t)

∂tα
= k

∂βT (x, t)

∂xβ
+ Qmetabolic + Qperfusion + Qsource, (20)

is dimensionally problematic. In the mentioned paper, it is stated that the
above equation holds for 0 < α ≤ 1 and 0 < β ≤ 2. However, to put it
more precisely, it is obvious that only the two first terms in the equation are
dimensionally matched for the case with α = 1 and β= 2. Even for this special
case, the above equation is still wrong as the unit of the term [Qperfusion]= kg
m2sec−3 differs from the others such as [Qmetabolic]=kg m−1sec−3. Further, the
two defined dimensionless parameters, Pf and Pm, are shown to be evidently

dimensional. The units of PF =
√

ωbcbρb
k and Pm = QmL

2

k are respectively,

m1/2 and K. These points cast doubt on the correctness of the results that
appeared in [303].
A space and time-fractional DPL bioheat transfer model in the presence of
temperature-dependent metabolic and space-time dependent electromagnetic
heat sources has been developed [305]. The fractional-order partial differential
equation is again reduced into the system of algebraic equations by implying
the Legendre wavelet collocation method. The set of equations is solved using
the Newton iteration method. The error bound and stability analysis and
the numerical method validation by comparison with the exact solution are
presented. To annihilate the cancerous tissues while keeping the healthy cells
around intact, finding the accurate temperature distribution in the tumor zone
is a necessity.

Accordingly, the effect of variability of time/space fractional derivative
order, the transferred power, and the phase-lagging times on the temper-
ature distribution are investigated. The best choices, providing the desired
temperature at a particular time and space, are found. In more detail, the tis-
sue temperature increases as the space-fractional order derivative grows, and
decreases when the value of the time-fractional order derivative reduces. Fur-
ther, the effect of the τq is reported to be more noticeable than the τT . It
should be noted that the comment [304] questioning the non-dimensionality
of the parameters Pf and Pm also apply for the papers [302, 305].

At this time, it is noteworthy to mention a new hybrid algorithm based
on integrating the local radial basis function collocation method (LRBFCM)
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and the general boundary element method for dealing with time-fractional
DPLBHT problems in functionally graded tissues proposed in 2019 [306].
The new theory claims that the general solution (T) of the time-fractional
DPLBHT equation is the sum of the Tf , the solution of the fractional-order
governing equation without phase lags, and Td, the solution of the DPL
governing equation without fractional derivative, say T=Tf+Td. Caputo’s
time-fractional derivative is used to replace the fractional PBHT equation with
a series of integer-order PDEs. Correspondingly, the LRBFCM is implied to
deal with the obtained PDEs at discrete time steps. On the other hand, the
DPL equation without considering the fractional-order derivative is resolved
via GBEM. It is worth noting that the envisaged theory can be utilized to treat
the time fractional-order BHT problems with single or triple-phase-lag as well.

The validity and accuracy of the suggested procedure are verified via
comparison of the LRBFCM-GBEM obtained results with that of the finite
difference method [287] and finite element method [302]. A new constitutive
model, based on the combination and development of the Cattaneo-Christov
model and DPL model, is suggested to investigate the macroscopic and micro-
scopic heat transfer in the moving media [307]. The governing equation includes
the phase lag times and the time-fractional derivative with the highest order
of 1+α (0¡α ≤1). Solutions are calculated numerically utilizing the L1 scheme,
which is one of the most reputable and prosperous numerical methods for
discretizing the Caputo fractional derivative in time. The model is used to
evaluate the heat conduction in processed meat and find out the effects of the
convection velocity on the temporal evolution of the temperature. It is con-
cluded that a larger positive convection velocity leads to slower temperature
transport. Also, the thermal behavior of biological tissue has been investigated.

It is obtained that the faster temperature transport occurs at smaller posi-
tions while it gets slower for larger positions when the fractional parameters,
α, and β are respectively larger and smaller. Also, the temperature trans-
port becomes slower for a larger macroscopic phase lag time or the convection
velocity. Furthermore, the super-diffusion fractional Cattaneo heat conduction
model has been applied to simulate the heat diffusion through the skin tissue
with a heat source [308]. In further detail, the three-layered skin tissue, in con-
tact with a hot water source and a single-layer skin tissue exposed abruptly
to a laser heat source, is investigated. The governing equation is solved using
an implicit method and a finite volume technique for the first and second
cases. The results of the Fractional Single-Phase Lag (FSPL) model have been
compared with the available data of DPL modeling. More concretely, the tem-
perature profile for the FSPL model with α=0.9985 and the phase lag, τ=16
s, affected by laser on the boundary agrees well with the result obtained from
DPL with phase lag times of τq = 16 s and τT = 0.05 s.
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3.7.5 Inverse problems

The inverse hyperbolic and DPL heat conduction problems for estimation of
the unknown time-dependent laser irradiance and the thermal damage in laser-
irradiated three-layer skin tissue are respectively investigated in [309] and [310].
The inverse algorithm is based on the conjugate gradient method (CGM)and
the discrepancy principle. CGM is deducted from the perturbation principles
and converts the inverse problem to the solution of three other problems called
as direct, sensitivity, and adjoint. The obtained results reveal that the evolved
method accurately predicts the unidentified laser irradiation.

It is declared that the developed technique performs the inverse calcula-
tion needless of any initial guess for the functional form of the indeterminate
quantities. While the laser irradiation is assessed, the particular temperature
profile and the thermal damage can be attained at the irradiated surface. Also,
the solution of the inverse problem in predicting the laser intensity in biologi-
cal tissues via gradient method is presented in [311]. As the gradient algorithm
is not always convergent, selecting an appropriate starting point is crucial to
ensure convergence. Besides, the phase lags τq and τT , and the thermal dif-
fusivity α of processed meat are calculated based on the DPL mode [312].
The Laplace transform and the least-squares scheme are used to estimate the
unknown parameters. The discrepancy between the predicted temperature and
the experimental data is reduced using the least-squares minimization method.

At last, it is also interesting to mention the work by Ismailov et al. where
the time-dependent blood perfusion coefficient for the conventional Pennes
bioheat equation with Ionkin-type nonlocal boundary and integral energy
over-determination conditions has been estimated [313]. In the previous tech-
niques, the original problem is converted into the inverse source problem,
and consequently, the perfusion coefficient is predicted within the numerical
differentiation. In contrast, the coefficient is predicted directly via a nonlin-
ear minimization technique. In more detail, the method of lines based on a
highly accurate pseudospectral approach has been used to resolve the bioheat
equation, and the perfusion coefficients are found by the Levenberg–Marquardt
method using the discrepancy principle as a stopping rule.

3.7.6 Transient radiative heat transfer

In this section, the studies modeling the light-tissue interaction using the DPL
coupled with the radiative transfer equation (RTE) in different frameworks are
presented.

Discrete ordinate method (DOM)

The DPL based heat conduction model coupled with the transient form of
RTE for investigating the phenomenon of light propagation inside the tissue
phantom is developed in [314]. Two-dimensional distribution of the light inten-
sity inside the tissue is found by solving the RTE using the discrete ordinate
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method (DOM). The heat transfer is modeled using the finite volume method
(FVM) based discretization.

After that, the temperature distribution inside the biological tissue phan-
tom embedded with optical inhomogeneities of varying contrast levels has been
determined using the DPL-based model. This study presents complete and
comprehensive verification of the numerical code and compares the oscillation’s
temperature distribution and magnitude for three different heat conduction
models named hyperbolic, DPL, and Fourier. The DPL temperature profile
lies between that of the hyperbolic and Fourier models. Moreover, the authors
confirmed that the higher magnitude of the oscillations is attributed to the
hyperbolic modeling due to the effect of the τq. On the other hand, the DPL
model predicts smaller oscillations owing to the coupled effects of τq and τT .

Lattice Boltzmann method (LBM)-based numerical framework

Further, the thermal response of the biological tissue under the effect of
the laser irradiation, the coupled transient RTE, and DPL heat conduc-
tion equation has been firstly solved via developing and utilizing a Lattice
Boltzmann method (LBM)-based numerical framework in [315]. The intensity
distribution inside the tissue phantom has been calculated by working out the
transient RTE in more detail.

In other words, the integro-differential equation is transformed into a set
of PDE conforming to the finite number of lattice directions M by using the
D2Q8 model in LBM. Then the solution is coupled with a generalized DPL
model. The uniform solver based on the concept of LBM has been found to
anticipate the thermal responses of the laser-irradiated biological tissue ade-
quately. Additionally, the heat transfer through the biological tissue phantoms
has been numerically modeled in a cylindrical coordinate system [316].

Finite integral transform scheme

Kumar and Srivastava argued that the complete FIT-based analytical solution
of the DPL bioheat equation, being subsequently coupled with the numerical
results of transient RTE, has been developed [317]. The temperature distribu-
tion is calculated for three different time-independent/dependent (sinusoidal)
BCs and short pulse laser irradiation.

3.7.7 Green function technique for porous media

The rapid heating of living biological tissues during the hyperthermia treat-
ment is explained with the assessment of the two-equation (medium or step)
model [318, 319]. The two-step model considers the biological tissue like a
porous medium under Local Thermal Non-Equilibrium (LTNE) circumstances
[320]. This model is based on the two coupled partial differential equations
written for the tissue (solid phase) and the blood (fluid phase). An ade-
quate transformation of the dependent variable leads to the cancellation of the
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bioheat term and then the transient DPL diffusion equation will be analyti-
cally solved employing the DPL-based alternative Green’s functions solution
equation (AGFSE).

As the solid phase temperature is known, the blood temperature is calcu-
lated utilizing the approximate lumped capacitance analysis, which reduces a
thermal system to a number of discrete lumps with no temperature difference
inside for porous media and the particular application of the biological tissues.
The blood temperature is found to be retarded due to the relaxation time
between the two solid and fluid phases. Further, larger values of the porosity
and perfusion rate of the tissue improve the cooling influences of the blood
through the vessels and lower the thermal damages. Additionally, the exact
series solutions for finding the temperature distribution in porous passages
are developed in [321]. Special attention has been paid to the rapid heating
through the biological systems, and also the parallel plate and the circular
porous passages, filled with solids, have been investigated.

3.7.8 Different heating sources

This section discusses the recent literature presenting the effect of the var-
ious kinds of heating sources. Remarkably, the time and space-dependent
heat sources and moving heating sources treated with different methods are
explored.

Time/space dependent heating source

At first, the results for the media under the effect of the time and space-
dependent heat flux are presented [305]. Recent works have treated this
problem utilizing the following methods.

Local thermal non-equilibrium (LTNE) approach. The two-dimensional local
thermal non-equilibrium bioheat model (LTNE-DPL) has been developed to
investigate two-dimensional malignant tissues under a hyperthermia treatment
[322]. As the skin tissues are porous structures composed of a highly non-
uniform non-homogeneous fluid and solid medium structure, an LTNE model
is preferred over a local thermal equilibrium process. The LTNE-DPL has been
solved analytically by applying a hybrid scheme based on the change of the
variables and FIT with heat flux boundary conditions and spatial-dependent
initial conditions.

Two biological cases with imposed oscillating and constant heat flux on the
diseased tissue have been investigated. The sinusoidal therapeutic heat flux is
found to be better due to its longer time of therapy relative to the constant heat
flux heating. This long exposure time results in the destruction of more cancer
cells. Also, the authors employ a medium range of tissue heating of 38–44◦C
for the lengthy thermal therapy to avoid the occurrence of the internal injury,
instead of applying the usual average temperature of 50◦C for 30 mins.

Radial basis function (RBF) approximations. The heat distribution in skin
tissue under the influence of the constant and sinusoidal heat flux at the surface
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has been studied in [323]. The DPL bioheat transfer model is solved using the
finite difference and radial basis function (RBF) approximations. It is found
that decreasing the heating frequency of sinusoidal heating leads to a higher
amplitude of the thermal wave. Also, healthy tissue damage is less probable
during the sinusoidal heat flux condition than that of the constant heat flux
condition. This is in agreement with what is obtained in [322].

Moving heat sources

Secondly, the cases with implied moving heat sources are considered. Recent
studies treat such affected mediums with Green’s function technique and FIT.

Green’s function technique. A 3D cuboid biological tissue, subjected to a time
and space-dependent moving laser heat source, has been modeled in [324].
The Green function for the three-dimensional DPL bioheat equation has been
derived, and it is used to find the temperature distribution. It has been found
that the peak temperature emerges at the zone being directly irradiated by
the laser beam, and its position moves with the laser beam. Furthermore, the
peak temperature value is inversely dependent on the speed of the laser beam.
The smaller spot size of laser beam results in much concentrated laser power,
which causes extreme temperature growth in a small affected area.

Finite integral transform method. An exact analytical investigation of the
heat transfer in a 3D square-shaped cuboid plate under the effect of a moving
laser heat source has been performed based on the combined form of FIT and
Duhamel’s theorem [325]. A time-decaying laser heat source term has been
considered. Duhamel’s theorem is employed due to the existence of the time
and space-dependent heat source term in the mentioned DPL heat conduction
model. This theorem specifically transforms the non-homogeneous problem
with time-dependent heat source and constant initial conditions to a homo-
geneous one with time-dependent initial conditions. Further, the temperature
response is found to be highly dependent on the laser power density and dura-
tion of the laser exposure. In more detail, the increase in laser power density
results in a larger peak temperature. Also, the higher laser exposure time
makes the maximum temperature decrease. The finding is in contrast to what
was obtained for the generalized DPL bioheat equation in [289]. This conflict
can be attributed to the non-biological, biological nature of the problems and
the difference between investigated systems’ dimensions. The present study
considers 3D plates while 1D living biological cases are studied in [289].

3.7.9 Eigenfunction-based solutions for time-dependent BC

It is also interesting to bring up the new research studying the cases with time-
dependent boundary conditions. Recently, the DPL bioheat transfer problem
with time-dependent BCs for a 2D skin tissue phantom is solved analyti-
cally based on the finite integral transform [326]. Biswas et al. have developed
a technique of homogenization of boundary conditions to eradicate a possi-
ble mismatch between the BCs and corresponding eigenfunctions [327]. The
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orthogonal eigenfunction expansion method (OEEM) is employed with the
new homogenization technique to the DPLBHT model. The homogenization
of the generalized time-dependent BCs is performed by subtracting an auxil-
iary function from the temperature of the domain of interest. Consequently,
a problem in terms of the modified temperature with a modified source and
homogeneous BCs is obtained. It is mentioned that an extra condition, say the
pseudo-steady-state, is enforced to acquire quite simple, unique auxiliary func-
tions. The cases with constant surface temperature and sinusoidal heat flux on
the surface are studied. The aforementioned procedure takes away the large
spurious oscillations nearby the boundary for constant surface temperature. In
the case of the surface heat flux condition, the temperature obtained applying
the homogenization approach is found to be in good agreement with that of
the FIT approach. Also, the realistic non-zero flux distribution is obtained on
the boundary, while the FIT procedure predicts zero heat flux when the same
non-zero heat flux at the boundary is applied.

3.7.10 Numerical toolboxes

In the end, we concentrate on the newly developed user-friendly mathematical
tools for solving the non-Fourier DPL equation. This toolbox is becoming very
popular in any aspect of the numerical sciences, it is easy to use, needs less
experience, and is mostly faster than the old-fashioned standard coding. Here
we review the recent works involving the development of such tools.

Adaptive time integrators

A new, low-cost, and accurate time marching technique is developed to deal
with the DPL equation in [328]. The spatial discretization of the model is
performed using the FEM, and the temporal discretization is treated via a
new algorithm. Hence, according to the characteristics and the calculated
results, the adaptive time integration parameters locally adjust themselves
spatially and temporally during the solution procedure. It has been demon-
strated that this method is formulated as a non-iterative single-step process,
and consequently, it is computationally low-cost.

OpenFOAM solver

One of the complexities of biological cases is their sophisticated geometrical
details. Thus, to produce realistic results, we need to perform simulations using
object-oriented open-source solvers. Regardless of the rapid growth of the non-
Fourier heat transfer models, some numerical restrictions for real cases are
still problematic. Jamshidi and Ghazanfarian [329, 330] developed an Open-
FOAM solver to include additional terms of the DPL model with numerical
flexibilities such as supporting structured and unstructured meshes and easy
implementation of three-dimensional cases.

Jamshidi and Ghazanfarian [331] simulated a more realistic three-
dimensional multilayered skin of a human finger with buried embedded vessels
based on the DPL model in the tissue. They developed a novel solver over the
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platform of OpenFOAM codes to model the effect of capillaries, small arter-
ies, small veins, the blood velocity, the blood pressure, and the distance from
the skin surface in the epidermis, the dermis, and the hypodermis layers. The
temperature distribution and the peak temperature rise in the skin layers and
the buried vessels are computed. Such solvers can be helpful to conduct ab
initio simulations.

4 The roadmap for future works

As we have seen, there is a gap between theory and practice in bioheat
non-Fourier research. On the one hand, the practice requires knowledge of
the possible heat source terms and perfusion properties of various tissues.
Also, nonequilibrium thermodynamics and the dual-phase-lag approach pro-
vide modifications for the constitutive part. These are different parts of the
continuum model, and for better understanding, the experimental separation
of various physical phenomena is strongly required. Otherwise, one could not
decide why the Fourier law does not explain the experimental data: is it lack-
ing some important source terms, such as included in the Pennes’ model, or is
the Fourier law itself inadequate? The theoretical developments lead to better
insight with more reliable, stable, and solvable models. The practical require-
ments may be less consistent but better suited to the immediate need of the
particular problems. The careful experimentation with comparative modeling
can lead to the bridge over the gap between the various theories. The practical
side needs more accurate models with easy implementation. This is contradic-
tory with developing such a specific model in which one needs to know the
velocity field of the blood flow, the exact structure of the artery-vein pairs, or
other particular properties of the tissues.

From a theoretical point of view, we have seen that the dual-phase-lag
concept is an easy way to get partial differential equations of non-Fourier
heat conduction. However, the system is too general, and boundary conditions
are necessary for solutions and experimentation. Moreover, one can encounter
instabilities due to the missing thermodynamic background. On top of this, the
nonlinearities by temperature-dependent parameters are important for prac-
tice, and that property cannot be consistently included in a DPL approach.
There is a need for models with stronger physical background, providing mod-
eling capabilities as general as possible without losing accuracy and reliability.
Such models with strong background are the Jeffreys and Guyer-Krumhansl
equation. Although they similar to the DPL model, and in the linear regime,
they all have the same temperature representation, they differ in the consti-
tutive part, and must not be mixed with the DPL equation. The necessary
background is given by nonequilibrium thermodynamics, as it was demon-
strated in Sections 2 and 3. It is remarkable that the experimentally fitted
relaxation times of DPL modeling all fulfill the theoretically expected stability
conditions in bioheat transfer.
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The research in non-Fourier bioheat transfer can be assorted in three
subcategories. The first sub-class includes studies that are involved with mod-
eling the therapy to suggest the conditions leading to the optimum thermal
treatment with maximum necrosis of the malfunctioning tissue and minimum
change of the healthy ones. Despite numerous research on this topic, there are
still two open paths for future studies. Although bioheat transport has been
studied for many biological cases, such as modeling the benign and malignant
cancerous tumors in organs like a tooth, thyroid nodule, skin, breast, and liver,
there are hardly any studies dealing with the thermal remedy of abnormality
in the brain or heart organs.

To be more precise, ablation treatments have been utilized for neuro-
logical brain disorders to create curative lesions through unfunctional brain
circuits, annihilate intracranial tumors, and space-occupying masses. The
ablative methods used for brain surgery are RF thermoablation, stereotac-
tic radiosurgery (SRS), laser interstitial thermal treatment, and magnetic
resonance-guided focused ultrasound (MRgFUS). In addition, as mentioned
before, RF ablation and cryoablation are the usual techniques for treating
heart arrhythmia. Cryoablation surgery being more safe and effective for the
children and young adults patients [332] has not been yet modeled. As these
operations are so case-sensitive and should be performed very precisely, the
prediction of temperature demeanor to get aware of the patient’s condition
during the surgery is vital. Hence, one future prospect is to extract the stud-
ies to include the non-Fourier modeling of the heat conduction during these
mentioned surgeries and similar cases.

Another challenge for suggesting the appropriate situation to facilitate the
result of the therapy technique is to bring the situation as close as possible
to the real conditions. This can be done by turning the modeling cases into
more realistic three-dimensional ones or by providing the calculations’ temper-
ature, position, or time-dependent parameters. Accordingly, the future works
will be mostly based on three-dimensional modelings in which the involved
known parameters are not constant. Also, considering unstable thermal effects
directly induced by the intrinsic uncertainties of the input characteristics and
thermophysical, which results in more precise modeling, is a step forward.

The second subcategory is involved with the pain management of the
patients. The skin’s thermo-mechanical responses throughout the therapy are
directly related to the distress that the patient endures. More particularly,
the integrated analytical context, including the thermo-mechanical model; the
scheme for nociceptor transduction like the Hodgkin-Huxley form model; and
pain modulation and perception modeling such as gate control theory; have to
be developed to quantify the skin pain sensation. As pain management ensued
from the obtained predictions, it leads to the less irritating clinical treatments;
the studies in this topic will be of great importance. In other words, being sure
of the patients’ safety, the research in subsequent stages should be dedicated
to providing the patient comfort.
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The following important sub-class comprises the burn issues and also the
protective clothing. Despite the many research results dealing with skin burn,
only a few studies have been devoted to appropriately investigating protective
clothing. The protective fabrics between the heat source and skin make the
usual methods to inaccurate predictions as the incident heat can be modified
in value and form crossing the garment. Scrutinies in this subject are directly
related to the skin bio-thermomechanics, which are advantageous for medical
usage and are also noteworthy in space and military missions. The harsh and
intense circumstances experienced in space travel and military operations make
the procurement of desirable clothes for thermal protection of the astronauts
and army personnel; an inevitable problem. Hence, more research on the topic
of bio-thermomechanics should be performed.

The number of studies on nanomaterials and nanoparticles that are great
candidates for different biomedical therapies, including activated hyperther-
mia, is not too much. More research on this topic will lead the researchers to
suggest more suitable nanomaterials and help the clinical physicians control
the situation better during the therapy. For instance, one of the potential nano-
materials known as carbon nanotube (CNT), a nested, cylindrical graphene
structure and a diameter ranging from a few to hundreds of nanometers, can
be an exciting topic of investigation.

On the other hand, cryopreservation, a procedure of preserving the biolog-
ical tissues with the least severe failures by exposing the tissues to the very
low cryogenic temperature, has gathered interest. The more obvious query
improves the model to present the more realistic three-dimensional cases.
Another challenge in the topic of non-Fourier DPL heat conduction modeling
is the lack of information on the values of the τq and τT . Although the DPL
equation was proposed in 1995, no accurate prediction of the phase lag times
in bioheat tissues has been confirmed.

Thereby, the focus should also be on finding the real values of the delay
times. The inaccurate phase lag times are also dependent on the porosity,
heat capacity of the blood, and the coupling factor. Such reliance on phase
lag times, which also affects the tissue’s thermal response, is missed out in
most of the previous publications and needs to be involved for getting more
precious results. At last, it should be noted that only a few works present strong
verification. That is why theoretical groups must contact the experimentalists
and the clinical physicians to provide the available data and experience to
certify the calculations.
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rock samples. The research reported in this paper and carried out at BME has
been supported by the grants National Research, Development and Innovation
Office-NKFIH FK 134277, K 124366, and by the NRDI Fund (TKP2020 NC,
Grant No. BME-NCS) based on the charter of bolster issued by the NRDI
Office under the auspices of the Ministry for Innovation and Technology. This



Springer Nature 2021 LATEX template

CONTENTS 55

paper was supported by the János Bolyai Research Scholarship of the Hun-
garian Academy of Sciences (R. K.). Supported by the ÚNKP-21-5-BME-368
New National Excellence Program of the Ministry for Innovation and Tech-
nology from the source of the National Research, Development and Innovation
Fund (R. K.). The first and the fourth authors thank MES of Russia. This
work was carried out with the financial support of the Ministry of Science and
Higher Education of the Russian Federation within the framework of the base
part of the state assignment (no. 0778-2020-0005) (Z. S and I. V. K.).

References

[1] D. Y. Tzou, The generalized lagging response in small-scale and high-rate
heating, International Journal of Heat and Mass Transfer, 38(17):3231–
3240, 1995.

[2] D. Y. Tzou, Experimental support for the lagging behavior in heat prop-
agation, Journal of Thermophysics and Heat Transfer, 9 (4):686-693,
1995.

[3] D. Y. Tzou, A Unified Field Theory for Heat Conduction from Macro- to
Micro-Scale, ASME Journal of Heat Transfer, 117:8-16, 1995.

[4] D. Y. Tzou, Macro- to microscale heat transfer (The lagging behaviour).
Taylor and Francis, 1997.

[5] D. Y. Tzou, Z. Y. Guo, Nonlocal behavior in thermal lagging, International
Journal of Thermal Sciences, 49 (7):1133-1137, 2010.

[6] D. Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior
Second Edition. Wiley, West Sussex, United Kingdom., 2014.
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[69] H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley-
Interscience, 2005.

[70] Wen-An Yong, Remarks on the conservation-dissipation formalism of irre-
versible thermodynamics, Philosophical Transactions of the Royal Society
A, 378(2170):20190177, 2020.

[71] E. Romenski, I. Peshkov, M. Dumbser, and F. Fambri, A new continuum
model for general relativistic viscous heat-conducting media, Philosophical
Transactions of the Royal Society A, 378(2170):20190175, 2020.

[72] K. Frischmuth and V. A. Cimmelli, Numerical reconstruction of heat pulse
experiments, International Journal of Engineering Science, 33(2):209–215,
1995.

[73] K. Frischmuth and V. A. Cimmelli, Hyperbolic heat conduction with
variable relaxation time, Journal of Theoretical and Applied Mechanics,
34(1):57–65, 1996.

[74] K. Frischmuth and V. A. Cimmelli, Coupling in thermo-mechanical wave
propagation in NaF at low temperature, Archives of Mechanics, 50(4):703–
713, 1998.
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and R. Kovács, Size effects and beyond-Fourier heat conduction in room-
temperature experiments, Journal of Non-Equilibrium Thermodynamics,
46:403–411, 2021.
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